]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/app/test/test_memcpy_perf.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / app / test / test_memcpy_perf.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <string.h>
37 #include <stdlib.h>
38
39 #include <rte_common.h>
40 #include <rte_cycles.h>
41 #include <rte_random.h>
42 #include <rte_malloc.h>
43
44 #include <rte_memcpy.h>
45
46 #include "test.h"
47
48 /*
49 * Set this to the maximum buffer size you want to test. If it is 0, then the
50 * values in the buf_sizes[] array below will be used.
51 */
52 #define TEST_VALUE_RANGE 0
53
54 /* List of buffer sizes to test */
55 #if TEST_VALUE_RANGE == 0
56 static size_t buf_sizes[] = {
57 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128,
58 129, 191, 192, 193, 255, 256, 257, 319, 320, 321, 383, 384, 385, 447, 448,
59 449, 511, 512, 513, 767, 768, 769, 1023, 1024, 1025, 1518, 1522, 1536, 1600,
60 2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192
61 };
62 /* MUST be as large as largest packet size above */
63 #define SMALL_BUFFER_SIZE 8192
64 #else /* TEST_VALUE_RANGE != 0 */
65 static size_t buf_sizes[TEST_VALUE_RANGE];
66 #define SMALL_BUFFER_SIZE TEST_VALUE_RANGE
67 #endif /* TEST_VALUE_RANGE == 0 */
68
69
70 /*
71 * Arrays of this size are used for measuring uncached memory accesses by
72 * picking a random location within the buffer. Make this smaller if there are
73 * memory allocation errors.
74 */
75 #define LARGE_BUFFER_SIZE (100 * 1024 * 1024)
76
77 /* How many times to run timing loop for performance tests */
78 #define TEST_ITERATIONS 1000000
79 #define TEST_BATCH_SIZE 100
80
81 /* Data is aligned on this many bytes (power of 2) */
82 #ifdef RTE_MACHINE_CPUFLAG_AVX512F
83 #define ALIGNMENT_UNIT 64
84 #elif defined RTE_MACHINE_CPUFLAG_AVX2
85 #define ALIGNMENT_UNIT 32
86 #else /* RTE_MACHINE_CPUFLAG */
87 #define ALIGNMENT_UNIT 16
88 #endif /* RTE_MACHINE_CPUFLAG */
89
90 /*
91 * Pointers used in performance tests. The two large buffers are for uncached
92 * access where random addresses within the buffer are used for each
93 * memcpy. The two small buffers are for cached access.
94 */
95 static uint8_t *large_buf_read, *large_buf_write;
96 static uint8_t *small_buf_read, *small_buf_write;
97
98 /* Initialise data buffers. */
99 static int
100 init_buffers(void)
101 {
102 unsigned i;
103
104 large_buf_read = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
105 if (large_buf_read == NULL)
106 goto error_large_buf_read;
107
108 large_buf_write = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
109 if (large_buf_write == NULL)
110 goto error_large_buf_write;
111
112 small_buf_read = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
113 if (small_buf_read == NULL)
114 goto error_small_buf_read;
115
116 small_buf_write = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
117 if (small_buf_write == NULL)
118 goto error_small_buf_write;
119
120 for (i = 0; i < LARGE_BUFFER_SIZE; i++)
121 large_buf_read[i] = rte_rand();
122 for (i = 0; i < SMALL_BUFFER_SIZE; i++)
123 small_buf_read[i] = rte_rand();
124
125 return 0;
126
127 error_small_buf_write:
128 rte_free(small_buf_read);
129 error_small_buf_read:
130 rte_free(large_buf_write);
131 error_large_buf_write:
132 rte_free(large_buf_read);
133 error_large_buf_read:
134 printf("ERROR: not enough memory\n");
135 return -1;
136 }
137
138 /* Cleanup data buffers */
139 static void
140 free_buffers(void)
141 {
142 rte_free(large_buf_read);
143 rte_free(large_buf_write);
144 rte_free(small_buf_read);
145 rte_free(small_buf_write);
146 }
147
148 /*
149 * Get a random offset into large array, with enough space needed to perform
150 * max copy size. Offset is aligned, uoffset is used for unalignment setting.
151 */
152 static inline size_t
153 get_rand_offset(size_t uoffset)
154 {
155 return ((rte_rand() % (LARGE_BUFFER_SIZE - SMALL_BUFFER_SIZE)) &
156 ~(ALIGNMENT_UNIT - 1)) + uoffset;
157 }
158
159 /* Fill in source and destination addresses. */
160 static inline void
161 fill_addr_arrays(size_t *dst_addr, int is_dst_cached, size_t dst_uoffset,
162 size_t *src_addr, int is_src_cached, size_t src_uoffset)
163 {
164 unsigned int i;
165
166 for (i = 0; i < TEST_BATCH_SIZE; i++) {
167 dst_addr[i] = (is_dst_cached) ? dst_uoffset : get_rand_offset(dst_uoffset);
168 src_addr[i] = (is_src_cached) ? src_uoffset : get_rand_offset(src_uoffset);
169 }
170 }
171
172 /*
173 * WORKAROUND: For some reason the first test doing an uncached write
174 * takes a very long time (~25 times longer than is expected). So we do
175 * it once without timing.
176 */
177 static void
178 do_uncached_write(uint8_t *dst, int is_dst_cached,
179 const uint8_t *src, int is_src_cached, size_t size)
180 {
181 unsigned i, j;
182 size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE];
183
184 for (i = 0; i < (TEST_ITERATIONS / TEST_BATCH_SIZE); i++) {
185 fill_addr_arrays(dst_addrs, is_dst_cached, 0,
186 src_addrs, is_src_cached, 0);
187 for (j = 0; j < TEST_BATCH_SIZE; j++) {
188 rte_memcpy(dst+dst_addrs[j], src+src_addrs[j], size);
189 }
190 }
191 }
192
193 /*
194 * Run a single memcpy performance test. This is a macro to ensure that if
195 * the "size" parameter is a constant it won't be converted to a variable.
196 */
197 #define SINGLE_PERF_TEST(dst, is_dst_cached, dst_uoffset, \
198 src, is_src_cached, src_uoffset, size) \
199 do { \
200 unsigned int iter, t; \
201 size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE]; \
202 uint64_t start_time, total_time = 0; \
203 uint64_t total_time2 = 0; \
204 for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
205 fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
206 src_addrs, is_src_cached, src_uoffset); \
207 start_time = rte_rdtsc(); \
208 for (t = 0; t < TEST_BATCH_SIZE; t++) \
209 rte_memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
210 total_time += rte_rdtsc() - start_time; \
211 } \
212 for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
213 fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
214 src_addrs, is_src_cached, src_uoffset); \
215 start_time = rte_rdtsc(); \
216 for (t = 0; t < TEST_BATCH_SIZE; t++) \
217 memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
218 total_time2 += rte_rdtsc() - start_time; \
219 } \
220 printf("%8.0f -", (double)total_time /TEST_ITERATIONS); \
221 printf("%5.0f", (double)total_time2 / TEST_ITERATIONS); \
222 } while (0)
223
224 /* Run aligned memcpy tests for each cached/uncached permutation */
225 #define ALL_PERF_TESTS_FOR_SIZE(n) \
226 do { \
227 if (__builtin_constant_p(n)) \
228 printf("\nC%6u", (unsigned)n); \
229 else \
230 printf("\n%7u", (unsigned)n); \
231 SINGLE_PERF_TEST(small_buf_write, 1, 0, small_buf_read, 1, 0, n); \
232 SINGLE_PERF_TEST(large_buf_write, 0, 0, small_buf_read, 1, 0, n); \
233 SINGLE_PERF_TEST(small_buf_write, 1, 0, large_buf_read, 0, 0, n); \
234 SINGLE_PERF_TEST(large_buf_write, 0, 0, large_buf_read, 0, 0, n); \
235 } while (0)
236
237 /* Run unaligned memcpy tests for each cached/uncached permutation */
238 #define ALL_PERF_TESTS_FOR_SIZE_UNALIGNED(n) \
239 do { \
240 if (__builtin_constant_p(n)) \
241 printf("\nC%6u", (unsigned)n); \
242 else \
243 printf("\n%7u", (unsigned)n); \
244 SINGLE_PERF_TEST(small_buf_write, 1, 1, small_buf_read, 1, 5, n); \
245 SINGLE_PERF_TEST(large_buf_write, 0, 1, small_buf_read, 1, 5, n); \
246 SINGLE_PERF_TEST(small_buf_write, 1, 1, large_buf_read, 0, 5, n); \
247 SINGLE_PERF_TEST(large_buf_write, 0, 1, large_buf_read, 0, 5, n); \
248 } while (0)
249
250 /* Run memcpy tests for constant length */
251 #define ALL_PERF_TEST_FOR_CONSTANT \
252 do { \
253 TEST_CONSTANT(6U); TEST_CONSTANT(64U); TEST_CONSTANT(128U); \
254 TEST_CONSTANT(192U); TEST_CONSTANT(256U); TEST_CONSTANT(512U); \
255 TEST_CONSTANT(768U); TEST_CONSTANT(1024U); TEST_CONSTANT(1536U); \
256 } while (0)
257
258 /* Run all memcpy tests for aligned constant cases */
259 static inline void
260 perf_test_constant_aligned(void)
261 {
262 #define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE
263 ALL_PERF_TEST_FOR_CONSTANT;
264 #undef TEST_CONSTANT
265 }
266
267 /* Run all memcpy tests for unaligned constant cases */
268 static inline void
269 perf_test_constant_unaligned(void)
270 {
271 #define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE_UNALIGNED
272 ALL_PERF_TEST_FOR_CONSTANT;
273 #undef TEST_CONSTANT
274 }
275
276 /* Run all memcpy tests for aligned variable cases */
277 static inline void
278 perf_test_variable_aligned(void)
279 {
280 unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
281 unsigned i;
282 for (i = 0; i < n; i++) {
283 ALL_PERF_TESTS_FOR_SIZE((size_t)buf_sizes[i]);
284 }
285 }
286
287 /* Run all memcpy tests for unaligned variable cases */
288 static inline void
289 perf_test_variable_unaligned(void)
290 {
291 unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
292 unsigned i;
293 for (i = 0; i < n; i++) {
294 ALL_PERF_TESTS_FOR_SIZE_UNALIGNED((size_t)buf_sizes[i]);
295 }
296 }
297
298 /* Run all memcpy tests */
299 static int
300 perf_test(void)
301 {
302 int ret;
303
304 ret = init_buffers();
305 if (ret != 0)
306 return ret;
307
308 #if TEST_VALUE_RANGE != 0
309 /* Set up buf_sizes array, if required */
310 unsigned i;
311 for (i = 0; i < TEST_VALUE_RANGE; i++)
312 buf_sizes[i] = i;
313 #endif
314
315 /* See function comment */
316 do_uncached_write(large_buf_write, 0, small_buf_read, 1, SMALL_BUFFER_SIZE);
317
318 printf("\n** rte_memcpy() - memcpy perf. tests (C = compile-time constant) **\n"
319 "======= ============== ============== ============== ==============\n"
320 " Size Cache to cache Cache to mem Mem to cache Mem to mem\n"
321 "(bytes) (ticks) (ticks) (ticks) (ticks)\n"
322 "------- -------------- -------------- -------------- --------------");
323
324 printf("\n========================== %2dB aligned ============================", ALIGNMENT_UNIT);
325 /* Do aligned tests where size is a variable */
326 perf_test_variable_aligned();
327 printf("\n------- -------------- -------------- -------------- --------------");
328 /* Do aligned tests where size is a compile-time constant */
329 perf_test_constant_aligned();
330 printf("\n=========================== Unaligned =============================");
331 /* Do unaligned tests where size is a variable */
332 perf_test_variable_unaligned();
333 printf("\n------- -------------- -------------- -------------- --------------");
334 /* Do unaligned tests where size is a compile-time constant */
335 perf_test_constant_unaligned();
336 printf("\n======= ============== ============== ============== ==============\n\n");
337
338 free_buffers();
339
340 return 0;
341 }
342
343 static int
344 test_memcpy_perf(void)
345 {
346 int ret;
347
348 ret = perf_test();
349 if (ret != 0)
350 return -1;
351 return 0;
352 }
353
354 REGISTER_TEST_COMMAND(memcpy_perf_autotest, test_memcpy_perf);