]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/app/test-pmd/csumonly.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / app / test-pmd / csumonly.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * Copyright 2014 6WIND S.A.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <stdarg.h>
36 #include <stdio.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <unistd.h>
40 #include <inttypes.h>
41
42 #include <sys/queue.h>
43 #include <sys/stat.h>
44
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
47 #include <rte_log.h>
48 #include <rte_debug.h>
49 #include <rte_cycles.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_launch.h>
54 #include <rte_eal.h>
55 #include <rte_per_lcore.h>
56 #include <rte_lcore.h>
57 #include <rte_atomic.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_memory.h>
60 #include <rte_mempool.h>
61 #include <rte_mbuf.h>
62 #include <rte_memcpy.h>
63 #include <rte_interrupts.h>
64 #include <rte_pci.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
67 #include <rte_ip.h>
68 #include <rte_tcp.h>
69 #include <rte_udp.h>
70 #include <rte_sctp.h>
71 #include <rte_prefetch.h>
72 #include <rte_string_fns.h>
73 #include "testpmd.h"
74
75 #define IP_DEFTTL 64 /* from RFC 1340. */
76 #define IP_VERSION 0x40
77 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
78 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
79
80 #define GRE_KEY_PRESENT 0x2000
81 #define GRE_KEY_LEN 4
82 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT
83
84 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
85 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
86 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
87 #else
88 #define _htons(x) (x)
89 #endif
90
91 /* structure that caches offload info for the current packet */
92 struct testpmd_offload_info {
93 uint16_t ethertype;
94 uint16_t l2_len;
95 uint16_t l3_len;
96 uint16_t l4_len;
97 uint8_t l4_proto;
98 uint8_t is_tunnel;
99 uint16_t outer_ethertype;
100 uint16_t outer_l2_len;
101 uint16_t outer_l3_len;
102 uint8_t outer_l4_proto;
103 uint16_t tso_segsz;
104 uint16_t tunnel_tso_segsz;
105 uint32_t pkt_len;
106 };
107
108 /* simplified GRE header */
109 struct simple_gre_hdr {
110 uint16_t flags;
111 uint16_t proto;
112 } __attribute__((__packed__));
113
114 static uint16_t
115 get_psd_sum(void *l3_hdr, uint16_t ethertype, uint64_t ol_flags)
116 {
117 if (ethertype == _htons(ETHER_TYPE_IPv4))
118 return rte_ipv4_phdr_cksum(l3_hdr, ol_flags);
119 else /* assume ethertype == ETHER_TYPE_IPv6 */
120 return rte_ipv6_phdr_cksum(l3_hdr, ol_flags);
121 }
122
123 static uint16_t
124 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
125 {
126 if (ethertype == _htons(ETHER_TYPE_IPv4))
127 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
128 else /* assume ethertype == ETHER_TYPE_IPv6 */
129 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
130 }
131
132 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
133 static void
134 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
135 {
136 struct tcp_hdr *tcp_hdr;
137
138 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
139 info->l4_proto = ipv4_hdr->next_proto_id;
140
141 /* only fill l4_len for TCP, it's useful for TSO */
142 if (info->l4_proto == IPPROTO_TCP) {
143 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
144 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
145 } else
146 info->l4_len = 0;
147 }
148
149 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
150 static void
151 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
152 {
153 struct tcp_hdr *tcp_hdr;
154
155 info->l3_len = sizeof(struct ipv6_hdr);
156 info->l4_proto = ipv6_hdr->proto;
157
158 /* only fill l4_len for TCP, it's useful for TSO */
159 if (info->l4_proto == IPPROTO_TCP) {
160 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
161 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
162 } else
163 info->l4_len = 0;
164 }
165
166 /*
167 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
168 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
169 * header. The l4_len argument is only set in case of TCP (useful for TSO).
170 */
171 static void
172 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
173 {
174 struct ipv4_hdr *ipv4_hdr;
175 struct ipv6_hdr *ipv6_hdr;
176
177 info->l2_len = sizeof(struct ether_hdr);
178 info->ethertype = eth_hdr->ether_type;
179
180 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
181 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
182
183 info->l2_len += sizeof(struct vlan_hdr);
184 info->ethertype = vlan_hdr->eth_proto;
185 }
186
187 switch (info->ethertype) {
188 case _htons(ETHER_TYPE_IPv4):
189 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
190 parse_ipv4(ipv4_hdr, info);
191 break;
192 case _htons(ETHER_TYPE_IPv6):
193 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
194 parse_ipv6(ipv6_hdr, info);
195 break;
196 default:
197 info->l4_len = 0;
198 info->l3_len = 0;
199 info->l4_proto = 0;
200 break;
201 }
202 }
203
204 /* Parse a vxlan header */
205 static void
206 parse_vxlan(struct udp_hdr *udp_hdr,
207 struct testpmd_offload_info *info,
208 uint32_t pkt_type)
209 {
210 struct ether_hdr *eth_hdr;
211
212 /* check udp destination port, 4789 is the default vxlan port
213 * (rfc7348) or that the rx offload flag is set (i40e only
214 * currently) */
215 if (udp_hdr->dst_port != _htons(4789) &&
216 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
217 return;
218
219 info->is_tunnel = 1;
220 info->outer_ethertype = info->ethertype;
221 info->outer_l2_len = info->l2_len;
222 info->outer_l3_len = info->l3_len;
223 info->outer_l4_proto = info->l4_proto;
224
225 eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
226 sizeof(struct udp_hdr) +
227 sizeof(struct vxlan_hdr));
228
229 parse_ethernet(eth_hdr, info);
230 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
231 }
232
233 /* Parse a gre header */
234 static void
235 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
236 {
237 struct ether_hdr *eth_hdr;
238 struct ipv4_hdr *ipv4_hdr;
239 struct ipv6_hdr *ipv6_hdr;
240 uint8_t gre_len = 0;
241
242 /* check which fields are supported */
243 if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0)
244 return;
245
246 gre_len += sizeof(struct simple_gre_hdr);
247
248 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
249 gre_len += GRE_KEY_LEN;
250
251 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
252 info->is_tunnel = 1;
253 info->outer_ethertype = info->ethertype;
254 info->outer_l2_len = info->l2_len;
255 info->outer_l3_len = info->l3_len;
256 info->outer_l4_proto = info->l4_proto;
257
258 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
259
260 parse_ipv4(ipv4_hdr, info);
261 info->ethertype = _htons(ETHER_TYPE_IPv4);
262 info->l2_len = 0;
263
264 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
265 info->is_tunnel = 1;
266 info->outer_ethertype = info->ethertype;
267 info->outer_l2_len = info->l2_len;
268 info->outer_l3_len = info->l3_len;
269 info->outer_l4_proto = info->l4_proto;
270
271 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
272
273 info->ethertype = _htons(ETHER_TYPE_IPv6);
274 parse_ipv6(ipv6_hdr, info);
275 info->l2_len = 0;
276
277 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
278 info->is_tunnel = 1;
279 info->outer_ethertype = info->ethertype;
280 info->outer_l2_len = info->l2_len;
281 info->outer_l3_len = info->l3_len;
282 info->outer_l4_proto = info->l4_proto;
283
284 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
285
286 parse_ethernet(eth_hdr, info);
287 } else
288 return;
289
290 info->l2_len += gre_len;
291 }
292
293
294 /* Parse an encapsulated ip or ipv6 header */
295 static void
296 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
297 {
298 struct ipv4_hdr *ipv4_hdr = encap_ip;
299 struct ipv6_hdr *ipv6_hdr = encap_ip;
300 uint8_t ip_version;
301
302 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
303
304 if (ip_version != 4 && ip_version != 6)
305 return;
306
307 info->is_tunnel = 1;
308 info->outer_ethertype = info->ethertype;
309 info->outer_l2_len = info->l2_len;
310 info->outer_l3_len = info->l3_len;
311
312 if (ip_version == 4) {
313 parse_ipv4(ipv4_hdr, info);
314 info->ethertype = _htons(ETHER_TYPE_IPv4);
315 } else {
316 parse_ipv6(ipv6_hdr, info);
317 info->ethertype = _htons(ETHER_TYPE_IPv6);
318 }
319 info->l2_len = 0;
320 }
321
322 /* if possible, calculate the checksum of a packet in hw or sw,
323 * depending on the testpmd command line configuration */
324 static uint64_t
325 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
326 uint16_t testpmd_ol_flags)
327 {
328 struct ipv4_hdr *ipv4_hdr = l3_hdr;
329 struct udp_hdr *udp_hdr;
330 struct tcp_hdr *tcp_hdr;
331 struct sctp_hdr *sctp_hdr;
332 uint64_t ol_flags = 0;
333 uint32_t max_pkt_len, tso_segsz = 0;
334
335 /* ensure packet is large enough to require tso */
336 if (!info->is_tunnel) {
337 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
338 info->tso_segsz;
339 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
340 tso_segsz = info->tso_segsz;
341 } else {
342 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
343 info->l2_len + info->l3_len + info->l4_len +
344 info->tunnel_tso_segsz;
345 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
346 tso_segsz = info->tunnel_tso_segsz;
347 }
348
349 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
350 ipv4_hdr = l3_hdr;
351 ipv4_hdr->hdr_checksum = 0;
352
353 ol_flags |= PKT_TX_IPV4;
354 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
355 ol_flags |= PKT_TX_IP_CKSUM;
356 } else {
357 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
358 ol_flags |= PKT_TX_IP_CKSUM;
359 else
360 ipv4_hdr->hdr_checksum =
361 rte_ipv4_cksum(ipv4_hdr);
362 }
363 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
364 ol_flags |= PKT_TX_IPV6;
365 else
366 return 0; /* packet type not supported, nothing to do */
367
368 if (info->l4_proto == IPPROTO_UDP) {
369 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
370 /* do not recalculate udp cksum if it was 0 */
371 if (udp_hdr->dgram_cksum != 0) {
372 udp_hdr->dgram_cksum = 0;
373 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) {
374 ol_flags |= PKT_TX_UDP_CKSUM;
375 udp_hdr->dgram_cksum = get_psd_sum(l3_hdr,
376 info->ethertype, ol_flags);
377 } else {
378 udp_hdr->dgram_cksum =
379 get_udptcp_checksum(l3_hdr, udp_hdr,
380 info->ethertype);
381 }
382 }
383 } else if (info->l4_proto == IPPROTO_TCP) {
384 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
385 tcp_hdr->cksum = 0;
386 if (tso_segsz) {
387 ol_flags |= PKT_TX_TCP_SEG;
388 tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype,
389 ol_flags);
390 } else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) {
391 ol_flags |= PKT_TX_TCP_CKSUM;
392 tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype,
393 ol_flags);
394 } else {
395 tcp_hdr->cksum =
396 get_udptcp_checksum(l3_hdr, tcp_hdr,
397 info->ethertype);
398 }
399 } else if (info->l4_proto == IPPROTO_SCTP) {
400 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
401 sctp_hdr->cksum = 0;
402 /* sctp payload must be a multiple of 4 to be
403 * offloaded */
404 if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) &&
405 ((ipv4_hdr->total_length & 0x3) == 0)) {
406 ol_flags |= PKT_TX_SCTP_CKSUM;
407 } else {
408 /* XXX implement CRC32c, example available in
409 * RFC3309 */
410 }
411 }
412
413 return ol_flags;
414 }
415
416 /* Calculate the checksum of outer header */
417 static uint64_t
418 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
419 uint16_t testpmd_ol_flags, int tso_enabled)
420 {
421 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
422 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
423 struct udp_hdr *udp_hdr;
424 uint64_t ol_flags = 0;
425
426 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
427 ipv4_hdr->hdr_checksum = 0;
428 ol_flags |= PKT_TX_OUTER_IPV4;
429
430 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
431 ol_flags |= PKT_TX_OUTER_IP_CKSUM;
432 else
433 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
434 } else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
435 ol_flags |= PKT_TX_OUTER_IPV6;
436
437 if (info->outer_l4_proto != IPPROTO_UDP)
438 return ol_flags;
439
440 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
441
442 /* outer UDP checksum is done in software as we have no hardware
443 * supporting it today, and no API for it. In the other side, for
444 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
445 * set to zero.
446 *
447 * If a packet will be TSOed into small packets by NIC, we cannot
448 * set/calculate a non-zero checksum, because it will be a wrong
449 * value after the packet be split into several small packets.
450 */
451 if (tso_enabled)
452 udp_hdr->dgram_cksum = 0;
453
454 /* do not recalculate udp cksum if it was 0 */
455 if (udp_hdr->dgram_cksum != 0) {
456 udp_hdr->dgram_cksum = 0;
457 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
458 udp_hdr->dgram_cksum =
459 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
460 else
461 udp_hdr->dgram_cksum =
462 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
463 }
464
465 return ol_flags;
466 }
467
468 /*
469 * Helper function.
470 * Performs actual copying.
471 * Returns number of segments in the destination mbuf on success,
472 * or negative error code on failure.
473 */
474 static int
475 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
476 uint16_t seglen[], uint8_t nb_seg)
477 {
478 uint32_t dlen, slen, tlen;
479 uint32_t i, len;
480 const struct rte_mbuf *m;
481 const uint8_t *src;
482 uint8_t *dst;
483
484 dlen = 0;
485 slen = 0;
486 tlen = 0;
487
488 dst = NULL;
489 src = NULL;
490
491 m = ms;
492 i = 0;
493 while (ms != NULL && i != nb_seg) {
494
495 if (slen == 0) {
496 slen = rte_pktmbuf_data_len(ms);
497 src = rte_pktmbuf_mtod(ms, const uint8_t *);
498 }
499
500 if (dlen == 0) {
501 dlen = RTE_MIN(seglen[i], slen);
502 md[i]->data_len = dlen;
503 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
504 dst = rte_pktmbuf_mtod(md[i], uint8_t *);
505 }
506
507 len = RTE_MIN(slen, dlen);
508 memcpy(dst, src, len);
509 tlen += len;
510 slen -= len;
511 dlen -= len;
512 src += len;
513 dst += len;
514
515 if (slen == 0)
516 ms = ms->next;
517 if (dlen == 0)
518 i++;
519 }
520
521 if (ms != NULL)
522 return -ENOBUFS;
523 else if (tlen != m->pkt_len)
524 return -EINVAL;
525
526 md[0]->nb_segs = nb_seg;
527 md[0]->pkt_len = tlen;
528 md[0]->vlan_tci = m->vlan_tci;
529 md[0]->vlan_tci_outer = m->vlan_tci_outer;
530 md[0]->ol_flags = m->ol_flags;
531 md[0]->tx_offload = m->tx_offload;
532
533 return nb_seg;
534 }
535
536 /*
537 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
538 * Copy packet contents and offload information into then new segmented mbuf.
539 */
540 static struct rte_mbuf *
541 pkt_copy_split(const struct rte_mbuf *pkt)
542 {
543 int32_t n, rc;
544 uint32_t i, len, nb_seg;
545 struct rte_mempool *mp;
546 uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
547 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
548
549 mp = current_fwd_lcore()->mbp;
550
551 if (tx_pkt_split == TX_PKT_SPLIT_RND)
552 nb_seg = random() % tx_pkt_nb_segs + 1;
553 else
554 nb_seg = tx_pkt_nb_segs;
555
556 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
557
558 /* calculate number of segments to use and their length. */
559 len = 0;
560 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
561 len += seglen[i];
562 md[i] = NULL;
563 }
564
565 n = pkt->pkt_len - len;
566
567 /* update size of the last segment to fit rest of the packet */
568 if (n >= 0) {
569 seglen[i - 1] += n;
570 len += n;
571 }
572
573 nb_seg = i;
574 while (i != 0) {
575 p = rte_pktmbuf_alloc(mp);
576 if (p == NULL) {
577 RTE_LOG(ERR, USER1,
578 "failed to allocate %u-th of %u mbuf "
579 "from mempool: %s\n",
580 nb_seg - i, nb_seg, mp->name);
581 break;
582 }
583
584 md[--i] = p;
585 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
586 RTE_LOG(ERR, USER1, "mempool %s, %u-th segment: "
587 "expected seglen: %u, "
588 "actual mbuf tailroom: %u\n",
589 mp->name, i, seglen[i],
590 rte_pktmbuf_tailroom(md[i]));
591 break;
592 }
593 }
594
595 /* all mbufs successfully allocated, do copy */
596 if (i == 0) {
597 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
598 if (rc < 0)
599 RTE_LOG(ERR, USER1,
600 "mbuf_copy_split for %p(len=%u, nb_seg=%hhu) "
601 "into %u segments failed with error code: %d\n",
602 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
603
604 /* figure out how many mbufs to free. */
605 i = RTE_MAX(rc, 0);
606 }
607
608 /* free unused mbufs */
609 for (; i != nb_seg; i++) {
610 rte_pktmbuf_free_seg(md[i]);
611 md[i] = NULL;
612 }
613
614 return md[0];
615 }
616
617 /*
618 * Receive a burst of packets, and for each packet:
619 * - parse packet, and try to recognize a supported packet type (1)
620 * - if it's not a supported packet type, don't touch the packet, else:
621 * - reprocess the checksum of all supported layers. This is done in SW
622 * or HW, depending on testpmd command line configuration
623 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
624 * segmentation offload (this implies HW TCP checksum)
625 * Then transmit packets on the output port.
626 *
627 * (1) Supported packets are:
628 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
629 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
630 * UDP|TCP|SCTP
631 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
632 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
633 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
634 *
635 * The testpmd command line for this forward engine sets the flags
636 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
637 * wether a checksum must be calculated in software or in hardware. The
638 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
639 * OUTER_IP is only useful for tunnel packets.
640 */
641 static void
642 pkt_burst_checksum_forward(struct fwd_stream *fs)
643 {
644 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
645 struct rte_port *txp;
646 struct rte_mbuf *m, *p;
647 struct ether_hdr *eth_hdr;
648 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
649 uint16_t nb_rx;
650 uint16_t nb_tx;
651 uint16_t i;
652 uint64_t rx_ol_flags, tx_ol_flags;
653 uint16_t testpmd_ol_flags;
654 uint32_t retry;
655 uint32_t rx_bad_ip_csum;
656 uint32_t rx_bad_l4_csum;
657 struct testpmd_offload_info info;
658
659 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
660 uint64_t start_tsc;
661 uint64_t end_tsc;
662 uint64_t core_cycles;
663 #endif
664
665 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
666 start_tsc = rte_rdtsc();
667 #endif
668
669 /* receive a burst of packet */
670 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
671 nb_pkt_per_burst);
672 if (unlikely(nb_rx == 0))
673 return;
674
675 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
676 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
677 #endif
678 fs->rx_packets += nb_rx;
679 rx_bad_ip_csum = 0;
680 rx_bad_l4_csum = 0;
681
682 txp = &ports[fs->tx_port];
683 testpmd_ol_flags = txp->tx_ol_flags;
684 memset(&info, 0, sizeof(info));
685 info.tso_segsz = txp->tso_segsz;
686 info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
687
688 for (i = 0; i < nb_rx; i++) {
689 if (likely(i < nb_rx - 1))
690 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
691 void *));
692
693 m = pkts_burst[i];
694 info.is_tunnel = 0;
695 info.pkt_len = rte_pktmbuf_pkt_len(m);
696 tx_ol_flags = 0;
697 rx_ol_flags = m->ol_flags;
698
699 /* Update the L3/L4 checksum error packet statistics */
700 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
701 rx_bad_ip_csum += 1;
702 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
703 rx_bad_l4_csum += 1;
704
705 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
706 * and inner headers */
707
708 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
709 ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
710 &eth_hdr->d_addr);
711 ether_addr_copy(&ports[fs->tx_port].eth_addr,
712 &eth_hdr->s_addr);
713 parse_ethernet(eth_hdr, &info);
714 l3_hdr = (char *)eth_hdr + info.l2_len;
715
716 /* check if it's a supported tunnel */
717 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) {
718 if (info.l4_proto == IPPROTO_UDP) {
719 struct udp_hdr *udp_hdr;
720
721 udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
722 info.l3_len);
723 parse_vxlan(udp_hdr, &info, m->packet_type);
724 if (info.is_tunnel)
725 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN;
726 } else if (info.l4_proto == IPPROTO_GRE) {
727 struct simple_gre_hdr *gre_hdr;
728
729 gre_hdr = (struct simple_gre_hdr *)
730 ((char *)l3_hdr + info.l3_len);
731 parse_gre(gre_hdr, &info);
732 if (info.is_tunnel)
733 tx_ol_flags |= PKT_TX_TUNNEL_GRE;
734 } else if (info.l4_proto == IPPROTO_IPIP) {
735 void *encap_ip_hdr;
736
737 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
738 parse_encap_ip(encap_ip_hdr, &info);
739 if (info.is_tunnel)
740 tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
741 }
742 }
743
744 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
745 if (info.is_tunnel) {
746 outer_l3_hdr = l3_hdr;
747 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
748 }
749
750 /* step 2: depending on user command line configuration,
751 * recompute checksum either in software or flag the
752 * mbuf to offload the calculation to the NIC. If TSO
753 * is configured, prepare the mbuf for TCP segmentation. */
754
755 /* process checksums of inner headers first */
756 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
757 testpmd_ol_flags);
758
759 /* Then process outer headers if any. Note that the software
760 * checksum will be wrong if one of the inner checksums is
761 * processed in hardware. */
762 if (info.is_tunnel == 1) {
763 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
764 testpmd_ol_flags,
765 !!(tx_ol_flags & PKT_TX_TCP_SEG));
766 }
767
768 /* step 3: fill the mbuf meta data (flags and header lengths) */
769
770 if (info.is_tunnel == 1) {
771 if (info.tunnel_tso_segsz ||
772 testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) {
773 m->outer_l2_len = info.outer_l2_len;
774 m->outer_l3_len = info.outer_l3_len;
775 m->l2_len = info.l2_len;
776 m->l3_len = info.l3_len;
777 m->l4_len = info.l4_len;
778 m->tso_segsz = info.tunnel_tso_segsz;
779 }
780 else {
781 /* if there is a outer UDP cksum
782 processed in sw and the inner in hw,
783 the outer checksum will be wrong as
784 the payload will be modified by the
785 hardware */
786 m->l2_len = info.outer_l2_len +
787 info.outer_l3_len + info.l2_len;
788 m->l3_len = info.l3_len;
789 m->l4_len = info.l4_len;
790 }
791 } else {
792 /* this is only useful if an offload flag is
793 * set, but it does not hurt to fill it in any
794 * case */
795 m->l2_len = info.l2_len;
796 m->l3_len = info.l3_len;
797 m->l4_len = info.l4_len;
798 m->tso_segsz = info.tso_segsz;
799 }
800 m->ol_flags = tx_ol_flags;
801
802 /* Do split & copy for the packet. */
803 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
804 p = pkt_copy_split(m);
805 if (p != NULL) {
806 rte_pktmbuf_free(m);
807 m = p;
808 pkts_burst[i] = m;
809 }
810 }
811
812 /* if verbose mode is enabled, dump debug info */
813 if (verbose_level > 0) {
814 char buf[256];
815
816 printf("-----------------\n");
817 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%hhu:\n",
818 fs->rx_port, m, m->pkt_len, m->nb_segs);
819 /* dump rx parsed packet info */
820 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
821 printf("rx: l2_len=%d ethertype=%x l3_len=%d "
822 "l4_proto=%d l4_len=%d flags=%s\n",
823 info.l2_len, rte_be_to_cpu_16(info.ethertype),
824 info.l3_len, info.l4_proto, info.l4_len, buf);
825 if (rx_ol_flags & PKT_RX_LRO)
826 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
827 if (info.is_tunnel == 1)
828 printf("rx: outer_l2_len=%d outer_ethertype=%x "
829 "outer_l3_len=%d\n", info.outer_l2_len,
830 rte_be_to_cpu_16(info.outer_ethertype),
831 info.outer_l3_len);
832 /* dump tx packet info */
833 if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM |
834 TESTPMD_TX_OFFLOAD_UDP_CKSUM |
835 TESTPMD_TX_OFFLOAD_TCP_CKSUM |
836 TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) ||
837 info.tso_segsz != 0)
838 printf("tx: m->l2_len=%d m->l3_len=%d "
839 "m->l4_len=%d\n",
840 m->l2_len, m->l3_len, m->l4_len);
841 if (info.is_tunnel == 1) {
842 if (testpmd_ol_flags &
843 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
844 printf("tx: m->outer_l2_len=%d "
845 "m->outer_l3_len=%d\n",
846 m->outer_l2_len,
847 m->outer_l3_len);
848 if (info.tunnel_tso_segsz != 0 &&
849 (m->ol_flags & PKT_TX_TCP_SEG))
850 printf("tx: m->tso_segsz=%d\n",
851 m->tso_segsz);
852 } else if (info.tso_segsz != 0 &&
853 (m->ol_flags & PKT_TX_TCP_SEG))
854 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
855 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
856 printf("tx: flags=%s", buf);
857 printf("\n");
858 }
859 }
860 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx);
861 /*
862 * Retry if necessary
863 */
864 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
865 retry = 0;
866 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
867 rte_delay_us(burst_tx_delay_time);
868 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
869 &pkts_burst[nb_tx], nb_rx - nb_tx);
870 }
871 }
872 fs->tx_packets += nb_tx;
873 fs->rx_bad_ip_csum += rx_bad_ip_csum;
874 fs->rx_bad_l4_csum += rx_bad_l4_csum;
875
876 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
877 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
878 #endif
879 if (unlikely(nb_tx < nb_rx)) {
880 fs->fwd_dropped += (nb_rx - nb_tx);
881 do {
882 rte_pktmbuf_free(pkts_burst[nb_tx]);
883 } while (++nb_tx < nb_rx);
884 }
885 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
886 end_tsc = rte_rdtsc();
887 core_cycles = (end_tsc - start_tsc);
888 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
889 #endif
890 }
891
892 struct fwd_engine csum_fwd_engine = {
893 .fwd_mode_name = "csum",
894 .port_fwd_begin = NULL,
895 .port_fwd_end = NULL,
896 .packet_fwd = pkt_burst_checksum_forward,
897 };