]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/preprocessor/doc/topics/reentrancy.html
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / preprocessor / doc / topics / reentrancy.html
1 <html>
2 <head>
3 <title>reentrancy.html</title>
4 <link rel="stylesheet" type="text/css" href="../styles.css">
5 </head>
6 <body>
7 <h4>
8 Reentrancy
9 </h4>
10 <div>
11 Macro expansion in the preprocessor is entirely functional.&nbsp; Therefore,
12 there is no iteration.&nbsp; Unfortunately, the preprocessor also disallows
13 recursion.&nbsp; This means that the library must fake iteration or recursion
14 by defining sets of macros that are implemented similarly.&nbsp;
15 </div>
16 <div>
17 To illustrate, here is a simple concatenation macro:
18 </div>
19 <div class="code">
20 <pre>
21 #define CONCAT(a, b) CONCAT_D(a, b)
22 #define CONCAT_D(a, b) a ## b
23
24 CONCAT(a, CONCAT(b, c)) // abc
25 </pre>
26 </div>
27 <div>
28 This is fine for a simple case like the above, but what happens in a scenario
29 like the following:
30 </div>
31 <div class="code">
32 <pre>
33 #define AB(x, y) CONCAT(x, y)
34
35 CONCAT(A, B(p, q)) // CONCAT(p, q)
36 </pre>
37 </div>
38 <div>
39 Because there is no recursion, the example above expands to <code>CONCAT(p, q)</code>
40 rather than <code>pq</code>.
41 </div>
42 <div>
43 There are only two ways to "fix" the above.&nbsp; First, it can be documented
44 that <code>AB</code> uses <code>CONCAT</code> and disallow usage similar to the
45 above.&nbsp; Second, multiple concatenation macros can be provided....
46 </div>
47 <div class="code">
48 <pre>
49 #define CONCAT_1(a, b) CONCAT_1_D(a, b)
50 #define CONCAT_1_D(a, b) a ## b
51
52 #define CONCAT_2(a, b) CONCAT_2_D(a, b)
53 #define CONCAT_2_D(a, b) a ## b
54
55 #define AB(x, y) CONCAT_2(x, y)
56
57 CONCAT_1(A, B(p, q)) // pq
58 </pre>
59 </div>
60 <div>
61 This solves the problem.&nbsp; However, it is now necessary to know that <code>AB</code>
62 uses, not only <i>a</i> concatenation macro, but <code>CONCAT_2</code> specifically.
63 </div>
64 <div>
65 A better solution is to abstract <i>which</i> concatenation macro is used....
66 </div>
67 <div class="code">
68 <pre>
69 #define AB(c, x, y) CONCAT_ ## c(x, y)
70
71 CONCAT_1(A, B(2, p, q)) // pq
72 </pre>
73 </div>
74 <div>
75 This is an example of <i>generic reentrance</i>, in this case, into a fictional
76 set of concatenation macros.&nbsp; The <code>c</code> parameter represents the
77 "state" of the concatenation construct, and as long as the user keeps track of
78 this state, <code>AB</code> can be used inside of a concatenation macro.
79 </div>
80 <div>
81 The library has the same choices.&nbsp; It either has to disallow a construct
82 being inside itself or provide multiple, equivalent definitions of a construct
83 and provide a uniform way to <i>reenter</i> that construct.&nbsp; There are
84 several contructs that <i>require</i> recursion (such as <b>BOOST_PP_WHILE</b>).&nbsp;
85 Consequently, the library chooses to provide several sets of macros with
86 mechanisms to reenter the set at a macro that has not already been used.
87 </div>
88 <div>
89 In particular, the library must provide reentrance for <b>BOOST_PP_FOR</b>, <b>BOOST_PP_REPEAT</b>,
90 and <b>BOOST_PP_WHILE</b>.&nbsp; There are two mechanisms that are used to
91 accomplish this:&nbsp; state parameters (like the above concatenation example)
92 and <i>automatic recursion</i>.
93 </div>
94 <h4>
95 State Parameters
96 </h4>
97 <div>
98 Each of the above constructs (<b>BOOST_PP_FOR</b>, <b>BOOST_PP_REPEAT</b>, and <b>BOOST_PP_WHILE</b>)
99 has an associated state.&nbsp; This state provides the means to reenter the
100 respective construct.
101 </div>
102 <div>
103 Several user-defined macros are passed to each of these constructs (for use as
104 predicates, operations, etc.).&nbsp; Every time a user-defined macro is
105 invoked, it is passed the current state of the construct that invoked it so
106 that the macro can reenter the respective set if necessary.
107 </div>
108 <div>
109 These states are used in one of two ways--either by concatenating to or passing
110 to another macro.
111 </div>
112 <div>
113 There are three types of macros that use these state parameters.&nbsp; First,
114 the set itself which is reentered through concatenation.&nbsp; Second,
115 corresponding sets that act like they are a part of the the primary set.&nbsp;
116 These are also reentered through concatenation.&nbsp; And third, macros that
117 internally use the first or second type of macro.&nbsp; These macros take the
118 state as an additional argument.
119 </div>
120 <div>
121 The state of <b>BOOST_PP_WHILE</b> is symbolized by the letter <i>D</i>.&nbsp;
122 Two user-defined macros are passed to <b>BOOST_PP_WHILE</b>--a predicate and an
123 operation.&nbsp; When <b>BOOST_PP_WHILE</b> expands these macros, it passes
124 along its state so that these macros can reenter the <b>BOOST_PP_WHILE</b> set.&nbsp;
125 </div>
126 <div>
127 Consider the following multiplication implementation that illustrates this
128 technique:
129 </div>
130 <div class="code">
131 <pre>
132 // The addition interface macro.
133 // The _D signifies that it reenters
134 // BOOST_PP_WHILE with concatenation.
135
136 #define ADD_D(d, x, y) \
137 BOOST_PP_TUPLE_ELEM( \
138 2, 0, \
139 BOOST_PP_WHILE_ ## d(ADD_P, ADD_O, (x, y)) \
140 ) \
141 /**/
142
143 // The predicate that is passed to BOOST_PP_WHILE.
144 // It returns "true" until "y" becomes zero.
145
146 #define ADD_P(d, xy) BOOST_PP_TUPLE_ELEM(2, 1, xy)
147
148 // The operation that is passed to BOOST_PP_WHILE.
149 // It increments "x" and decrements "y" which will
150 // eventually cause "y" to equal zero and therefore
151 // cause the predicate to return "false."
152
153 #define ADD_O(d, xy) \
154 ( \
155 BOOST_PP_INC( \
156 BOOST_PP_TUPLE_ELEM(2, 0, xy) \
157 ), \
158 BOOST_PP_DEC( \
159 BOOST_PP_TUPLE_ELEM(2, 1, xy) \
160 ) \
161 ) \
162 /**/
163
164 // The multiplication interface macro.
165
166 #define MUL(x, y) \
167 BOOST_PP_TUPLE_ELEM( \
168 3, 0, \
169 BOOST_PP_WHILE(MUL_P, MUL_O, (0, x, y)) \
170 ) \
171 /**/
172
173 // The predicate that is passed to BOOST_PP_WHILE.
174 // It returns "true" until "y" becomes zero.
175
176 #define MUL_P(d, rxy) BOOST_PP_TUPLE_ELEM(3, 2, rxy)
177
178 // The operation that is passed to BOOST_PP_WHILE.
179 // It adds "x" to "r" and decrements "y" which will
180 // eventually cause "y" to equal zero and therefore
181 // cause the predicate to return "false."
182
183 #define MUL_O(d, rxy) \
184 ( \
185 ADD_D( \
186 d, /* pass the state on to ADD_D */ \
187 BOOST_PP_TUPLE_ELEM(3, 0, rxy), \
188 BOOST_PP_TUPLE_ELEM(3, 1, rxy) \
189 ), \
190 BOOST_PP_TUPLE_ELEM(3, 1, rxy), \
191 BOOST_PP_DEC( \
192 BOOST_PP_TUPLE_ELEM(3, 2, rxy) \
193 ) \
194 ) \
195 /**/
196
197 MUL(3, 2) // expands to 6
198 </pre>
199 </div>
200 <div>
201 There are a couple things to note in the above implementation.&nbsp; First,
202 note how <code>ADD_D</code> reenters <b>BOOST_PP_WHILE</b> using the <i>d</i> state
203 parameter.&nbsp; Second, note how <code>MUL</code>'s operation, which is
204 expanded by <b>BOOST_PP_WHILE</b>, passes the state on to <code>ADD_D</code>.&nbsp;
205 This illustrates state reentrance by both argument and concatenation.
206 </div>
207 <div>
208 For every macro in the library that uses <b>BOOST_PP_WHILE</b>, there is a
209 state reentrant variant.&nbsp; If that variant uses an argument rather than
210 concatenation, it is suffixed by <code>_D</code> to symbolize its method of
211 reentrance.&nbsp; Examples or this include the library's own <b>BOOST_PP_ADD_D</b>
212 and <b>BOOST_PP_MUL_D</b>.&nbsp; If the variant uses concatenation, it is
213 suffixed by an underscore.&nbsp; It is completed by concatenation of the
214 state.&nbsp; This includes <b>BOOST_PP_WHILE</b> itself with <b>BOOST_PP_WHILE_</b>
215 ## <i>d</i> and, for example, <b>BOOST_PP_LIST_FOLD_LEFT</b> with <b>BOOST_PP_LIST_FOLD_LEFT_</b>
216 ## <i>d</i>.
217 </div>
218 <div>
219 The same set of conventions are used for <b>BOOST_PP_FOR</b> and <b>BOOST_PP_REPEAT</b>,
220 but with the letters <i>R</i> and <i>Z</i>, respectively, to symbolize their
221 states.
222 </div>
223 <div>
224 Also note that the above <code>MUL</code> implementation, though not
225 immediately obvious, is using <i>all three</i> types of reentrance.&nbsp; Not
226 only is it using both types of <i>state</i> reentrance, it is also using <i>automatic
227 recursion</i>....
228 </div>
229 <h4>
230 Automatic Recursion
231 </h4>
232 <div>
233 Automatic recursion is a technique that vastly simplifies the use of reentrant
234 constructs.&nbsp; It is used by simply <i>not</i> using any state parameters at
235 all.
236 </div>
237 <div>
238 The <code>MUL</code> example above uses automatic recursion when it uses <b>BOOST_PP_WHILE</b>
239 by itself.&nbsp; In other words, <code>MUL</code> can <i>still</i> be used
240 inside <b>BOOST_PP_WHILE</b> even though it doesn't reenter <b>BOOST_PP_WHILE</b>
241 by concatenating the state to <b>BOOST_PP_WHILE_</b>.
242 </div>
243 <div>
244 To accomplish this, the library uses a "trick."&nbsp; Despite what it looks
245 like, the macro <b>BOOST_PP_WHILE</b> does not take three arguments.&nbsp; In
246 fact, it takes no arguments at all.&nbsp; Instead, the <b>BOOST_PP_WHILE</b> macro
247 expands <i>to</i> a macro that takes three arguments.&nbsp; It simply detects
248 what the next available <b>BOOST_PP_WHILE_</b> ## <i>d</i> macro is and returns
249 it.&nbsp; This detection process is somewhat involved, so I won't go into <i>how</i>
250 it works here, but suffice to say it <i>does</i> work.
251 </div>
252 <div>
253 Using automatic recursion to reenter various sets of macros is obviously much
254 simpler.&nbsp; It completely hides the underlying implementation details.&nbsp;
255 So, if it is so much easier to use, why do the state parameters still
256 exist?&nbsp; The reason is simple as well.&nbsp; When state parameters are
257 used, the state is <i>known</i> at all times.&nbsp; This is not the case when
258 automatic recursion is used.&nbsp; The automatic recursion mechanism has to <i>deduce</i>
259 the state at each point that it is used.&nbsp; This implies a cost in macro
260 complexity that in some situations--notably at deep macro depths--will slow
261 some preprocessors to a crawl.
262 </div>
263 <h4>
264 Conclusion
265 </h4>
266 <div>
267 It is really a tradeoff whether to use state parameters or automatic recursion
268 for reentrancy.&nbsp; The strengths of automatic recursion are ease of use and
269 implementation encapsulation.&nbsp; These come at a performance cost on some
270 preprocessors in some situations.&nbsp; The primary strength of state
271 parameters, on the other hand, is efficiency.&nbsp; Use of the state parameters
272 is the only way to achieve <i>maximum</i> efficiency.&nbsp; This efficiency
273 comes at the cost of both code complexity and exposition of implementation.
274 </div>
275 <h4>
276 See Also
277 </h4>
278 <ul>
279 <li><a href="../ref/for.html">BOOST_PP_FOR</a></li>
280 <li><a href="../ref/repeat.html">BOOST_PP_REPEAT</a></li>
281 <li><a href="../ref/while.html">BOOST_PP_WHILE</a></li>
282 </ul>
283 <div class="sig">
284 - Paul Mensonides
285 </div>
286 <hr size="1">
287 <div style="margin-left: 0px;">
288 <i>© Copyright <a href="http://www.housemarque.com" target="_top">Housemarque Oy</a> 2002</i>
289 </br><i>© Copyright Paul Mensonides 2002</i>
290 </div>
291 <div style="margin-left: 0px;">
292 <p><small>Distributed under the Boost Software License, Version 1.0. (See
293 accompanying file <a href="../../../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or
294 copy at <a href=
295 "http://www.boost.org/LICENSE_1_0.txt">www.boost.org/LICENSE_1_0.txt</a>)</small></p>
296 </div>
297 </body>
298 </html>