]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/doc/guides/sample_app_ug/kernel_nic_interface.rst
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / doc / guides / sample_app_ug / kernel_nic_interface.rst
1 .. BSD LICENSE
2 Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
3 All rights reserved.
4
5 Redistribution and use in source and binary forms, with or without
6 modification, are permitted provided that the following conditions
7 are met:
8
9 * Redistributions of source code must retain the above copyright
10 notice, this list of conditions and the following disclaimer.
11 * Redistributions in binary form must reproduce the above copyright
12 notice, this list of conditions and the following disclaimer in
13 the documentation and/or other materials provided with the
14 distribution.
15 * Neither the name of Intel Corporation nor the names of its
16 contributors may be used to endorse or promote products derived
17 from this software without specific prior written permission.
18
19 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 Kernel NIC Interface Sample Application
32 =======================================
33
34 The Kernel NIC Interface (KNI) is a DPDK control plane solution that
35 allows userspace applications to exchange packets with the kernel networking stack.
36 To accomplish this, DPDK userspace applications use an IOCTL call
37 to request the creation of a KNI virtual device in the Linux* kernel.
38 The IOCTL call provides interface information and the DPDK's physical address space,
39 which is re-mapped into the kernel address space by the KNI kernel loadable module
40 that saves the information to a virtual device context.
41 The DPDK creates FIFO queues for packet ingress and egress
42 to the kernel module for each device allocated.
43
44 The KNI kernel loadable module is a standard net driver,
45 which upon receiving the IOCTL call access the DPDK's FIFO queue to
46 receive/transmit packets from/to the DPDK userspace application.
47 The FIFO queues contain pointers to data packets in the DPDK. This:
48
49 * Provides a faster mechanism to interface with the kernel net stack and eliminates system calls
50
51 * Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on)
52
53 * Eliminate the copy_to_user and copy_from_user operations on packets.
54
55 The Kernel NIC Interface sample application is a simple example that demonstrates the use
56 of the DPDK to create a path for packets to go through the Linux* kernel.
57 This is done by creating one or more kernel net devices for each of the DPDK ports.
58 The application allows the use of standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK ports and
59 also the exchange of packets between the DPDK application and the Linux* kernel.
60
61 Overview
62 --------
63
64 The Kernel NIC Interface sample application uses two threads in user space for each physical NIC port being used,
65 and allocates one or more KNI device for each physical NIC port with kernel module's support.
66 For a physical NIC port, one thread reads from the port and writes to KNI devices,
67 and another thread reads from KNI devices and writes the data unmodified to the physical NIC port.
68 It is recommended to configure one KNI device for each physical NIC port.
69 If configured with more than one KNI devices for a physical NIC port,
70 it is just for performance testing, or it can work together with VMDq support in future.
71
72 The packet flow through the Kernel NIC Interface application is as shown in the following figure.
73
74 .. _figure_kernel_nic:
75
76 .. figure:: img/kernel_nic.*
77
78 Kernel NIC Application Packet Flow
79
80
81 Compiling the Application
82 -------------------------
83
84 Compile the application as follows:
85
86 #. Go to the example directory:
87
88 .. code-block:: console
89
90 export RTE_SDK=/path/to/rte_sdk
91 cd ${RTE_SDK}/examples/kni
92
93 #. Set the target (a default target is used if not specified)
94
95 .. note::
96
97 This application is intended as a linuxapp only.
98
99 .. code-block:: console
100
101 export RTE_TARGET=x86_64-native-linuxapp-gcc
102
103 #. Build the application:
104
105 .. code-block:: console
106
107 make
108
109 Loading the Kernel Module
110 -------------------------
111
112 Loading the KNI kernel module without any parameter is the typical way a DPDK application
113 gets packets into and out of the kernel net stack.
114 This way, only one kernel thread is created for all KNI devices for packet receiving in kernel side:
115
116 .. code-block:: console
117
118 #insmod rte_kni.ko
119
120 Pinning the kernel thread to a specific core can be done using a taskset command such as following:
121
122 .. code-block:: console
123
124 #taskset -p 100000 `pgrep --fl kni_thread | awk '{print $1}'`
125
126 This command line tries to pin the specific kni_thread on the 20th lcore (lcore numbering starts at 0),
127 which means it needs to check if that lcore is available on the board.
128 This command must be sent after the application has been launched, as insmod does not start the kni thread.
129
130 For optimum performance,
131 the lcore in the mask must be selected to be on the same socket as the lcores used in the KNI application.
132
133 To provide flexibility of performance, the kernel module of the KNI,
134 located in the kmod sub-directory of the DPDK target directory,
135 can be loaded with parameter of kthread_mode as follows:
136
137 * #insmod rte_kni.ko kthread_mode=single
138
139 This mode will create only one kernel thread for all KNI devices for packet receiving in kernel side.
140 By default, it is in this single kernel thread mode.
141 It can set core affinity for this kernel thread by using Linux command taskset.
142
143 * #insmod rte_kni.ko kthread_mode =multiple
144
145 This mode will create a kernel thread for each KNI device for packet receiving in kernel side.
146 The core affinity of each kernel thread is set when creating the KNI device.
147 The lcore ID for each kernel thread is provided in the command line of launching the application.
148 Multiple kernel thread mode can provide scalable higher performance.
149
150 To measure the throughput in a loopback mode, the kernel module of the KNI,
151 located in the kmod sub-directory of the DPDK target directory,
152 can be loaded with parameters as follows:
153
154 * #insmod rte_kni.ko lo_mode=lo_mode_fifo
155
156 This loopback mode will involve ring enqueue/dequeue operations in kernel space.
157
158 * #insmod rte_kni.ko lo_mode=lo_mode_fifo_skb
159
160 This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies in kernel space.
161
162 Running the Application
163 -----------------------
164
165 The application requires a number of command line options:
166
167 .. code-block:: console
168
169 kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,port,lcore_rx,lcore_tx[,lcore_kthread,...]]"
170
171 Where:
172
173 * -P: Set all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address.
174 Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
175
176 * -p PORTMASK: Hexadecimal bitmask of ports to configure.
177
178 * --config="(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,lcore_rx, lcore_tx[,lcore_kthread, ...]]":
179 Determines which lcores of RX, TX, kernel thread are mapped to which ports.
180
181 Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.
182
183 The -c coremask parameter of the EAL options should include the lcores indicated by the lcore_rx and lcore_tx,
184 but does not need to include lcores indicated by lcore_kthread as they are used to pin the kernel thread on.
185 The -p PORTMASK parameter should include the ports indicated by the port in --config, neither more nor less.
186
187 The lcore_kthread in --config can be configured none, one or more lcore IDs.
188 In multiple kernel thread mode, if configured none, a KNI device will be allocated for each port,
189 while no specific lcore affinity will be set for its kernel thread.
190 If configured one or more lcore IDs, one or more KNI devices will be allocated for each port,
191 while specific lcore affinity will be set for its kernel thread.
192 In single kernel thread mode, if configured none, a KNI device will be allocated for each port.
193 If configured one or more lcore IDs,
194 one or more KNI devices will be allocated for each port while
195 no lcore affinity will be set as there is only one kernel thread for all KNI devices.
196
197 For example, to run the application with two ports served by six lcores, one lcore of RX, one lcore of TX,
198 and one lcore of kernel thread for each port:
199
200 .. code-block:: console
201
202 ./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"
203
204 KNI Operations
205 --------------
206
207 Once the KNI application is started, one can use different Linux* commands to manage the net interfaces.
208 If more than one KNI devices configured for a physical port,
209 only the first KNI device will be paired to the physical device.
210 Operations on other KNI devices will not affect the physical port handled in user space application.
211
212 Assigning an IP address:
213
214 .. code-block:: console
215
216 #ifconfig vEth0_0 192.168.0.1
217
218 Displaying the NIC registers:
219
220 .. code-block:: console
221
222 #ethtool -d vEth0_0
223
224 Dumping the network traffic:
225
226 .. code-block:: console
227
228 #tcpdump -i vEth0_0
229
230 When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*.
231
232 Explanation
233 -----------
234
235 The following sections provide some explanation of code.
236
237 Initialization
238 ~~~~~~~~~~~~~~
239
240 Setup of mbuf pool, driver and queues is similar to the setup done in the :doc:`l2_forward_real_virtual`..
241 In addition, one or more kernel NIC interfaces are allocated for each
242 of the configured ports according to the command line parameters.
243
244 The code for allocating the kernel NIC interfaces for a specific port is as follows:
245
246 .. code-block:: c
247
248 static int
249 kni_alloc(uint8_t port_id)
250 {
251 uint8_t i;
252 struct rte_kni *kni;
253 struct rte_kni_conf conf;
254 struct kni_port_params **params = kni_port_params_array;
255
256 if (port_id >= RTE_MAX_ETHPORTS || !params[port_id])
257 return -1;
258
259 params[port_id]->nb_kni = params[port_id]->nb_lcore_k ? params[port_id]->nb_lcore_k : 1;
260
261 for (i = 0; i < params[port_id]->nb_kni; i++) {
262
263 /* Clear conf at first */
264
265 memset(&conf, 0, sizeof(conf));
266 if (params[port_id]->nb_lcore_k) {
267 snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u_%u", port_id, i);
268 conf.core_id = params[port_id]->lcore_k[i];
269 conf.force_bind = 1;
270 } else
271 snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u", port_id);
272 conf.group_id = (uint16_t)port_id;
273 conf.mbuf_size = MAX_PACKET_SZ;
274
275 /*
276 * The first KNI device associated to a port
277 * is the master, for multiple kernel thread
278 * environment.
279 */
280
281 if (i == 0) {
282 struct rte_kni_ops ops;
283 struct rte_eth_dev_info dev_info;
284
285 memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info);
286
287 conf.addr = dev_info.pci_dev->addr;
288 conf.id = dev_info.pci_dev->id;
289
290 memset(&ops, 0, sizeof(ops));
291
292 ops.port_id = port_id;
293 ops.change_mtu = kni_change_mtu;
294 ops.config_network_if = kni_config_network_interface;
295
296 kni = rte_kni_alloc(pktmbuf_pool, &conf, &ops);
297 } else
298 kni = rte_kni_alloc(pktmbuf_pool, &conf, NULL);
299
300 if (!kni)
301 rte_exit(EXIT_FAILURE, "Fail to create kni for "
302 "port: %d\n", port_id);
303
304 params[port_id]->kni[i] = kni;
305 }
306 return 0;
307 }
308
309 The other step in the initialization process that is unique to this sample application
310 is the association of each port with lcores for RX, TX and kernel threads.
311
312 * One lcore to read from the port and write to the associated one or more KNI devices
313
314 * Another lcore to read from one or more KNI devices and write to the port
315
316 * Other lcores for pinning the kernel threads on one by one
317
318 This is done by using the`kni_port_params_array[]` array, which is indexed by the port ID.
319 The code is as follows:
320
321 .. code-block:: console
322
323 static int
324 parse_config(const char *arg)
325 {
326 const char *p, *p0 = arg;
327 char s[256], *end;
328 unsigned size;
329 enum fieldnames {
330 FLD_PORT = 0,
331 FLD_LCORE_RX,
332 FLD_LCORE_TX,
333 _NUM_FLD = KNI_MAX_KTHREAD + 3,
334 };
335 int i, j, nb_token;
336 char *str_fld[_NUM_FLD];
337 unsigned long int_fld[_NUM_FLD];
338 uint8_t port_id, nb_kni_port_params = 0;
339
340 memset(&kni_port_params_array, 0, sizeof(kni_port_params_array));
341
342 while (((p = strchr(p0, '(')) != NULL) && nb_kni_port_params < RTE_MAX_ETHPORTS) {
343 p++;
344 if ((p0 = strchr(p, ')')) == NULL)
345 goto fail;
346
347 size = p0 - p;
348
349 if (size >= sizeof(s)) {
350 printf("Invalid config parameters\n");
351 goto fail;
352 }
353
354 snprintf(s, sizeof(s), "%.*s", size, p);
355 nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',');
356
357 if (nb_token <= FLD_LCORE_TX) {
358 printf("Invalid config parameters\n");
359 goto fail;
360 }
361
362 for (i = 0; i < nb_token; i++) {
363 errno = 0;
364 int_fld[i] = strtoul(str_fld[i], &end, 0);
365 if (errno != 0 || end == str_fld[i]) {
366 printf("Invalid config parameters\n");
367 goto fail;
368 }
369 }
370
371 i = 0;
372 port_id = (uint8_t)int_fld[i++];
373
374 if (port_id >= RTE_MAX_ETHPORTS) {
375 printf("Port ID %u could not exceed the maximum %u\n", port_id, RTE_MAX_ETHPORTS);
376 goto fail;
377 }
378
379 if (kni_port_params_array[port_id]) {
380 printf("Port %u has been configured\n", port_id);
381 goto fail;
382 }
383
384 kni_port_params_array[port_id] = (struct kni_port_params*)rte_zmalloc("KNI_port_params", sizeof(struct kni_port_params), RTE_CACHE_LINE_SIZE);
385 kni_port_params_array[port_id]->port_id = port_id;
386 kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++];
387 kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++];
388
389 if (kni_port_params_array[port_id]->lcore_rx >= RTE_MAX_LCORE || kni_port_params_array[port_id]->lcore_tx >= RTE_MAX_LCORE) {
390 printf("lcore_rx %u or lcore_tx %u ID could not "
391 "exceed the maximum %u\n",
392 kni_port_params_array[port_id]->lcore_rx, kni_port_params_array[port_id]->lcore_tx, RTE_MAX_LCORE);
393 goto fail;
394 }
395
396 for (j = 0; i < nb_token && j < KNI_MAX_KTHREAD; i++, j++)
397 kni_port_params_array[port_id]->lcore_k[j] = (uint8_t)int_fld[i];
398 kni_port_params_array[port_id]->nb_lcore_k = j;
399 }
400
401 print_config();
402
403 return 0;
404
405 fail:
406
407 for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
408 if (kni_port_params_array[i]) {
409 rte_free(kni_port_params_array[i]);
410 kni_port_params_array[i] = NULL;
411 }
412 }
413
414 return -1;
415
416 }
417
418 Packet Forwarding
419 ~~~~~~~~~~~~~~~~~
420
421 After the initialization steps are completed, the main_loop() function is run on each lcore.
422 This function first checks the lcore_id against the user provided lcore_rx and lcore_tx
423 to see if this lcore is reading from or writing to kernel NIC interfaces.
424
425 For the case that reads from a NIC port and writes to the kernel NIC interfaces,
426 the packet reception is the same as in L2 Forwarding sample application
427 (see :ref:`l2_fwd_app_rx_tx_packets`).
428 The packet transmission is done by sending mbufs into the kernel NIC interfaces by rte_kni_tx_burst().
429 The KNI library automatically frees the mbufs after the kernel successfully copied the mbufs.
430
431 .. code-block:: c
432
433 /**
434 * Interface to burst rx and enqueue mbufs into rx_q
435 */
436
437 static void
438 kni_ingress(struct kni_port_params *p)
439 {
440 uint8_t i, nb_kni, port_id;
441 unsigned nb_rx, num;
442 struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
443
444 if (p == NULL)
445 return;
446
447 nb_kni = p->nb_kni;
448 port_id = p->port_id;
449
450 for (i = 0; i < nb_kni; i++) {
451 /* Burst rx from eth */
452 nb_rx = rte_eth_rx_burst(port_id, 0, pkts_burst, PKT_BURST_SZ);
453 if (unlikely(nb_rx > PKT_BURST_SZ)) {
454 RTE_LOG(ERR, APP, "Error receiving from eth\n");
455 return;
456 }
457
458 /* Burst tx to kni */
459 num = rte_kni_tx_burst(p->kni[i], pkts_burst, nb_rx);
460 kni_stats[port_id].rx_packets += num;
461 rte_kni_handle_request(p->kni[i]);
462
463 if (unlikely(num < nb_rx)) {
464 /* Free mbufs not tx to kni interface */
465 kni_burst_free_mbufs(&pkts_burst[num], nb_rx - num);
466 kni_stats[port_id].rx_dropped += nb_rx - num;
467 }
468 }
469 }
470
471 For the other case that reads from kernel NIC interfaces and writes to a physical NIC port, packets are retrieved by reading
472 mbufs from kernel NIC interfaces by `rte_kni_rx_burst()`.
473 The packet transmission is the same as in the L2 Forwarding sample application
474 (see :ref:`l2_fwd_app_rx_tx_packets`).
475
476 .. code-block:: c
477
478 /**
479 * Interface to dequeue mbufs from tx_q and burst tx
480 */
481
482 static void
483
484 kni_egress(struct kni_port_params *p)
485 {
486 uint8_t i, nb_kni, port_id;
487 unsigned nb_tx, num;
488 struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
489
490 if (p == NULL)
491 return;
492
493 nb_kni = p->nb_kni;
494 port_id = p->port_id;
495
496 for (i = 0; i < nb_kni; i++) {
497 /* Burst rx from kni */
498 num = rte_kni_rx_burst(p->kni[i], pkts_burst, PKT_BURST_SZ);
499 if (unlikely(num > PKT_BURST_SZ)) {
500 RTE_LOG(ERR, APP, "Error receiving from KNI\n");
501 return;
502 }
503
504 /* Burst tx to eth */
505
506 nb_tx = rte_eth_tx_burst(port_id, 0, pkts_burst, (uint16_t)num);
507
508 kni_stats[port_id].tx_packets += nb_tx;
509
510 if (unlikely(nb_tx < num)) {
511 /* Free mbufs not tx to NIC */
512 kni_burst_free_mbufs(&pkts_burst[nb_tx], num - nb_tx);
513 kni_stats[port_id].tx_dropped += num - nb_tx;
514 }
515 }
516 }
517
518 Callbacks for Kernel Requests
519 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
520
521 To execute specific PMD operations in user space requested by some Linux* commands,
522 callbacks must be implemented and filled in the struct rte_kni_ops structure.
523 Currently, setting a new MTU and configuring the network interface (up/ down) are supported.
524
525 .. code-block:: c
526
527 static struct rte_kni_ops kni_ops = {
528 .change_mtu = kni_change_mtu,
529 .config_network_if = kni_config_network_interface,
530 };
531
532 /* Callback for request of changing MTU */
533
534 static int
535 kni_change_mtu(uint8_t port_id, unsigned new_mtu)
536 {
537 int ret;
538 struct rte_eth_conf conf;
539
540 if (port_id >= rte_eth_dev_count()) {
541 RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
542 return -EINVAL;
543 }
544
545 RTE_LOG(INFO, APP, "Change MTU of port %d to %u\n", port_id, new_mtu);
546
547 /* Stop specific port */
548
549 rte_eth_dev_stop(port_id);
550
551 memcpy(&conf, &port_conf, sizeof(conf));
552
553 /* Set new MTU */
554
555 if (new_mtu > ETHER_MAX_LEN)
556 conf.rxmode.jumbo_frame = 1;
557 else
558 conf.rxmode.jumbo_frame = 0;
559
560 /* mtu + length of header + length of FCS = max pkt length */
561
562 conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE;
563
564 ret = rte_eth_dev_configure(port_id, 1, 1, &conf);
565 if (ret < 0) {
566 RTE_LOG(ERR, APP, "Fail to reconfigure port %d\n", port_id);
567 return ret;
568 }
569
570 /* Restart specific port */
571
572 ret = rte_eth_dev_start(port_id);
573 if (ret < 0) {
574 RTE_LOG(ERR, APP, "Fail to restart port %d\n", port_id);
575 return ret;
576 }
577
578 return 0;
579 }
580
581 /* Callback for request of configuring network interface up/down */
582
583 static int
584 kni_config_network_interface(uint8_t port_id, uint8_t if_up)
585 {
586 int ret = 0;
587
588 if (port_id >= rte_eth_dev_count() || port_id >= RTE_MAX_ETHPORTS) {
589 RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);
590 return -EINVAL;
591 }
592
593 RTE_LOG(INFO, APP, "Configure network interface of %d %s\n",
594
595 port_id, if_up ? "up" : "down");
596
597 if (if_up != 0) {
598 /* Configure network interface up */
599 rte_eth_dev_stop(port_id);
600 ret = rte_eth_dev_start(port_id);
601 } else /* Configure network interface down */
602 rte_eth_dev_stop(port_id);
603
604 if (ret < 0)
605 RTE_LOG(ERR, APP, "Failed to start port %d\n", port_id);
606 return ret;
607 }