]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/tools/build/src/engine/boehm_gc/include/gc.h
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / tools / build / src / engine / boehm_gc / include / gc.h
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright 1999 by Hewlett-Packard Company. All rights reserved.
6 * Copyright (C) 2007 Free Software Foundation, Inc
7 *
8 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
9 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 *
11 * Permission is hereby granted to use or copy this program
12 * for any purpose, provided the above notices are retained on all copies.
13 * Permission to modify the code and to distribute modified code is granted,
14 * provided the above notices are retained, and a notice that the code was
15 * modified is included with the above copyright notice.
16 */
17
18 /*
19 * Note that this defines a large number of tuning hooks, which can
20 * safely be ignored in nearly all cases. For normal use it suffices
21 * to call only GC_MALLOC and perhaps GC_REALLOC.
22 * For better performance, also look at GC_MALLOC_ATOMIC, and
23 * GC_enable_incremental. If you need an action to be performed
24 * immediately before an object is collected, look at GC_register_finalizer.
25 * If you are using Solaris threads, look at the end of this file.
26 * Everything else is best ignored unless you encounter performance
27 * problems.
28 */
29
30 #ifndef _GC_H
31
32 # define _GC_H
33
34 # include "gc_config_macros.h"
35
36 # ifdef __cplusplus
37 extern "C" {
38 # endif
39
40
41 /* Define word and signed_word to be unsigned and signed types of the */
42 /* size as char * or void *. There seems to be no way to do this */
43 /* even semi-portably. The following is probably no better/worse */
44 /* than almost anything else. */
45 /* The ANSI standard suggests that size_t and ptr_diff_t might be */
46 /* better choices. But those had incorrect definitions on some older */
47 /* systems. Notably "typedef int size_t" is WRONG. */
48 #ifndef _WIN64
49 typedef unsigned long GC_word;
50 typedef long GC_signed_word;
51 #else
52 /* Win64 isn't really supported yet, but this is the first step. And */
53 /* it might cause error messages to show up in more plausible places. */
54 /* This needs basetsd.h, which is included by windows.h. */
55 typedef unsigned long long GC_word;
56 typedef long long GC_signed_word;
57 #endif
58
59 /* Public read-only variables */
60
61 GC_API GC_word GC_gc_no;/* Counter incremented per collection. */
62 /* Includes empty GCs at startup. */
63
64 GC_API int GC_parallel; /* GC is parallelized for performance on */
65 /* multiprocessors. Currently set only */
66 /* implicitly if collector is built with */
67 /* -DPARALLEL_MARK and if either: */
68 /* Env variable GC_NPROC is set to > 1, or */
69 /* GC_NPROC is not set and this is an MP. */
70 /* If GC_parallel is set, incremental */
71 /* collection is only partially functional, */
72 /* and may not be desirable. */
73
74
75 /* Public R/W variables */
76
77 GC_API void * (*GC_oom_fn) (size_t bytes_requested);
78 /* When there is insufficient memory to satisfy */
79 /* an allocation request, we return */
80 /* (*GC_oom_fn)(). By default this just */
81 /* returns 0. */
82 /* If it returns, it must return 0 or a valid */
83 /* pointer to a previously allocated heap */
84 /* object. */
85
86 GC_API int GC_find_leak;
87 /* Do not actually garbage collect, but simply */
88 /* report inaccessible memory that was not */
89 /* deallocated with GC_free. Initial value */
90 /* is determined by FIND_LEAK macro. */
91
92 GC_API int GC_all_interior_pointers;
93 /* Arrange for pointers to object interiors to */
94 /* be recognized as valid. May not be changed */
95 /* after GC initialization. */
96 /* Initial value is determined by */
97 /* -DALL_INTERIOR_POINTERS. */
98 /* Unless DONT_ADD_BYTE_AT_END is defined, this */
99 /* also affects whether sizes are increased by */
100 /* at least a byte to allow "off the end" */
101 /* pointer recognition. */
102 /* MUST BE 0 or 1. */
103
104 GC_API int GC_finalize_on_demand;
105 /* If nonzero, finalizers will only be run in */
106 /* response to an explicit GC_invoke_finalizers */
107 /* call. The default is determined by whether */
108 /* the FINALIZE_ON_DEMAND macro is defined */
109 /* when the collector is built. */
110
111 GC_API int GC_java_finalization;
112 /* Mark objects reachable from finalizable */
113 /* objects in a separate postpass. This makes */
114 /* it a bit safer to use non-topologically- */
115 /* ordered finalization. Default value is */
116 /* determined by JAVA_FINALIZATION macro. */
117 /* Enables register_finalizer_unreachable to */
118 /* work correctly. */
119
120 GC_API void (* GC_finalizer_notifier)(void);
121 /* Invoked by the collector when there are */
122 /* objects to be finalized. Invoked at most */
123 /* once per GC cycle. Never invoked unless */
124 /* GC_finalize_on_demand is set. */
125 /* Typically this will notify a finalization */
126 /* thread, which will call GC_invoke_finalizers */
127 /* in response. */
128
129 GC_API int GC_dont_gc; /* != 0 ==> Dont collect. In versions 6.2a1+, */
130 /* this overrides explicit GC_gcollect() calls. */
131 /* Used as a counter, so that nested enabling */
132 /* and disabling work correctly. Should */
133 /* normally be updated with GC_enable() and */
134 /* GC_disable() calls. */
135 /* Direct assignment to GC_dont_gc is */
136 /* deprecated. */
137
138 GC_API int GC_dont_expand;
139 /* Dont expand heap unless explicitly requested */
140 /* or forced to. */
141
142 GC_API int GC_use_entire_heap;
143 /* Causes the nonincremental collector to use the */
144 /* entire heap before collecting. This was the only */
145 /* option for GC versions < 5.0. This sometimes */
146 /* results in more large block fragmentation, since */
147 /* very larg blocks will tend to get broken up */
148 /* during each GC cycle. It is likely to result in a */
149 /* larger working set, but lower collection */
150 /* frequencies, and hence fewer instructions executed */
151 /* in the collector. */
152
153 GC_API int GC_full_freq; /* Number of partial collections between */
154 /* full collections. Matters only if */
155 /* GC_incremental is set. */
156 /* Full collections are also triggered if */
157 /* the collector detects a substantial */
158 /* increase in the number of in-use heap */
159 /* blocks. Values in the tens are now */
160 /* perfectly reasonable, unlike for */
161 /* earlier GC versions. */
162
163 GC_API GC_word GC_non_gc_bytes;
164 /* Bytes not considered candidates for collection. */
165 /* Used only to control scheduling of collections. */
166 /* Updated by GC_malloc_uncollectable and GC_free. */
167 /* Wizards only. */
168
169 GC_API int GC_no_dls;
170 /* Don't register dynamic library data segments. */
171 /* Wizards only. Should be used only if the */
172 /* application explicitly registers all roots. */
173 /* In Microsoft Windows environments, this will */
174 /* usually also prevent registration of the */
175 /* main data segment as part of the root set. */
176
177 GC_API GC_word GC_free_space_divisor;
178 /* We try to make sure that we allocate at */
179 /* least N/GC_free_space_divisor bytes between */
180 /* collections, where N is twice the number */
181 /* of traced bytes, plus the number of untraced */
182 /* bytes (bytes in "atomic" objects), plus */
183 /* a rough estimate of the root set size. */
184 /* N approximates GC tracing work per GC. */
185 /* Initially, GC_free_space_divisor = 3. */
186 /* Increasing its value will use less space */
187 /* but more collection time. Decreasing it */
188 /* will appreciably decrease collection time */
189 /* at the expense of space. */
190
191 GC_API GC_word GC_max_retries;
192 /* The maximum number of GCs attempted before */
193 /* reporting out of memory after heap */
194 /* expansion fails. Initially 0. */
195
196
197 GC_API char *GC_stackbottom; /* Cool end of user stack. */
198 /* May be set in the client prior to */
199 /* calling any GC_ routines. This */
200 /* avoids some overhead, and */
201 /* potentially some signals that can */
202 /* confuse debuggers. Otherwise the */
203 /* collector attempts to set it */
204 /* automatically. */
205 /* For multithreaded code, this is the */
206 /* cold end of the stack for the */
207 /* primordial thread. */
208
209 GC_API int GC_dont_precollect; /* Don't collect as part of */
210 /* initialization. Should be set only */
211 /* if the client wants a chance to */
212 /* manually initialize the root set */
213 /* before the first collection. */
214 /* Interferes with blacklisting. */
215 /* Wizards only. */
216
217 GC_API unsigned long GC_time_limit;
218 /* If incremental collection is enabled, */
219 /* We try to terminate collections */
220 /* after this many milliseconds. Not a */
221 /* hard time bound. Setting this to */
222 /* GC_TIME_UNLIMITED will essentially */
223 /* disable incremental collection while */
224 /* leaving generational collection */
225 /* enabled. */
226 # define GC_TIME_UNLIMITED 999999
227 /* Setting GC_time_limit to this value */
228 /* will disable the "pause time exceeded"*/
229 /* tests. */
230
231 /* Public procedures */
232
233 /* Initialize the collector. This is only required when using thread-local
234 * allocation, since unlike the regular allocation routines, GC_local_malloc
235 * is not self-initializing. If you use GC_local_malloc you should arrange
236 * to call this somehow (e.g. from a constructor) before doing any allocation.
237 * For win32 threads, it needs to be called explicitly.
238 */
239 GC_API void GC_init(void);
240
241 /*
242 * general purpose allocation routines, with roughly malloc calling conv.
243 * The atomic versions promise that no relevant pointers are contained
244 * in the object. The nonatomic versions guarantee that the new object
245 * is cleared. GC_malloc_stubborn promises that no changes to the object
246 * will occur after GC_end_stubborn_change has been called on the
247 * result of GC_malloc_stubborn. GC_malloc_uncollectable allocates an object
248 * that is scanned for pointers to collectable objects, but is not itself
249 * collectable. The object is scanned even if it does not appear to
250 * be reachable. GC_malloc_uncollectable and GC_free called on the resulting
251 * object implicitly update GC_non_gc_bytes appropriately.
252 *
253 * Note that the GC_malloc_stubborn support is stubbed out by default
254 * starting in 6.0. GC_malloc_stubborn is an alias for GC_malloc unless
255 * the collector is built with STUBBORN_ALLOC defined.
256 */
257 GC_API void * GC_malloc(size_t size_in_bytes);
258 GC_API void * GC_malloc_atomic(size_t size_in_bytes);
259 GC_API char * GC_strdup (const char *str);
260 GC_API void * GC_malloc_uncollectable(size_t size_in_bytes);
261 GC_API void * GC_malloc_stubborn(size_t size_in_bytes);
262
263 /* The following is only defined if the library has been suitably */
264 /* compiled: */
265 GC_API void * GC_malloc_atomic_uncollectable(size_t size_in_bytes);
266
267 /* Explicitly deallocate an object. Dangerous if used incorrectly. */
268 /* Requires a pointer to the base of an object. */
269 /* If the argument is stubborn, it should not be changeable when freed. */
270 /* An object should not be enable for finalization when it is */
271 /* explicitly deallocated. */
272 /* GC_free(0) is a no-op, as required by ANSI C for free. */
273 GC_API void GC_free(void * object_addr);
274
275 /*
276 * Stubborn objects may be changed only if the collector is explicitly informed.
277 * The collector is implicitly informed of coming change when such
278 * an object is first allocated. The following routines inform the
279 * collector that an object will no longer be changed, or that it will
280 * once again be changed. Only nonNIL pointer stores into the object
281 * are considered to be changes. The argument to GC_end_stubborn_change
282 * must be exacly the value returned by GC_malloc_stubborn or passed to
283 * GC_change_stubborn. (In the second case it may be an interior pointer
284 * within 512 bytes of the beginning of the objects.)
285 * There is a performance penalty for allowing more than
286 * one stubborn object to be changed at once, but it is acceptable to
287 * do so. The same applies to dropping stubborn objects that are still
288 * changeable.
289 */
290 GC_API void GC_change_stubborn(void *);
291 GC_API void GC_end_stubborn_change(void *);
292
293 /* Return a pointer to the base (lowest address) of an object given */
294 /* a pointer to a location within the object. */
295 /* I.e. map an interior pointer to the corresponding bas pointer. */
296 /* Note that with debugging allocation, this returns a pointer to the */
297 /* actual base of the object, i.e. the debug information, not to */
298 /* the base of the user object. */
299 /* Return 0 if displaced_pointer doesn't point to within a valid */
300 /* object. */
301 /* Note that a deallocated object in the garbage collected heap */
302 /* may be considered valid, even if it has been deallocated with */
303 /* GC_free. */
304 GC_API void * GC_base(void * displaced_pointer);
305
306 /* Given a pointer to the base of an object, return its size in bytes. */
307 /* The returned size may be slightly larger than what was originally */
308 /* requested. */
309 GC_API size_t GC_size(void * object_addr);
310
311 /* For compatibility with C library. This is occasionally faster than */
312 /* a malloc followed by a bcopy. But if you rely on that, either here */
313 /* or with the standard C library, your code is broken. In my */
314 /* opinion, it shouldn't have been invented, but now we're stuck. -HB */
315 /* The resulting object has the same kind as the original. */
316 /* If the argument is stubborn, the result will have changes enabled. */
317 /* It is an error to have changes enabled for the original object. */
318 /* Follows ANSI comventions for NULL old_object. */
319 GC_API void * GC_realloc(void * old_object, size_t new_size_in_bytes);
320
321 /* Explicitly increase the heap size. */
322 /* Returns 0 on failure, 1 on success. */
323 GC_API int GC_expand_hp(size_t number_of_bytes);
324
325 /* Limit the heap size to n bytes. Useful when you're debugging, */
326 /* especially on systems that don't handle running out of memory well. */
327 /* n == 0 ==> unbounded. This is the default. */
328 GC_API void GC_set_max_heap_size(GC_word n);
329
330 /* Inform the collector that a certain section of statically allocated */
331 /* memory contains no pointers to garbage collected memory. Thus it */
332 /* need not be scanned. This is sometimes important if the application */
333 /* maps large read/write files into the address space, which could be */
334 /* mistaken for dynamic library data segments on some systems. */
335 GC_API void GC_exclude_static_roots(void * low_address,
336 void * high_address_plus_1);
337
338 /* Clear the set of root segments. Wizards only. */
339 GC_API void GC_clear_roots(void);
340
341 /* Add a root segment. Wizards only. */
342 GC_API void GC_add_roots(void * low_address, void * high_address_plus_1);
343
344 /* Remove a root segment. Wizards only. */
345 GC_API void GC_remove_roots(void * low_address, void * high_address_plus_1);
346
347 /* Add a displacement to the set of those considered valid by the */
348 /* collector. GC_register_displacement(n) means that if p was returned */
349 /* by GC_malloc, then (char *)p + n will be considered to be a valid */
350 /* pointer to p. N must be small and less than the size of p. */
351 /* (All pointers to the interior of objects from the stack are */
352 /* considered valid in any case. This applies to heap objects and */
353 /* static data.) */
354 /* Preferably, this should be called before any other GC procedures. */
355 /* Calling it later adds to the probability of excess memory */
356 /* retention. */
357 /* This is a no-op if the collector has recognition of */
358 /* arbitrary interior pointers enabled, which is now the default. */
359 GC_API void GC_register_displacement(size_t n);
360
361 /* The following version should be used if any debugging allocation is */
362 /* being done. */
363 GC_API void GC_debug_register_displacement(size_t n);
364
365 /* Explicitly trigger a full, world-stop collection. */
366 GC_API void GC_gcollect(void);
367
368 /* Trigger a full world-stopped collection. Abort the collection if */
369 /* and when stop_func returns a nonzero value. Stop_func will be */
370 /* called frequently, and should be reasonably fast. This works even */
371 /* if virtual dirty bits, and hence incremental collection is not */
372 /* available for this architecture. Collections can be aborted faster */
373 /* than normal pause times for incremental collection. However, */
374 /* aborted collections do no useful work; the next collection needs */
375 /* to start from the beginning. */
376 /* Return 0 if the collection was aborted, 1 if it succeeded. */
377 typedef int (* GC_stop_func)(void);
378 GC_API int GC_try_to_collect(GC_stop_func stop_func);
379
380 /* Return the number of bytes in the heap. Excludes collector private */
381 /* data structures. Includes empty blocks and fragmentation loss. */
382 /* Includes some pages that were allocated but never written. */
383 GC_API size_t GC_get_heap_size(void);
384
385 /* Return a lower bound on the number of free bytes in the heap. */
386 GC_API size_t GC_get_free_bytes(void);
387
388 /* Return the number of bytes allocated since the last collection. */
389 GC_API size_t GC_get_bytes_since_gc(void);
390
391 /* Return the total number of bytes allocated in this process. */
392 /* Never decreases, except due to wrapping. */
393 GC_API size_t GC_get_total_bytes(void);
394
395 /* Disable garbage collection. Even GC_gcollect calls will be */
396 /* ineffective. */
397 GC_API void GC_disable(void);
398
399 /* Reenable garbage collection. GC_disable() and GC_enable() calls */
400 /* nest. Garbage collection is enabled if the number of calls to both */
401 /* both functions is equal. */
402 GC_API void GC_enable(void);
403
404 /* Enable incremental/generational collection. */
405 /* Not advisable unless dirty bits are */
406 /* available or most heap objects are */
407 /* pointerfree(atomic) or immutable. */
408 /* Don't use in leak finding mode. */
409 /* Ignored if GC_dont_gc is true. */
410 /* Only the generational piece of this is */
411 /* functional if GC_parallel is TRUE */
412 /* or if GC_time_limit is GC_TIME_UNLIMITED. */
413 /* Causes GC_local_gcj_malloc() to revert to */
414 /* locked allocation. Must be called */
415 /* before any GC_local_gcj_malloc() calls. */
416 /* For best performance, should be called as early as possible. */
417 /* On some platforms, calling it later may have adverse effects.*/
418 /* Safe to call before GC_INIT(). Includes a GC_init() call. */
419 GC_API void GC_enable_incremental(void);
420
421 /* Does incremental mode write-protect pages? Returns zero or */
422 /* more of the following, or'ed together: */
423 #define GC_PROTECTS_POINTER_HEAP 1 /* May protect non-atomic objs. */
424 #define GC_PROTECTS_PTRFREE_HEAP 2
425 #define GC_PROTECTS_STATIC_DATA 4 /* Currently never. */
426 #define GC_PROTECTS_STACK 8 /* Probably impractical. */
427
428 #define GC_PROTECTS_NONE 0
429 GC_API int GC_incremental_protection_needs(void);
430
431 /* Perform some garbage collection work, if appropriate. */
432 /* Return 0 if there is no more work to be done. */
433 /* Typically performs an amount of work corresponding roughly */
434 /* to marking from one page. May do more work if further */
435 /* progress requires it, e.g. if incremental collection is */
436 /* disabled. It is reasonable to call this in a wait loop */
437 /* until it returns 0. */
438 GC_API int GC_collect_a_little(void);
439
440 /* Allocate an object of size lb bytes. The client guarantees that */
441 /* as long as the object is live, it will be referenced by a pointer */
442 /* that points to somewhere within the first 256 bytes of the object. */
443 /* (This should normally be declared volatile to prevent the compiler */
444 /* from invalidating this assertion.) This routine is only useful */
445 /* if a large array is being allocated. It reduces the chance of */
446 /* accidentally retaining such an array as a result of scanning an */
447 /* integer that happens to be an address inside the array. (Actually, */
448 /* it reduces the chance of the allocator not finding space for such */
449 /* an array, since it will try hard to avoid introducing such a false */
450 /* reference.) On a SunOS 4.X or MS Windows system this is recommended */
451 /* for arrays likely to be larger than 100K or so. For other systems, */
452 /* or if the collector is not configured to recognize all interior */
453 /* pointers, the threshold is normally much higher. */
454 GC_API void * GC_malloc_ignore_off_page(size_t lb);
455 GC_API void * GC_malloc_atomic_ignore_off_page(size_t lb);
456
457 #if defined(__sgi) && !defined(__GNUC__) && _COMPILER_VERSION >= 720
458 # define GC_ADD_CALLER
459 # define GC_RETURN_ADDR (GC_word)__return_address
460 #endif
461
462 #if defined(__linux__) || defined(__GLIBC__)
463 # include <features.h>
464 # if (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 1 || __GLIBC__ > 2) \
465 && !defined(__ia64__)
466 # ifndef GC_HAVE_BUILTIN_BACKTRACE
467 # define GC_HAVE_BUILTIN_BACKTRACE
468 # endif
469 # endif
470 # if defined(__i386__) || defined(__x86_64__)
471 # define GC_CAN_SAVE_CALL_STACKS
472 # endif
473 #endif
474
475 #if defined(_MSC_VER) && _MSC_VER >= 1200 /* version 12.0+ (MSVC 6.0+) */ \
476 && !defined(_AMD64_)
477 # ifndef GC_HAVE_NO_BUILTIN_BACKTRACE
478 # define GC_HAVE_BUILTIN_BACKTRACE
479 # endif
480 #endif
481
482 #if defined(GC_HAVE_BUILTIN_BACKTRACE) && !defined(GC_CAN_SAVE_CALL_STACKS)
483 # define GC_CAN_SAVE_CALL_STACKS
484 #endif
485
486 #if defined(__sparc__)
487 # define GC_CAN_SAVE_CALL_STACKS
488 #endif
489
490 /* If we're on an a platform on which we can't save call stacks, but */
491 /* gcc is normally used, we go ahead and define GC_ADD_CALLER. */
492 /* We make this decision independent of whether gcc is actually being */
493 /* used, in order to keep the interface consistent, and allow mixing */
494 /* of compilers. */
495 /* This may also be desirable if it is possible but expensive to */
496 /* retrieve the call chain. */
497 #if (defined(__linux__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__HAIKU__) \
498 || defined(__FreeBSD__) || defined(__DragonFly__)) & !defined(GC_CAN_SAVE_CALL_STACKS)
499 # define GC_ADD_CALLER
500 # if __GNUC__ >= 3 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)
501 /* gcc knows how to retrieve return address, but we don't know */
502 /* how to generate call stacks. */
503 # define GC_RETURN_ADDR (GC_word)__builtin_return_address(0)
504 # else
505 /* Just pass 0 for gcc compatibility. */
506 # define GC_RETURN_ADDR 0
507 # endif
508 #endif
509
510 #ifdef GC_ADD_CALLER
511 # define GC_EXTRAS GC_RETURN_ADDR, __FILE__, __LINE__
512 # define GC_EXTRA_PARAMS GC_word ra, const char * s, int i
513 #else
514 # define GC_EXTRAS __FILE__, __LINE__
515 # define GC_EXTRA_PARAMS const char * s, int i
516 #endif
517
518 /* Debugging (annotated) allocation. GC_gcollect will check */
519 /* objects allocated in this way for overwrites, etc. */
520 GC_API void * GC_debug_malloc(size_t size_in_bytes, GC_EXTRA_PARAMS);
521 GC_API void * GC_debug_malloc_atomic(size_t size_in_bytes, GC_EXTRA_PARAMS);
522 GC_API char * GC_debug_strdup(const char *str, GC_EXTRA_PARAMS);
523 GC_API void * GC_debug_malloc_uncollectable
524 (size_t size_in_bytes, GC_EXTRA_PARAMS);
525 GC_API void * GC_debug_malloc_stubborn
526 (size_t size_in_bytes, GC_EXTRA_PARAMS);
527 GC_API void * GC_debug_malloc_ignore_off_page
528 (size_t size_in_bytes, GC_EXTRA_PARAMS);
529 GC_API void * GC_debug_malloc_atomic_ignore_off_page
530 (size_t size_in_bytes, GC_EXTRA_PARAMS);
531 GC_API void GC_debug_free (void * object_addr);
532 GC_API void * GC_debug_realloc
533 (void * old_object, size_t new_size_in_bytes, GC_EXTRA_PARAMS);
534 GC_API void GC_debug_change_stubborn(void *);
535 GC_API void GC_debug_end_stubborn_change(void *);
536
537 /* Routines that allocate objects with debug information (like the */
538 /* above), but just fill in dummy file and line number information. */
539 /* Thus they can serve as drop-in malloc/realloc replacements. This */
540 /* can be useful for two reasons: */
541 /* 1) It allows the collector to be built with DBG_HDRS_ALL defined */
542 /* even if some allocation calls come from 3rd party libraries */
543 /* that can't be recompiled. */
544 /* 2) On some platforms, the file and line information is redundant, */
545 /* since it can be reconstructed from a stack trace. On such */
546 /* platforms it may be more convenient not to recompile, e.g. for */
547 /* leak detection. This can be accomplished by instructing the */
548 /* linker to replace malloc/realloc with these. */
549 GC_API void * GC_debug_malloc_replacement (size_t size_in_bytes);
550 GC_API void * GC_debug_realloc_replacement
551 (void * object_addr, size_t size_in_bytes);
552
553 # ifdef GC_DEBUG
554 # define GC_MALLOC(sz) GC_debug_malloc(sz, GC_EXTRAS)
555 # define GC_MALLOC_ATOMIC(sz) GC_debug_malloc_atomic(sz, GC_EXTRAS)
556 # define GC_STRDUP(s) GC_debug_strdup((s), GC_EXTRAS)
557 # define GC_MALLOC_UNCOLLECTABLE(sz) \
558 GC_debug_malloc_uncollectable(sz, GC_EXTRAS)
559 # define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
560 GC_debug_malloc_ignore_off_page(sz, GC_EXTRAS)
561 # define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
562 GC_debug_malloc_atomic_ignore_off_page(sz, GC_EXTRAS)
563 # define GC_REALLOC(old, sz) GC_debug_realloc(old, sz, GC_EXTRAS)
564 # define GC_FREE(p) GC_debug_free(p)
565 # define GC_REGISTER_FINALIZER(p, f, d, of, od) \
566 GC_debug_register_finalizer(p, f, d, of, od)
567 # define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
568 GC_debug_register_finalizer_ignore_self(p, f, d, of, od)
569 # define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
570 GC_debug_register_finalizer_no_order(p, f, d, of, od)
571 # define GC_REGISTER_FINALIZER_UNREACHABLE(p, f, d, of, od) \
572 GC_debug_register_finalizer_unreachable(p, f, d, of, od)
573 # define GC_MALLOC_STUBBORN(sz) GC_debug_malloc_stubborn(sz, GC_EXTRAS);
574 # define GC_CHANGE_STUBBORN(p) GC_debug_change_stubborn(p)
575 # define GC_END_STUBBORN_CHANGE(p) GC_debug_end_stubborn_change(p)
576 # define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
577 GC_general_register_disappearing_link(link, GC_base(obj))
578 # define GC_REGISTER_DISPLACEMENT(n) GC_debug_register_displacement(n)
579 # else
580 # define GC_MALLOC(sz) GC_malloc(sz)
581 # define GC_MALLOC_ATOMIC(sz) GC_malloc_atomic(sz)
582 # define GC_STRDUP(s) GC_strdup(s)
583 # define GC_MALLOC_UNCOLLECTABLE(sz) GC_malloc_uncollectable(sz)
584 # define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
585 GC_malloc_ignore_off_page(sz)
586 # define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
587 GC_malloc_atomic_ignore_off_page(sz)
588 # define GC_REALLOC(old, sz) GC_realloc(old, sz)
589 # define GC_FREE(p) GC_free(p)
590 # define GC_REGISTER_FINALIZER(p, f, d, of, od) \
591 GC_register_finalizer(p, f, d, of, od)
592 # define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
593 GC_register_finalizer_ignore_self(p, f, d, of, od)
594 # define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
595 GC_register_finalizer_no_order(p, f, d, of, od)
596 # define GC_REGISTER_FINALIZER_UNREACHABLE(p, f, d, of, od) \
597 GC_register_finalizer_unreachable(p, f, d, of, od)
598 # define GC_MALLOC_STUBBORN(sz) GC_malloc_stubborn(sz)
599 # define GC_CHANGE_STUBBORN(p) GC_change_stubborn(p)
600 # define GC_END_STUBBORN_CHANGE(p) GC_end_stubborn_change(p)
601 # define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
602 GC_general_register_disappearing_link(link, obj)
603 # define GC_REGISTER_DISPLACEMENT(n) GC_register_displacement(n)
604 # endif
605 /* The following are included because they are often convenient, and */
606 /* reduce the chance for a misspecifed size argument. But calls may */
607 /* expand to something syntactically incorrect if t is a complicated */
608 /* type expression. */
609 # define GC_NEW(t) (t *)GC_MALLOC(sizeof (t))
610 # define GC_NEW_ATOMIC(t) (t *)GC_MALLOC_ATOMIC(sizeof (t))
611 # define GC_NEW_STUBBORN(t) (t *)GC_MALLOC_STUBBORN(sizeof (t))
612 # define GC_NEW_UNCOLLECTABLE(t) (t *)GC_MALLOC_UNCOLLECTABLE(sizeof (t))
613
614 /* Finalization. Some of these primitives are grossly unsafe. */
615 /* The idea is to make them both cheap, and sufficient to build */
616 /* a safer layer, closer to Modula-3, Java, or PCedar finalization. */
617 /* The interface represents my conclusions from a long discussion */
618 /* with Alan Demers, Dan Greene, Carl Hauser, Barry Hayes, */
619 /* Christian Jacobi, and Russ Atkinson. It's not perfect, and */
620 /* probably nobody else agrees with it. Hans-J. Boehm 3/13/92 */
621 typedef void (*GC_finalization_proc) (void * obj, void * client_data);
622
623 GC_API void GC_register_finalizer(void * obj, GC_finalization_proc fn,
624 void * cd, GC_finalization_proc *ofn,
625 void * *ocd);
626 GC_API void GC_debug_register_finalizer
627 (void * obj, GC_finalization_proc fn, void * cd,
628 GC_finalization_proc *ofn, void * *ocd);
629 /* When obj is no longer accessible, invoke */
630 /* (*fn)(obj, cd). If a and b are inaccessible, and */
631 /* a points to b (after disappearing links have been */
632 /* made to disappear), then only a will be */
633 /* finalized. (If this does not create any new */
634 /* pointers to b, then b will be finalized after the */
635 /* next collection.) Any finalizable object that */
636 /* is reachable from itself by following one or more */
637 /* pointers will not be finalized (or collected). */
638 /* Thus cycles involving finalizable objects should */
639 /* be avoided, or broken by disappearing links. */
640 /* All but the last finalizer registered for an object */
641 /* is ignored. */
642 /* Finalization may be removed by passing 0 as fn. */
643 /* Finalizers are implicitly unregistered just before */
644 /* they are invoked. */
645 /* The old finalizer and client data are stored in */
646 /* *ofn and *ocd. */
647 /* Fn is never invoked on an accessible object, */
648 /* provided hidden pointers are converted to real */
649 /* pointers only if the allocation lock is held, and */
650 /* such conversions are not performed by finalization */
651 /* routines. */
652 /* If GC_register_finalizer is aborted as a result of */
653 /* a signal, the object may be left with no */
654 /* finalization, even if neither the old nor new */
655 /* finalizer were NULL. */
656 /* Obj should be the nonNULL starting address of an */
657 /* object allocated by GC_malloc or friends. */
658 /* Note that any garbage collectable object referenced */
659 /* by cd will be considered accessible until the */
660 /* finalizer is invoked. */
661
662 /* Another versions of the above follow. It ignores */
663 /* self-cycles, i.e. pointers from a finalizable object to */
664 /* itself. There is a stylistic argument that this is wrong, */
665 /* but it's unavoidable for C++, since the compiler may */
666 /* silently introduce these. It's also benign in that specific */
667 /* case. And it helps if finalizable objects are split to */
668 /* avoid cycles. */
669 /* Note that cd will still be viewed as accessible, even if it */
670 /* refers to the object itself. */
671 GC_API void GC_register_finalizer_ignore_self
672 (void * obj, GC_finalization_proc fn, void * cd,
673 GC_finalization_proc *ofn, void * *ocd);
674 GC_API void GC_debug_register_finalizer_ignore_self
675 (void * obj, GC_finalization_proc fn, void * cd,
676 GC_finalization_proc *ofn, void * *ocd);
677
678 /* Another version of the above. It ignores all cycles. */
679 /* It should probably only be used by Java implementations. */
680 /* Note that cd will still be viewed as accessible, even if it */
681 /* refers to the object itself. */
682 GC_API void GC_register_finalizer_no_order
683 (void * obj, GC_finalization_proc fn, void * cd,
684 GC_finalization_proc *ofn, void * *ocd);
685 GC_API void GC_debug_register_finalizer_no_order
686 (void * obj, GC_finalization_proc fn, void * cd,
687 GC_finalization_proc *ofn, void * *ocd);
688
689 /* This is a special finalizer that is useful when an object's */
690 /* finalizer must be run when the object is known to be no */
691 /* longer reachable, not even from other finalizable objects. */
692 /* It behaves like "normal" finalization, except that the */
693 /* finalizer is not run while the object is reachable from */
694 /* other objects specifying unordered finalization. */
695 /* Effectively it allows an object referenced, possibly */
696 /* indirectly, from an unordered finalizable object to override */
697 /* the unordered finalization request. */
698 /* This can be used in combination with finalizer_no_order so */
699 /* as to release resources that must not be released while an */
700 /* object can still be brought back to life by other */
701 /* finalizers. */
702 /* Only works if GC_java_finalization is set. Probably only */
703 /* of interest when implementing a language that requires */
704 /* unordered finalization (e.g. Java, C#). */
705 GC_API void GC_register_finalizer_unreachable
706 (void * obj, GC_finalization_proc fn, void * cd,
707 GC_finalization_proc *ofn, void * *ocd);
708 GC_API void GC_debug_register_finalizer_unreachable
709 (void * obj, GC_finalization_proc fn, void * cd,
710 GC_finalization_proc *ofn, void * *ocd);
711
712 /* The following routine may be used to break cycles between */
713 /* finalizable objects, thus causing cyclic finalizable */
714 /* objects to be finalized in the correct order. Standard */
715 /* use involves calling GC_register_disappearing_link(&p), */
716 /* where p is a pointer that is not followed by finalization */
717 /* code, and should not be considered in determining */
718 /* finalization order. */
719 GC_API int GC_register_disappearing_link(void * * link );
720 /* Link should point to a field of a heap allocated */
721 /* object obj. *link will be cleared when obj is */
722 /* found to be inaccessible. This happens BEFORE any */
723 /* finalization code is invoked, and BEFORE any */
724 /* decisions about finalization order are made. */
725 /* This is useful in telling the finalizer that */
726 /* some pointers are not essential for proper */
727 /* finalization. This may avoid finalization cycles. */
728 /* Note that obj may be resurrected by another */
729 /* finalizer, and thus the clearing of *link may */
730 /* be visible to non-finalization code. */
731 /* There's an argument that an arbitrary action should */
732 /* be allowed here, instead of just clearing a pointer. */
733 /* But this causes problems if that action alters, or */
734 /* examines connectivity. */
735 /* Returns 1 if link was already registered, 0 */
736 /* otherwise. */
737 /* Only exists for backward compatibility. See below: */
738
739 GC_API int GC_general_register_disappearing_link (void * * link, void * obj);
740 /* A slight generalization of the above. *link is */
741 /* cleared when obj first becomes inaccessible. This */
742 /* can be used to implement weak pointers easily and */
743 /* safely. Typically link will point to a location */
744 /* holding a disguised pointer to obj. (A pointer */
745 /* inside an "atomic" object is effectively */
746 /* disguised.) In this way soft */
747 /* pointers are broken before any object */
748 /* reachable from them are finalized. Each link */
749 /* May be registered only once, i.e. with one obj */
750 /* value. This was added after a long email discussion */
751 /* with John Ellis. */
752 /* Obj must be a pointer to the first word of an object */
753 /* we allocated. It is unsafe to explicitly deallocate */
754 /* the object containing link. Explicitly deallocating */
755 /* obj may or may not cause link to eventually be */
756 /* cleared. */
757 /* This can be used to implement certain types of */
758 /* weak pointers. Note however that this generally */
759 /* requires that thje allocation lock is held (see */
760 /* GC_call_with_allock_lock() below) when the disguised */
761 /* pointer is accessed. Otherwise a strong pointer */
762 /* could be recreated between the time the collector */
763 /* decides to reclaim the object and the link is */
764 /* cleared. */
765
766 GC_API int GC_unregister_disappearing_link (void * * link);
767 /* Returns 0 if link was not actually registered. */
768 /* Undoes a registration by either of the above two */
769 /* routines. */
770
771 /* Returns !=0 if GC_invoke_finalizers has something to do. */
772 GC_API int GC_should_invoke_finalizers(void);
773
774 GC_API int GC_invoke_finalizers(void);
775 /* Run finalizers for all objects that are ready to */
776 /* be finalized. Return the number of finalizers */
777 /* that were run. Normally this is also called */
778 /* implicitly during some allocations. If */
779 /* GC-finalize_on_demand is nonzero, it must be called */
780 /* explicitly. */
781
782 /* Explicitly tell the collector that an object is reachable */
783 /* at a particular program point. This prevents the argument */
784 /* pointer from being optimized away, even it is otherwise no */
785 /* longer needed. It should have no visible effect in the */
786 /* absence of finalizers or disappearing links. But it may be */
787 /* needed to prevent finalizers from running while the */
788 /* associated external resource is still in use. */
789 /* The function is sometimes called keep_alive in other */
790 /* settings. */
791 # if defined(__GNUC__) && !defined(__INTEL_COMPILER)
792 # define GC_reachable_here(ptr) \
793 __asm__ volatile(" " : : "X"(ptr) : "memory");
794 # else
795 GC_API void GC_noop1(GC_word x);
796 # define GC_reachable_here(ptr) GC_noop1((GC_word)(ptr));
797 #endif
798
799 /* GC_set_warn_proc can be used to redirect or filter warning messages. */
800 /* p may not be a NULL pointer. */
801 typedef void (*GC_warn_proc) (char *msg, GC_word arg);
802 GC_API GC_warn_proc GC_set_warn_proc(GC_warn_proc p);
803 /* Returns old warning procedure. */
804
805 GC_API GC_word GC_set_free_space_divisor(GC_word value);
806 /* Set free_space_divisor. See above for definition. */
807 /* Returns old value. */
808
809 /* The following is intended to be used by a higher level */
810 /* (e.g. Java-like) finalization facility. It is expected */
811 /* that finalization code will arrange for hidden pointers to */
812 /* disappear. Otherwise objects can be accessed after they */
813 /* have been collected. */
814 /* Note that putting pointers in atomic objects or in */
815 /* nonpointer slots of "typed" objects is equivalent to */
816 /* disguising them in this way, and may have other advantages. */
817 # if defined(I_HIDE_POINTERS) || defined(GC_I_HIDE_POINTERS)
818 typedef GC_word GC_hidden_pointer;
819 # define HIDE_POINTER(p) (~(GC_hidden_pointer)(p))
820 # define REVEAL_POINTER(p) ((void *)(HIDE_POINTER(p)))
821 /* Converting a hidden pointer to a real pointer requires verifying */
822 /* that the object still exists. This involves acquiring the */
823 /* allocator lock to avoid a race with the collector. */
824 # endif /* I_HIDE_POINTERS */
825
826 typedef void * (*GC_fn_type) (void * client_data);
827 GC_API void * GC_call_with_alloc_lock (GC_fn_type fn, void * client_data);
828
829 /* These routines are intended to explicitly notify the collector */
830 /* of new threads. Often this is unnecessary because thread creation */
831 /* is implicitly intercepted by the collector, using header-file */
832 /* defines, or linker-based interception. In the long run the intent */
833 /* is to always make redundant registration safe. In the short run, */
834 /* this is being implemented a platform at a time. */
835 /* The interface is complicated by the fact that we probably will not */
836 /* ever be able to automatically determine the stack base for thread */
837 /* stacks on all platforms. */
838
839 /* Structure representing the base of a thread stack. On most */
840 /* platforms this contains just a single address. */
841 struct GC_stack_base {
842 void * mem_base; /* Base of memory stack. */
843 # if defined(__ia64) || defined(__ia64__)
844 void * reg_base; /* Base of separate register stack. */
845 # endif
846 };
847
848 typedef void * (*GC_stack_base_func)(struct GC_stack_base *sb, void *arg);
849
850 /* Call a function with a stack base structure corresponding to */
851 /* somewhere in the GC_call_with_stack_base frame. This often can */
852 /* be used to provide a sufficiently accurate stack base. And we */
853 /* implement it everywhere. */
854 void * GC_call_with_stack_base(GC_stack_base_func fn, void *arg);
855
856 /* Register the current thread, with the indicated stack base, as */
857 /* a new thread whose stack(s) should be traced by the GC. If a */
858 /* platform does not implicitly do so, this must be called before a */
859 /* thread can allocate garbage collected memory, or assign pointers */
860 /* to the garbage collected heap. Once registered, a thread will be */
861 /* stopped during garbage collections. */
862 /* Return codes: */
863 #define GC_SUCCESS 0
864 #define GC_DUPLICATE 1 /* Was already registered. */
865 #define GC_NO_THREADS 2 /* No thread support in GC. */
866 #define GC_UNIMPLEMENTED 3 /* Not yet implemented on this platform. */
867 int GC_register_my_thread(struct GC_stack_base *);
868
869 /* Unregister the current thread. The thread may no longer allocate */
870 /* garbage collected memory or manipulate pointers to the */
871 /* garbage collected heap after making this call. */
872 /* Specifically, if it wants to return or otherwise communicate a */
873 /* pointer to the garbage-collected heap to another thread, it must */
874 /* do this before calling GC_unregister_my_thread, most probably */
875 /* by saving it in a global data structure. */
876 int GC_unregister_my_thread(void);
877
878 /* Attempt to fill in the GC_stack_base structure with the stack base */
879 /* for this thread. This appears to be required to implement anything */
880 /* like the JNI AttachCurrentThread in an environment in which new */
881 /* threads are not automatically registered with the collector. */
882 /* It is also unfortunately hard to implement well on many platforms. */
883 /* Returns GC_SUCCESS or GC_UNIMPLEMENTED. */
884 int GC_get_stack_base(struct GC_stack_base *);
885
886 /* The following routines are primarily intended for use with a */
887 /* preprocessor which inserts calls to check C pointer arithmetic. */
888 /* They indicate failure by invoking the corresponding _print_proc. */
889
890 /* Check that p and q point to the same object. */
891 /* Fail conspicuously if they don't. */
892 /* Returns the first argument. */
893 /* Succeeds if neither p nor q points to the heap. */
894 /* May succeed if both p and q point to between heap objects. */
895 GC_API void * GC_same_obj (void * p, void * q);
896
897 /* Checked pointer pre- and post- increment operations. Note that */
898 /* the second argument is in units of bytes, not multiples of the */
899 /* object size. This should either be invoked from a macro, or the */
900 /* call should be automatically generated. */
901 GC_API void * GC_pre_incr (void * *p, size_t how_much);
902 GC_API void * GC_post_incr (void * *p, size_t how_much);
903
904 /* Check that p is visible */
905 /* to the collector as a possibly pointer containing location. */
906 /* If it isn't fail conspicuously. */
907 /* Returns the argument in all cases. May erroneously succeed */
908 /* in hard cases. (This is intended for debugging use with */
909 /* untyped allocations. The idea is that it should be possible, though */
910 /* slow, to add such a call to all indirect pointer stores.) */
911 /* Currently useless for multithreaded worlds. */
912 GC_API void * GC_is_visible (void * p);
913
914 /* Check that if p is a pointer to a heap page, then it points to */
915 /* a valid displacement within a heap object. */
916 /* Fail conspicuously if this property does not hold. */
917 /* Uninteresting with GC_all_interior_pointers. */
918 /* Always returns its argument. */
919 GC_API void * GC_is_valid_displacement (void * p);
920
921 /* Explicitly dump the GC state. This is most often called from the */
922 /* debugger, or by setting the GC_DUMP_REGULARLY environment variable, */
923 /* but it may be useful to call it from client code during debugging. */
924 void GC_dump(void);
925
926 /* Safer, but slow, pointer addition. Probably useful mainly with */
927 /* a preprocessor. Useful only for heap pointers. */
928 #ifdef GC_DEBUG
929 # define GC_PTR_ADD3(x, n, type_of_result) \
930 ((type_of_result)GC_same_obj((x)+(n), (x)))
931 # define GC_PRE_INCR3(x, n, type_of_result) \
932 ((type_of_result)GC_pre_incr(&(x), (n)*sizeof(*x))
933 # define GC_POST_INCR2(x, type_of_result) \
934 ((type_of_result)GC_post_incr(&(x), sizeof(*x))
935 # ifdef __GNUC__
936 # define GC_PTR_ADD(x, n) \
937 GC_PTR_ADD3(x, n, typeof(x))
938 # define GC_PRE_INCR(x, n) \
939 GC_PRE_INCR3(x, n, typeof(x))
940 # define GC_POST_INCR(x, n) \
941 GC_POST_INCR3(x, typeof(x))
942 # else
943 /* We can't do this right without typeof, which ANSI */
944 /* decided was not sufficiently useful. Repeatedly */
945 /* mentioning the arguments seems too dangerous to be */
946 /* useful. So does not casting the result. */
947 # define GC_PTR_ADD(x, n) ((x)+(n))
948 # endif
949 #else /* !GC_DEBUG */
950 # define GC_PTR_ADD3(x, n, type_of_result) ((x)+(n))
951 # define GC_PTR_ADD(x, n) ((x)+(n))
952 # define GC_PRE_INCR3(x, n, type_of_result) ((x) += (n))
953 # define GC_PRE_INCR(x, n) ((x) += (n))
954 # define GC_POST_INCR2(x, n, type_of_result) ((x)++)
955 # define GC_POST_INCR(x, n) ((x)++)
956 #endif
957
958 /* Safer assignment of a pointer to a nonstack location. */
959 #ifdef GC_DEBUG
960 # define GC_PTR_STORE(p, q) \
961 (*(void **)GC_is_visible(p) = GC_is_valid_displacement(q))
962 #else /* !GC_DEBUG */
963 # define GC_PTR_STORE(p, q) *((p) = (q))
964 #endif
965
966 /* Functions called to report pointer checking errors */
967 GC_API void (*GC_same_obj_print_proc) (void * p, void * q);
968
969 GC_API void (*GC_is_valid_displacement_print_proc) (void * p);
970
971 GC_API void (*GC_is_visible_print_proc) (void * p);
972
973
974 /* For pthread support, we generally need to intercept a number of */
975 /* thread library calls. We do that here by macro defining them. */
976
977 #if !defined(GC_USE_LD_WRAP) && \
978 (defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS))
979 # include "gc_pthread_redirects.h"
980 #endif
981
982 # if defined(PCR) || defined(GC_SOLARIS_THREADS) || \
983 defined(GC_PTHREADS) || defined(GC_WIN32_THREADS)
984 /* Any flavor of threads. */
985 /* This returns a list of objects, linked through their first */
986 /* word. Its use can greatly reduce lock contention problems, since */
987 /* the allocation lock can be acquired and released many fewer times. */
988 /* It is used internally by gc_local_alloc.h, which provides a simpler */
989 /* programming interface on Linux. */
990 void * GC_malloc_many(size_t lb);
991 #define GC_NEXT(p) (*(void * *)(p)) /* Retrieve the next element */
992 /* in returned list. */
993 extern void GC_thr_init(void); /* Needed for Solaris/X86 ?? */
994
995 #endif /* THREADS */
996
997 /* Register a callback to control the scanning of dynamic libraries.
998 When the GC scans the static data of a dynamic library, it will
999 first call a user-supplied routine with filename of the library and
1000 the address and length of the memory region. This routine should
1001 return nonzero if that region should be scanned. */
1002 GC_API void
1003 GC_register_has_static_roots_callback
1004 (int (*callback)(const char *, void *, size_t));
1005
1006
1007 #if defined(GC_WIN32_THREADS) && !defined(__CYGWIN32__) \
1008 && !defined(__CYGWIN__) \
1009 && !defined(GC_PTHREADS)
1010
1011 #ifdef __cplusplus
1012 } /* Including windows.h in an extern "C" context no longer works. */
1013 #endif
1014
1015 # include <windows.h>
1016
1017 #ifdef __cplusplus
1018 extern "C" {
1019 #endif
1020 /*
1021 * All threads must be created using GC_CreateThread or GC_beginthreadex,
1022 * or must explicitly call GC_register_my_thread,
1023 * so that they will be recorded in the thread table.
1024 * For backwards compatibility, it is possible to build the GC
1025 * with GC_DLL defined, and to call GC_use_DllMain().
1026 * This implicitly registers all created threads, but appears to be
1027 * less robust.
1028 *
1029 * Currently the collector expects all threads to fall through and
1030 * terminate normally, or call GC_endthreadex() or GC_ExitThread,
1031 * so that the thread is properly unregistered. (An explicit call
1032 * to GC_unregister_my_thread() should also work, but risks unregistering
1033 * the thread twice.)
1034 */
1035 GC_API HANDLE WINAPI GC_CreateThread(
1036 LPSECURITY_ATTRIBUTES lpThreadAttributes,
1037 DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
1038 LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId );
1039
1040
1041 GC_API uintptr_t GC_beginthreadex(
1042 void *security, unsigned stack_size,
1043 unsigned ( __stdcall *start_address )( void * ),
1044 void *arglist, unsigned initflag, unsigned *thrdaddr);
1045
1046 GC_API void GC_endthreadex(unsigned retval);
1047
1048 GC_API void WINAPI GC_ExitThread(DWORD dwExitCode);
1049
1050 # if defined(_WIN32_WCE)
1051 /*
1052 * win32_threads.c implements the real WinMain, which will start a new thread
1053 * to call GC_WinMain after initializing the garbage collector.
1054 */
1055 GC_API int WINAPI GC_WinMain(
1056 HINSTANCE hInstance,
1057 HINSTANCE hPrevInstance,
1058 LPWSTR lpCmdLine,
1059 int nCmdShow );
1060 # ifndef GC_BUILD
1061 # define WinMain GC_WinMain
1062 # endif
1063 # endif /* defined(_WIN32_WCE) */
1064
1065 /*
1066 * Use implicit thread registration via DllMain.
1067 */
1068 GC_API void GC_use_DllMain(void);
1069
1070 # define CreateThread GC_CreateThread
1071 # define ExitThread GC_ExitThread
1072 # define _beginthreadex GC_beginthreadex
1073 # define _endthreadex GC_endthreadex
1074 # define _beginthread { > "Please use _beginthreadex instead of _beginthread" < }
1075
1076 #endif /* defined(GC_WIN32_THREADS) && !cygwin */
1077
1078 /*
1079 * Fully portable code should call GC_INIT() from the main program
1080 * before making any other GC_ calls. On most platforms this is a
1081 * no-op and the collector self-initializes. But a number of platforms
1082 * make that too hard.
1083 * A GC_INIT call is required if the collector is built with THREAD_LOCAL_ALLOC
1084 * defined and the initial allocation call is not to GC_malloc().
1085 */
1086 #if defined(__CYGWIN32__) || defined (_AIX)
1087 /*
1088 * Similarly gnu-win32 DLLs need explicit initialization from
1089 * the main program, as does AIX.
1090 */
1091 # ifdef __CYGWIN32__
1092 extern int _data_start__[];
1093 extern int _data_end__[];
1094 extern int _bss_start__[];
1095 extern int _bss_end__[];
1096 # define GC_MAX(x,y) ((x) > (y) ? (x) : (y))
1097 # define GC_MIN(x,y) ((x) < (y) ? (x) : (y))
1098 # define GC_DATASTART ((void *) GC_MIN(_data_start__, _bss_start__))
1099 # define GC_DATAEND ((void *) GC_MAX(_data_end__, _bss_end__))
1100 # if defined(GC_DLL)
1101 # define GC_INIT() { GC_add_roots(GC_DATASTART, GC_DATAEND); \
1102 GC_gcollect(); /* For blacklisting. */}
1103 # else
1104 /* Main program init not required */
1105 # define GC_INIT() { GC_init(); }
1106 # endif
1107 # endif
1108 # if defined(_AIX)
1109 extern int _data[], _end[];
1110 # define GC_DATASTART ((void *)((ulong)_data))
1111 # define GC_DATAEND ((void *)((ulong)_end))
1112 # define GC_INIT() { GC_add_roots(GC_DATASTART, GC_DATAEND); }
1113 # endif
1114 #else
1115 # define GC_INIT() { GC_init(); }
1116 #endif
1117
1118 #if !defined(_WIN32_WCE) \
1119 && ((defined(_MSDOS) || defined(_MSC_VER)) && (_M_IX86 >= 300) \
1120 || defined(_WIN32) && !defined(__CYGWIN32__) && !defined(__CYGWIN__))
1121 /* win32S may not free all resources on process exit. */
1122 /* This explicitly deallocates the heap. */
1123 GC_API void GC_win32_free_heap ();
1124 #endif
1125
1126 #if ( defined(_AMIGA) && !defined(GC_AMIGA_MAKINGLIB) )
1127 /* Allocation really goes through GC_amiga_allocwrapper_do */
1128 # include "gc_amiga_redirects.h"
1129 #endif
1130
1131 #if defined(GC_REDIRECT_TO_LOCAL) && !defined(GC_LOCAL_ALLOC_H)
1132 # include "gc_local_alloc.h"
1133 #endif
1134
1135 #ifdef __cplusplus
1136 } /* end of extern "C" */
1137 #endif
1138
1139 #endif /* _GC_H */