]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/polygon/include/boost/polygon/detail/voronoi_predicates.hpp
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / polygon / include / boost / polygon / detail / voronoi_predicates.hpp
1 // Boost.Polygon library detail/voronoi_predicates.hpp header file
2
3 // Copyright Andrii Sydorchuk 2010-2012.
4 // Distributed under the Boost Software License, Version 1.0.
5 // (See accompanying file LICENSE_1_0.txt or copy at
6 // http://www.boost.org/LICENSE_1_0.txt)
7
8 // See http://www.boost.org for updates, documentation, and revision history.
9
10 #ifndef BOOST_POLYGON_DETAIL_VORONOI_PREDICATES
11 #define BOOST_POLYGON_DETAIL_VORONOI_PREDICATES
12
13 #include <utility>
14
15 #include "voronoi_robust_fpt.hpp"
16
17 namespace boost {
18 namespace polygon {
19 namespace detail {
20
21 // Predicate utilities. Operates with the coordinate types that could
22 // be converted to the 32-bit signed integer without precision loss.
23 template <typename CTYPE_TRAITS>
24 class voronoi_predicates {
25 public:
26 typedef typename CTYPE_TRAITS::int_type int_type;
27 typedef typename CTYPE_TRAITS::int_x2_type int_x2_type;
28 typedef typename CTYPE_TRAITS::uint_x2_type uint_x2_type;
29 typedef typename CTYPE_TRAITS::big_int_type big_int_type;
30 typedef typename CTYPE_TRAITS::fpt_type fpt_type;
31 typedef typename CTYPE_TRAITS::efpt_type efpt_type;
32 typedef typename CTYPE_TRAITS::ulp_cmp_type ulp_cmp_type;
33 typedef typename CTYPE_TRAITS::to_fpt_converter_type to_fpt_converter;
34 typedef typename CTYPE_TRAITS::to_efpt_converter_type to_efpt_converter;
35
36 enum {
37 ULPS = 64,
38 ULPSx2 = 128
39 };
40
41 template <typename Point>
42 static bool is_vertical(const Point& point1, const Point& point2) {
43 return point1.x() == point2.x();
44 }
45
46 template <typename Site>
47 static bool is_vertical(const Site& site) {
48 return is_vertical(site.point0(), site.point1());
49 }
50
51 // Compute robust cross_product: a1 * b2 - b1 * a2.
52 // It was mathematically proven that the result is correct
53 // with epsilon relative error equal to 1EPS.
54 static fpt_type robust_cross_product(int_x2_type a1_,
55 int_x2_type b1_,
56 int_x2_type a2_,
57 int_x2_type b2_) {
58 static to_fpt_converter to_fpt;
59 uint_x2_type a1 = static_cast<uint_x2_type>(is_neg(a1_) ? -a1_ : a1_);
60 uint_x2_type b1 = static_cast<uint_x2_type>(is_neg(b1_) ? -b1_ : b1_);
61 uint_x2_type a2 = static_cast<uint_x2_type>(is_neg(a2_) ? -a2_ : a2_);
62 uint_x2_type b2 = static_cast<uint_x2_type>(is_neg(b2_) ? -b2_ : b2_);
63
64 uint_x2_type l = a1 * b2;
65 uint_x2_type r = b1 * a2;
66
67 if (is_neg(a1_) ^ is_neg(b2_)) {
68 if (is_neg(a2_) ^ is_neg(b1_))
69 return (l > r) ? -to_fpt(l - r) : to_fpt(r - l);
70 else
71 return -to_fpt(l + r);
72 } else {
73 if (is_neg(a2_) ^ is_neg(b1_))
74 return to_fpt(l + r);
75 else
76 return (l < r) ? -to_fpt(r - l) : to_fpt(l - r);
77 }
78 }
79
80 typedef struct orientation_test {
81 public:
82 // Represents orientation test result.
83 enum Orientation {
84 RIGHT = -1,
85 COLLINEAR = 0,
86 LEFT = 1
87 };
88
89 // Value is a determinant of two vectors (e.g. x1 * y2 - x2 * y1).
90 // Return orientation based on the sign of the determinant.
91 template <typename T>
92 static Orientation eval(T value) {
93 if (is_zero(value)) return COLLINEAR;
94 return (is_neg(value)) ? RIGHT : LEFT;
95 }
96
97 static Orientation eval(int_x2_type dif_x1_,
98 int_x2_type dif_y1_,
99 int_x2_type dif_x2_,
100 int_x2_type dif_y2_) {
101 return eval(robust_cross_product(dif_x1_, dif_y1_, dif_x2_, dif_y2_));
102 }
103
104 template <typename Point>
105 static Orientation eval(const Point& point1,
106 const Point& point2,
107 const Point& point3) {
108 int_x2_type dx1 = static_cast<int_x2_type>(point1.x()) -
109 static_cast<int_x2_type>(point2.x());
110 int_x2_type dx2 = static_cast<int_x2_type>(point2.x()) -
111 static_cast<int_x2_type>(point3.x());
112 int_x2_type dy1 = static_cast<int_x2_type>(point1.y()) -
113 static_cast<int_x2_type>(point2.y());
114 int_x2_type dy2 = static_cast<int_x2_type>(point2.y()) -
115 static_cast<int_x2_type>(point3.y());
116 return eval(robust_cross_product(dx1, dy1, dx2, dy2));
117 }
118 } ot;
119
120 template <typename Point>
121 class point_comparison_predicate {
122 public:
123 typedef Point point_type;
124
125 bool operator()(const point_type& lhs, const point_type& rhs) const {
126 if (lhs.x() == rhs.x())
127 return lhs.y() < rhs.y();
128 return lhs.x() < rhs.x();
129 }
130 };
131
132 template <typename Site, typename Circle>
133 class event_comparison_predicate {
134 public:
135 typedef Site site_type;
136 typedef Circle circle_type;
137
138 bool operator()(const site_type& lhs, const site_type& rhs) const {
139 if (lhs.x0() != rhs.x0())
140 return lhs.x0() < rhs.x0();
141 if (!lhs.is_segment()) {
142 if (!rhs.is_segment())
143 return lhs.y0() < rhs.y0();
144 if (is_vertical(rhs))
145 return lhs.y0() <= rhs.y0();
146 return true;
147 } else {
148 if (is_vertical(rhs)) {
149 if (is_vertical(lhs))
150 return lhs.y0() < rhs.y0();
151 return false;
152 }
153 if (is_vertical(lhs))
154 return true;
155 if (lhs.y0() != rhs.y0())
156 return lhs.y0() < rhs.y0();
157 return ot::eval(lhs.point1(), lhs.point0(), rhs.point1()) == ot::LEFT;
158 }
159 }
160
161 bool operator()(const site_type& lhs, const circle_type& rhs) const {
162 typename ulp_cmp_type::Result xCmp =
163 ulp_cmp(to_fpt(lhs.x0()), to_fpt(rhs.lower_x()), ULPS);
164 return xCmp == ulp_cmp_type::LESS;
165 }
166
167 bool operator()(const circle_type& lhs, const site_type& rhs) const {
168 typename ulp_cmp_type::Result xCmp =
169 ulp_cmp(to_fpt(lhs.lower_x()), to_fpt(rhs.x0()), ULPS);
170 return xCmp == ulp_cmp_type::LESS;
171 }
172
173 bool operator()(const circle_type& lhs, const circle_type& rhs) const {
174 if (lhs.lower_x() != rhs.lower_x()) {
175 return lhs.lower_x() < rhs.lower_x();
176 }
177 return lhs.y() < rhs.y();
178 }
179
180 private:
181 ulp_cmp_type ulp_cmp;
182 to_fpt_converter to_fpt;
183 };
184
185 template <typename Site>
186 class distance_predicate {
187 public:
188 typedef Site site_type;
189 typedef typename site_type::point_type point_type;
190
191 // Returns true if a horizontal line going through a new site intersects
192 // right arc at first, else returns false. If horizontal line goes
193 // through intersection point of the given two arcs returns false also.
194 bool operator()(const site_type& left_site,
195 const site_type& right_site,
196 const point_type& new_point) const {
197 if (!left_site.is_segment()) {
198 if (!right_site.is_segment()) {
199 return pp(left_site, right_site, new_point);
200 } else {
201 return ps(left_site, right_site, new_point, false);
202 }
203 } else {
204 if (!right_site.is_segment()) {
205 return ps(right_site, left_site, new_point, true);
206 } else {
207 return ss(left_site, right_site, new_point);
208 }
209 }
210 }
211
212 private:
213 // Represents the result of the epsilon robust predicate. If the
214 // result is undefined some further processing is usually required.
215 enum kPredicateResult {
216 LESS = -1,
217 UNDEFINED = 0,
218 MORE = 1
219 };
220
221 // Robust predicate, avoids using high-precision libraries.
222 // Returns true if a horizontal line going through the new point site
223 // intersects right arc at first, else returns false. If horizontal line
224 // goes through intersection point of the given two arcs returns false.
225 bool pp(const site_type& left_site,
226 const site_type& right_site,
227 const point_type& new_point) const {
228 const point_type& left_point = left_site.point0();
229 const point_type& right_point = right_site.point0();
230 if (left_point.x() > right_point.x()) {
231 if (new_point.y() <= left_point.y())
232 return false;
233 } else if (left_point.x() < right_point.x()) {
234 if (new_point.y() >= right_point.y())
235 return true;
236 } else {
237 return static_cast<int_x2_type>(left_point.y()) +
238 static_cast<int_x2_type>(right_point.y()) <
239 static_cast<int_x2_type>(new_point.y()) * 2;
240 }
241
242 fpt_type dist1 = find_distance_to_point_arc(left_site, new_point);
243 fpt_type dist2 = find_distance_to_point_arc(right_site, new_point);
244
245 // The undefined ulp range is equal to 3EPS + 3EPS <= 6ULP.
246 return dist1 < dist2;
247 }
248
249 bool ps(const site_type& left_site, const site_type& right_site,
250 const point_type& new_point, bool reverse_order) const {
251 kPredicateResult fast_res = fast_ps(
252 left_site, right_site, new_point, reverse_order);
253 if (fast_res != UNDEFINED) {
254 return fast_res == LESS;
255 }
256
257 fpt_type dist1 = find_distance_to_point_arc(left_site, new_point);
258 fpt_type dist2 = find_distance_to_segment_arc(right_site, new_point);
259
260 // The undefined ulp range is equal to 3EPS + 7EPS <= 10ULP.
261 return reverse_order ^ (dist1 < dist2);
262 }
263
264 bool ss(const site_type& left_site,
265 const site_type& right_site,
266 const point_type& new_point) const {
267 // Handle temporary segment sites.
268 if (left_site.sorted_index() == right_site.sorted_index()) {
269 return ot::eval(
270 left_site.point0(), left_site.point1(), new_point) == ot::LEFT;
271 }
272
273 fpt_type dist1 = find_distance_to_segment_arc(left_site, new_point);
274 fpt_type dist2 = find_distance_to_segment_arc(right_site, new_point);
275
276 // The undefined ulp range is equal to 7EPS + 7EPS <= 14ULP.
277 return dist1 < dist2;
278 }
279
280 fpt_type find_distance_to_point_arc(
281 const site_type& site, const point_type& point) const {
282 fpt_type dx = to_fpt(site.x()) - to_fpt(point.x());
283 fpt_type dy = to_fpt(site.y()) - to_fpt(point.y());
284 // The relative error is at most 3EPS.
285 return (dx * dx + dy * dy) / (to_fpt(2.0) * dx);
286 }
287
288 fpt_type find_distance_to_segment_arc(
289 const site_type& site, const point_type& point) const {
290 if (is_vertical(site)) {
291 return (to_fpt(site.x()) - to_fpt(point.x())) * to_fpt(0.5);
292 } else {
293 const point_type& segment0 = site.point0();
294 const point_type& segment1 = site.point1();
295 fpt_type a1 = to_fpt(segment1.x()) - to_fpt(segment0.x());
296 fpt_type b1 = to_fpt(segment1.y()) - to_fpt(segment0.y());
297 fpt_type k = get_sqrt(a1 * a1 + b1 * b1);
298 // Avoid subtraction while computing k.
299 if (!is_neg(b1)) {
300 k = to_fpt(1.0) / (b1 + k);
301 } else {
302 k = (k - b1) / (a1 * a1);
303 }
304 // The relative error is at most 7EPS.
305 return k * robust_cross_product(
306 static_cast<int_x2_type>(segment1.x()) -
307 static_cast<int_x2_type>(segment0.x()),
308 static_cast<int_x2_type>(segment1.y()) -
309 static_cast<int_x2_type>(segment0.y()),
310 static_cast<int_x2_type>(point.x()) -
311 static_cast<int_x2_type>(segment0.x()),
312 static_cast<int_x2_type>(point.y()) -
313 static_cast<int_x2_type>(segment0.y()));
314 }
315 }
316
317 kPredicateResult fast_ps(
318 const site_type& left_site, const site_type& right_site,
319 const point_type& new_point, bool reverse_order) const {
320 const point_type& site_point = left_site.point0();
321 const point_type& segment_start = right_site.point0();
322 const point_type& segment_end = right_site.point1();
323
324 if (ot::eval(segment_start, segment_end, new_point) != ot::RIGHT)
325 return (!right_site.is_inverse()) ? LESS : MORE;
326
327 fpt_type dif_x = to_fpt(new_point.x()) - to_fpt(site_point.x());
328 fpt_type dif_y = to_fpt(new_point.y()) - to_fpt(site_point.y());
329 fpt_type a = to_fpt(segment_end.x()) - to_fpt(segment_start.x());
330 fpt_type b = to_fpt(segment_end.y()) - to_fpt(segment_start.y());
331
332 if (is_vertical(right_site)) {
333 if (new_point.y() < site_point.y() && !reverse_order)
334 return MORE;
335 else if (new_point.y() > site_point.y() && reverse_order)
336 return LESS;
337 return UNDEFINED;
338 } else {
339 typename ot::Orientation orientation = ot::eval(
340 static_cast<int_x2_type>(segment_end.x()) -
341 static_cast<int_x2_type>(segment_start.x()),
342 static_cast<int_x2_type>(segment_end.y()) -
343 static_cast<int_x2_type>(segment_start.y()),
344 static_cast<int_x2_type>(new_point.x()) -
345 static_cast<int_x2_type>(site_point.x()),
346 static_cast<int_x2_type>(new_point.y()) -
347 static_cast<int_x2_type>(site_point.y()));
348 if (orientation == ot::LEFT) {
349 if (!right_site.is_inverse())
350 return reverse_order ? LESS : UNDEFINED;
351 return reverse_order ? UNDEFINED : MORE;
352 }
353 }
354
355 fpt_type fast_left_expr = a * (dif_y + dif_x) * (dif_y - dif_x);
356 fpt_type fast_right_expr = (to_fpt(2.0) * b) * dif_x * dif_y;
357 typename ulp_cmp_type::Result expr_cmp =
358 ulp_cmp(fast_left_expr, fast_right_expr, 4);
359 if (expr_cmp != ulp_cmp_type::EQUAL) {
360 if ((expr_cmp == ulp_cmp_type::MORE) ^ reverse_order)
361 return reverse_order ? LESS : MORE;
362 return UNDEFINED;
363 }
364 return UNDEFINED;
365 }
366
367 private:
368 ulp_cmp_type ulp_cmp;
369 to_fpt_converter to_fpt;
370 };
371
372 template <typename Node>
373 class node_comparison_predicate {
374 public:
375 typedef Node node_type;
376 typedef typename Node::site_type site_type;
377 typedef typename site_type::point_type point_type;
378 typedef typename point_type::coordinate_type coordinate_type;
379 typedef point_comparison_predicate<point_type> point_comparison_type;
380 typedef distance_predicate<site_type> distance_predicate_type;
381
382 // Compares nodes in the balanced binary search tree. Nodes are
383 // compared based on the y coordinates of the arcs intersection points.
384 // Nodes with less y coordinate of the intersection point go first.
385 // Comparison is only called during the new site events processing.
386 // That's why one of the nodes will always lie on the sweepline and may
387 // be represented as a straight horizontal line.
388 bool operator() (const node_type& node1,
389 const node_type& node2) const {
390 // Get x coordinate of the rightmost site from both nodes.
391 const site_type& site1 = get_comparison_site(node1);
392 const site_type& site2 = get_comparison_site(node2);
393 const point_type& point1 = get_comparison_point(site1);
394 const point_type& point2 = get_comparison_point(site2);
395
396 if (point1.x() < point2.x()) {
397 // The second node contains a new site.
398 return distance_predicate_(
399 node1.left_site(), node1.right_site(), point2);
400 } else if (point1.x() > point2.x()) {
401 // The first node contains a new site.
402 return !distance_predicate_(
403 node2.left_site(), node2.right_site(), point1);
404 } else {
405 // This checks were evaluated experimentally.
406 if (site1.sorted_index() == site2.sorted_index()) {
407 // Both nodes are new (inserted during same site event processing).
408 return get_comparison_y(node1) < get_comparison_y(node2);
409 } else if (site1.sorted_index() < site2.sorted_index()) {
410 std::pair<coordinate_type, int> y1 = get_comparison_y(node1, false);
411 std::pair<coordinate_type, int> y2 = get_comparison_y(node2, true);
412 if (y1.first != y2.first) return y1.first < y2.first;
413 return (!site1.is_segment()) ? (y1.second < 0) : false;
414 } else {
415 std::pair<coordinate_type, int> y1 = get_comparison_y(node1, true);
416 std::pair<coordinate_type, int> y2 = get_comparison_y(node2, false);
417 if (y1.first != y2.first) return y1.first < y2.first;
418 return (!site2.is_segment()) ? (y2.second > 0) : true;
419 }
420 }
421 }
422
423 private:
424 // Get the newer site.
425 const site_type& get_comparison_site(const node_type& node) const {
426 if (node.left_site().sorted_index() > node.right_site().sorted_index()) {
427 return node.left_site();
428 }
429 return node.right_site();
430 }
431
432 const point_type& get_comparison_point(const site_type& site) const {
433 return point_comparison_(site.point0(), site.point1()) ?
434 site.point0() : site.point1();
435 }
436
437 // Get comparison pair: y coordinate and direction of the newer site.
438 std::pair<coordinate_type, int> get_comparison_y(
439 const node_type& node, bool is_new_node = true) const {
440 if (node.left_site().sorted_index() ==
441 node.right_site().sorted_index()) {
442 return std::make_pair(node.left_site().y0(), 0);
443 }
444 if (node.left_site().sorted_index() > node.right_site().sorted_index()) {
445 if (!is_new_node &&
446 node.left_site().is_segment() &&
447 is_vertical(node.left_site())) {
448 return std::make_pair(node.left_site().y0(), 1);
449 }
450 return std::make_pair(node.left_site().y1(), 1);
451 }
452 return std::make_pair(node.right_site().y0(), -1);
453 }
454
455 point_comparison_type point_comparison_;
456 distance_predicate_type distance_predicate_;
457 };
458
459 template <typename Site>
460 class circle_existence_predicate {
461 public:
462 typedef typename Site::point_type point_type;
463 typedef Site site_type;
464
465 bool ppp(const site_type& site1,
466 const site_type& site2,
467 const site_type& site3) const {
468 return ot::eval(site1.point0(),
469 site2.point0(),
470 site3.point0()) == ot::RIGHT;
471 }
472
473 bool pps(const site_type& site1,
474 const site_type& site2,
475 const site_type& site3,
476 int segment_index) const {
477 if (segment_index != 2) {
478 typename ot::Orientation orient1 = ot::eval(
479 site1.point0(), site2.point0(), site3.point0());
480 typename ot::Orientation orient2 = ot::eval(
481 site1.point0(), site2.point0(), site3.point1());
482 if (segment_index == 1 && site1.x0() >= site2.x0()) {
483 if (orient1 != ot::RIGHT)
484 return false;
485 } else if (segment_index == 3 && site2.x0() >= site1.x0()) {
486 if (orient2 != ot::RIGHT)
487 return false;
488 } else if (orient1 != ot::RIGHT && orient2 != ot::RIGHT) {
489 return false;
490 }
491 } else {
492 return (site3.point0() != site1.point0()) ||
493 (site3.point1() != site2.point0());
494 }
495 return true;
496 }
497
498 bool pss(const site_type& site1,
499 const site_type& site2,
500 const site_type& site3,
501 int point_index) const {
502 if (site2.sorted_index() == site3.sorted_index()) {
503 return false;
504 }
505 if (point_index == 2) {
506 if (!site2.is_inverse() && site3.is_inverse())
507 return false;
508 if (site2.is_inverse() == site3.is_inverse() &&
509 ot::eval(site2.point0(),
510 site1.point0(),
511 site3.point1()) != ot::RIGHT)
512 return false;
513 }
514 return true;
515 }
516
517 bool sss(const site_type& site1,
518 const site_type& site2,
519 const site_type& site3) const {
520 return (site1.sorted_index() != site2.sorted_index()) &&
521 (site2.sorted_index() != site3.sorted_index());
522 }
523 };
524
525 template <typename Site, typename Circle>
526 class mp_circle_formation_functor {
527 public:
528 typedef typename Site::point_type point_type;
529 typedef Site site_type;
530 typedef Circle circle_type;
531 typedef robust_sqrt_expr<big_int_type, efpt_type, to_efpt_converter>
532 robust_sqrt_expr_type;
533
534 void ppp(const site_type& site1,
535 const site_type& site2,
536 const site_type& site3,
537 circle_type& circle,
538 bool recompute_c_x = true,
539 bool recompute_c_y = true,
540 bool recompute_lower_x = true) {
541 big_int_type dif_x[3], dif_y[3], sum_x[2], sum_y[2];
542 dif_x[0] = static_cast<int_x2_type>(site1.x()) -
543 static_cast<int_x2_type>(site2.x());
544 dif_x[1] = static_cast<int_x2_type>(site2.x()) -
545 static_cast<int_x2_type>(site3.x());
546 dif_x[2] = static_cast<int_x2_type>(site1.x()) -
547 static_cast<int_x2_type>(site3.x());
548 dif_y[0] = static_cast<int_x2_type>(site1.y()) -
549 static_cast<int_x2_type>(site2.y());
550 dif_y[1] = static_cast<int_x2_type>(site2.y()) -
551 static_cast<int_x2_type>(site3.y());
552 dif_y[2] = static_cast<int_x2_type>(site1.y()) -
553 static_cast<int_x2_type>(site3.y());
554 sum_x[0] = static_cast<int_x2_type>(site1.x()) +
555 static_cast<int_x2_type>(site2.x());
556 sum_x[1] = static_cast<int_x2_type>(site2.x()) +
557 static_cast<int_x2_type>(site3.x());
558 sum_y[0] = static_cast<int_x2_type>(site1.y()) +
559 static_cast<int_x2_type>(site2.y());
560 sum_y[1] = static_cast<int_x2_type>(site2.y()) +
561 static_cast<int_x2_type>(site3.y());
562 fpt_type inv_denom = to_fpt(0.5) / to_fpt(static_cast<big_int_type>(
563 dif_x[0] * dif_y[1] - dif_x[1] * dif_y[0]));
564 big_int_type numer1 = dif_x[0] * sum_x[0] + dif_y[0] * sum_y[0];
565 big_int_type numer2 = dif_x[1] * sum_x[1] + dif_y[1] * sum_y[1];
566
567 if (recompute_c_x || recompute_lower_x) {
568 big_int_type c_x = numer1 * dif_y[1] - numer2 * dif_y[0];
569 circle.x(to_fpt(c_x) * inv_denom);
570
571 if (recompute_lower_x) {
572 // Evaluate radius of the circle.
573 big_int_type sqr_r = (dif_x[0] * dif_x[0] + dif_y[0] * dif_y[0]) *
574 (dif_x[1] * dif_x[1] + dif_y[1] * dif_y[1]) *
575 (dif_x[2] * dif_x[2] + dif_y[2] * dif_y[2]);
576 fpt_type r = get_sqrt(to_fpt(sqr_r));
577
578 // If c_x >= 0 then lower_x = c_x + r,
579 // else lower_x = (c_x * c_x - r * r) / (c_x - r).
580 // To guarantee epsilon relative error.
581 if (!is_neg(circle.x())) {
582 if (!is_neg(inv_denom)) {
583 circle.lower_x(circle.x() + r * inv_denom);
584 } else {
585 circle.lower_x(circle.x() - r * inv_denom);
586 }
587 } else {
588 big_int_type numer = c_x * c_x - sqr_r;
589 fpt_type lower_x = to_fpt(numer) * inv_denom / (to_fpt(c_x) + r);
590 circle.lower_x(lower_x);
591 }
592 }
593 }
594
595 if (recompute_c_y) {
596 big_int_type c_y = numer2 * dif_x[0] - numer1 * dif_x[1];
597 circle.y(to_fpt(c_y) * inv_denom);
598 }
599 }
600
601 // Recompute parameters of the circle event using high-precision library.
602 void pps(const site_type& site1,
603 const site_type& site2,
604 const site_type& site3,
605 int segment_index,
606 circle_type& c_event,
607 bool recompute_c_x = true,
608 bool recompute_c_y = true,
609 bool recompute_lower_x = true) {
610 big_int_type cA[4], cB[4];
611 big_int_type line_a = static_cast<int_x2_type>(site3.y1()) -
612 static_cast<int_x2_type>(site3.y0());
613 big_int_type line_b = static_cast<int_x2_type>(site3.x0()) -
614 static_cast<int_x2_type>(site3.x1());
615 big_int_type segm_len = line_a * line_a + line_b * line_b;
616 big_int_type vec_x = static_cast<int_x2_type>(site2.y()) -
617 static_cast<int_x2_type>(site1.y());
618 big_int_type vec_y = static_cast<int_x2_type>(site1.x()) -
619 static_cast<int_x2_type>(site2.x());
620 big_int_type sum_x = static_cast<int_x2_type>(site1.x()) +
621 static_cast<int_x2_type>(site2.x());
622 big_int_type sum_y = static_cast<int_x2_type>(site1.y()) +
623 static_cast<int_x2_type>(site2.y());
624 big_int_type teta = line_a * vec_x + line_b * vec_y;
625 big_int_type denom = vec_x * line_b - vec_y * line_a;
626
627 big_int_type dif0 = static_cast<int_x2_type>(site3.y1()) -
628 static_cast<int_x2_type>(site1.y());
629 big_int_type dif1 = static_cast<int_x2_type>(site1.x()) -
630 static_cast<int_x2_type>(site3.x1());
631 big_int_type A = line_a * dif1 - line_b * dif0;
632 dif0 = static_cast<int_x2_type>(site3.y1()) -
633 static_cast<int_x2_type>(site2.y());
634 dif1 = static_cast<int_x2_type>(site2.x()) -
635 static_cast<int_x2_type>(site3.x1());
636 big_int_type B = line_a * dif1 - line_b * dif0;
637 big_int_type sum_AB = A + B;
638
639 if (is_zero(denom)) {
640 big_int_type numer = teta * teta - sum_AB * sum_AB;
641 denom = teta * sum_AB;
642 cA[0] = denom * sum_x * 2 + numer * vec_x;
643 cB[0] = segm_len;
644 cA[1] = denom * sum_AB * 2 + numer * teta;
645 cB[1] = 1;
646 cA[2] = denom * sum_y * 2 + numer * vec_y;
647 fpt_type inv_denom = to_fpt(1.0) / to_fpt(denom);
648 if (recompute_c_x)
649 c_event.x(to_fpt(0.25) * to_fpt(cA[0]) * inv_denom);
650 if (recompute_c_y)
651 c_event.y(to_fpt(0.25) * to_fpt(cA[2]) * inv_denom);
652 if (recompute_lower_x) {
653 c_event.lower_x(to_fpt(0.25) * to_fpt(sqrt_expr_.eval2(cA, cB)) *
654 inv_denom / get_sqrt(to_fpt(segm_len)));
655 }
656 return;
657 }
658
659 big_int_type det = (teta * teta + denom * denom) * A * B * 4;
660 fpt_type inv_denom_sqr = to_fpt(1.0) / to_fpt(denom);
661 inv_denom_sqr *= inv_denom_sqr;
662
663 if (recompute_c_x || recompute_lower_x) {
664 cA[0] = sum_x * denom * denom + teta * sum_AB * vec_x;
665 cB[0] = 1;
666 cA[1] = (segment_index == 2) ? -vec_x : vec_x;
667 cB[1] = det;
668 if (recompute_c_x) {
669 c_event.x(to_fpt(0.5) * to_fpt(sqrt_expr_.eval2(cA, cB)) *
670 inv_denom_sqr);
671 }
672 }
673
674 if (recompute_c_y || recompute_lower_x) {
675 cA[2] = sum_y * denom * denom + teta * sum_AB * vec_y;
676 cB[2] = 1;
677 cA[3] = (segment_index == 2) ? -vec_y : vec_y;
678 cB[3] = det;
679 if (recompute_c_y) {
680 c_event.y(to_fpt(0.5) * to_fpt(sqrt_expr_.eval2(&cA[2], &cB[2])) *
681 inv_denom_sqr);
682 }
683 }
684
685 if (recompute_lower_x) {
686 cB[0] = cB[0] * segm_len;
687 cB[1] = cB[1] * segm_len;
688 cA[2] = sum_AB * (denom * denom + teta * teta);
689 cB[2] = 1;
690 cA[3] = (segment_index == 2) ? -teta : teta;
691 cB[3] = det;
692 c_event.lower_x(to_fpt(0.5) * to_fpt(sqrt_expr_.eval4(cA, cB)) *
693 inv_denom_sqr / get_sqrt(to_fpt(segm_len)));
694 }
695 }
696
697 // Recompute parameters of the circle event using high-precision library.
698 void pss(const site_type& site1,
699 const site_type& site2,
700 const site_type& site3,
701 int point_index,
702 circle_type& c_event,
703 bool recompute_c_x = true,
704 bool recompute_c_y = true,
705 bool recompute_lower_x = true) {
706 big_int_type a[2], b[2], c[2], cA[4], cB[4];
707 const point_type& segm_start1 = site2.point1();
708 const point_type& segm_end1 = site2.point0();
709 const point_type& segm_start2 = site3.point0();
710 const point_type& segm_end2 = site3.point1();
711 a[0] = static_cast<int_x2_type>(segm_end1.x()) -
712 static_cast<int_x2_type>(segm_start1.x());
713 b[0] = static_cast<int_x2_type>(segm_end1.y()) -
714 static_cast<int_x2_type>(segm_start1.y());
715 a[1] = static_cast<int_x2_type>(segm_end2.x()) -
716 static_cast<int_x2_type>(segm_start2.x());
717 b[1] = static_cast<int_x2_type>(segm_end2.y()) -
718 static_cast<int_x2_type>(segm_start2.y());
719 big_int_type orientation = a[1] * b[0] - a[0] * b[1];
720 if (is_zero(orientation)) {
721 fpt_type denom = to_fpt(2.0) * to_fpt(
722 static_cast<big_int_type>(a[0] * a[0] + b[0] * b[0]));
723 c[0] = b[0] * (static_cast<int_x2_type>(segm_start2.x()) -
724 static_cast<int_x2_type>(segm_start1.x())) -
725 a[0] * (static_cast<int_x2_type>(segm_start2.y()) -
726 static_cast<int_x2_type>(segm_start1.y()));
727 big_int_type dx = a[0] * (static_cast<int_x2_type>(site1.y()) -
728 static_cast<int_x2_type>(segm_start1.y())) -
729 b[0] * (static_cast<int_x2_type>(site1.x()) -
730 static_cast<int_x2_type>(segm_start1.x()));
731 big_int_type dy = b[0] * (static_cast<int_x2_type>(site1.x()) -
732 static_cast<int_x2_type>(segm_start2.x())) -
733 a[0] * (static_cast<int_x2_type>(site1.y()) -
734 static_cast<int_x2_type>(segm_start2.y()));
735 cB[0] = dx * dy;
736 cB[1] = 1;
737
738 if (recompute_c_y) {
739 cA[0] = b[0] * ((point_index == 2) ? 2 : -2);
740 cA[1] = a[0] * a[0] * (static_cast<int_x2_type>(segm_start1.y()) +
741 static_cast<int_x2_type>(segm_start2.y())) -
742 a[0] * b[0] * (static_cast<int_x2_type>(segm_start1.x()) +
743 static_cast<int_x2_type>(segm_start2.x()) -
744 static_cast<int_x2_type>(site1.x()) * 2) +
745 b[0] * b[0] * (static_cast<int_x2_type>(site1.y()) * 2);
746 fpt_type c_y = to_fpt(sqrt_expr_.eval2(cA, cB));
747 c_event.y(c_y / denom);
748 }
749
750 if (recompute_c_x || recompute_lower_x) {
751 cA[0] = a[0] * ((point_index == 2) ? 2 : -2);
752 cA[1] = b[0] * b[0] * (static_cast<int_x2_type>(segm_start1.x()) +
753 static_cast<int_x2_type>(segm_start2.x())) -
754 a[0] * b[0] * (static_cast<int_x2_type>(segm_start1.y()) +
755 static_cast<int_x2_type>(segm_start2.y()) -
756 static_cast<int_x2_type>(site1.y()) * 2) +
757 a[0] * a[0] * (static_cast<int_x2_type>(site1.x()) * 2);
758
759 if (recompute_c_x) {
760 fpt_type c_x = to_fpt(sqrt_expr_.eval2(cA, cB));
761 c_event.x(c_x / denom);
762 }
763
764 if (recompute_lower_x) {
765 cA[2] = is_neg(c[0]) ? -c[0] : c[0];
766 cB[2] = a[0] * a[0] + b[0] * b[0];
767 fpt_type lower_x = to_fpt(sqrt_expr_.eval3(cA, cB));
768 c_event.lower_x(lower_x / denom);
769 }
770 }
771 return;
772 }
773 c[0] = b[0] * segm_end1.x() - a[0] * segm_end1.y();
774 c[1] = a[1] * segm_end2.y() - b[1] * segm_end2.x();
775 big_int_type ix = a[0] * c[1] + a[1] * c[0];
776 big_int_type iy = b[0] * c[1] + b[1] * c[0];
777 big_int_type dx = ix - orientation * site1.x();
778 big_int_type dy = iy - orientation * site1.y();
779 if (is_zero(dx) && is_zero(dy)) {
780 fpt_type denom = to_fpt(orientation);
781 fpt_type c_x = to_fpt(ix) / denom;
782 fpt_type c_y = to_fpt(iy) / denom;
783 c_event = circle_type(c_x, c_y, c_x);
784 return;
785 }
786
787 big_int_type sign = ((point_index == 2) ? 1 : -1) *
788 (is_neg(orientation) ? 1 : -1);
789 cA[0] = a[1] * -dx + b[1] * -dy;
790 cA[1] = a[0] * -dx + b[0] * -dy;
791 cA[2] = sign;
792 cA[3] = 0;
793 cB[0] = a[0] * a[0] + b[0] * b[0];
794 cB[1] = a[1] * a[1] + b[1] * b[1];
795 cB[2] = a[0] * a[1] + b[0] * b[1];
796 cB[3] = (a[0] * dy - b[0] * dx) * (a[1] * dy - b[1] * dx) * -2;
797 fpt_type temp = to_fpt(
798 sqrt_expr_evaluator_pss4<big_int_type, efpt_type>(cA, cB));
799 fpt_type denom = temp * to_fpt(orientation);
800
801 if (recompute_c_y) {
802 cA[0] = b[1] * (dx * dx + dy * dy) - iy * (dx * a[1] + dy * b[1]);
803 cA[1] = b[0] * (dx * dx + dy * dy) - iy * (dx * a[0] + dy * b[0]);
804 cA[2] = iy * sign;
805 fpt_type cy = to_fpt(
806 sqrt_expr_evaluator_pss4<big_int_type, efpt_type>(cA, cB));
807 c_event.y(cy / denom);
808 }
809
810 if (recompute_c_x || recompute_lower_x) {
811 cA[0] = a[1] * (dx * dx + dy * dy) - ix * (dx * a[1] + dy * b[1]);
812 cA[1] = a[0] * (dx * dx + dy * dy) - ix * (dx * a[0] + dy * b[0]);
813 cA[2] = ix * sign;
814
815 if (recompute_c_x) {
816 fpt_type cx = to_fpt(
817 sqrt_expr_evaluator_pss4<big_int_type, efpt_type>(cA, cB));
818 c_event.x(cx / denom);
819 }
820
821 if (recompute_lower_x) {
822 cA[3] = orientation * (dx * dx + dy * dy) * (is_neg(temp) ? -1 : 1);
823 fpt_type lower_x = to_fpt(
824 sqrt_expr_evaluator_pss4<big_int_type, efpt_type>(cA, cB));
825 c_event.lower_x(lower_x / denom);
826 }
827 }
828 }
829
830 // Recompute parameters of the circle event using high-precision library.
831 void sss(const site_type& site1,
832 const site_type& site2,
833 const site_type& site3,
834 circle_type& c_event,
835 bool recompute_c_x = true,
836 bool recompute_c_y = true,
837 bool recompute_lower_x = true) {
838 big_int_type a[3], b[3], c[3], cA[4], cB[4];
839 // cA - corresponds to the cross product.
840 // cB - corresponds to the squared length.
841 a[0] = static_cast<int_x2_type>(site1.x1()) -
842 static_cast<int_x2_type>(site1.x0());
843 a[1] = static_cast<int_x2_type>(site2.x1()) -
844 static_cast<int_x2_type>(site2.x0());
845 a[2] = static_cast<int_x2_type>(site3.x1()) -
846 static_cast<int_x2_type>(site3.x0());
847
848 b[0] = static_cast<int_x2_type>(site1.y1()) -
849 static_cast<int_x2_type>(site1.y0());
850 b[1] = static_cast<int_x2_type>(site2.y1()) -
851 static_cast<int_x2_type>(site2.y0());
852 b[2] = static_cast<int_x2_type>(site3.y1()) -
853 static_cast<int_x2_type>(site3.y0());
854
855 c[0] = static_cast<int_x2_type>(site1.x0()) *
856 static_cast<int_x2_type>(site1.y1()) -
857 static_cast<int_x2_type>(site1.y0()) *
858 static_cast<int_x2_type>(site1.x1());
859 c[1] = static_cast<int_x2_type>(site2.x0()) *
860 static_cast<int_x2_type>(site2.y1()) -
861 static_cast<int_x2_type>(site2.y0()) *
862 static_cast<int_x2_type>(site2.x1());
863 c[2] = static_cast<int_x2_type>(site3.x0()) *
864 static_cast<int_x2_type>(site3.y1()) -
865 static_cast<int_x2_type>(site3.y0()) *
866 static_cast<int_x2_type>(site3.x1());
867
868 for (int i = 0; i < 3; ++i)
869 cB[i] = a[i] * a[i] + b[i] * b[i];
870
871 for (int i = 0; i < 3; ++i) {
872 int j = (i+1) % 3;
873 int k = (i+2) % 3;
874 cA[i] = a[j] * b[k] - a[k] * b[j];
875 }
876 fpt_type denom = to_fpt(sqrt_expr_.eval3(cA, cB));
877
878 if (recompute_c_y) {
879 for (int i = 0; i < 3; ++i) {
880 int j = (i+1) % 3;
881 int k = (i+2) % 3;
882 cA[i] = b[j] * c[k] - b[k] * c[j];
883 }
884 fpt_type c_y = to_fpt(sqrt_expr_.eval3(cA, cB));
885 c_event.y(c_y / denom);
886 }
887
888 if (recompute_c_x || recompute_lower_x) {
889 cA[3] = 0;
890 for (int i = 0; i < 3; ++i) {
891 int j = (i+1) % 3;
892 int k = (i+2) % 3;
893 cA[i] = a[j] * c[k] - a[k] * c[j];
894 if (recompute_lower_x) {
895 cA[3] = cA[3] + cA[i] * b[i];
896 }
897 }
898
899 if (recompute_c_x) {
900 fpt_type c_x = to_fpt(sqrt_expr_.eval3(cA, cB));
901 c_event.x(c_x / denom);
902 }
903
904 if (recompute_lower_x) {
905 cB[3] = 1;
906 fpt_type lower_x = to_fpt(sqrt_expr_.eval4(cA, cB));
907 c_event.lower_x(lower_x / denom);
908 }
909 }
910 }
911
912 private:
913 // Evaluates A[3] + A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) +
914 // A[2] * sqrt(B[3] * (sqrt(B[0] * B[1]) + B[2])).
915 template <typename _int, typename _fpt>
916 _fpt sqrt_expr_evaluator_pss4(_int *A, _int *B) {
917 _int cA[4], cB[4];
918 if (is_zero(A[3])) {
919 _fpt lh = sqrt_expr_.eval2(A, B);
920 cA[0] = 1;
921 cB[0] = B[0] * B[1];
922 cA[1] = B[2];
923 cB[1] = 1;
924 _fpt rh = sqrt_expr_.eval1(A+2, B+3) *
925 get_sqrt(sqrt_expr_.eval2(cA, cB));
926 if ((!is_neg(lh) && !is_neg(rh)) || (!is_pos(lh) && !is_pos(rh)))
927 return lh + rh;
928 cA[0] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] -
929 A[2] * A[2] * B[3] * B[2];
930 cB[0] = 1;
931 cA[1] = A[0] * A[1] * 2 - A[2] * A[2] * B[3];
932 cB[1] = B[0] * B[1];
933 _fpt numer = sqrt_expr_.eval2(cA, cB);
934 return numer / (lh - rh);
935 }
936 cA[0] = 1;
937 cB[0] = B[0] * B[1];
938 cA[1] = B[2];
939 cB[1] = 1;
940 _fpt rh = sqrt_expr_.eval1(A+2, B+3) * get_sqrt(sqrt_expr_.eval2(cA, cB));
941 cA[0] = A[0];
942 cB[0] = B[0];
943 cA[1] = A[1];
944 cB[1] = B[1];
945 cA[2] = A[3];
946 cB[2] = 1;
947 _fpt lh = sqrt_expr_.eval3(cA, cB);
948 if ((!is_neg(lh) && !is_neg(rh)) || (!is_pos(lh) && !is_pos(rh)))
949 return lh + rh;
950 cA[0] = A[3] * A[0] * 2;
951 cA[1] = A[3] * A[1] * 2;
952 cA[2] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] +
953 A[3] * A[3] - A[2] * A[2] * B[2] * B[3];
954 cA[3] = A[0] * A[1] * 2 - A[2] * A[2] * B[3];
955 cB[3] = B[0] * B[1];
956 _fpt numer = sqrt_expr_evaluator_pss3<_int, _fpt>(cA, cB);
957 return numer / (lh - rh);
958 }
959
960 template <typename _int, typename _fpt>
961 // Evaluates A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) +
962 // A[2] + A[3] * sqrt(B[0] * B[1]).
963 // B[3] = B[0] * B[1].
964 _fpt sqrt_expr_evaluator_pss3(_int *A, _int *B) {
965 _int cA[2], cB[2];
966 _fpt lh = sqrt_expr_.eval2(A, B);
967 _fpt rh = sqrt_expr_.eval2(A+2, B+2);
968 if ((!is_neg(lh) && !is_neg(rh)) || (!is_pos(lh) && !is_pos(rh)))
969 return lh + rh;
970 cA[0] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] -
971 A[2] * A[2] - A[3] * A[3] * B[0] * B[1];
972 cB[0] = 1;
973 cA[1] = (A[0] * A[1] - A[2] * A[3]) * 2;
974 cB[1] = B[3];
975 _fpt numer = sqrt_expr_.eval2(cA, cB);
976 return numer / (lh - rh);
977 }
978
979 robust_sqrt_expr_type sqrt_expr_;
980 to_fpt_converter to_fpt;
981 };
982
983 template <typename Site, typename Circle>
984 class lazy_circle_formation_functor {
985 public:
986 typedef robust_fpt<fpt_type> robust_fpt_type;
987 typedef robust_dif<robust_fpt_type> robust_dif_type;
988 typedef typename Site::point_type point_type;
989 typedef Site site_type;
990 typedef Circle circle_type;
991 typedef mp_circle_formation_functor<site_type, circle_type>
992 exact_circle_formation_functor_type;
993
994 void ppp(const site_type& site1,
995 const site_type& site2,
996 const site_type& site3,
997 circle_type& c_event) {
998 fpt_type dif_x1 = to_fpt(site1.x()) - to_fpt(site2.x());
999 fpt_type dif_x2 = to_fpt(site2.x()) - to_fpt(site3.x());
1000 fpt_type dif_y1 = to_fpt(site1.y()) - to_fpt(site2.y());
1001 fpt_type dif_y2 = to_fpt(site2.y()) - to_fpt(site3.y());
1002 fpt_type orientation = robust_cross_product(
1003 static_cast<int_x2_type>(site1.x()) -
1004 static_cast<int_x2_type>(site2.x()),
1005 static_cast<int_x2_type>(site2.x()) -
1006 static_cast<int_x2_type>(site3.x()),
1007 static_cast<int_x2_type>(site1.y()) -
1008 static_cast<int_x2_type>(site2.y()),
1009 static_cast<int_x2_type>(site2.y()) -
1010 static_cast<int_x2_type>(site3.y()));
1011 robust_fpt_type inv_orientation(to_fpt(0.5) / orientation, to_fpt(2.0));
1012 fpt_type sum_x1 = to_fpt(site1.x()) + to_fpt(site2.x());
1013 fpt_type sum_x2 = to_fpt(site2.x()) + to_fpt(site3.x());
1014 fpt_type sum_y1 = to_fpt(site1.y()) + to_fpt(site2.y());
1015 fpt_type sum_y2 = to_fpt(site2.y()) + to_fpt(site3.y());
1016 fpt_type dif_x3 = to_fpt(site1.x()) - to_fpt(site3.x());
1017 fpt_type dif_y3 = to_fpt(site1.y()) - to_fpt(site3.y());
1018 robust_dif_type c_x, c_y;
1019 c_x += robust_fpt_type(dif_x1 * sum_x1 * dif_y2, to_fpt(2.0));
1020 c_x += robust_fpt_type(dif_y1 * sum_y1 * dif_y2, to_fpt(2.0));
1021 c_x -= robust_fpt_type(dif_x2 * sum_x2 * dif_y1, to_fpt(2.0));
1022 c_x -= robust_fpt_type(dif_y2 * sum_y2 * dif_y1, to_fpt(2.0));
1023 c_y += robust_fpt_type(dif_x2 * sum_x2 * dif_x1, to_fpt(2.0));
1024 c_y += robust_fpt_type(dif_y2 * sum_y2 * dif_x1, to_fpt(2.0));
1025 c_y -= robust_fpt_type(dif_x1 * sum_x1 * dif_x2, to_fpt(2.0));
1026 c_y -= robust_fpt_type(dif_y1 * sum_y1 * dif_x2, to_fpt(2.0));
1027 robust_dif_type lower_x(c_x);
1028 lower_x -= robust_fpt_type(get_sqrt(
1029 (dif_x1 * dif_x1 + dif_y1 * dif_y1) *
1030 (dif_x2 * dif_x2 + dif_y2 * dif_y2) *
1031 (dif_x3 * dif_x3 + dif_y3 * dif_y3)), to_fpt(5.0));
1032 c_event = circle_type(
1033 c_x.dif().fpv() * inv_orientation.fpv(),
1034 c_y.dif().fpv() * inv_orientation.fpv(),
1035 lower_x.dif().fpv() * inv_orientation.fpv());
1036 bool recompute_c_x = c_x.dif().ulp() > ULPS;
1037 bool recompute_c_y = c_y.dif().ulp() > ULPS;
1038 bool recompute_lower_x = lower_x.dif().ulp() > ULPS;
1039 if (recompute_c_x || recompute_c_y || recompute_lower_x) {
1040 exact_circle_formation_functor_.ppp(
1041 site1, site2, site3, c_event,
1042 recompute_c_x, recompute_c_y, recompute_lower_x);
1043 }
1044 }
1045
1046 void pps(const site_type& site1,
1047 const site_type& site2,
1048 const site_type& site3,
1049 int segment_index,
1050 circle_type& c_event) {
1051 fpt_type line_a = to_fpt(site3.y1()) - to_fpt(site3.y0());
1052 fpt_type line_b = to_fpt(site3.x0()) - to_fpt(site3.x1());
1053 fpt_type vec_x = to_fpt(site2.y()) - to_fpt(site1.y());
1054 fpt_type vec_y = to_fpt(site1.x()) - to_fpt(site2.x());
1055 robust_fpt_type teta(robust_cross_product(
1056 static_cast<int_x2_type>(site3.y1()) -
1057 static_cast<int_x2_type>(site3.y0()),
1058 static_cast<int_x2_type>(site3.x0()) -
1059 static_cast<int_x2_type>(site3.x1()),
1060 static_cast<int_x2_type>(site2.x()) -
1061 static_cast<int_x2_type>(site1.x()),
1062 static_cast<int_x2_type>(site2.y()) -
1063 static_cast<int_x2_type>(site1.y())), to_fpt(1.0));
1064 robust_fpt_type A(robust_cross_product(
1065 static_cast<int_x2_type>(site3.y0()) -
1066 static_cast<int_x2_type>(site3.y1()),
1067 static_cast<int_x2_type>(site3.x0()) -
1068 static_cast<int_x2_type>(site3.x1()),
1069 static_cast<int_x2_type>(site3.y1()) -
1070 static_cast<int_x2_type>(site1.y()),
1071 static_cast<int_x2_type>(site3.x1()) -
1072 static_cast<int_x2_type>(site1.x())), to_fpt(1.0));
1073 robust_fpt_type B(robust_cross_product(
1074 static_cast<int_x2_type>(site3.y0()) -
1075 static_cast<int_x2_type>(site3.y1()),
1076 static_cast<int_x2_type>(site3.x0()) -
1077 static_cast<int_x2_type>(site3.x1()),
1078 static_cast<int_x2_type>(site3.y1()) -
1079 static_cast<int_x2_type>(site2.y()),
1080 static_cast<int_x2_type>(site3.x1()) -
1081 static_cast<int_x2_type>(site2.x())), to_fpt(1.0));
1082 robust_fpt_type denom(robust_cross_product(
1083 static_cast<int_x2_type>(site1.y()) -
1084 static_cast<int_x2_type>(site2.y()),
1085 static_cast<int_x2_type>(site1.x()) -
1086 static_cast<int_x2_type>(site2.x()),
1087 static_cast<int_x2_type>(site3.y1()) -
1088 static_cast<int_x2_type>(site3.y0()),
1089 static_cast<int_x2_type>(site3.x1()) -
1090 static_cast<int_x2_type>(site3.x0())), to_fpt(1.0));
1091 robust_fpt_type inv_segm_len(to_fpt(1.0) /
1092 get_sqrt(line_a * line_a + line_b * line_b), to_fpt(3.0));
1093 robust_dif_type t;
1094 if (ot::eval(denom) == ot::COLLINEAR) {
1095 t += teta / (robust_fpt_type(to_fpt(8.0)) * A);
1096 t -= A / (robust_fpt_type(to_fpt(2.0)) * teta);
1097 } else {
1098 robust_fpt_type det = ((teta * teta + denom * denom) * A * B).sqrt();
1099 if (segment_index == 2) {
1100 t -= det / (denom * denom);
1101 } else {
1102 t += det / (denom * denom);
1103 }
1104 t += teta * (A + B) / (robust_fpt_type(to_fpt(2.0)) * denom * denom);
1105 }
1106 robust_dif_type c_x, c_y;
1107 c_x += robust_fpt_type(to_fpt(0.5) *
1108 (to_fpt(site1.x()) + to_fpt(site2.x())));
1109 c_x += robust_fpt_type(vec_x) * t;
1110 c_y += robust_fpt_type(to_fpt(0.5) *
1111 (to_fpt(site1.y()) + to_fpt(site2.y())));
1112 c_y += robust_fpt_type(vec_y) * t;
1113 robust_dif_type r, lower_x(c_x);
1114 r -= robust_fpt_type(line_a) * robust_fpt_type(site3.x0());
1115 r -= robust_fpt_type(line_b) * robust_fpt_type(site3.y0());
1116 r += robust_fpt_type(line_a) * c_x;
1117 r += robust_fpt_type(line_b) * c_y;
1118 if (r.pos().fpv() < r.neg().fpv())
1119 r = -r;
1120 lower_x += r * inv_segm_len;
1121 c_event = circle_type(
1122 c_x.dif().fpv(), c_y.dif().fpv(), lower_x.dif().fpv());
1123 bool recompute_c_x = c_x.dif().ulp() > ULPS;
1124 bool recompute_c_y = c_y.dif().ulp() > ULPS;
1125 bool recompute_lower_x = lower_x.dif().ulp() > ULPS;
1126 if (recompute_c_x || recompute_c_y || recompute_lower_x) {
1127 exact_circle_formation_functor_.pps(
1128 site1, site2, site3, segment_index, c_event,
1129 recompute_c_x, recompute_c_y, recompute_lower_x);
1130 }
1131 }
1132
1133 void pss(const site_type& site1,
1134 const site_type& site2,
1135 const site_type& site3,
1136 int point_index,
1137 circle_type& c_event) {
1138 const point_type& segm_start1 = site2.point1();
1139 const point_type& segm_end1 = site2.point0();
1140 const point_type& segm_start2 = site3.point0();
1141 const point_type& segm_end2 = site3.point1();
1142 fpt_type a1 = to_fpt(segm_end1.x()) - to_fpt(segm_start1.x());
1143 fpt_type b1 = to_fpt(segm_end1.y()) - to_fpt(segm_start1.y());
1144 fpt_type a2 = to_fpt(segm_end2.x()) - to_fpt(segm_start2.x());
1145 fpt_type b2 = to_fpt(segm_end2.y()) - to_fpt(segm_start2.y());
1146 bool recompute_c_x, recompute_c_y, recompute_lower_x;
1147 robust_fpt_type orientation(robust_cross_product(
1148 static_cast<int_x2_type>(segm_end1.y()) -
1149 static_cast<int_x2_type>(segm_start1.y()),
1150 static_cast<int_x2_type>(segm_end1.x()) -
1151 static_cast<int_x2_type>(segm_start1.x()),
1152 static_cast<int_x2_type>(segm_end2.y()) -
1153 static_cast<int_x2_type>(segm_start2.y()),
1154 static_cast<int_x2_type>(segm_end2.x()) -
1155 static_cast<int_x2_type>(segm_start2.x())), to_fpt(1.0));
1156 if (ot::eval(orientation) == ot::COLLINEAR) {
1157 robust_fpt_type a(a1 * a1 + b1 * b1, to_fpt(2.0));
1158 robust_fpt_type c(robust_cross_product(
1159 static_cast<int_x2_type>(segm_end1.y()) -
1160 static_cast<int_x2_type>(segm_start1.y()),
1161 static_cast<int_x2_type>(segm_end1.x()) -
1162 static_cast<int_x2_type>(segm_start1.x()),
1163 static_cast<int_x2_type>(segm_start2.y()) -
1164 static_cast<int_x2_type>(segm_start1.y()),
1165 static_cast<int_x2_type>(segm_start2.x()) -
1166 static_cast<int_x2_type>(segm_start1.x())), to_fpt(1.0));
1167 robust_fpt_type det(
1168 robust_cross_product(
1169 static_cast<int_x2_type>(segm_end1.x()) -
1170 static_cast<int_x2_type>(segm_start1.x()),
1171 static_cast<int_x2_type>(segm_end1.y()) -
1172 static_cast<int_x2_type>(segm_start1.y()),
1173 static_cast<int_x2_type>(site1.x()) -
1174 static_cast<int_x2_type>(segm_start1.x()),
1175 static_cast<int_x2_type>(site1.y()) -
1176 static_cast<int_x2_type>(segm_start1.y())) *
1177 robust_cross_product(
1178 static_cast<int_x2_type>(segm_end1.y()) -
1179 static_cast<int_x2_type>(segm_start1.y()),
1180 static_cast<int_x2_type>(segm_end1.x()) -
1181 static_cast<int_x2_type>(segm_start1.x()),
1182 static_cast<int_x2_type>(site1.y()) -
1183 static_cast<int_x2_type>(segm_start2.y()),
1184 static_cast<int_x2_type>(site1.x()) -
1185 static_cast<int_x2_type>(segm_start2.x())),
1186 to_fpt(3.0));
1187 robust_dif_type t;
1188 t -= robust_fpt_type(a1) * robust_fpt_type((
1189 to_fpt(segm_start1.x()) + to_fpt(segm_start2.x())) * to_fpt(0.5) -
1190 to_fpt(site1.x()));
1191 t -= robust_fpt_type(b1) * robust_fpt_type((
1192 to_fpt(segm_start1.y()) + to_fpt(segm_start2.y())) * to_fpt(0.5) -
1193 to_fpt(site1.y()));
1194 if (point_index == 2) {
1195 t += det.sqrt();
1196 } else {
1197 t -= det.sqrt();
1198 }
1199 t /= a;
1200 robust_dif_type c_x, c_y;
1201 c_x += robust_fpt_type(to_fpt(0.5) * (
1202 to_fpt(segm_start1.x()) + to_fpt(segm_start2.x())));
1203 c_x += robust_fpt_type(a1) * t;
1204 c_y += robust_fpt_type(to_fpt(0.5) * (
1205 to_fpt(segm_start1.y()) + to_fpt(segm_start2.y())));
1206 c_y += robust_fpt_type(b1) * t;
1207 robust_dif_type lower_x(c_x);
1208 if (is_neg(c)) {
1209 lower_x -= robust_fpt_type(to_fpt(0.5)) * c / a.sqrt();
1210 } else {
1211 lower_x += robust_fpt_type(to_fpt(0.5)) * c / a.sqrt();
1212 }
1213 recompute_c_x = c_x.dif().ulp() > ULPS;
1214 recompute_c_y = c_y.dif().ulp() > ULPS;
1215 recompute_lower_x = lower_x.dif().ulp() > ULPS;
1216 c_event =
1217 circle_type(c_x.dif().fpv(), c_y.dif().fpv(), lower_x.dif().fpv());
1218 } else {
1219 robust_fpt_type sqr_sum1(get_sqrt(a1 * a1 + b1 * b1), to_fpt(2.0));
1220 robust_fpt_type sqr_sum2(get_sqrt(a2 * a2 + b2 * b2), to_fpt(2.0));
1221 robust_fpt_type a(robust_cross_product(
1222 static_cast<int_x2_type>(segm_end1.x()) -
1223 static_cast<int_x2_type>(segm_start1.x()),
1224 static_cast<int_x2_type>(segm_end1.y()) -
1225 static_cast<int_x2_type>(segm_start1.y()),
1226 static_cast<int_x2_type>(segm_start2.y()) -
1227 static_cast<int_x2_type>(segm_end2.y()),
1228 static_cast<int_x2_type>(segm_end2.x()) -
1229 static_cast<int_x2_type>(segm_start2.x())), to_fpt(1.0));
1230 if (!is_neg(a)) {
1231 a += sqr_sum1 * sqr_sum2;
1232 } else {
1233 a = (orientation * orientation) / (sqr_sum1 * sqr_sum2 - a);
1234 }
1235 robust_fpt_type or1(robust_cross_product(
1236 static_cast<int_x2_type>(segm_end1.y()) -
1237 static_cast<int_x2_type>(segm_start1.y()),
1238 static_cast<int_x2_type>(segm_end1.x()) -
1239 static_cast<int_x2_type>(segm_start1.x()),
1240 static_cast<int_x2_type>(segm_end1.y()) -
1241 static_cast<int_x2_type>(site1.y()),
1242 static_cast<int_x2_type>(segm_end1.x()) -
1243 static_cast<int_x2_type>(site1.x())), to_fpt(1.0));
1244 robust_fpt_type or2(robust_cross_product(
1245 static_cast<int_x2_type>(segm_end2.x()) -
1246 static_cast<int_x2_type>(segm_start2.x()),
1247 static_cast<int_x2_type>(segm_end2.y()) -
1248 static_cast<int_x2_type>(segm_start2.y()),
1249 static_cast<int_x2_type>(segm_end2.x()) -
1250 static_cast<int_x2_type>(site1.x()),
1251 static_cast<int_x2_type>(segm_end2.y()) -
1252 static_cast<int_x2_type>(site1.y())), to_fpt(1.0));
1253 robust_fpt_type det = robust_fpt_type(to_fpt(2.0)) * a * or1 * or2;
1254 robust_fpt_type c1(robust_cross_product(
1255 static_cast<int_x2_type>(segm_end1.y()) -
1256 static_cast<int_x2_type>(segm_start1.y()),
1257 static_cast<int_x2_type>(segm_end1.x()) -
1258 static_cast<int_x2_type>(segm_start1.x()),
1259 static_cast<int_x2_type>(segm_end1.y()),
1260 static_cast<int_x2_type>(segm_end1.x())), to_fpt(1.0));
1261 robust_fpt_type c2(robust_cross_product(
1262 static_cast<int_x2_type>(segm_end2.x()) -
1263 static_cast<int_x2_type>(segm_start2.x()),
1264 static_cast<int_x2_type>(segm_end2.y()) -
1265 static_cast<int_x2_type>(segm_start2.y()),
1266 static_cast<int_x2_type>(segm_end2.x()),
1267 static_cast<int_x2_type>(segm_end2.y())), to_fpt(1.0));
1268 robust_fpt_type inv_orientation =
1269 robust_fpt_type(to_fpt(1.0)) / orientation;
1270 robust_dif_type t, b, ix, iy;
1271 ix += robust_fpt_type(a2) * c1 * inv_orientation;
1272 ix += robust_fpt_type(a1) * c2 * inv_orientation;
1273 iy += robust_fpt_type(b1) * c2 * inv_orientation;
1274 iy += robust_fpt_type(b2) * c1 * inv_orientation;
1275
1276 b += ix * (robust_fpt_type(a1) * sqr_sum2);
1277 b += ix * (robust_fpt_type(a2) * sqr_sum1);
1278 b += iy * (robust_fpt_type(b1) * sqr_sum2);
1279 b += iy * (robust_fpt_type(b2) * sqr_sum1);
1280 b -= sqr_sum1 * robust_fpt_type(robust_cross_product(
1281 static_cast<int_x2_type>(segm_end2.x()) -
1282 static_cast<int_x2_type>(segm_start2.x()),
1283 static_cast<int_x2_type>(segm_end2.y()) -
1284 static_cast<int_x2_type>(segm_start2.y()),
1285 static_cast<int_x2_type>(-site1.y()),
1286 static_cast<int_x2_type>(site1.x())), to_fpt(1.0));
1287 b -= sqr_sum2 * robust_fpt_type(robust_cross_product(
1288 static_cast<int_x2_type>(segm_end1.x()) -
1289 static_cast<int_x2_type>(segm_start1.x()),
1290 static_cast<int_x2_type>(segm_end1.y()) -
1291 static_cast<int_x2_type>(segm_start1.y()),
1292 static_cast<int_x2_type>(-site1.y()),
1293 static_cast<int_x2_type>(site1.x())), to_fpt(1.0));
1294 t -= b;
1295 if (point_index == 2) {
1296 t += det.sqrt();
1297 } else {
1298 t -= det.sqrt();
1299 }
1300 t /= (a * a);
1301 robust_dif_type c_x(ix), c_y(iy);
1302 c_x += t * (robust_fpt_type(a1) * sqr_sum2);
1303 c_x += t * (robust_fpt_type(a2) * sqr_sum1);
1304 c_y += t * (robust_fpt_type(b1) * sqr_sum2);
1305 c_y += t * (robust_fpt_type(b2) * sqr_sum1);
1306 if (t.pos().fpv() < t.neg().fpv()) {
1307 t = -t;
1308 }
1309 robust_dif_type lower_x(c_x);
1310 if (is_neg(orientation)) {
1311 lower_x -= t * orientation;
1312 } else {
1313 lower_x += t * orientation;
1314 }
1315 recompute_c_x = c_x.dif().ulp() > ULPS;
1316 recompute_c_y = c_y.dif().ulp() > ULPS;
1317 recompute_lower_x = lower_x.dif().ulp() > ULPS;
1318 c_event = circle_type(
1319 c_x.dif().fpv(), c_y.dif().fpv(), lower_x.dif().fpv());
1320 }
1321 if (recompute_c_x || recompute_c_y || recompute_lower_x) {
1322 exact_circle_formation_functor_.pss(
1323 site1, site2, site3, point_index, c_event,
1324 recompute_c_x, recompute_c_y, recompute_lower_x);
1325 }
1326 }
1327
1328 void sss(const site_type& site1,
1329 const site_type& site2,
1330 const site_type& site3,
1331 circle_type& c_event) {
1332 robust_fpt_type a1(to_fpt(site1.x1()) - to_fpt(site1.x0()));
1333 robust_fpt_type b1(to_fpt(site1.y1()) - to_fpt(site1.y0()));
1334 robust_fpt_type c1(robust_cross_product(
1335 site1.x0(), site1.y0(),
1336 site1.x1(), site1.y1()), to_fpt(1.0));
1337
1338 robust_fpt_type a2(to_fpt(site2.x1()) - to_fpt(site2.x0()));
1339 robust_fpt_type b2(to_fpt(site2.y1()) - to_fpt(site2.y0()));
1340 robust_fpt_type c2(robust_cross_product(
1341 site2.x0(), site2.y0(),
1342 site2.x1(), site2.y1()), to_fpt(1.0));
1343
1344 robust_fpt_type a3(to_fpt(site3.x1()) - to_fpt(site3.x0()));
1345 robust_fpt_type b3(to_fpt(site3.y1()) - to_fpt(site3.y0()));
1346 robust_fpt_type c3(robust_cross_product(
1347 site3.x0(), site3.y0(),
1348 site3.x1(), site3.y1()), to_fpt(1.0));
1349
1350 robust_fpt_type len1 = (a1 * a1 + b1 * b1).sqrt();
1351 robust_fpt_type len2 = (a2 * a2 + b2 * b2).sqrt();
1352 robust_fpt_type len3 = (a3 * a3 + b3 * b3).sqrt();
1353 robust_fpt_type cross_12(robust_cross_product(
1354 static_cast<int_x2_type>(site1.x1()) -
1355 static_cast<int_x2_type>(site1.x0()),
1356 static_cast<int_x2_type>(site1.y1()) -
1357 static_cast<int_x2_type>(site1.y0()),
1358 static_cast<int_x2_type>(site2.x1()) -
1359 static_cast<int_x2_type>(site2.x0()),
1360 static_cast<int_x2_type>(site2.y1()) -
1361 static_cast<int_x2_type>(site2.y0())), to_fpt(1.0));
1362 robust_fpt_type cross_23(robust_cross_product(
1363 static_cast<int_x2_type>(site2.x1()) -
1364 static_cast<int_x2_type>(site2.x0()),
1365 static_cast<int_x2_type>(site2.y1()) -
1366 static_cast<int_x2_type>(site2.y0()),
1367 static_cast<int_x2_type>(site3.x1()) -
1368 static_cast<int_x2_type>(site3.x0()),
1369 static_cast<int_x2_type>(site3.y1()) -
1370 static_cast<int_x2_type>(site3.y0())), to_fpt(1.0));
1371 robust_fpt_type cross_31(robust_cross_product(
1372 static_cast<int_x2_type>(site3.x1()) -
1373 static_cast<int_x2_type>(site3.x0()),
1374 static_cast<int_x2_type>(site3.y1()) -
1375 static_cast<int_x2_type>(site3.y0()),
1376 static_cast<int_x2_type>(site1.x1()) -
1377 static_cast<int_x2_type>(site1.x0()),
1378 static_cast<int_x2_type>(site1.y1()) -
1379 static_cast<int_x2_type>(site1.y0())), to_fpt(1.0));
1380
1381 // denom = cross_12 * len3 + cross_23 * len1 + cross_31 * len2.
1382 robust_dif_type denom;
1383 denom += cross_12 * len3;
1384 denom += cross_23 * len1;
1385 denom += cross_31 * len2;
1386
1387 // denom * r = (b2 * c_x - a2 * c_y - c2 * denom) / len2.
1388 robust_dif_type r;
1389 r -= cross_12 * c3;
1390 r -= cross_23 * c1;
1391 r -= cross_31 * c2;
1392
1393 robust_dif_type c_x;
1394 c_x += a1 * c2 * len3;
1395 c_x -= a2 * c1 * len3;
1396 c_x += a2 * c3 * len1;
1397 c_x -= a3 * c2 * len1;
1398 c_x += a3 * c1 * len2;
1399 c_x -= a1 * c3 * len2;
1400
1401 robust_dif_type c_y;
1402 c_y += b1 * c2 * len3;
1403 c_y -= b2 * c1 * len3;
1404 c_y += b2 * c3 * len1;
1405 c_y -= b3 * c2 * len1;
1406 c_y += b3 * c1 * len2;
1407 c_y -= b1 * c3 * len2;
1408
1409 robust_dif_type lower_x = c_x + r;
1410
1411 robust_fpt_type denom_dif = denom.dif();
1412 robust_fpt_type c_x_dif = c_x.dif() / denom_dif;
1413 robust_fpt_type c_y_dif = c_y.dif() / denom_dif;
1414 robust_fpt_type lower_x_dif = lower_x.dif() / denom_dif;
1415
1416 bool recompute_c_x = c_x_dif.ulp() > ULPS;
1417 bool recompute_c_y = c_y_dif.ulp() > ULPS;
1418 bool recompute_lower_x = lower_x_dif.ulp() > ULPS;
1419 c_event = circle_type(c_x_dif.fpv(), c_y_dif.fpv(), lower_x_dif.fpv());
1420 if (recompute_c_x || recompute_c_y || recompute_lower_x) {
1421 exact_circle_formation_functor_.sss(
1422 site1, site2, site3, c_event,
1423 recompute_c_x, recompute_c_y, recompute_lower_x);
1424 }
1425 }
1426
1427 private:
1428 exact_circle_formation_functor_type exact_circle_formation_functor_;
1429 to_fpt_converter to_fpt;
1430 };
1431
1432 template <typename Site,
1433 typename Circle,
1434 typename CEP = circle_existence_predicate<Site>,
1435 typename CFF = lazy_circle_formation_functor<Site, Circle> >
1436 class circle_formation_predicate {
1437 public:
1438 typedef Site site_type;
1439 typedef Circle circle_type;
1440 typedef CEP circle_existence_predicate_type;
1441 typedef CFF circle_formation_functor_type;
1442
1443 // Create a circle event from the given three sites.
1444 // Returns true if the circle event exists, else false.
1445 // If exists circle event is saved into the c_event variable.
1446 bool operator()(const site_type& site1, const site_type& site2,
1447 const site_type& site3, circle_type& circle) {
1448 if (!site1.is_segment()) {
1449 if (!site2.is_segment()) {
1450 if (!site3.is_segment()) {
1451 // (point, point, point) sites.
1452 if (!circle_existence_predicate_.ppp(site1, site2, site3))
1453 return false;
1454 circle_formation_functor_.ppp(site1, site2, site3, circle);
1455 } else {
1456 // (point, point, segment) sites.
1457 if (!circle_existence_predicate_.pps(site1, site2, site3, 3))
1458 return false;
1459 circle_formation_functor_.pps(site1, site2, site3, 3, circle);
1460 }
1461 } else {
1462 if (!site3.is_segment()) {
1463 // (point, segment, point) sites.
1464 if (!circle_existence_predicate_.pps(site1, site3, site2, 2))
1465 return false;
1466 circle_formation_functor_.pps(site1, site3, site2, 2, circle);
1467 } else {
1468 // (point, segment, segment) sites.
1469 if (!circle_existence_predicate_.pss(site1, site2, site3, 1))
1470 return false;
1471 circle_formation_functor_.pss(site1, site2, site3, 1, circle);
1472 }
1473 }
1474 } else {
1475 if (!site2.is_segment()) {
1476 if (!site3.is_segment()) {
1477 // (segment, point, point) sites.
1478 if (!circle_existence_predicate_.pps(site2, site3, site1, 1))
1479 return false;
1480 circle_formation_functor_.pps(site2, site3, site1, 1, circle);
1481 } else {
1482 // (segment, point, segment) sites.
1483 if (!circle_existence_predicate_.pss(site2, site1, site3, 2))
1484 return false;
1485 circle_formation_functor_.pss(site2, site1, site3, 2, circle);
1486 }
1487 } else {
1488 if (!site3.is_segment()) {
1489 // (segment, segment, point) sites.
1490 if (!circle_existence_predicate_.pss(site3, site1, site2, 3))
1491 return false;
1492 circle_formation_functor_.pss(site3, site1, site2, 3, circle);
1493 } else {
1494 // (segment, segment, segment) sites.
1495 if (!circle_existence_predicate_.sss(site1, site2, site3))
1496 return false;
1497 circle_formation_functor_.sss(site1, site2, site3, circle);
1498 }
1499 }
1500 }
1501 if (lies_outside_vertical_segment(circle, site1) ||
1502 lies_outside_vertical_segment(circle, site2) ||
1503 lies_outside_vertical_segment(circle, site3)) {
1504 return false;
1505 }
1506 return true;
1507 }
1508
1509 private:
1510 bool lies_outside_vertical_segment(
1511 const circle_type& c, const site_type& s) {
1512 if (!s.is_segment() || !is_vertical(s)) {
1513 return false;
1514 }
1515 fpt_type y0 = to_fpt(s.is_inverse() ? s.y1() : s.y0());
1516 fpt_type y1 = to_fpt(s.is_inverse() ? s.y0() : s.y1());
1517 return ulp_cmp(c.y(), y0, ULPS) == ulp_cmp_type::LESS ||
1518 ulp_cmp(c.y(), y1, ULPS) == ulp_cmp_type::MORE;
1519 }
1520
1521 private:
1522 to_fpt_converter to_fpt;
1523 ulp_cmp_type ulp_cmp;
1524 circle_existence_predicate_type circle_existence_predicate_;
1525 circle_formation_functor_type circle_formation_functor_;
1526 };
1527 };
1528 } // detail
1529 } // polygon
1530 } // boost
1531
1532 #endif // BOOST_POLYGON_DETAIL_VORONOI_PREDICATES