]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/rational/include/boost/rational.hpp
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / rational / include / boost / rational.hpp
1 // Boost rational.hpp header file ------------------------------------------//
2
3 // (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
4 // distribute this software is granted provided this copyright notice appears
5 // in all copies. This software is provided "as is" without express or
6 // implied warranty, and with no claim as to its suitability for any purpose.
7
8 // boostinspect:nolicense (don't complain about the lack of a Boost license)
9 // (Paul Moore hasn't been in contact for years, so there's no way to change the
10 // license.)
11
12 // See http://www.boost.org/libs/rational for documentation.
13
14 // Credits:
15 // Thanks to the boost mailing list in general for useful comments.
16 // Particular contributions included:
17 // Andrew D Jewell, for reminding me to take care to avoid overflow
18 // Ed Brey, for many comments, including picking up on some dreadful typos
19 // Stephen Silver contributed the test suite and comments on user-defined
20 // IntType
21 // Nickolay Mladenov, for the implementation of operator+=
22
23 // Revision History
24 // 02 Sep 13 Remove unneeded forward declarations; tweak private helper
25 // function (Daryle Walker)
26 // 30 Aug 13 Improve exception safety of "assign"; start modernizing I/O code
27 // (Daryle Walker)
28 // 27 Aug 13 Add cross-version constructor template, plus some private helper
29 // functions; add constructor to exception class to take custom
30 // messages (Daryle Walker)
31 // 25 Aug 13 Add constexpr qualification wherever possible (Daryle Walker)
32 // 05 May 12 Reduced use of implicit gcd (Mario Lang)
33 // 05 Nov 06 Change rational_cast to not depend on division between different
34 // types (Daryle Walker)
35 // 04 Nov 06 Off-load GCD and LCM to Boost.Math; add some invariant checks;
36 // add std::numeric_limits<> requirement to help GCD (Daryle Walker)
37 // 31 Oct 06 Recoded both operator< to use round-to-negative-infinity
38 // divisions; the rational-value version now uses continued fraction
39 // expansion to avoid overflows, for bug #798357 (Daryle Walker)
40 // 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
41 // 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
42 // (Joaquín M López Muñoz)
43 // 27 Dec 05 Add Boolean conversion operator (Daryle Walker)
44 // 28 Sep 02 Use _left versions of operators from operators.hpp
45 // 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
46 // 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
47 // 05 Feb 01 Update operator>> to tighten up input syntax
48 // 05 Feb 01 Final tidy up of gcd code prior to the new release
49 // 27 Jan 01 Recode abs() without relying on abs(IntType)
50 // 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
51 // tidy up a number of areas, use newer features of operators.hpp
52 // (reduces space overhead to zero), add operator!,
53 // introduce explicit mixed-mode arithmetic operations
54 // 12 Jan 01 Include fixes to handle a user-defined IntType better
55 // 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
56 // 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
57 // 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
58 // affected (Beman Dawes)
59 // 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
60 // 14 Dec 99 Modifications based on comments from the boost list
61 // 09 Dec 99 Initial Version (Paul Moore)
62
63 #ifndef BOOST_RATIONAL_HPP
64 #define BOOST_RATIONAL_HPP
65
66 #include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
67 #ifndef BOOST_NO_IOSTREAM
68 #include <iomanip> // for std::setw
69 #include <ios> // for std::noskipws, streamsize
70 #include <istream> // for std::istream
71 #include <ostream> // for std::ostream
72 #include <sstream> // for std::ostringstream
73 #endif
74 #include <cstddef> // for NULL
75 #include <stdexcept> // for std::domain_error
76 #include <string> // for std::string implicit constructor
77 #include <boost/operators.hpp> // for boost::addable etc
78 #include <cstdlib> // for std::abs
79 #include <boost/call_traits.hpp> // for boost::call_traits
80 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
81 #include <boost/assert.hpp> // for BOOST_ASSERT
82 #include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
83 #include <limits> // for std::numeric_limits
84 #include <boost/static_assert.hpp> // for BOOST_STATIC_ASSERT
85 #include <boost/throw_exception.hpp>
86
87 // Control whether depreciated GCD and LCM functions are included (default: yes)
88 #ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
89 #define BOOST_CONTROL_RATIONAL_HAS_GCD 1
90 #endif
91
92 namespace boost {
93
94 #if BOOST_CONTROL_RATIONAL_HAS_GCD
95 template <typename IntType>
96 IntType gcd(IntType n, IntType m)
97 {
98 // Defer to the version in Boost.Math
99 return integer::gcd( n, m );
100 }
101
102 template <typename IntType>
103 IntType lcm(IntType n, IntType m)
104 {
105 // Defer to the version in Boost.Math
106 return integer::lcm( n, m );
107 }
108 #endif // BOOST_CONTROL_RATIONAL_HAS_GCD
109
110 class bad_rational : public std::domain_error
111 {
112 public:
113 explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
114 explicit bad_rational( char const *what ) : std::domain_error( what ) {}
115 };
116
117 template <typename IntType>
118 class rational :
119 less_than_comparable < rational<IntType>,
120 equality_comparable < rational<IntType>,
121 less_than_comparable2 < rational<IntType>, IntType,
122 equality_comparable2 < rational<IntType>, IntType,
123 addable < rational<IntType>,
124 subtractable < rational<IntType>,
125 multipliable < rational<IntType>,
126 dividable < rational<IntType>,
127 addable2 < rational<IntType>, IntType,
128 subtractable2 < rational<IntType>, IntType,
129 subtractable2_left < rational<IntType>, IntType,
130 multipliable2 < rational<IntType>, IntType,
131 dividable2 < rational<IntType>, IntType,
132 dividable2_left < rational<IntType>, IntType,
133 incrementable < rational<IntType>,
134 decrementable < rational<IntType>
135 > > > > > > > > > > > > > > > >
136 {
137 // Class-wide pre-conditions
138 BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
139
140 // Helper types
141 typedef typename boost::call_traits<IntType>::param_type param_type;
142
143 struct helper { IntType parts[2]; };
144 typedef IntType (helper::* bool_type)[2];
145
146 public:
147 // Component type
148 typedef IntType int_type;
149
150 BOOST_CONSTEXPR
151 rational() : num(0), den(1) {}
152 BOOST_CONSTEXPR
153 rational(param_type n) : num(n), den(1) {}
154 rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
155
156 #ifndef BOOST_NO_MEMBER_TEMPLATES
157 template < typename NewType >
158 BOOST_CONSTEXPR explicit
159 rational(rational<NewType> const &r)
160 : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
161 int_type(r.denominator())) ? r.denominator() :
162 (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
163 #endif
164
165 // Default copy constructor and assignment are fine
166
167 // Add assignment from IntType
168 rational& operator=(param_type i) { num = i; den = 1; return *this; }
169
170 // Assign in place
171 rational& assign(param_type n, param_type d);
172
173 // Access to representation
174 BOOST_CONSTEXPR
175 const IntType& numerator() const { return num; }
176 BOOST_CONSTEXPR
177 const IntType& denominator() const { return den; }
178
179 // Arithmetic assignment operators
180 rational& operator+= (const rational& r);
181 rational& operator-= (const rational& r);
182 rational& operator*= (const rational& r);
183 rational& operator/= (const rational& r);
184
185 rational& operator+= (param_type i) { num += i * den; return *this; }
186 rational& operator-= (param_type i) { num -= i * den; return *this; }
187 rational& operator*= (param_type i);
188 rational& operator/= (param_type i);
189
190 // Increment and decrement
191 const rational& operator++() { num += den; return *this; }
192 const rational& operator--() { num -= den; return *this; }
193
194 // Operator not
195 BOOST_CONSTEXPR
196 bool operator!() const { return !num; }
197
198 // Boolean conversion
199
200 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
201 // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
202 // following, hence we selectively disable that option for the
203 // offending memfun.
204 #pragma parse_mfunc_templ off
205 #endif
206
207 BOOST_CONSTEXPR
208 operator bool_type() const { return operator !() ? 0 : &helper::parts; }
209
210 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
211 #pragma parse_mfunc_templ reset
212 #endif
213
214 // Comparison operators
215 bool operator< (const rational& r) const;
216 BOOST_CONSTEXPR
217 bool operator== (const rational& r) const;
218
219 bool operator< (param_type i) const;
220 bool operator> (param_type i) const;
221 BOOST_CONSTEXPR
222 bool operator== (param_type i) const;
223
224 private:
225 // Implementation - numerator and denominator (normalized).
226 // Other possibilities - separate whole-part, or sign, fields?
227 IntType num;
228 IntType den;
229
230 // Helper functions
231 static BOOST_CONSTEXPR
232 int_type inner_gcd( param_type a, param_type b, int_type const &zero =
233 int_type(0) )
234 { return b == zero ? a : inner_gcd(b, a % b, zero); }
235
236 static BOOST_CONSTEXPR
237 int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
238 { return x < zero ? -x : +x; }
239
240 // Representation note: Fractions are kept in normalized form at all
241 // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
242 // In particular, note that the implementation of abs() below relies
243 // on den always being positive.
244 bool test_invariant() const;
245 void normalize();
246
247 static BOOST_CONSTEXPR
248 bool is_normalized( param_type n, param_type d, int_type const &zero =
249 int_type(0), int_type const &one = int_type(1) )
250 {
251 return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
252 d, zero), zero ) == one;
253 }
254 };
255
256 // Assign in place
257 template <typename IntType>
258 inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
259 {
260 return *this = rational( n, d );
261 }
262
263 // Unary plus and minus
264 template <typename IntType>
265 BOOST_CONSTEXPR
266 inline rational<IntType> operator+ (const rational<IntType>& r)
267 {
268 return r;
269 }
270
271 template <typename IntType>
272 inline rational<IntType> operator- (const rational<IntType>& r)
273 {
274 return rational<IntType>(-r.numerator(), r.denominator());
275 }
276
277 // Arithmetic assignment operators
278 template <typename IntType>
279 rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
280 {
281 // This calculation avoids overflow, and minimises the number of expensive
282 // calculations. Thanks to Nickolay Mladenov for this algorithm.
283 //
284 // Proof:
285 // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
286 // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
287 //
288 // The result is (a*d1 + c*b1) / (b1*d1*g).
289 // Now we have to normalize this ratio.
290 // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
291 // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
292 // But since gcd(a,b1)=1 we have h=1.
293 // Similarly h|d1 leads to h=1.
294 // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
295 // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
296 // Which proves that instead of normalizing the result, it is better to
297 // divide num and den by gcd((a*d1 + c*b1), g)
298
299 // Protect against self-modification
300 IntType r_num = r.num;
301 IntType r_den = r.den;
302
303 IntType g = integer::gcd(den, r_den);
304 den /= g; // = b1 from the calculations above
305 num = num * (r_den / g) + r_num * den;
306 g = integer::gcd(num, g);
307 num /= g;
308 den *= r_den/g;
309
310 return *this;
311 }
312
313 template <typename IntType>
314 rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
315 {
316 // Protect against self-modification
317 IntType r_num = r.num;
318 IntType r_den = r.den;
319
320 // This calculation avoids overflow, and minimises the number of expensive
321 // calculations. It corresponds exactly to the += case above
322 IntType g = integer::gcd(den, r_den);
323 den /= g;
324 num = num * (r_den / g) - r_num * den;
325 g = integer::gcd(num, g);
326 num /= g;
327 den *= r_den/g;
328
329 return *this;
330 }
331
332 template <typename IntType>
333 rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
334 {
335 // Protect against self-modification
336 IntType r_num = r.num;
337 IntType r_den = r.den;
338
339 // Avoid overflow and preserve normalization
340 IntType gcd1 = integer::gcd(num, r_den);
341 IntType gcd2 = integer::gcd(r_num, den);
342 num = (num/gcd1) * (r_num/gcd2);
343 den = (den/gcd2) * (r_den/gcd1);
344 return *this;
345 }
346
347 template <typename IntType>
348 rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
349 {
350 // Protect against self-modification
351 IntType r_num = r.num;
352 IntType r_den = r.den;
353
354 // Avoid repeated construction
355 IntType zero(0);
356
357 // Trap division by zero
358 if (r_num == zero)
359 BOOST_THROW_EXCEPTION(bad_rational());
360 if (num == zero)
361 return *this;
362
363 // Avoid overflow and preserve normalization
364 IntType gcd1 = integer::gcd(num, r_num);
365 IntType gcd2 = integer::gcd(r_den, den);
366 num = (num/gcd1) * (r_den/gcd2);
367 den = (den/gcd2) * (r_num/gcd1);
368
369 if (den < zero) {
370 num = -num;
371 den = -den;
372 }
373 return *this;
374 }
375
376 // Mixed-mode operators
377 template <typename IntType>
378 inline rational<IntType>&
379 rational<IntType>::operator*= (param_type i)
380 {
381 // Avoid overflow and preserve normalization
382 IntType gcd = integer::gcd(i, den);
383 num *= i / gcd;
384 den /= gcd;
385
386 return *this;
387 }
388
389 template <typename IntType>
390 rational<IntType>&
391 rational<IntType>::operator/= (param_type i)
392 {
393 // Avoid repeated construction
394 IntType const zero(0);
395
396 if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
397 if (num == zero) return *this;
398
399 // Avoid overflow and preserve normalization
400 IntType const gcd = integer::gcd(num, i);
401 num /= gcd;
402 den *= i / gcd;
403
404 if (den < zero) {
405 num = -num;
406 den = -den;
407 }
408
409 return *this;
410 }
411
412 // Comparison operators
413 template <typename IntType>
414 bool rational<IntType>::operator< (const rational<IntType>& r) const
415 {
416 // Avoid repeated construction
417 int_type const zero( 0 );
418
419 // This should really be a class-wide invariant. The reason for these
420 // checks is that for 2's complement systems, INT_MIN has no corresponding
421 // positive, so negating it during normalization keeps it INT_MIN, which
422 // is bad for later calculations that assume a positive denominator.
423 BOOST_ASSERT( this->den > zero );
424 BOOST_ASSERT( r.den > zero );
425
426 // Determine relative order by expanding each value to its simple continued
427 // fraction representation using the Euclidian GCD algorithm.
428 struct { int_type n, d, q, r; }
429 ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
430 static_cast<int_type>(this->num % this->den) },
431 rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
432 static_cast<int_type>(r.num % r.den) };
433 unsigned reverse = 0u;
434
435 // Normalize negative moduli by repeatedly adding the (positive) denominator
436 // and decrementing the quotient. Later cycles should have all positive
437 // values, so this only has to be done for the first cycle. (The rules of
438 // C++ require a nonnegative quotient & remainder for a nonnegative dividend
439 // & positive divisor.)
440 while ( ts.r < zero ) { ts.r += ts.d; --ts.q; }
441 while ( rs.r < zero ) { rs.r += rs.d; --rs.q; }
442
443 // Loop through and compare each variable's continued-fraction components
444 for ( ;; )
445 {
446 // The quotients of the current cycle are the continued-fraction
447 // components. Comparing two c.f. is comparing their sequences,
448 // stopping at the first difference.
449 if ( ts.q != rs.q )
450 {
451 // Since reciprocation changes the relative order of two variables,
452 // and c.f. use reciprocals, the less/greater-than test reverses
453 // after each index. (Start w/ non-reversed @ whole-number place.)
454 return reverse ? ts.q > rs.q : ts.q < rs.q;
455 }
456
457 // Prepare the next cycle
458 reverse ^= 1u;
459
460 if ( (ts.r == zero) || (rs.r == zero) )
461 {
462 // At least one variable's c.f. expansion has ended
463 break;
464 }
465
466 ts.n = ts.d; ts.d = ts.r;
467 ts.q = ts.n / ts.d; ts.r = ts.n % ts.d;
468 rs.n = rs.d; rs.d = rs.r;
469 rs.q = rs.n / rs.d; rs.r = rs.n % rs.d;
470 }
471
472 // Compare infinity-valued components for otherwise equal sequences
473 if ( ts.r == rs.r )
474 {
475 // Both remainders are zero, so the next (and subsequent) c.f.
476 // components for both sequences are infinity. Therefore, the sequences
477 // and their corresponding values are equal.
478 return false;
479 }
480 else
481 {
482 #ifdef BOOST_MSVC
483 #pragma warning(push)
484 #pragma warning(disable:4800)
485 #endif
486 // Exactly one of the remainders is zero, so all following c.f.
487 // components of that variable are infinity, while the other variable
488 // has a finite next c.f. component. So that other variable has the
489 // lesser value (modulo the reversal flag!).
490 return ( ts.r != zero ) != static_cast<bool>( reverse );
491 #ifdef BOOST_MSVC
492 #pragma warning(pop)
493 #endif
494 }
495 }
496
497 template <typename IntType>
498 bool rational<IntType>::operator< (param_type i) const
499 {
500 // Avoid repeated construction
501 int_type const zero( 0 );
502
503 // Break value into mixed-fraction form, w/ always-nonnegative remainder
504 BOOST_ASSERT( this->den > zero );
505 int_type q = this->num / this->den, r = this->num % this->den;
506 while ( r < zero ) { r += this->den; --q; }
507
508 // Compare with just the quotient, since the remainder always bumps the
509 // value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
510 // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
511 // q >= i + 1 > i; therefore n/d < i iff q < i.]
512 return q < i;
513 }
514
515 template <typename IntType>
516 bool rational<IntType>::operator> (param_type i) const
517 {
518 return operator==(i)? false: !operator<(i);
519 }
520
521 template <typename IntType>
522 BOOST_CONSTEXPR
523 inline bool rational<IntType>::operator== (const rational<IntType>& r) const
524 {
525 return ((num == r.num) && (den == r.den));
526 }
527
528 template <typename IntType>
529 BOOST_CONSTEXPR
530 inline bool rational<IntType>::operator== (param_type i) const
531 {
532 return ((den == IntType(1)) && (num == i));
533 }
534
535 // Invariant check
536 template <typename IntType>
537 inline bool rational<IntType>::test_invariant() const
538 {
539 return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
540 int_type(1) );
541 }
542
543 // Normalisation
544 template <typename IntType>
545 void rational<IntType>::normalize()
546 {
547 // Avoid repeated construction
548 IntType zero(0);
549
550 if (den == zero)
551 BOOST_THROW_EXCEPTION(bad_rational());
552
553 // Handle the case of zero separately, to avoid division by zero
554 if (num == zero) {
555 den = IntType(1);
556 return;
557 }
558
559 IntType g = integer::gcd(num, den);
560
561 num /= g;
562 den /= g;
563
564 // Ensure that the denominator is positive
565 if (den < zero) {
566 num = -num;
567 den = -den;
568 }
569
570 // ...But acknowledge that the previous step doesn't always work.
571 // (Nominally, this should be done before the mutating steps, but this
572 // member function is only called during the constructor, so we never have
573 // to worry about zombie objects.)
574 if (den < zero)
575 BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));
576
577 BOOST_ASSERT( this->test_invariant() );
578 }
579
580 #ifndef BOOST_NO_IOSTREAM
581 namespace detail {
582
583 // A utility class to reset the format flags for an istream at end
584 // of scope, even in case of exceptions
585 struct resetter {
586 resetter(std::istream& is) : is_(is), f_(is.flags()) {}
587 ~resetter() { is_.flags(f_); }
588 std::istream& is_;
589 std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
590 };
591
592 }
593
594 // Input and output
595 template <typename IntType>
596 std::istream& operator>> (std::istream& is, rational<IntType>& r)
597 {
598 using std::ios;
599
600 IntType n = IntType(0), d = IntType(1);
601 char c = 0;
602 detail::resetter sentry(is);
603
604 if ( is >> n )
605 {
606 if ( is.get(c) )
607 {
608 if ( c == '/' )
609 {
610 if ( is >> std::noskipws >> d )
611 try {
612 r.assign( n, d );
613 } catch ( bad_rational & ) { // normalization fail
614 try { is.setstate(ios::failbit); }
615 catch ( ... ) {} // don't throw ios_base::failure...
616 if ( is.exceptions() & ios::failbit )
617 throw; // ...but the original exception instead
618 // ELSE: suppress the exception, use just error flags
619 }
620 }
621 else
622 is.setstate( ios::failbit );
623 }
624 }
625
626 return is;
627 }
628
629 // Add manipulators for output format?
630 template <typename IntType>
631 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
632 {
633 // The slash directly precedes the denominator, which has no prefixes.
634 std::ostringstream ss;
635
636 ss.copyfmt( os );
637 ss.tie( NULL );
638 ss.exceptions( std::ios::goodbit );
639 ss.width( 0 );
640 ss << std::noshowpos << std::noshowbase << '/' << r.denominator();
641
642 // The numerator holds the showpos, internal, and showbase flags.
643 std::string const tail = ss.str();
644 std::streamsize const w =
645 os.width() - static_cast<std::streamsize>( tail.size() );
646
647 ss.clear();
648 ss.str( "" );
649 ss.flags( os.flags() );
650 ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
651 std::ios::internal ? 0 : w ) << r.numerator();
652 return os << ss.str() + tail;
653 }
654 #endif // BOOST_NO_IOSTREAM
655
656 // Type conversion
657 template <typename T, typename IntType>
658 BOOST_CONSTEXPR
659 inline T rational_cast(const rational<IntType>& src)
660 {
661 return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
662 }
663
664 // Do not use any abs() defined on IntType - it isn't worth it, given the
665 // difficulties involved (Koenig lookup required, there may not *be* an abs()
666 // defined, etc etc).
667 template <typename IntType>
668 inline rational<IntType> abs(const rational<IntType>& r)
669 {
670 return r.numerator() >= IntType(0)? r: -r;
671 }
672
673 namespace integer {
674
675 template <typename IntType>
676 struct gcd_evaluator< rational<IntType> >
677 {
678 typedef rational<IntType> result_type,
679 first_argument_type, second_argument_type;
680 result_type operator() ( first_argument_type const &a
681 , second_argument_type const &b
682 ) const
683 {
684 return result_type(integer::gcd(a.numerator(), b.numerator()),
685 integer::lcm(a.denominator(), b.denominator()));
686 }
687 };
688
689 template <typename IntType>
690 struct lcm_evaluator< rational<IntType> >
691 {
692 typedef rational<IntType> result_type,
693 first_argument_type, second_argument_type;
694 result_type operator() ( first_argument_type const &a
695 , second_argument_type const &b
696 ) const
697 {
698 return result_type(integer::lcm(a.numerator(), b.numerator()),
699 integer::gcd(a.denominator(), b.denominator()));
700 }
701 };
702
703 } // namespace integer
704
705 } // namespace boost
706
707 #endif // BOOST_RATIONAL_HPP