]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/spirit/classic/doc/refactoring.html
bump version to 12.2.2-pve1
[ceph.git] / ceph / src / boost / libs / spirit / classic / doc / refactoring.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2 <html>
3 <head>
4 <title>Refactoring Parsers</title>
5 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6 <link href="theme/style.css" rel="stylesheet" type="text/css">
7 </head>
8
9 <body>
10 <table width="100%" border="0" background="theme/bkd2.gif" cellspacing="2">
11 <tr>
12 <td width="10"> <font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>&nbsp;</b></font></td>
13 <td width="85%"> <font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Refactoring Parsers</b></font></td>
14 <td width="112"><a href="http://spirit.sf.net"><img src="theme/spirit.gif" width="112" height="48" align="right" border="0"></a></td>
15 </tr>
16 </table>
17 <br>
18 <table border="0">
19 <tr>
20 <td width="10"></td>
21 <td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
22 <td width="30"><a href="functor_parser.html"><img src="theme/l_arr.gif" border="0"></a></td>
23 <td width="30"><a href="regular_expression_parser.html"><img src="theme/r_arr.gif" border="0"></a></td>
24 </tr>
25 </table>
26 <p><a name="refactoring_parsers"></a>There are three types of Refactoring Parsers
27 implemented right now, which help to abstract common parser refactoring tasks.
28 Parser refactoring means, that a concrete parser construct is replaced (refactored)
29 by another very similar parser construct. Two of the Refactoring Parsers described
30 here (<tt>refactor_unary_parser</tt> and <tt>refactor_action_parser</tt>) are
31 introduced to allow a simple and more expressive notation while using <a href="confix.html">Confix
32 Parsers</a> and <a href="list_parsers.html">List Parsers</a>. The third Refactoring
33 Parser (<tt>attach_action_parser</tt>) is implemented to abstract some functionality
34 required for the Grouping Parser. Nevertheless
35 these Refactoring Parsers may help in solving other complex parsing tasks too.</p>
36 <h3>Refactoring unary parsers</h3>
37 <p>The <tt>refactor_unary_d</tt> parser generator, which should be used to generate
38 a unary refactoring parser, transforms a construct of the following type</p>
39 <pre><code> <span class=identifier>refactor_unary_d</span><span class=special>[*</span><span class=identifier>some_parser </span><span class=special>- </span><span class=identifier>another_parser</span><span class=special>]</span></code></pre>
40 <p>to </p>
41 <pre><code> <span class=special>*(</span><span class=identifier>some_parser</span> <span class=special>- </span><span class=identifier>another_parser</span><span class=special>)</span></code></pre>
42 <blockquote>
43 <p>where <tt>refactor_unary_d</tt> is a predefined object of the parser generator
44 struct <tt>refactor_unary_gen&lt;&gt;</tt></p>
45 </blockquote>
46 <p>The <tt>refactor_unary_d</tt> parser generator generates a new parser as shown
47 above, only if the original construct is an auxilliary binary parser (here the
48 difference parser) and the left operand of this binary parser is an auxilliary
49 unary parser (here the kleene star operator). If the original parser isn't a
50 binary parser the compilation will fail. If the left operand isn't an unary
51 parser, no refactoring will take place.</p>
52 <h3>Refactoring action parsers</h3>
53 <p>The <tt>refactor_action_d</tt> parser generator, which should be used to generate
54 an action refactoring parser, transforms a construct of the following type</p>
55 <pre><code> <span class=identifier>refactor_action_d</span><span class=special>[</span><span class=identifier>some_parser</span><span class=special>[</span><span class=identifier>some_actor</span><span class=special>] </span><span class=special>- </span><span class=identifier>another_parser</span><span class=special>]</span></code></pre>
56 <p>to </p>
57 <pre><code> <span class=special>(</span><span class=identifier>some_parser </span><span class=special>- </span><span class=identifier>another_parser</span><span class=special>)[</span><span class=identifier>some_actor</span><span class=special>]</span></code></pre>
58 <blockquote>
59 <p>where <tt>refactor_action_d</tt> is a predefined object of the parser generator
60 struct <tt>refactor_action_gen&lt;&gt;</tt></p>
61 </blockquote>
62 <p>The <tt>refactor_action_d</tt> parser generator generates a new parser as shown
63 above, only if the original construct is an auxilliary binary parser (here the
64 difference parser) and the left operand of this binary parser is an auxilliary
65 parser generated by an attached semantic action. If the original parser isn't
66 a binary parser the compilation will fail. If the left operand isn't an action
67 parser, no refactoring will take place.</p>
68 <h3>Attach action refactoring</h3>
69 <p>The <tt>attach_action_d</tt> parser generator, which should be used to generate
70 an attach action refactoring parser, transforms a construct of the following
71 type</p>
72 <pre><code> <span class=identifier>attach_action_d</span><span class=special>[</span><span class=identifier>(some_parser</span> <span class=special>&gt;&gt; </span><span class=identifier>another_parser</span>)<span class=special>[</span><span class=identifier>some_actor</span><span class=special>]</span><span class=special>]</span></code></pre>
73 <p>to </p>
74 <pre><code> <span class=identifier>some_parser</span><span class=special>[</span><span class=identifier>some_actor</span><span class=special>]</span><span class=identifier> </span><span class=special>&gt;&gt; </span><span class=identifier>another_parser</span><span class=special>[</span><span class=identifier>some_actor</span><span class=special>]</span></code></pre>
75 <blockquote>
76 <p>where <tt>attach_action_d</tt> is a predefined object of the parser generator
77 struct <tt>attach_action_gen&lt;&gt;</tt></p>
78 </blockquote>
79
80 <p>The <tt>attach_action_d</tt> parser generator generates a new parser as shown
81 above, only if the original construct is an auxilliary action parser and the
82 parser to it this action is attached is an auxilliary binary parser (here the
83 sequence parser). If the original parser isn't a action parser the compilation
84 will fail. If the parser to which the action is attached isn't an binary parser,
85 no refactoring will take place.</p>
86 <h3>Nested refactoring</h3>
87 <p>Sometimes it is required to nest different types of refactoring, i.e. to transform
88 constructs like</p>
89 <pre><code> <span class=special>(*</span><span class=identifier>some_parser</span><span class=special>)[</span><span class=identifier>some_actor</span><span class=special>] </span><span class=special>- </span><span class=identifier>another_parser</span></code></pre>
90 <p>to </p>
91 <pre><code> <span class=special>(*(</span><span class=identifier>some_parser </span><span class=special>- </span><span class=identifier>another_parser</span><span class=special>))[</span><span class=identifier>some_actor</span><span class=special>]</span></code></pre>
92 <p>To simplify the construction of such nested refactoring parsers the <tt>refactor_unary_gen&lt;&gt;</tt>
93 and <tt>refactor_action_gen&lt;&gt;</tt> both can take another refactoring parser
94 generator type as their respective template parameter. For instance, to construct
95 a refactoring parser generator for the mentioned nested transformation we should
96 write:</p>
97 <pre><span class=special> </span><span class=keyword>typedef </span><span class=identifier>refactor_action_gen</span><span class=special>&lt;</span><span class=identifier>refactor_unary_gen</span><span class=special>&lt;&gt; </span><span class=special>&gt; </span><span class=identifier>refactor_t</span><span class=special>;
98 </span><span class=keyword>const </span><span class=identifier>refactor_t </span><span class=identifier>refactor_nested_d </span><span class=special>= </span><span class=identifier>refactor_t</span><span class=special>(</span><span class=identifier>refactor_unary_d</span><span class=special>);</span></pre>
99 <p>Now we could use it as follows to get the required result:</p>
100 <pre><code><font color="#0000FF"> </font><span class=identifier>refactor_nested_d</span><span class=special>[(*</span><span class=identifier>some_parser</span><span class=special>)[</span><span class=identifier>some_actor</span><span class=special>] </span><span class=special>- </span><span class=identifier>another_parser</span><span class=special>]</span></code></pre>
101 <p>An empty template parameter means not to nest this particular refactoring parser.
102 The default template parameter is <tt>non_nesting_refactoring</tt>, a predefined
103 helper structure for inhibiting nesting. Sometimes it is required to nest a
104 particular refactoring parser with itself. This is achieved by providing the
105 predefined helper structure <tt>self_nested_refactoring</tt> as the template
106 parameter to the corresponding refactoring parser generator template.</p>
107 <p><img src="theme/lens.gif" width="15" height="16"> See <a href="../example/fundamental/refactoring.cpp">refactoring.cpp</a> for a compilable example. This is part of the Spirit distribution. </p>
108 <table border="0">
109 <tr>
110 <td width="10"></td>
111 <td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
112 <td width="30"><a href="functor_parser.html"><img src="theme/l_arr.gif" border="0"></a></td>
113 <td width="30"><a href="regular_expression_parser.html"><img src="theme/r_arr.gif" border="0"></a></td>
114 </tr>
115 </table>
116 <br>
117 <hr size="1">
118 <p class="copyright">Copyright &copy; 2001-2003 Hartmut Kaiser<br>
119 <br>
120 <font size="2">Use, modification and distribution is subject to the Boost Software
121 License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
122 http://www.boost.org/LICENSE_1_0.txt)</font></p>
123 <p>&nbsp;</p>
124 </body>
125 </html>