]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/drivers/net/bnx2x/bnx2x.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / drivers / net / bnx2x / bnx2x.c
1 /*-
2 * Copyright (c) 2007-2013 Broadcom Corporation.
3 *
4 * Eric Davis <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano <zambrano@broadcom.com>
7 *
8 * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9 * Copyright (c) 2015 QLogic Corporation.
10 * All rights reserved.
11 * www.qlogic.com
12 *
13 * See LICENSE.bnx2x_pmd for copyright and licensing details.
14 */
15
16 #define BNX2X_DRIVER_VERSION "1.78.18"
17
18 #include "bnx2x.h"
19 #include "bnx2x_vfpf.h"
20 #include "ecore_sp.h"
21 #include "ecore_init.h"
22 #include "ecore_init_ops.h"
23
24 #include "rte_version.h"
25
26 #include <sys/types.h>
27 #include <sys/stat.h>
28 #include <fcntl.h>
29 #include <zlib.h>
30
31 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
32 #define BNX2X_PMD_VERSION_MAJOR 1
33 #define BNX2X_PMD_VERSION_MINOR 0
34 #define BNX2X_PMD_VERSION_REVISION 1
35 #define BNX2X_PMD_VERSION_PATCH 1
36
37 static inline const char *
38 bnx2x_pmd_version(void)
39 {
40 static char version[32];
41
42 snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
43 BNX2X_PMD_VER_PREFIX,
44 BNX2X_DRIVER_VERSION,
45 BNX2X_PMD_VERSION_MAJOR,
46 BNX2X_PMD_VERSION_MINOR,
47 BNX2X_PMD_VERSION_REVISION,
48 BNX2X_PMD_VERSION_PATCH);
49
50 return version;
51 }
52
53 static z_stream zlib_stream;
54
55 #define EVL_VLID_MASK 0x0FFF
56
57 #define BNX2X_DEF_SB_ATT_IDX 0x0001
58 #define BNX2X_DEF_SB_IDX 0x0002
59
60 /*
61 * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
62 * function HW initialization.
63 */
64 #define FLR_WAIT_USEC 10000 /* 10 msecs */
65 #define FLR_WAIT_INTERVAL 50 /* usecs */
66 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
67
68 struct pbf_pN_buf_regs {
69 int pN;
70 uint32_t init_crd;
71 uint32_t crd;
72 uint32_t crd_freed;
73 };
74
75 struct pbf_pN_cmd_regs {
76 int pN;
77 uint32_t lines_occup;
78 uint32_t lines_freed;
79 };
80
81 /* resources needed for unloading a previously loaded device */
82
83 #define BNX2X_PREV_WAIT_NEEDED 1
84 rte_spinlock_t bnx2x_prev_mtx;
85 struct bnx2x_prev_list_node {
86 LIST_ENTRY(bnx2x_prev_list_node) node;
87 uint8_t bus;
88 uint8_t slot;
89 uint8_t path;
90 uint8_t aer;
91 uint8_t undi;
92 };
93
94 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
95 = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
96
97 static int load_count[2][3] = { { 0 } };
98 /* per-path: 0-common, 1-port0, 2-port1 */
99
100 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
101 uint8_t cmng_type);
102 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
103 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
104 uint8_t port);
105 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
106 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
107 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
108 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
109 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
110 uint8_t print);
111 static void bnx2x_int_disable(struct bnx2x_softc *sc);
112 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
113 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
114 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
115 struct bnx2x_fastpath *fp,
116 uint16_t rx_bd_prod, uint16_t rx_cq_prod);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __attribute__ ((noinline))
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
125
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp);
128 static void bnx2x_periodic_stop(struct bnx2x_softc *sc);
129 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
130 uint8_t storm, uint16_t index, uint8_t op,
131 uint8_t update);
132
133 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
134 {
135 int res;
136
137 mb();
138 res = ((*addr) & (1UL << nr)) != 0;
139 mb();
140 return res;
141 }
142
143 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
144 {
145 __sync_fetch_and_or(addr, (1UL << nr));
146 }
147
148 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
149 {
150 __sync_fetch_and_and(addr, ~(1UL << nr));
151 }
152
153 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
154 {
155 unsigned long mask = (1UL << nr);
156 return __sync_fetch_and_and(addr, ~mask) & mask;
157 }
158
159 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
160 {
161 return __sync_val_compare_and_swap(addr, old, new);
162 }
163
164 int
165 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
166 const char *msg, uint32_t align)
167 {
168 char mz_name[RTE_MEMZONE_NAMESIZE];
169 const struct rte_memzone *z;
170
171 dma->sc = sc;
172 if (IS_PF(sc))
173 sprintf(mz_name, "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
174 rte_get_timer_cycles());
175 else
176 sprintf(mz_name, "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
177 rte_get_timer_cycles());
178
179 /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
180 z = rte_memzone_reserve_aligned(mz_name, (uint64_t) (size),
181 SOCKET_ID_ANY,
182 0, align);
183 if (z == NULL) {
184 PMD_DRV_LOG(ERR, "DMA alloc failed for %s", msg);
185 return -ENOMEM;
186 }
187 dma->paddr = (uint64_t) z->phys_addr;
188 dma->vaddr = z->addr;
189
190 PMD_DRV_LOG(DEBUG, "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
191
192 return 0;
193 }
194
195 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
196 {
197 uint32_t lock_status;
198 uint32_t resource_bit = (1 << resource);
199 int func = SC_FUNC(sc);
200 uint32_t hw_lock_control_reg;
201 int cnt;
202
203 PMD_INIT_FUNC_TRACE();
204
205 /* validate the resource is within range */
206 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
207 PMD_DRV_LOG(NOTICE,
208 "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
209 resource);
210 return -1;
211 }
212
213 if (func <= 5) {
214 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
215 } else {
216 hw_lock_control_reg =
217 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
218 }
219
220 /* validate the resource is not already taken */
221 lock_status = REG_RD(sc, hw_lock_control_reg);
222 if (lock_status & resource_bit) {
223 PMD_DRV_LOG(NOTICE,
224 "resource in use (status 0x%x bit 0x%x)",
225 lock_status, resource_bit);
226 return -1;
227 }
228
229 /* try every 5ms for 5 seconds */
230 for (cnt = 0; cnt < 1000; cnt++) {
231 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
232 lock_status = REG_RD(sc, hw_lock_control_reg);
233 if (lock_status & resource_bit) {
234 return 0;
235 }
236 DELAY(5000);
237 }
238
239 PMD_DRV_LOG(NOTICE, "Resource lock timeout!");
240 return -1;
241 }
242
243 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
244 {
245 uint32_t lock_status;
246 uint32_t resource_bit = (1 << resource);
247 int func = SC_FUNC(sc);
248 uint32_t hw_lock_control_reg;
249
250 PMD_INIT_FUNC_TRACE();
251
252 /* validate the resource is within range */
253 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
254 PMD_DRV_LOG(NOTICE,
255 "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
256 resource);
257 return -1;
258 }
259
260 if (func <= 5) {
261 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
262 } else {
263 hw_lock_control_reg =
264 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
265 }
266
267 /* validate the resource is currently taken */
268 lock_status = REG_RD(sc, hw_lock_control_reg);
269 if (!(lock_status & resource_bit)) {
270 PMD_DRV_LOG(NOTICE,
271 "resource not in use (status 0x%x bit 0x%x)",
272 lock_status, resource_bit);
273 return -1;
274 }
275
276 REG_WR(sc, hw_lock_control_reg, resource_bit);
277 return 0;
278 }
279
280 /* copy command into DMAE command memory and set DMAE command Go */
281 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
282 {
283 uint32_t cmd_offset;
284 uint32_t i;
285
286 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
287 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
288 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
289 }
290
291 REG_WR(sc, dmae_reg_go_c[idx], 1);
292 }
293
294 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
295 {
296 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
297 DMAE_COMMAND_C_TYPE_ENABLE);
298 }
299
300 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
301 {
302 return opcode & ~DMAE_COMMAND_SRC_RESET;
303 }
304
305 uint32_t
306 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
307 uint8_t with_comp, uint8_t comp_type)
308 {
309 uint32_t opcode = 0;
310
311 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
312 (dst_type << DMAE_COMMAND_DST_SHIFT));
313
314 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
315
316 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
317
318 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
319 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
320
321 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
322
323 #ifdef __BIG_ENDIAN
324 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
325 #else
326 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
327 #endif
328
329 if (with_comp) {
330 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
331 }
332
333 return opcode;
334 }
335
336 static void
337 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
338 uint8_t src_type, uint8_t dst_type)
339 {
340 memset(dmae, 0, sizeof(struct dmae_command));
341
342 /* set the opcode */
343 dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
344 TRUE, DMAE_COMP_PCI);
345
346 /* fill in the completion parameters */
347 dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
348 dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
349 dmae->comp_val = DMAE_COMP_VAL;
350 }
351
352 /* issue a DMAE command over the init channel and wait for completion */
353 static int
354 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
355 {
356 uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
357 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
358
359 /* reset completion */
360 *wb_comp = 0;
361
362 /* post the command on the channel used for initializations */
363 bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
364
365 /* wait for completion */
366 DELAY(500);
367
368 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
369 if (!timeout ||
370 (sc->recovery_state != BNX2X_RECOVERY_DONE &&
371 sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
372 PMD_DRV_LOG(INFO, "DMAE timeout!");
373 return DMAE_TIMEOUT;
374 }
375
376 timeout--;
377 DELAY(50);
378 }
379
380 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
381 PMD_DRV_LOG(INFO, "DMAE PCI error!");
382 return DMAE_PCI_ERROR;
383 }
384
385 return 0;
386 }
387
388 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
389 {
390 struct dmae_command dmae;
391 uint32_t *data;
392 uint32_t i;
393 int rc;
394
395 if (!sc->dmae_ready) {
396 data = BNX2X_SP(sc, wb_data[0]);
397
398 for (i = 0; i < len32; i++) {
399 data[i] = REG_RD(sc, (src_addr + (i * 4)));
400 }
401
402 return;
403 }
404
405 /* set opcode and fixed command fields */
406 bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
407
408 /* fill in addresses and len */
409 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
410 dmae.src_addr_hi = 0;
411 dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
412 dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
413 dmae.len = len32;
414
415 /* issue the command and wait for completion */
416 if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
417 rte_panic("DMAE failed (%d)", rc);
418 };
419 }
420
421 void
422 bnx2x_write_dmae(struct bnx2x_softc *sc, phys_addr_t dma_addr, uint32_t dst_addr,
423 uint32_t len32)
424 {
425 struct dmae_command dmae;
426 int rc;
427
428 if (!sc->dmae_ready) {
429 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
430 return;
431 }
432
433 /* set opcode and fixed command fields */
434 bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
435
436 /* fill in addresses and len */
437 dmae.src_addr_lo = U64_LO(dma_addr);
438 dmae.src_addr_hi = U64_HI(dma_addr);
439 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
440 dmae.dst_addr_hi = 0;
441 dmae.len = len32;
442
443 /* issue the command and wait for completion */
444 if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
445 rte_panic("DMAE failed (%d)", rc);
446 }
447 }
448
449 static void
450 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr,
451 uint32_t addr, uint32_t len)
452 {
453 uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
454 uint32_t offset = 0;
455
456 while (len > dmae_wr_max) {
457 bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */
458 (addr + offset), /* dst GRC address */
459 dmae_wr_max);
460 offset += (dmae_wr_max * 4);
461 len -= dmae_wr_max;
462 }
463
464 bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */
465 (addr + offset), /* dst GRC address */
466 len);
467 }
468
469 void
470 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
471 uint32_t cid)
472 {
473 /* ustorm cxt validation */
474 cxt->ustorm_ag_context.cdu_usage =
475 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
476 CDU_REGION_NUMBER_UCM_AG,
477 ETH_CONNECTION_TYPE);
478 /* xcontext validation */
479 cxt->xstorm_ag_context.cdu_reserved =
480 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
481 CDU_REGION_NUMBER_XCM_AG,
482 ETH_CONNECTION_TYPE);
483 }
484
485 static void
486 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
487 uint8_t sb_index, uint8_t ticks)
488 {
489 uint32_t addr =
490 (BAR_CSTRORM_INTMEM +
491 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
492
493 REG_WR8(sc, addr, ticks);
494 }
495
496 static void
497 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
498 uint8_t sb_index, uint8_t disable)
499 {
500 uint32_t enable_flag =
501 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
502 uint32_t addr =
503 (BAR_CSTRORM_INTMEM +
504 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
505 uint8_t flags;
506
507 /* clear and set */
508 flags = REG_RD8(sc, addr);
509 flags &= ~HC_INDEX_DATA_HC_ENABLED;
510 flags |= enable_flag;
511 REG_WR8(sc, addr, flags);
512 }
513
514 void
515 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
516 uint8_t sb_index, uint8_t disable, uint16_t usec)
517 {
518 uint8_t ticks = (usec / 4);
519
520 bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
521
522 disable = (disable) ? 1 : ((usec) ? 0 : 1);
523 bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
524 }
525
526 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
527 {
528 return REG_RD(sc, reg_addr);
529 }
530
531 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
532 {
533 REG_WR(sc, reg_addr, val);
534 }
535
536 void
537 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
538 __rte_unused const elink_log_id_t elink_log_id, ...)
539 {
540 PMD_DRV_LOG(DEBUG, "ELINK EVENT LOG (%d)", elink_log_id);
541 }
542
543 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
544 {
545 uint32_t spio_reg;
546
547 /* Only 2 SPIOs are configurable */
548 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
549 PMD_DRV_LOG(NOTICE, "Invalid SPIO 0x%x", spio);
550 return -1;
551 }
552
553 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
554
555 /* read SPIO and mask except the float bits */
556 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
557
558 switch (mode) {
559 case MISC_SPIO_OUTPUT_LOW:
560 /* clear FLOAT and set CLR */
561 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
562 spio_reg |= (spio << MISC_SPIO_CLR_POS);
563 break;
564
565 case MISC_SPIO_OUTPUT_HIGH:
566 /* clear FLOAT and set SET */
567 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
568 spio_reg |= (spio << MISC_SPIO_SET_POS);
569 break;
570
571 case MISC_SPIO_INPUT_HI_Z:
572 /* set FLOAT */
573 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
574 break;
575
576 default:
577 break;
578 }
579
580 REG_WR(sc, MISC_REG_SPIO, spio_reg);
581 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
582
583 return 0;
584 }
585
586 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
587 {
588 /* The GPIO should be swapped if swap register is set and active */
589 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
590 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
591 int gpio_shift = gpio_num;
592 if (gpio_port)
593 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
594
595 uint32_t gpio_mask = (1 << gpio_shift);
596 uint32_t gpio_reg;
597
598 if (gpio_num > MISC_REGISTERS_GPIO_3) {
599 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
600 return -1;
601 }
602
603 /* read GPIO value */
604 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
605
606 /* get the requested pin value */
607 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
608 }
609
610 static int
611 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
612 {
613 /* The GPIO should be swapped if swap register is set and active */
614 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
615 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
616 int gpio_shift = gpio_num;
617 if (gpio_port)
618 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
619
620 uint32_t gpio_mask = (1 << gpio_shift);
621 uint32_t gpio_reg;
622
623 if (gpio_num > MISC_REGISTERS_GPIO_3) {
624 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
625 return -1;
626 }
627
628 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
629
630 /* read GPIO and mask except the float bits */
631 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
632
633 switch (mode) {
634 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
635 /* clear FLOAT and set CLR */
636 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
637 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
638 break;
639
640 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
641 /* clear FLOAT and set SET */
642 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
643 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
644 break;
645
646 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
647 /* set FLOAT */
648 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
649 break;
650
651 default:
652 break;
653 }
654
655 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
656 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
657
658 return 0;
659 }
660
661 static int
662 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
663 {
664 uint32_t gpio_reg;
665
666 /* any port swapping should be handled by caller */
667
668 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
669
670 /* read GPIO and mask except the float bits */
671 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
672 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
673 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
674 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
675
676 switch (mode) {
677 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
678 /* set CLR */
679 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
680 break;
681
682 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
683 /* set SET */
684 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
685 break;
686
687 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
688 /* set FLOAT */
689 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
690 break;
691
692 default:
693 PMD_DRV_LOG(NOTICE, "Invalid GPIO mode assignment %d", mode);
694 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
695 return -1;
696 }
697
698 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
699 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
700
701 return 0;
702 }
703
704 static int
705 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
706 uint8_t port)
707 {
708 /* The GPIO should be swapped if swap register is set and active */
709 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
710 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
711 int gpio_shift = gpio_num;
712 if (gpio_port)
713 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
714
715 uint32_t gpio_mask = (1 << gpio_shift);
716 uint32_t gpio_reg;
717
718 if (gpio_num > MISC_REGISTERS_GPIO_3) {
719 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
720 return -1;
721 }
722
723 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
724
725 /* read GPIO int */
726 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
727
728 switch (mode) {
729 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
730 /* clear SET and set CLR */
731 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
732 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
733 break;
734
735 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
736 /* clear CLR and set SET */
737 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
738 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
739 break;
740
741 default:
742 break;
743 }
744
745 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
746 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
747
748 return 0;
749 }
750
751 uint32_t
752 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
753 {
754 return bnx2x_gpio_read(sc, gpio_num, port);
755 }
756
757 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */
758 uint8_t port)
759 {
760 return bnx2x_gpio_write(sc, gpio_num, mode, port);
761 }
762
763 uint8_t
764 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
765 uint8_t mode /* 0=low 1=high */ )
766 {
767 return bnx2x_gpio_mult_write(sc, pins, mode);
768 }
769
770 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */
771 uint8_t port)
772 {
773 return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
774 }
775
776 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
777 {
778 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
779 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
780 }
781
782 /* send the MCP a request, block until there is a reply */
783 uint32_t
784 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
785 {
786 int mb_idx = SC_FW_MB_IDX(sc);
787 uint32_t seq;
788 uint32_t rc = 0;
789 uint32_t cnt = 1;
790 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
791
792 seq = ++sc->fw_seq;
793 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
794 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
795
796 PMD_DRV_LOG(DEBUG,
797 "wrote command 0x%08x to FW MB param 0x%08x",
798 (command | seq), param);
799
800 /* Let the FW do it's magic. GIve it up to 5 seconds... */
801 do {
802 DELAY(delay * 1000);
803 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
804 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
805
806 /* is this a reply to our command? */
807 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
808 rc &= FW_MSG_CODE_MASK;
809 } else {
810 /* Ruh-roh! */
811 PMD_DRV_LOG(NOTICE, "FW failed to respond!");
812 rc = 0;
813 }
814
815 return rc;
816 }
817
818 static uint32_t
819 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
820 {
821 return elink_cb_fw_command(sc, command, param);
822 }
823
824 static void
825 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
826 phys_addr_t mapping)
827 {
828 REG_WR(sc, addr, U64_LO(mapping));
829 REG_WR(sc, (addr + 4), U64_HI(mapping));
830 }
831
832 static void
833 storm_memset_spq_addr(struct bnx2x_softc *sc, phys_addr_t mapping,
834 uint16_t abs_fid)
835 {
836 uint32_t addr = (XSEM_REG_FAST_MEMORY +
837 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
838 __storm_memset_dma_mapping(sc, addr, mapping);
839 }
840
841 static void
842 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
843 {
844 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
845 pf_id);
846 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
847 pf_id);
848 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
849 pf_id);
850 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
851 pf_id);
852 }
853
854 static void
855 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
856 {
857 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
858 enable);
859 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
860 enable);
861 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
862 enable);
863 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
864 enable);
865 }
866
867 static void
868 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
869 uint16_t pfid)
870 {
871 uint32_t addr;
872 size_t size;
873
874 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
875 size = sizeof(struct event_ring_data);
876 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
877 }
878
879 static void
880 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
881 {
882 uint32_t addr = (BAR_CSTRORM_INTMEM +
883 CSTORM_EVENT_RING_PROD_OFFSET(pfid));
884 REG_WR16(sc, addr, eq_prod);
885 }
886
887 /*
888 * Post a slowpath command.
889 *
890 * A slowpath command is used to propogate a configuration change through
891 * the controller in a controlled manner, allowing each STORM processor and
892 * other H/W blocks to phase in the change. The commands sent on the
893 * slowpath are referred to as ramrods. Depending on the ramrod used the
894 * completion of the ramrod will occur in different ways. Here's a
895 * breakdown of ramrods and how they complete:
896 *
897 * RAMROD_CMD_ID_ETH_PORT_SETUP
898 * Used to setup the leading connection on a port. Completes on the
899 * Receive Completion Queue (RCQ) of that port (typically fp[0]).
900 *
901 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
902 * Used to setup an additional connection on a port. Completes on the
903 * RCQ of the multi-queue/RSS connection being initialized.
904 *
905 * RAMROD_CMD_ID_ETH_STAT_QUERY
906 * Used to force the storm processors to update the statistics database
907 * in host memory. This ramrod is send on the leading connection CID and
908 * completes as an index increment of the CSTORM on the default status
909 * block.
910 *
911 * RAMROD_CMD_ID_ETH_UPDATE
912 * Used to update the state of the leading connection, usually to udpate
913 * the RSS indirection table. Completes on the RCQ of the leading
914 * connection. (Not currently used under FreeBSD until OS support becomes
915 * available.)
916 *
917 * RAMROD_CMD_ID_ETH_HALT
918 * Used when tearing down a connection prior to driver unload. Completes
919 * on the RCQ of the multi-queue/RSS connection being torn down. Don't
920 * use this on the leading connection.
921 *
922 * RAMROD_CMD_ID_ETH_SET_MAC
923 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on
924 * the RCQ of the leading connection.
925 *
926 * RAMROD_CMD_ID_ETH_CFC_DEL
927 * Used when tearing down a conneciton prior to driver unload. Completes
928 * on the RCQ of the leading connection (since the current connection
929 * has been completely removed from controller memory).
930 *
931 * RAMROD_CMD_ID_ETH_PORT_DEL
932 * Used to tear down the leading connection prior to driver unload,
933 * typically fp[0]. Completes as an index increment of the CSTORM on the
934 * default status block.
935 *
936 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
937 * Used for connection offload. Completes on the RCQ of the multi-queue
938 * RSS connection that is being offloaded. (Not currently used under
939 * FreeBSD.)
940 *
941 * There can only be one command pending per function.
942 *
943 * Returns:
944 * 0 = Success, !0 = Failure.
945 */
946
947 /* must be called under the spq lock */
948 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
949 {
950 struct eth_spe *next_spe = sc->spq_prod_bd;
951
952 if (sc->spq_prod_bd == sc->spq_last_bd) {
953 /* wrap back to the first eth_spq */
954 sc->spq_prod_bd = sc->spq;
955 sc->spq_prod_idx = 0;
956 } else {
957 sc->spq_prod_bd++;
958 sc->spq_prod_idx++;
959 }
960
961 return next_spe;
962 }
963
964 /* must be called under the spq lock */
965 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
966 {
967 int func = SC_FUNC(sc);
968
969 /*
970 * Make sure that BD data is updated before writing the producer.
971 * BD data is written to the memory, the producer is read from the
972 * memory, thus we need a full memory barrier to ensure the ordering.
973 */
974 mb();
975
976 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
977 sc->spq_prod_idx);
978
979 mb();
980 }
981
982 /**
983 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
984 *
985 * @cmd: command to check
986 * @cmd_type: command type
987 */
988 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
989 {
990 if ((cmd_type == NONE_CONNECTION_TYPE) ||
991 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
992 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
993 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
994 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
995 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
996 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
997 return TRUE;
998 } else {
999 return FALSE;
1000 }
1001 }
1002
1003 /**
1004 * bnx2x_sp_post - place a single command on an SP ring
1005 *
1006 * @sc: driver handle
1007 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
1008 * @cid: SW CID the command is related to
1009 * @data_hi: command private data address (high 32 bits)
1010 * @data_lo: command private data address (low 32 bits)
1011 * @cmd_type: command type (e.g. NONE, ETH)
1012 *
1013 * SP data is handled as if it's always an address pair, thus data fields are
1014 * not swapped to little endian in upper functions. Instead this function swaps
1015 * data as if it's two uint32 fields.
1016 */
1017 int
1018 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1019 uint32_t data_lo, int cmd_type)
1020 {
1021 struct eth_spe *spe;
1022 uint16_t type;
1023 int common;
1024
1025 common = bnx2x_is_contextless_ramrod(command, cmd_type);
1026
1027 if (common) {
1028 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1029 PMD_DRV_LOG(INFO, "EQ ring is full!");
1030 return -1;
1031 }
1032 } else {
1033 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1034 PMD_DRV_LOG(INFO, "SPQ ring is full!");
1035 return -1;
1036 }
1037 }
1038
1039 spe = bnx2x_sp_get_next(sc);
1040
1041 /* CID needs port number to be encoded int it */
1042 spe->hdr.conn_and_cmd_data =
1043 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1044
1045 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1046
1047 /* TBD: Check if it works for VFs */
1048 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1049 SPE_HDR_FUNCTION_ID);
1050
1051 spe->hdr.type = htole16(type);
1052
1053 spe->data.update_data_addr.hi = htole32(data_hi);
1054 spe->data.update_data_addr.lo = htole32(data_lo);
1055
1056 /*
1057 * It's ok if the actual decrement is issued towards the memory
1058 * somewhere between the lock and unlock. Thus no more explict
1059 * memory barrier is needed.
1060 */
1061 if (common) {
1062 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1063 } else {
1064 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1065 }
1066
1067 PMD_DRV_LOG(DEBUG,
1068 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1069 "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1070 sc->spq_prod_idx,
1071 (uint32_t) U64_HI(sc->spq_dma.paddr),
1072 (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1073 (uint8_t *) sc->spq_prod_bd -
1074 (uint8_t *) sc->spq), command, common,
1075 HW_CID(sc, cid), data_hi, data_lo, type,
1076 atomic_load_acq_long(&sc->cq_spq_left),
1077 atomic_load_acq_long(&sc->eq_spq_left));
1078
1079 bnx2x_sp_prod_update(sc);
1080
1081 return 0;
1082 }
1083
1084 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1085 {
1086 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1087 sc->fw_drv_pulse_wr_seq);
1088 }
1089
1090 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1091 {
1092 uint16_t hw_cons;
1093 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1094
1095 if (unlikely(!txq)) {
1096 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1097 return 0;
1098 }
1099
1100 mb(); /* status block fields can change */
1101 hw_cons = le16toh(*fp->tx_cons_sb);
1102 return hw_cons != txq->tx_pkt_head;
1103 }
1104
1105 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1106 {
1107 /* expand this for multi-cos if ever supported */
1108 return bnx2x_tx_queue_has_work(fp);
1109 }
1110
1111 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1112 {
1113 uint16_t rx_cq_cons_sb;
1114 struct bnx2x_rx_queue *rxq;
1115 rxq = fp->sc->rx_queues[fp->index];
1116 if (unlikely(!rxq)) {
1117 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1118 return 0;
1119 }
1120
1121 mb(); /* status block fields can change */
1122 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1123 if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1124 MAX_RCQ_ENTRIES(rxq)))
1125 rx_cq_cons_sb++;
1126 return rxq->rx_cq_head != rx_cq_cons_sb;
1127 }
1128
1129 static void
1130 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1131 union eth_rx_cqe *rr_cqe)
1132 {
1133 #ifdef RTE_LIBRTE_BNX2X_DEBUG
1134 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1135 #endif
1136 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1137 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1138 struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1139
1140 PMD_DRV_LOG(DEBUG,
1141 "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1142 fp->index, cid, command, sc->state,
1143 rr_cqe->ramrod_cqe.ramrod_type);
1144
1145 switch (command) {
1146 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1147 PMD_DRV_LOG(DEBUG, "got UPDATE ramrod. CID %d", cid);
1148 drv_cmd = ECORE_Q_CMD_UPDATE;
1149 break;
1150
1151 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1152 PMD_DRV_LOG(DEBUG, "got MULTI[%d] setup ramrod", cid);
1153 drv_cmd = ECORE_Q_CMD_SETUP;
1154 break;
1155
1156 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1157 PMD_DRV_LOG(DEBUG, "got MULTI[%d] tx-only setup ramrod", cid);
1158 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1159 break;
1160
1161 case (RAMROD_CMD_ID_ETH_HALT):
1162 PMD_DRV_LOG(DEBUG, "got MULTI[%d] halt ramrod", cid);
1163 drv_cmd = ECORE_Q_CMD_HALT;
1164 break;
1165
1166 case (RAMROD_CMD_ID_ETH_TERMINATE):
1167 PMD_DRV_LOG(DEBUG, "got MULTI[%d] teminate ramrod", cid);
1168 drv_cmd = ECORE_Q_CMD_TERMINATE;
1169 break;
1170
1171 case (RAMROD_CMD_ID_ETH_EMPTY):
1172 PMD_DRV_LOG(DEBUG, "got MULTI[%d] empty ramrod", cid);
1173 drv_cmd = ECORE_Q_CMD_EMPTY;
1174 break;
1175
1176 default:
1177 PMD_DRV_LOG(DEBUG,
1178 "ERROR: unexpected MC reply (%d)"
1179 "on fp[%d]", command, fp->index);
1180 return;
1181 }
1182
1183 if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1184 q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1185 /*
1186 * q_obj->complete_cmd() failure means that this was
1187 * an unexpected completion.
1188 *
1189 * In this case we don't want to increase the sc->spq_left
1190 * because apparently we haven't sent this command the first
1191 * place.
1192 */
1193 // rte_panic("Unexpected SP completion");
1194 return;
1195 }
1196
1197 atomic_add_acq_long(&sc->cq_spq_left, 1);
1198
1199 PMD_DRV_LOG(DEBUG, "sc->cq_spq_left 0x%lx",
1200 atomic_load_acq_long(&sc->cq_spq_left));
1201 }
1202
1203 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1204 {
1205 struct bnx2x_rx_queue *rxq;
1206 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1207 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1208
1209 rxq = sc->rx_queues[fp->index];
1210 if (!rxq) {
1211 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1212 return 0;
1213 }
1214
1215 /* CQ "next element" is of the size of the regular element */
1216 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1217 if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1218 USABLE_RCQ_ENTRIES_PER_PAGE)) {
1219 hw_cq_cons++;
1220 }
1221
1222 bd_cons = rxq->rx_bd_head;
1223 bd_prod = rxq->rx_bd_tail;
1224 bd_prod_fw = bd_prod;
1225 sw_cq_cons = rxq->rx_cq_head;
1226 sw_cq_prod = rxq->rx_cq_tail;
1227
1228 /*
1229 * Memory barrier necessary as speculative reads of the rx
1230 * buffer can be ahead of the index in the status block
1231 */
1232 rmb();
1233
1234 while (sw_cq_cons != hw_cq_cons) {
1235 union eth_rx_cqe *cqe;
1236 struct eth_fast_path_rx_cqe *cqe_fp;
1237 uint8_t cqe_fp_flags;
1238 enum eth_rx_cqe_type cqe_fp_type;
1239
1240 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1241 bd_prod = RX_BD(bd_prod, rxq);
1242 bd_cons = RX_BD(bd_cons, rxq);
1243
1244 cqe = &rxq->cq_ring[comp_ring_cons];
1245 cqe_fp = &cqe->fast_path_cqe;
1246 cqe_fp_flags = cqe_fp->type_error_flags;
1247 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1248
1249 /* is this a slowpath msg? */
1250 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1251 bnx2x_sp_event(sc, fp, cqe);
1252 goto next_cqe;
1253 }
1254
1255 /* is this an error packet? */
1256 if (unlikely(cqe_fp_flags &
1257 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1258 PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1259 cqe_fp_flags, sw_cq_cons);
1260 goto next_rx;
1261 }
1262
1263 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1264
1265 next_rx:
1266 bd_cons = NEXT_RX_BD(bd_cons);
1267 bd_prod = NEXT_RX_BD(bd_prod);
1268 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1269
1270 next_cqe:
1271 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1272 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1273
1274 } /* while work to do */
1275
1276 rxq->rx_bd_head = bd_cons;
1277 rxq->rx_bd_tail = bd_prod_fw;
1278 rxq->rx_cq_head = sw_cq_cons;
1279 rxq->rx_cq_tail = sw_cq_prod;
1280
1281 /* Update producers */
1282 bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1283
1284 return sw_cq_cons != hw_cq_cons;
1285 }
1286
1287 static uint16_t
1288 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1289 uint16_t pkt_idx, uint16_t bd_idx)
1290 {
1291 struct eth_tx_start_bd *tx_start_bd =
1292 &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1293 uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1294 struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1295
1296 if (likely(tx_mbuf != NULL)) {
1297 rte_pktmbuf_free_seg(tx_mbuf);
1298 } else {
1299 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1300 fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1301 }
1302
1303 txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1304 txq->nb_tx_avail += nbd;
1305
1306 while (nbd--)
1307 bd_idx = NEXT_TX_BD(bd_idx);
1308
1309 return bd_idx;
1310 }
1311
1312 /* processes transmit completions */
1313 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1314 {
1315 uint16_t bd_cons, hw_cons, sw_cons;
1316 __rte_unused uint16_t tx_bd_avail;
1317
1318 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1319
1320 if (unlikely(!txq)) {
1321 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1322 return 0;
1323 }
1324
1325 bd_cons = txq->tx_bd_head;
1326 hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1327 sw_cons = txq->tx_pkt_head;
1328
1329 while (sw_cons != hw_cons) {
1330 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1331 sw_cons++;
1332 }
1333
1334 txq->tx_pkt_head = sw_cons;
1335 txq->tx_bd_head = bd_cons;
1336
1337 tx_bd_avail = txq->nb_tx_avail;
1338
1339 PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1340 "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1341 fp->index, tx_bd_avail, hw_cons,
1342 txq->tx_pkt_head, txq->tx_pkt_tail,
1343 txq->tx_bd_head, txq->tx_bd_tail);
1344 return TRUE;
1345 }
1346
1347 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1348 {
1349 struct bnx2x_fastpath *fp;
1350 int i, count;
1351
1352 /* wait until all TX fastpath tasks have completed */
1353 for (i = 0; i < sc->num_queues; i++) {
1354 fp = &sc->fp[i];
1355
1356 count = 1000;
1357
1358 while (bnx2x_has_tx_work(fp)) {
1359 bnx2x_txeof(sc, fp);
1360
1361 if (count == 0) {
1362 PMD_TX_LOG(ERR,
1363 "Timeout waiting for fp[%d] "
1364 "transmits to complete!", i);
1365 rte_panic("tx drain failure");
1366 return;
1367 }
1368
1369 count--;
1370 DELAY(1000);
1371 rmb();
1372 }
1373 }
1374
1375 return;
1376 }
1377
1378 static int
1379 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1380 int mac_type, uint8_t wait_for_comp)
1381 {
1382 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1383 int rc;
1384
1385 /* wait for completion of requested */
1386 if (wait_for_comp) {
1387 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1388 }
1389
1390 /* Set the mac type of addresses we want to clear */
1391 bnx2x_set_bit(mac_type, &vlan_mac_flags);
1392
1393 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1394 if (rc < 0)
1395 PMD_DRV_LOG(ERR, "Failed to delete MACs (%d)", rc);
1396
1397 return rc;
1398 }
1399
1400 static int
1401 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1402 unsigned long *rx_accept_flags,
1403 unsigned long *tx_accept_flags)
1404 {
1405 /* Clear the flags first */
1406 *rx_accept_flags = 0;
1407 *tx_accept_flags = 0;
1408
1409 switch (rx_mode) {
1410 case BNX2X_RX_MODE_NONE:
1411 /*
1412 * 'drop all' supersedes any accept flags that may have been
1413 * passed to the function.
1414 */
1415 break;
1416
1417 case BNX2X_RX_MODE_NORMAL:
1418 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1419 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1420 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1421
1422 /* internal switching mode */
1423 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1424 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1425 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1426
1427 break;
1428
1429 case BNX2X_RX_MODE_ALLMULTI:
1430 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1431 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1432 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1433
1434 /* internal switching mode */
1435 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1436 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1437 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1438
1439 break;
1440
1441 case BNX2X_RX_MODE_PROMISC:
1442 /*
1443 * According to deffinition of SI mode, iface in promisc mode
1444 * should receive matched and unmatched (in resolution of port)
1445 * unicast packets.
1446 */
1447 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1448 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1449 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1450 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1451
1452 /* internal switching mode */
1453 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1454 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1455
1456 if (IS_MF_SI(sc)) {
1457 bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1458 } else {
1459 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1460 }
1461
1462 break;
1463
1464 default:
1465 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1466 return -1;
1467 }
1468
1469 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1470 if (rx_mode != BNX2X_RX_MODE_NONE) {
1471 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1472 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1473 }
1474
1475 return 0;
1476 }
1477
1478 static int
1479 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1480 unsigned long rx_mode_flags,
1481 unsigned long rx_accept_flags,
1482 unsigned long tx_accept_flags, unsigned long ramrod_flags)
1483 {
1484 struct ecore_rx_mode_ramrod_params ramrod_param;
1485 int rc;
1486
1487 memset(&ramrod_param, 0, sizeof(ramrod_param));
1488
1489 /* Prepare ramrod parameters */
1490 ramrod_param.cid = 0;
1491 ramrod_param.cl_id = cl_id;
1492 ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1493 ramrod_param.func_id = SC_FUNC(sc);
1494
1495 ramrod_param.pstate = &sc->sp_state;
1496 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1497
1498 ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1499 ramrod_param.rdata_mapping =
1500 (phys_addr_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1501 bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1502
1503 ramrod_param.ramrod_flags = ramrod_flags;
1504 ramrod_param.rx_mode_flags = rx_mode_flags;
1505
1506 ramrod_param.rx_accept_flags = rx_accept_flags;
1507 ramrod_param.tx_accept_flags = tx_accept_flags;
1508
1509 rc = ecore_config_rx_mode(sc, &ramrod_param);
1510 if (rc < 0) {
1511 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1512 return rc;
1513 }
1514
1515 return 0;
1516 }
1517
1518 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1519 {
1520 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1521 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1522 int rc;
1523
1524 rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1525 &tx_accept_flags);
1526 if (rc) {
1527 return rc;
1528 }
1529
1530 bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1531 bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1532 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1533
1534 return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1535 rx_accept_flags, tx_accept_flags,
1536 ramrod_flags);
1537 }
1538
1539 /* returns the "mcp load_code" according to global load_count array */
1540 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1541 {
1542 int path = SC_PATH(sc);
1543 int port = SC_PORT(sc);
1544
1545 PMD_DRV_LOG(INFO, "NO MCP - load counts[%d] %d, %d, %d",
1546 path, load_count[path][0], load_count[path][1],
1547 load_count[path][2]);
1548
1549 load_count[path][0]++;
1550 load_count[path][1 + port]++;
1551 PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d] %d, %d, %d",
1552 path, load_count[path][0], load_count[path][1],
1553 load_count[path][2]);
1554 if (load_count[path][0] == 1)
1555 return FW_MSG_CODE_DRV_LOAD_COMMON;
1556 else if (load_count[path][1 + port] == 1)
1557 return FW_MSG_CODE_DRV_LOAD_PORT;
1558 else
1559 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1560 }
1561
1562 /* returns the "mcp load_code" according to global load_count array */
1563 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1564 {
1565 int port = SC_PORT(sc);
1566 int path = SC_PATH(sc);
1567
1568 PMD_DRV_LOG(INFO, "NO MCP - load counts[%d] %d, %d, %d",
1569 path, load_count[path][0], load_count[path][1],
1570 load_count[path][2]);
1571 load_count[path][0]--;
1572 load_count[path][1 + port]--;
1573 PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d] %d, %d, %d",
1574 path, load_count[path][0], load_count[path][1],
1575 load_count[path][2]);
1576 if (load_count[path][0] == 0) {
1577 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1578 } else if (load_count[path][1 + port] == 0) {
1579 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1580 } else {
1581 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1582 }
1583 }
1584
1585 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1586 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1587 {
1588 uint32_t reset_code = 0;
1589
1590 /* Select the UNLOAD request mode */
1591 if (unload_mode == UNLOAD_NORMAL) {
1592 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1593 } else {
1594 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1595 }
1596
1597 /* Send the request to the MCP */
1598 if (!BNX2X_NOMCP(sc)) {
1599 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1600 } else {
1601 reset_code = bnx2x_nic_unload_no_mcp(sc);
1602 }
1603
1604 return reset_code;
1605 }
1606
1607 /* send UNLOAD_DONE command to the MCP */
1608 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1609 {
1610 uint32_t reset_param =
1611 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1612
1613 /* Report UNLOAD_DONE to MCP */
1614 if (!BNX2X_NOMCP(sc)) {
1615 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1616 }
1617 }
1618
1619 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1620 {
1621 int tout = 50;
1622
1623 if (!sc->port.pmf) {
1624 return 0;
1625 }
1626
1627 /*
1628 * (assumption: No Attention from MCP at this stage)
1629 * PMF probably in the middle of TX disable/enable transaction
1630 * 1. Sync IRS for default SB
1631 * 2. Sync SP queue - this guarantees us that attention handling started
1632 * 3. Wait, that TX disable/enable transaction completes
1633 *
1634 * 1+2 guarantee that if DCBX attention was scheduled it already changed
1635 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1636 * received completion for the transaction the state is TX_STOPPED.
1637 * State will return to STARTED after completion of TX_STOPPED-->STARTED
1638 * transaction.
1639 */
1640
1641 while (ecore_func_get_state(sc, &sc->func_obj) !=
1642 ECORE_F_STATE_STARTED && tout--) {
1643 DELAY(20000);
1644 }
1645
1646 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1647 /*
1648 * Failed to complete the transaction in a "good way"
1649 * Force both transactions with CLR bit.
1650 */
1651 struct ecore_func_state_params func_params = { NULL };
1652
1653 PMD_DRV_LOG(NOTICE, "Unexpected function state! "
1654 "Forcing STARTED-->TX_STOPPED-->STARTED");
1655
1656 func_params.f_obj = &sc->func_obj;
1657 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1658
1659 /* STARTED-->TX_STOPPED */
1660 func_params.cmd = ECORE_F_CMD_TX_STOP;
1661 ecore_func_state_change(sc, &func_params);
1662
1663 /* TX_STOPPED-->STARTED */
1664 func_params.cmd = ECORE_F_CMD_TX_START;
1665 return ecore_func_state_change(sc, &func_params);
1666 }
1667
1668 return 0;
1669 }
1670
1671 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1672 {
1673 struct bnx2x_fastpath *fp = &sc->fp[index];
1674 struct ecore_queue_state_params q_params = { NULL };
1675 int rc;
1676
1677 PMD_DRV_LOG(DEBUG, "stopping queue %d cid %d", index, fp->index);
1678
1679 q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1680 /* We want to wait for completion in this context */
1681 bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1682
1683 /* Stop the primary connection: */
1684
1685 /* ...halt the connection */
1686 q_params.cmd = ECORE_Q_CMD_HALT;
1687 rc = ecore_queue_state_change(sc, &q_params);
1688 if (rc) {
1689 return rc;
1690 }
1691
1692 /* ...terminate the connection */
1693 q_params.cmd = ECORE_Q_CMD_TERMINATE;
1694 memset(&q_params.params.terminate, 0,
1695 sizeof(q_params.params.terminate));
1696 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1697 rc = ecore_queue_state_change(sc, &q_params);
1698 if (rc) {
1699 return rc;
1700 }
1701
1702 /* ...delete cfc entry */
1703 q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1704 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1705 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1706 return ecore_queue_state_change(sc, &q_params);
1707 }
1708
1709 /* wait for the outstanding SP commands */
1710 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1711 {
1712 unsigned long tmp;
1713 int tout = 5000; /* wait for 5 secs tops */
1714
1715 while (tout--) {
1716 mb();
1717 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1718 return TRUE;
1719 }
1720
1721 DELAY(1000);
1722 }
1723
1724 mb();
1725
1726 tmp = atomic_load_acq_long(&sc->sp_state);
1727 if (tmp & mask) {
1728 PMD_DRV_LOG(INFO, "Filtering completion timed out: "
1729 "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1730 return FALSE;
1731 }
1732
1733 return FALSE;
1734 }
1735
1736 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1737 {
1738 struct ecore_func_state_params func_params = { NULL };
1739 int rc;
1740
1741 /* prepare parameters for function state transitions */
1742 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1743 func_params.f_obj = &sc->func_obj;
1744 func_params.cmd = ECORE_F_CMD_STOP;
1745
1746 /*
1747 * Try to stop the function the 'good way'. If it fails (in case
1748 * of a parity error during bnx2x_chip_cleanup()) and we are
1749 * not in a debug mode, perform a state transaction in order to
1750 * enable further HW_RESET transaction.
1751 */
1752 rc = ecore_func_state_change(sc, &func_params);
1753 if (rc) {
1754 PMD_DRV_LOG(NOTICE, "FUNC_STOP ramrod failed. "
1755 "Running a dry transaction");
1756 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1757 return ecore_func_state_change(sc, &func_params);
1758 }
1759
1760 return 0;
1761 }
1762
1763 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1764 {
1765 struct ecore_func_state_params func_params = { NULL };
1766
1767 /* Prepare parameters for function state transitions */
1768 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1769
1770 func_params.f_obj = &sc->func_obj;
1771 func_params.cmd = ECORE_F_CMD_HW_RESET;
1772
1773 func_params.params.hw_init.load_phase = load_code;
1774
1775 return ecore_func_state_change(sc, &func_params);
1776 }
1777
1778 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1779 {
1780 if (disable_hw) {
1781 /* prevent the HW from sending interrupts */
1782 bnx2x_int_disable(sc);
1783 }
1784 }
1785
1786 static void
1787 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1788 {
1789 int port = SC_PORT(sc);
1790 struct ecore_mcast_ramrod_params rparam = { NULL };
1791 uint32_t reset_code;
1792 int i, rc = 0;
1793
1794 bnx2x_drain_tx_queues(sc);
1795
1796 /* give HW time to discard old tx messages */
1797 DELAY(1000);
1798
1799 /* Clean all ETH MACs */
1800 rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1801 FALSE);
1802 if (rc < 0) {
1803 PMD_DRV_LOG(NOTICE, "Failed to delete all ETH MACs (%d)", rc);
1804 }
1805
1806 /* Clean up UC list */
1807 rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1808 TRUE);
1809 if (rc < 0) {
1810 PMD_DRV_LOG(NOTICE, "Failed to delete UC MACs list (%d)", rc);
1811 }
1812
1813 /* Disable LLH */
1814 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1815
1816 /* Set "drop all" to stop Rx */
1817
1818 /*
1819 * We need to take the if_maddr_lock() here in order to prevent
1820 * a race between the completion code and this code.
1821 */
1822
1823 if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1824 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1825 } else {
1826 bnx2x_set_storm_rx_mode(sc);
1827 }
1828
1829 /* Clean up multicast configuration */
1830 rparam.mcast_obj = &sc->mcast_obj;
1831 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1832 if (rc < 0) {
1833 PMD_DRV_LOG(NOTICE,
1834 "Failed to send DEL MCAST command (%d)", rc);
1835 }
1836
1837 /*
1838 * Send the UNLOAD_REQUEST to the MCP. This will return if
1839 * this function should perform FUNCTION, PORT, or COMMON HW
1840 * reset.
1841 */
1842 reset_code = bnx2x_send_unload_req(sc, unload_mode);
1843
1844 /*
1845 * (assumption: No Attention from MCP at this stage)
1846 * PMF probably in the middle of TX disable/enable transaction
1847 */
1848 rc = bnx2x_func_wait_started(sc);
1849 if (rc) {
1850 PMD_DRV_LOG(NOTICE, "bnx2x_func_wait_started failed");
1851 }
1852
1853 /*
1854 * Close multi and leading connections
1855 * Completions for ramrods are collected in a synchronous way
1856 */
1857 for (i = 0; i < sc->num_queues; i++) {
1858 if (bnx2x_stop_queue(sc, i)) {
1859 goto unload_error;
1860 }
1861 }
1862
1863 /*
1864 * If SP settings didn't get completed so far - something
1865 * very wrong has happen.
1866 */
1867 if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1868 PMD_DRV_LOG(NOTICE, "Common slow path ramrods got stuck!");
1869 }
1870
1871 unload_error:
1872
1873 rc = bnx2x_func_stop(sc);
1874 if (rc) {
1875 PMD_DRV_LOG(NOTICE, "Function stop failed!");
1876 }
1877
1878 /* disable HW interrupts */
1879 bnx2x_int_disable_sync(sc, TRUE);
1880
1881 /* Reset the chip */
1882 rc = bnx2x_reset_hw(sc, reset_code);
1883 if (rc) {
1884 PMD_DRV_LOG(NOTICE, "Hardware reset failed");
1885 }
1886
1887 /* Report UNLOAD_DONE to MCP */
1888 bnx2x_send_unload_done(sc, keep_link);
1889 }
1890
1891 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1892 {
1893 uint32_t val;
1894
1895 PMD_DRV_LOG(DEBUG, "Disabling 'close the gates'");
1896
1897 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1898 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1899 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1900 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1901 }
1902
1903 /*
1904 * Cleans the object that have internal lists without sending
1905 * ramrods. Should be run when interrutps are disabled.
1906 */
1907 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1908 {
1909 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1910 struct ecore_mcast_ramrod_params rparam = { NULL };
1911 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1912 int rc;
1913
1914 /* Cleanup MACs' object first... */
1915
1916 /* Wait for completion of requested */
1917 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1918 /* Perform a dry cleanup */
1919 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1920
1921 /* Clean ETH primary MAC */
1922 bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1923 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1924 &ramrod_flags);
1925 if (rc != 0) {
1926 PMD_DRV_LOG(NOTICE, "Failed to clean ETH MACs (%d)", rc);
1927 }
1928
1929 /* Cleanup UC list */
1930 vlan_mac_flags = 0;
1931 bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1932 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1933 if (rc != 0) {
1934 PMD_DRV_LOG(NOTICE, "Failed to clean UC list MACs (%d)", rc);
1935 }
1936
1937 /* Now clean mcast object... */
1938
1939 rparam.mcast_obj = &sc->mcast_obj;
1940 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1941
1942 /* Add a DEL command... */
1943 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1944 if (rc < 0) {
1945 PMD_DRV_LOG(NOTICE,
1946 "Failed to send DEL MCAST command (%d)", rc);
1947 }
1948
1949 /* now wait until all pending commands are cleared */
1950
1951 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1952 while (rc != 0) {
1953 if (rc < 0) {
1954 PMD_DRV_LOG(NOTICE,
1955 "Failed to clean MCAST object (%d)", rc);
1956 return;
1957 }
1958
1959 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1960 }
1961 }
1962
1963 /* stop the controller */
1964 __attribute__ ((noinline))
1965 int
1966 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1967 {
1968 uint8_t global = FALSE;
1969 uint32_t val;
1970
1971 PMD_DRV_LOG(DEBUG, "Starting NIC unload...");
1972
1973 /* stop the periodic callout */
1974 bnx2x_periodic_stop(sc);
1975
1976 /* mark driver as unloaded in shmem2 */
1977 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
1978 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
1979 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
1980 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
1981 }
1982
1983 if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
1984 (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
1985 /*
1986 * We can get here if the driver has been unloaded
1987 * during parity error recovery and is either waiting for a
1988 * leader to complete or for other functions to unload and
1989 * then ifconfig down has been issued. In this case we want to
1990 * unload and let other functions to complete a recovery
1991 * process.
1992 */
1993 sc->recovery_state = BNX2X_RECOVERY_DONE;
1994 sc->is_leader = 0;
1995 bnx2x_release_leader_lock(sc);
1996 mb();
1997
1998 PMD_DRV_LOG(NOTICE, "Can't unload in closed or error state");
1999 return -1;
2000 }
2001
2002 /*
2003 * Nothing to do during unload if previous bnx2x_nic_load()
2004 * did not completed succesfully - all resourses are released.
2005 */
2006 if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2007 return 0;
2008 }
2009
2010 sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2011 mb();
2012
2013 sc->rx_mode = BNX2X_RX_MODE_NONE;
2014 bnx2x_set_rx_mode(sc);
2015 mb();
2016
2017 if (IS_PF(sc)) {
2018 /* set ALWAYS_ALIVE bit in shmem */
2019 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2020
2021 bnx2x_drv_pulse(sc);
2022
2023 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2024 bnx2x_save_statistics(sc);
2025 }
2026
2027 /* wait till consumers catch up with producers in all queues */
2028 bnx2x_drain_tx_queues(sc);
2029
2030 /* if VF indicate to PF this function is going down (PF will delete sp
2031 * elements and clear initializations
2032 */
2033 if (IS_VF(sc)) {
2034 bnx2x_vf_unload(sc);
2035 } else if (unload_mode != UNLOAD_RECOVERY) {
2036 /* if this is a normal/close unload need to clean up chip */
2037 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2038 } else {
2039 /* Send the UNLOAD_REQUEST to the MCP */
2040 bnx2x_send_unload_req(sc, unload_mode);
2041
2042 /*
2043 * Prevent transactions to host from the functions on the
2044 * engine that doesn't reset global blocks in case of global
2045 * attention once gloabl blocks are reset and gates are opened
2046 * (the engine which leader will perform the recovery
2047 * last).
2048 */
2049 if (!CHIP_IS_E1x(sc)) {
2050 bnx2x_pf_disable(sc);
2051 }
2052
2053 /* disable HW interrupts */
2054 bnx2x_int_disable_sync(sc, TRUE);
2055
2056 /* Report UNLOAD_DONE to MCP */
2057 bnx2x_send_unload_done(sc, FALSE);
2058 }
2059
2060 /*
2061 * At this stage no more interrupts will arrive so we may safely clean
2062 * the queue'able objects here in case they failed to get cleaned so far.
2063 */
2064 if (IS_PF(sc)) {
2065 bnx2x_squeeze_objects(sc);
2066 }
2067
2068 /* There should be no more pending SP commands at this stage */
2069 sc->sp_state = 0;
2070
2071 sc->port.pmf = 0;
2072
2073 if (IS_PF(sc)) {
2074 bnx2x_free_mem(sc);
2075 }
2076
2077 bnx2x_free_fw_stats_mem(sc);
2078
2079 sc->state = BNX2X_STATE_CLOSED;
2080
2081 /*
2082 * Check if there are pending parity attentions. If there are - set
2083 * RECOVERY_IN_PROGRESS.
2084 */
2085 if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2086 bnx2x_set_reset_in_progress(sc);
2087
2088 /* Set RESET_IS_GLOBAL if needed */
2089 if (global) {
2090 bnx2x_set_reset_global(sc);
2091 }
2092 }
2093
2094 /*
2095 * The last driver must disable a "close the gate" if there is no
2096 * parity attention or "process kill" pending.
2097 */
2098 if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2099 bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2100 bnx2x_disable_close_the_gate(sc);
2101 }
2102
2103 PMD_DRV_LOG(DEBUG, "Ended NIC unload");
2104
2105 return 0;
2106 }
2107
2108 /*
2109 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2110 * visible to the controller.
2111 *
2112 * If an mbuf is submitted to this routine and cannot be given to the
2113 * controller (e.g. it has too many fragments) then the function may free
2114 * the mbuf and return to the caller.
2115 *
2116 * Returns:
2117 * int: Number of TX BDs used for the mbuf
2118 *
2119 * Note the side effect that an mbuf may be freed if it causes a problem.
2120 */
2121 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2122 {
2123 struct eth_tx_start_bd *tx_start_bd;
2124 uint16_t bd_prod, pkt_prod;
2125 struct bnx2x_softc *sc;
2126 uint32_t nbds = 0;
2127
2128 sc = txq->sc;
2129 bd_prod = txq->tx_bd_tail;
2130 pkt_prod = txq->tx_pkt_tail;
2131
2132 txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2133
2134 tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2135
2136 tx_start_bd->addr =
2137 rte_cpu_to_le_64(rte_mbuf_data_dma_addr(m0));
2138 tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2139 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2140 tx_start_bd->general_data =
2141 (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2142
2143 tx_start_bd->nbd = rte_cpu_to_le_16(2);
2144
2145 if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2146 tx_start_bd->vlan_or_ethertype =
2147 rte_cpu_to_le_16(m0->vlan_tci);
2148 tx_start_bd->bd_flags.as_bitfield |=
2149 (X_ETH_OUTBAND_VLAN <<
2150 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2151 } else {
2152 if (IS_PF(sc))
2153 tx_start_bd->vlan_or_ethertype =
2154 rte_cpu_to_le_16(pkt_prod);
2155 else {
2156 struct ether_hdr *eh =
2157 rte_pktmbuf_mtod(m0, struct ether_hdr *);
2158
2159 tx_start_bd->vlan_or_ethertype =
2160 rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2161 }
2162 }
2163
2164 bd_prod = NEXT_TX_BD(bd_prod);
2165 if (IS_VF(sc)) {
2166 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2167 const struct ether_hdr *eh =
2168 rte_pktmbuf_mtod(m0, struct ether_hdr *);
2169 uint8_t mac_type = UNICAST_ADDRESS;
2170
2171 tx_parse_bd =
2172 &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2173 if (is_multicast_ether_addr(&eh->d_addr)) {
2174 if (is_broadcast_ether_addr(&eh->d_addr))
2175 mac_type = BROADCAST_ADDRESS;
2176 else
2177 mac_type = MULTICAST_ADDRESS;
2178 }
2179 tx_parse_bd->parsing_data =
2180 (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2181
2182 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2183 &eh->d_addr.addr_bytes[0], 2);
2184 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2185 &eh->d_addr.addr_bytes[2], 2);
2186 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2187 &eh->d_addr.addr_bytes[4], 2);
2188 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2189 &eh->s_addr.addr_bytes[0], 2);
2190 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2191 &eh->s_addr.addr_bytes[2], 2);
2192 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2193 &eh->s_addr.addr_bytes[4], 2);
2194
2195 tx_parse_bd->data.mac_addr.dst_hi =
2196 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2197 tx_parse_bd->data.mac_addr.dst_mid =
2198 rte_cpu_to_be_16(tx_parse_bd->data.
2199 mac_addr.dst_mid);
2200 tx_parse_bd->data.mac_addr.dst_lo =
2201 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2202 tx_parse_bd->data.mac_addr.src_hi =
2203 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2204 tx_parse_bd->data.mac_addr.src_mid =
2205 rte_cpu_to_be_16(tx_parse_bd->data.
2206 mac_addr.src_mid);
2207 tx_parse_bd->data.mac_addr.src_lo =
2208 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2209
2210 PMD_TX_LOG(DEBUG,
2211 "PBD dst %x %x %x src %x %x %x p_data %x",
2212 tx_parse_bd->data.mac_addr.dst_hi,
2213 tx_parse_bd->data.mac_addr.dst_mid,
2214 tx_parse_bd->data.mac_addr.dst_lo,
2215 tx_parse_bd->data.mac_addr.src_hi,
2216 tx_parse_bd->data.mac_addr.src_mid,
2217 tx_parse_bd->data.mac_addr.src_lo,
2218 tx_parse_bd->parsing_data);
2219 }
2220
2221 PMD_TX_LOG(DEBUG,
2222 "start bd: nbytes %d flags %x vlan %x\n",
2223 tx_start_bd->nbytes,
2224 tx_start_bd->bd_flags.as_bitfield,
2225 tx_start_bd->vlan_or_ethertype);
2226
2227 bd_prod = NEXT_TX_BD(bd_prod);
2228 pkt_prod++;
2229
2230 if (TX_IDX(bd_prod) < 2)
2231 nbds++;
2232
2233 txq->nb_tx_avail -= 2;
2234 txq->tx_bd_tail = bd_prod;
2235 txq->tx_pkt_tail = pkt_prod;
2236
2237 return nbds + 2;
2238 }
2239
2240 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2241 {
2242 return L2_ILT_LINES(sc);
2243 }
2244
2245 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2246 {
2247 struct ilt_client_info *ilt_client;
2248 struct ecore_ilt *ilt = sc->ilt;
2249 uint16_t line = 0;
2250
2251 PMD_INIT_FUNC_TRACE();
2252
2253 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2254
2255 /* CDU */
2256 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2257 ilt_client->client_num = ILT_CLIENT_CDU;
2258 ilt_client->page_size = CDU_ILT_PAGE_SZ;
2259 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2260 ilt_client->start = line;
2261 line += bnx2x_cid_ilt_lines(sc);
2262
2263 if (CNIC_SUPPORT(sc)) {
2264 line += CNIC_ILT_LINES;
2265 }
2266
2267 ilt_client->end = (line - 1);
2268
2269 /* QM */
2270 if (QM_INIT(sc->qm_cid_count)) {
2271 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2272 ilt_client->client_num = ILT_CLIENT_QM;
2273 ilt_client->page_size = QM_ILT_PAGE_SZ;
2274 ilt_client->flags = 0;
2275 ilt_client->start = line;
2276
2277 /* 4 bytes for each cid */
2278 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2279 QM_ILT_PAGE_SZ);
2280
2281 ilt_client->end = (line - 1);
2282 }
2283
2284 if (CNIC_SUPPORT(sc)) {
2285 /* SRC */
2286 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2287 ilt_client->client_num = ILT_CLIENT_SRC;
2288 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2289 ilt_client->flags = 0;
2290 ilt_client->start = line;
2291 line += SRC_ILT_LINES;
2292 ilt_client->end = (line - 1);
2293
2294 /* TM */
2295 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2296 ilt_client->client_num = ILT_CLIENT_TM;
2297 ilt_client->page_size = TM_ILT_PAGE_SZ;
2298 ilt_client->flags = 0;
2299 ilt_client->start = line;
2300 line += TM_ILT_LINES;
2301 ilt_client->end = (line - 1);
2302 }
2303
2304 assert((line <= ILT_MAX_LINES));
2305 }
2306
2307 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2308 {
2309 int i;
2310
2311 for (i = 0; i < sc->num_queues; i++) {
2312 /* get the Rx buffer size for RX frames */
2313 sc->fp[i].rx_buf_size =
2314 (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2315 }
2316 }
2317
2318 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2319 {
2320
2321 sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2322
2323 return sc->ilt == NULL;
2324 }
2325
2326 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2327 {
2328 sc->ilt->lines = rte_calloc("",
2329 sizeof(struct ilt_line), ILT_MAX_LINES,
2330 RTE_CACHE_LINE_SIZE);
2331 return sc->ilt->lines == NULL;
2332 }
2333
2334 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2335 {
2336 rte_free(sc->ilt);
2337 sc->ilt = NULL;
2338 }
2339
2340 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2341 {
2342 if (sc->ilt->lines != NULL) {
2343 rte_free(sc->ilt->lines);
2344 sc->ilt->lines = NULL;
2345 }
2346 }
2347
2348 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2349 {
2350 uint32_t i;
2351
2352 for (i = 0; i < L2_ILT_LINES(sc); i++) {
2353 sc->context[i].vcxt = NULL;
2354 sc->context[i].size = 0;
2355 }
2356
2357 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2358
2359 bnx2x_free_ilt_lines_mem(sc);
2360 }
2361
2362 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2363 {
2364 int context_size;
2365 int allocated;
2366 int i;
2367 char cdu_name[RTE_MEMZONE_NAMESIZE];
2368
2369 /*
2370 * Allocate memory for CDU context:
2371 * This memory is allocated separately and not in the generic ILT
2372 * functions because CDU differs in few aspects:
2373 * 1. There can be multiple entities allocating memory for context -
2374 * regular L2, CNIC, and SRIOV drivers. Each separately controls
2375 * its own ILT lines.
2376 * 2. Since CDU page-size is not a single 4KB page (which is the case
2377 * for the other ILT clients), to be efficient we want to support
2378 * allocation of sub-page-size in the last entry.
2379 * 3. Context pointers are used by the driver to pass to FW / update
2380 * the context (for the other ILT clients the pointers are used just to
2381 * free the memory during unload).
2382 */
2383 context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2384 for (i = 0, allocated = 0; allocated < context_size; i++) {
2385 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2386 (context_size - allocated));
2387
2388 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2389 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2390 &sc->context[i].vcxt_dma,
2391 cdu_name, BNX2X_PAGE_SIZE) != 0) {
2392 bnx2x_free_mem(sc);
2393 return -1;
2394 }
2395
2396 sc->context[i].vcxt =
2397 (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2398
2399 allocated += sc->context[i].size;
2400 }
2401
2402 bnx2x_alloc_ilt_lines_mem(sc);
2403
2404 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2405 PMD_DRV_LOG(NOTICE, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2406 bnx2x_free_mem(sc);
2407 return -1;
2408 }
2409
2410 return 0;
2411 }
2412
2413 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2414 {
2415 sc->fw_stats_num = 0;
2416
2417 sc->fw_stats_req_size = 0;
2418 sc->fw_stats_req = NULL;
2419 sc->fw_stats_req_mapping = 0;
2420
2421 sc->fw_stats_data_size = 0;
2422 sc->fw_stats_data = NULL;
2423 sc->fw_stats_data_mapping = 0;
2424 }
2425
2426 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2427 {
2428 uint8_t num_queue_stats;
2429 int num_groups, vf_headroom = 0;
2430
2431 /* number of queues for statistics is number of eth queues */
2432 num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2433
2434 /*
2435 * Total number of FW statistics requests =
2436 * 1 for port stats + 1 for PF stats + num of queues
2437 */
2438 sc->fw_stats_num = (2 + num_queue_stats);
2439
2440 /*
2441 * Request is built from stats_query_header and an array of
2442 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2443 * rules. The real number or requests is configured in the
2444 * stats_query_header.
2445 */
2446 num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2447 if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2448 num_groups++;
2449
2450 sc->fw_stats_req_size =
2451 (sizeof(struct stats_query_header) +
2452 (num_groups * sizeof(struct stats_query_cmd_group)));
2453
2454 /*
2455 * Data for statistics requests + stats_counter.
2456 * stats_counter holds per-STORM counters that are incremented when
2457 * STORM has finished with the current request. Memory for FCoE
2458 * offloaded statistics are counted anyway, even if they will not be sent.
2459 * VF stats are not accounted for here as the data of VF stats is stored
2460 * in memory allocated by the VF, not here.
2461 */
2462 sc->fw_stats_data_size =
2463 (sizeof(struct stats_counter) +
2464 sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2465 /* sizeof(struct fcoe_statistics_params) + */
2466 (sizeof(struct per_queue_stats) * num_queue_stats));
2467
2468 if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2469 &sc->fw_stats_dma, "fw_stats",
2470 RTE_CACHE_LINE_SIZE) != 0) {
2471 bnx2x_free_fw_stats_mem(sc);
2472 return -1;
2473 }
2474
2475 /* set up the shortcuts */
2476
2477 sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2478 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2479
2480 sc->fw_stats_data =
2481 (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2482 sc->fw_stats_req_size);
2483 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2484 sc->fw_stats_req_size);
2485
2486 return 0;
2487 }
2488
2489 /*
2490 * Bits map:
2491 * 0-7 - Engine0 load counter.
2492 * 8-15 - Engine1 load counter.
2493 * 16 - Engine0 RESET_IN_PROGRESS bit.
2494 * 17 - Engine1 RESET_IN_PROGRESS bit.
2495 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
2496 * function on the engine
2497 * 19 - Engine1 ONE_IS_LOADED.
2498 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
2499 * leader to complete (check for both RESET_IN_PROGRESS bits and not
2500 * for just the one belonging to its engine).
2501 */
2502 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
2503 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
2504 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
2505 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
2506 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
2507 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2508 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2509 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
2510
2511 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2512 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2513 {
2514 uint32_t val;
2515 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2516 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2517 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2518 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2519 }
2520
2521 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2522 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2523 {
2524 uint32_t val;
2525 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2526 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2527 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2528 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2529 }
2530
2531 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2532 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2533 {
2534 return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2535 }
2536
2537 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2538 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2539 {
2540 uint32_t val;
2541 uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2542 BNX2X_PATH0_RST_IN_PROG_BIT;
2543
2544 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2545
2546 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2547 /* Clear the bit */
2548 val &= ~bit;
2549 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2550
2551 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2552 }
2553
2554 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2555 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2556 {
2557 uint32_t val;
2558 uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2559 BNX2X_PATH0_RST_IN_PROG_BIT;
2560
2561 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2562
2563 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2564 /* Set the bit */
2565 val |= bit;
2566 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2567
2568 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2569 }
2570
2571 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2572 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2573 {
2574 uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2575 uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2576 BNX2X_PATH0_RST_IN_PROG_BIT;
2577
2578 /* return false if bit is set */
2579 return (val & bit) ? FALSE : TRUE;
2580 }
2581
2582 /* get the load status for an engine, should be run under rtnl lock */
2583 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2584 {
2585 uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2586 BNX2X_PATH0_LOAD_CNT_MASK;
2587 uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2588 BNX2X_PATH0_LOAD_CNT_SHIFT;
2589 uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2590
2591 val = ((val & mask) >> shift);
2592
2593 return val != 0;
2594 }
2595
2596 /* set pf load mark */
2597 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2598 {
2599 uint32_t val;
2600 uint32_t val1;
2601 uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2602 BNX2X_PATH0_LOAD_CNT_MASK;
2603 uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2604 BNX2X_PATH0_LOAD_CNT_SHIFT;
2605
2606 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2607
2608 PMD_INIT_FUNC_TRACE();
2609
2610 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2611
2612 /* get the current counter value */
2613 val1 = ((val & mask) >> shift);
2614
2615 /* set bit of this PF */
2616 val1 |= (1 << SC_ABS_FUNC(sc));
2617
2618 /* clear the old value */
2619 val &= ~mask;
2620
2621 /* set the new one */
2622 val |= ((val1 << shift) & mask);
2623
2624 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2625
2626 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2627 }
2628
2629 /* clear pf load mark */
2630 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2631 {
2632 uint32_t val1, val;
2633 uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2634 BNX2X_PATH0_LOAD_CNT_MASK;
2635 uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2636 BNX2X_PATH0_LOAD_CNT_SHIFT;
2637
2638 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2639 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2640
2641 /* get the current counter value */
2642 val1 = (val & mask) >> shift;
2643
2644 /* clear bit of that PF */
2645 val1 &= ~(1 << SC_ABS_FUNC(sc));
2646
2647 /* clear the old value */
2648 val &= ~mask;
2649
2650 /* set the new one */
2651 val |= ((val1 << shift) & mask);
2652
2653 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2654 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2655 return val1 != 0;
2656 }
2657
2658 /* send load requrest to mcp and analyze response */
2659 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2660 {
2661 PMD_INIT_FUNC_TRACE();
2662
2663 /* init fw_seq */
2664 sc->fw_seq =
2665 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2666 DRV_MSG_SEQ_NUMBER_MASK);
2667
2668 PMD_DRV_LOG(DEBUG, "initial fw_seq 0x%04x", sc->fw_seq);
2669
2670 #ifdef BNX2X_PULSE
2671 /* get the current FW pulse sequence */
2672 sc->fw_drv_pulse_wr_seq =
2673 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2674 DRV_PULSE_SEQ_MASK);
2675 #else
2676 /* set ALWAYS_ALIVE bit in shmem */
2677 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2678 bnx2x_drv_pulse(sc);
2679 #endif
2680
2681 /* load request */
2682 (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2683 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2684
2685 /* if the MCP fails to respond we must abort */
2686 if (!(*load_code)) {
2687 PMD_DRV_LOG(NOTICE, "MCP response failure!");
2688 return -1;
2689 }
2690
2691 /* if MCP refused then must abort */
2692 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2693 PMD_DRV_LOG(NOTICE, "MCP refused load request");
2694 return -1;
2695 }
2696
2697 return 0;
2698 }
2699
2700 /*
2701 * Check whether another PF has already loaded FW to chip. In virtualized
2702 * environments a pf from anoth VM may have already initialized the device
2703 * including loading FW.
2704 */
2705 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2706 {
2707 uint32_t my_fw, loaded_fw;
2708
2709 /* is another pf loaded on this engine? */
2710 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2711 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2712 /* build my FW version dword */
2713 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2714 (BNX2X_5710_FW_MINOR_VERSION << 8) +
2715 (BNX2X_5710_FW_REVISION_VERSION << 16) +
2716 (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2717
2718 /* read loaded FW from chip */
2719 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2720 PMD_DRV_LOG(DEBUG, "loaded FW 0x%08x / my FW 0x%08x",
2721 loaded_fw, my_fw);
2722
2723 /* abort nic load if version mismatch */
2724 if (my_fw != loaded_fw) {
2725 PMD_DRV_LOG(NOTICE,
2726 "FW 0x%08x already loaded (mine is 0x%08x)",
2727 loaded_fw, my_fw);
2728 return -1;
2729 }
2730 }
2731
2732 return 0;
2733 }
2734
2735 /* mark PMF if applicable */
2736 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2737 {
2738 uint32_t ncsi_oem_data_addr;
2739
2740 PMD_INIT_FUNC_TRACE();
2741
2742 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2743 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2744 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2745 /*
2746 * Barrier here for ordering between the writing to sc->port.pmf here
2747 * and reading it from the periodic task.
2748 */
2749 sc->port.pmf = 1;
2750 mb();
2751 } else {
2752 sc->port.pmf = 0;
2753 }
2754
2755 PMD_DRV_LOG(DEBUG, "pmf %d", sc->port.pmf);
2756
2757 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2758 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2759 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2760 if (ncsi_oem_data_addr) {
2761 REG_WR(sc,
2762 (ncsi_oem_data_addr +
2763 offsetof(struct glob_ncsi_oem_data,
2764 driver_version)), 0);
2765 }
2766 }
2767 }
2768 }
2769
2770 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2771 {
2772 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2773 int abs_func;
2774 int vn;
2775
2776 if (BNX2X_NOMCP(sc)) {
2777 return; /* what should be the default bvalue in this case */
2778 }
2779
2780 /*
2781 * The formula for computing the absolute function number is...
2782 * For 2 port configuration (4 functions per port):
2783 * abs_func = 2 * vn + SC_PORT + SC_PATH
2784 * For 4 port configuration (2 functions per port):
2785 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2786 */
2787 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2788 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2789 if (abs_func >= E1H_FUNC_MAX) {
2790 break;
2791 }
2792 sc->devinfo.mf_info.mf_config[vn] =
2793 MFCFG_RD(sc, func_mf_config[abs_func].config);
2794 }
2795
2796 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2797 FUNC_MF_CFG_FUNC_DISABLED) {
2798 PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
2799 sc->flags |= BNX2X_MF_FUNC_DIS;
2800 } else {
2801 PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
2802 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2803 }
2804 }
2805
2806 /* acquire split MCP access lock register */
2807 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2808 {
2809 uint32_t j, val;
2810
2811 for (j = 0; j < 1000; j++) {
2812 val = (1UL << 31);
2813 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2814 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2815 if (val & (1L << 31))
2816 break;
2817
2818 DELAY(5000);
2819 }
2820
2821 if (!(val & (1L << 31))) {
2822 PMD_DRV_LOG(NOTICE, "Cannot acquire MCP access lock register");
2823 return -1;
2824 }
2825
2826 return 0;
2827 }
2828
2829 /* release split MCP access lock register */
2830 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2831 {
2832 REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2833 }
2834
2835 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2836 {
2837 int port = SC_PORT(sc);
2838 uint32_t ext_phy_config;
2839
2840 /* mark the failure */
2841 ext_phy_config =
2842 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2843
2844 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2845 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2846 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2847 ext_phy_config);
2848
2849 /* log the failure */
2850 PMD_DRV_LOG(INFO,
2851 "Fan Failure has caused the driver to shutdown "
2852 "the card to prevent permanent damage. "
2853 "Please contact OEM Support for assistance");
2854
2855 rte_panic("Schedule task to handle fan failure");
2856 }
2857
2858 /* this function is called upon a link interrupt */
2859 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2860 {
2861 uint32_t pause_enabled = 0;
2862 struct host_port_stats *pstats;
2863 int cmng_fns;
2864
2865 /* Make sure that we are synced with the current statistics */
2866 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2867
2868 elink_link_update(&sc->link_params, &sc->link_vars);
2869
2870 if (sc->link_vars.link_up) {
2871
2872 /* dropless flow control */
2873 if (sc->dropless_fc) {
2874 pause_enabled = 0;
2875
2876 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2877 pause_enabled = 1;
2878 }
2879
2880 REG_WR(sc,
2881 (BAR_USTRORM_INTMEM +
2882 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2883 pause_enabled);
2884 }
2885
2886 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2887 pstats = BNX2X_SP(sc, port_stats);
2888 /* reset old mac stats */
2889 memset(&(pstats->mac_stx[0]), 0,
2890 sizeof(struct mac_stx));
2891 }
2892
2893 if (sc->state == BNX2X_STATE_OPEN) {
2894 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2895 }
2896 }
2897
2898 if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2899 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2900
2901 if (cmng_fns != CMNG_FNS_NONE) {
2902 bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2903 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2904 }
2905 }
2906
2907 bnx2x_link_report(sc);
2908
2909 if (IS_MF(sc)) {
2910 bnx2x_link_sync_notify(sc);
2911 }
2912 }
2913
2914 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2915 {
2916 int port = SC_PORT(sc);
2917 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2918 MISC_REG_AEU_MASK_ATTN_FUNC_0;
2919 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2920 NIG_REG_MASK_INTERRUPT_PORT0;
2921 uint32_t aeu_mask;
2922 uint32_t nig_mask = 0;
2923 uint32_t reg_addr;
2924 uint32_t igu_acked;
2925 uint32_t cnt;
2926
2927 if (sc->attn_state & asserted) {
2928 PMD_DRV_LOG(ERR, "IGU ERROR attn=0x%08x", asserted);
2929 }
2930
2931 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2932
2933 aeu_mask = REG_RD(sc, aeu_addr);
2934
2935 aeu_mask &= ~(asserted & 0x3ff);
2936
2937 REG_WR(sc, aeu_addr, aeu_mask);
2938
2939 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2940
2941 sc->attn_state |= asserted;
2942
2943 if (asserted & ATTN_HARD_WIRED_MASK) {
2944 if (asserted & ATTN_NIG_FOR_FUNC) {
2945
2946 /* save nig interrupt mask */
2947 nig_mask = REG_RD(sc, nig_int_mask_addr);
2948
2949 /* If nig_mask is not set, no need to call the update function */
2950 if (nig_mask) {
2951 REG_WR(sc, nig_int_mask_addr, 0);
2952
2953 bnx2x_link_attn(sc);
2954 }
2955
2956 /* handle unicore attn? */
2957 }
2958
2959 if (asserted & ATTN_SW_TIMER_4_FUNC) {
2960 PMD_DRV_LOG(DEBUG, "ATTN_SW_TIMER_4_FUNC!");
2961 }
2962
2963 if (asserted & GPIO_2_FUNC) {
2964 PMD_DRV_LOG(DEBUG, "GPIO_2_FUNC!");
2965 }
2966
2967 if (asserted & GPIO_3_FUNC) {
2968 PMD_DRV_LOG(DEBUG, "GPIO_3_FUNC!");
2969 }
2970
2971 if (asserted & GPIO_4_FUNC) {
2972 PMD_DRV_LOG(DEBUG, "GPIO_4_FUNC!");
2973 }
2974
2975 if (port == 0) {
2976 if (asserted & ATTN_GENERAL_ATTN_1) {
2977 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_1!");
2978 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
2979 }
2980 if (asserted & ATTN_GENERAL_ATTN_2) {
2981 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_2!");
2982 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
2983 }
2984 if (asserted & ATTN_GENERAL_ATTN_3) {
2985 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_3!");
2986 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
2987 }
2988 } else {
2989 if (asserted & ATTN_GENERAL_ATTN_4) {
2990 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_4!");
2991 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
2992 }
2993 if (asserted & ATTN_GENERAL_ATTN_5) {
2994 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_5!");
2995 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
2996 }
2997 if (asserted & ATTN_GENERAL_ATTN_6) {
2998 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_6!");
2999 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3000 }
3001 }
3002 }
3003 /* hardwired */
3004 if (sc->devinfo.int_block == INT_BLOCK_HC) {
3005 reg_addr =
3006 (HC_REG_COMMAND_REG + port * 32 +
3007 COMMAND_REG_ATTN_BITS_SET);
3008 } else {
3009 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3010 }
3011
3012 PMD_DRV_LOG(DEBUG, "about to mask 0x%08x at %s addr 0x%08x",
3013 asserted,
3014 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3015 reg_addr);
3016 REG_WR(sc, reg_addr, asserted);
3017
3018 /* now set back the mask */
3019 if (asserted & ATTN_NIG_FOR_FUNC) {
3020 /*
3021 * Verify that IGU ack through BAR was written before restoring
3022 * NIG mask. This loop should exit after 2-3 iterations max.
3023 */
3024 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3025 cnt = 0;
3026
3027 do {
3028 igu_acked =
3029 REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3030 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3031 && (++cnt < MAX_IGU_ATTN_ACK_TO));
3032
3033 if (!igu_acked) {
3034 PMD_DRV_LOG(ERR,
3035 "Failed to verify IGU ack on time");
3036 }
3037
3038 mb();
3039 }
3040
3041 REG_WR(sc, nig_int_mask_addr, nig_mask);
3042
3043 }
3044 }
3045
3046 static void
3047 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3048 __rte_unused const char *blk)
3049 {
3050 PMD_DRV_LOG(INFO, "%s%s", idx ? ", " : "", blk);
3051 }
3052
3053 static int
3054 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3055 uint8_t print)
3056 {
3057 uint32_t cur_bit = 0;
3058 int i = 0;
3059
3060 for (i = 0; sig; i++) {
3061 cur_bit = ((uint32_t) 0x1 << i);
3062 if (sig & cur_bit) {
3063 switch (cur_bit) {
3064 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3065 if (print)
3066 bnx2x_print_next_block(sc, par_num++,
3067 "BRB");
3068 break;
3069 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3070 if (print)
3071 bnx2x_print_next_block(sc, par_num++,
3072 "PARSER");
3073 break;
3074 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3075 if (print)
3076 bnx2x_print_next_block(sc, par_num++,
3077 "TSDM");
3078 break;
3079 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3080 if (print)
3081 bnx2x_print_next_block(sc, par_num++,
3082 "SEARCHER");
3083 break;
3084 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3085 if (print)
3086 bnx2x_print_next_block(sc, par_num++,
3087 "TCM");
3088 break;
3089 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3090 if (print)
3091 bnx2x_print_next_block(sc, par_num++,
3092 "TSEMI");
3093 break;
3094 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3095 if (print)
3096 bnx2x_print_next_block(sc, par_num++,
3097 "XPB");
3098 break;
3099 }
3100
3101 /* Clear the bit */
3102 sig &= ~cur_bit;
3103 }
3104 }
3105
3106 return par_num;
3107 }
3108
3109 static int
3110 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3111 uint8_t * global, uint8_t print)
3112 {
3113 int i = 0;
3114 uint32_t cur_bit = 0;
3115 for (i = 0; sig; i++) {
3116 cur_bit = ((uint32_t) 0x1 << i);
3117 if (sig & cur_bit) {
3118 switch (cur_bit) {
3119 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3120 if (print)
3121 bnx2x_print_next_block(sc, par_num++,
3122 "PBF");
3123 break;
3124 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3125 if (print)
3126 bnx2x_print_next_block(sc, par_num++,
3127 "QM");
3128 break;
3129 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3130 if (print)
3131 bnx2x_print_next_block(sc, par_num++,
3132 "TM");
3133 break;
3134 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3135 if (print)
3136 bnx2x_print_next_block(sc, par_num++,
3137 "XSDM");
3138 break;
3139 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3140 if (print)
3141 bnx2x_print_next_block(sc, par_num++,
3142 "XCM");
3143 break;
3144 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3145 if (print)
3146 bnx2x_print_next_block(sc, par_num++,
3147 "XSEMI");
3148 break;
3149 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3150 if (print)
3151 bnx2x_print_next_block(sc, par_num++,
3152 "DOORBELLQ");
3153 break;
3154 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3155 if (print)
3156 bnx2x_print_next_block(sc, par_num++,
3157 "NIG");
3158 break;
3159 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3160 if (print)
3161 bnx2x_print_next_block(sc, par_num++,
3162 "VAUX PCI CORE");
3163 *global = TRUE;
3164 break;
3165 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3166 if (print)
3167 bnx2x_print_next_block(sc, par_num++,
3168 "DEBUG");
3169 break;
3170 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3171 if (print)
3172 bnx2x_print_next_block(sc, par_num++,
3173 "USDM");
3174 break;
3175 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3176 if (print)
3177 bnx2x_print_next_block(sc, par_num++,
3178 "UCM");
3179 break;
3180 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3181 if (print)
3182 bnx2x_print_next_block(sc, par_num++,
3183 "USEMI");
3184 break;
3185 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3186 if (print)
3187 bnx2x_print_next_block(sc, par_num++,
3188 "UPB");
3189 break;
3190 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3191 if (print)
3192 bnx2x_print_next_block(sc, par_num++,
3193 "CSDM");
3194 break;
3195 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3196 if (print)
3197 bnx2x_print_next_block(sc, par_num++,
3198 "CCM");
3199 break;
3200 }
3201
3202 /* Clear the bit */
3203 sig &= ~cur_bit;
3204 }
3205 }
3206
3207 return par_num;
3208 }
3209
3210 static int
3211 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3212 uint8_t print)
3213 {
3214 uint32_t cur_bit = 0;
3215 int i = 0;
3216
3217 for (i = 0; sig; i++) {
3218 cur_bit = ((uint32_t) 0x1 << i);
3219 if (sig & cur_bit) {
3220 switch (cur_bit) {
3221 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3222 if (print)
3223 bnx2x_print_next_block(sc, par_num++,
3224 "CSEMI");
3225 break;
3226 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3227 if (print)
3228 bnx2x_print_next_block(sc, par_num++,
3229 "PXP");
3230 break;
3231 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3232 if (print)
3233 bnx2x_print_next_block(sc, par_num++,
3234 "PXPPCICLOCKCLIENT");
3235 break;
3236 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3237 if (print)
3238 bnx2x_print_next_block(sc, par_num++,
3239 "CFC");
3240 break;
3241 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3242 if (print)
3243 bnx2x_print_next_block(sc, par_num++,
3244 "CDU");
3245 break;
3246 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3247 if (print)
3248 bnx2x_print_next_block(sc, par_num++,
3249 "DMAE");
3250 break;
3251 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3252 if (print)
3253 bnx2x_print_next_block(sc, par_num++,
3254 "IGU");
3255 break;
3256 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3257 if (print)
3258 bnx2x_print_next_block(sc, par_num++,
3259 "MISC");
3260 break;
3261 }
3262
3263 /* Clear the bit */
3264 sig &= ~cur_bit;
3265 }
3266 }
3267
3268 return par_num;
3269 }
3270
3271 static int
3272 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3273 uint8_t * global, uint8_t print)
3274 {
3275 uint32_t cur_bit = 0;
3276 int i = 0;
3277
3278 for (i = 0; sig; i++) {
3279 cur_bit = ((uint32_t) 0x1 << i);
3280 if (sig & cur_bit) {
3281 switch (cur_bit) {
3282 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3283 if (print)
3284 bnx2x_print_next_block(sc, par_num++,
3285 "MCP ROM");
3286 *global = TRUE;
3287 break;
3288 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3289 if (print)
3290 bnx2x_print_next_block(sc, par_num++,
3291 "MCP UMP RX");
3292 *global = TRUE;
3293 break;
3294 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3295 if (print)
3296 bnx2x_print_next_block(sc, par_num++,
3297 "MCP UMP TX");
3298 *global = TRUE;
3299 break;
3300 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3301 if (print)
3302 bnx2x_print_next_block(sc, par_num++,
3303 "MCP SCPAD");
3304 *global = TRUE;
3305 break;
3306 }
3307
3308 /* Clear the bit */
3309 sig &= ~cur_bit;
3310 }
3311 }
3312
3313 return par_num;
3314 }
3315
3316 static int
3317 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3318 uint8_t print)
3319 {
3320 uint32_t cur_bit = 0;
3321 int i = 0;
3322
3323 for (i = 0; sig; i++) {
3324 cur_bit = ((uint32_t) 0x1 << i);
3325 if (sig & cur_bit) {
3326 switch (cur_bit) {
3327 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3328 if (print)
3329 bnx2x_print_next_block(sc, par_num++,
3330 "PGLUE_B");
3331 break;
3332 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3333 if (print)
3334 bnx2x_print_next_block(sc, par_num++,
3335 "ATC");
3336 break;
3337 }
3338
3339 /* Clear the bit */
3340 sig &= ~cur_bit;
3341 }
3342 }
3343
3344 return par_num;
3345 }
3346
3347 static uint8_t
3348 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3349 uint32_t * sig)
3350 {
3351 int par_num = 0;
3352
3353 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3354 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3355 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3356 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3357 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3358 PMD_DRV_LOG(ERR,
3359 "Parity error: HW block parity attention:"
3360 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3361 (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3362 (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3363 (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3364 (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3365 (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3366
3367 if (print)
3368 PMD_DRV_LOG(INFO, "Parity errors detected in blocks: ");
3369
3370 par_num =
3371 bnx2x_check_blocks_with_parity0(sc, sig[0] &
3372 HW_PRTY_ASSERT_SET_0,
3373 par_num, print);
3374 par_num =
3375 bnx2x_check_blocks_with_parity1(sc, sig[1] &
3376 HW_PRTY_ASSERT_SET_1,
3377 par_num, global, print);
3378 par_num =
3379 bnx2x_check_blocks_with_parity2(sc, sig[2] &
3380 HW_PRTY_ASSERT_SET_2,
3381 par_num, print);
3382 par_num =
3383 bnx2x_check_blocks_with_parity3(sc, sig[3] &
3384 HW_PRTY_ASSERT_SET_3,
3385 par_num, global, print);
3386 par_num =
3387 bnx2x_check_blocks_with_parity4(sc, sig[4] &
3388 HW_PRTY_ASSERT_SET_4,
3389 par_num, print);
3390
3391 if (print)
3392 PMD_DRV_LOG(INFO, "");
3393
3394 return TRUE;
3395 }
3396
3397 return FALSE;
3398 }
3399
3400 static uint8_t
3401 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3402 {
3403 struct attn_route attn = { {0} };
3404 int port = SC_PORT(sc);
3405
3406 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3407 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3408 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3409 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3410
3411 if (!CHIP_IS_E1x(sc))
3412 attn.sig[4] =
3413 REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3414
3415 return bnx2x_parity_attn(sc, global, print, attn.sig);
3416 }
3417
3418 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3419 {
3420 uint32_t val;
3421
3422 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3423 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3424 PMD_DRV_LOG(INFO, "ERROR: PGLUE hw attention 0x%08x", val);
3425 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3426 PMD_DRV_LOG(INFO,
3427 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3428 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3429 PMD_DRV_LOG(INFO,
3430 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3431 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3432 PMD_DRV_LOG(INFO,
3433 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3434 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3435 PMD_DRV_LOG(INFO,
3436 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3437 if (val &
3438 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3439 PMD_DRV_LOG(INFO,
3440 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3441 if (val &
3442 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3443 PMD_DRV_LOG(INFO,
3444 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3445 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3446 PMD_DRV_LOG(INFO,
3447 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3448 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3449 PMD_DRV_LOG(INFO,
3450 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3451 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3452 PMD_DRV_LOG(INFO,
3453 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3454 }
3455
3456 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3457 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3458 PMD_DRV_LOG(INFO, "ERROR: ATC hw attention 0x%08x", val);
3459 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3460 PMD_DRV_LOG(INFO,
3461 "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3462 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3463 PMD_DRV_LOG(INFO,
3464 "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3465 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3466 PMD_DRV_LOG(INFO,
3467 "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3468 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3469 PMD_DRV_LOG(INFO,
3470 "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3471 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3472 PMD_DRV_LOG(INFO,
3473 "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3474 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3475 PMD_DRV_LOG(INFO,
3476 "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3477 }
3478
3479 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3480 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3481 PMD_DRV_LOG(INFO,
3482 "ERROR: FATAL parity attention set4 0x%08x",
3483 (uint32_t) (attn &
3484 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3485 |
3486 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3487 }
3488 }
3489
3490 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3491 {
3492 int port = SC_PORT(sc);
3493
3494 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3495 }
3496
3497 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3498 {
3499 int port = SC_PORT(sc);
3500
3501 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3502 }
3503
3504 /*
3505 * called due to MCP event (on pmf):
3506 * reread new bandwidth configuration
3507 * configure FW
3508 * notify others function about the change
3509 */
3510 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3511 {
3512 if (sc->link_vars.link_up) {
3513 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3514 bnx2x_link_sync_notify(sc);
3515 }
3516
3517 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3518 }
3519
3520 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3521 {
3522 bnx2x_config_mf_bw(sc);
3523 bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3524 }
3525
3526 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3527 {
3528 bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3529 }
3530
3531 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3532
3533 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3534 {
3535 struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3536
3537 strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3538 ETH_STAT_INFO_VERSION_LEN);
3539
3540 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3541 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3542 ether_stat->mac_local + MAC_PAD,
3543 MAC_PAD, ETH_ALEN);
3544
3545 ether_stat->mtu_size = sc->mtu;
3546
3547 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3548 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
3549
3550 ether_stat->txq_size = sc->tx_ring_size;
3551 ether_stat->rxq_size = sc->rx_ring_size;
3552 }
3553
3554 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3555 {
3556 enum drv_info_opcode op_code;
3557 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3558
3559 /* if drv_info version supported by MFW doesn't match - send NACK */
3560 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3561 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3562 return;
3563 }
3564
3565 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3566 DRV_INFO_CONTROL_OP_CODE_SHIFT);
3567
3568 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3569
3570 switch (op_code) {
3571 case ETH_STATS_OPCODE:
3572 bnx2x_drv_info_ether_stat(sc);
3573 break;
3574 case FCOE_STATS_OPCODE:
3575 case ISCSI_STATS_OPCODE:
3576 default:
3577 /* if op code isn't supported - send NACK */
3578 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3579 return;
3580 }
3581
3582 /*
3583 * If we got drv_info attn from MFW then these fields are defined in
3584 * shmem2 for sure
3585 */
3586 SHMEM2_WR(sc, drv_info_host_addr_lo,
3587 U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3588 SHMEM2_WR(sc, drv_info_host_addr_hi,
3589 U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3590
3591 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3592 }
3593
3594 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3595 {
3596 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3597 /*
3598 * This is the only place besides the function initialization
3599 * where the sc->flags can change so it is done without any
3600 * locks
3601 */
3602 if (sc->devinfo.
3603 mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3604 PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
3605 sc->flags |= BNX2X_MF_FUNC_DIS;
3606 bnx2x_e1h_disable(sc);
3607 } else {
3608 PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
3609 sc->flags &= ~BNX2X_MF_FUNC_DIS;
3610 bnx2x_e1h_enable(sc);
3611 }
3612 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3613 }
3614
3615 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3616 bnx2x_config_mf_bw(sc);
3617 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3618 }
3619
3620 /* Report results to MCP */
3621 if (dcc_event)
3622 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3623 else
3624 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3625 }
3626
3627 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3628 {
3629 int port = SC_PORT(sc);
3630 uint32_t val;
3631
3632 sc->port.pmf = 1;
3633
3634 /*
3635 * We need the mb() to ensure the ordering between the writing to
3636 * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3637 */
3638 mb();
3639
3640 /* enable nig attention */
3641 val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3642 if (sc->devinfo.int_block == INT_BLOCK_HC) {
3643 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3644 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3645 } else if (!CHIP_IS_E1x(sc)) {
3646 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3647 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3648 }
3649
3650 bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3651 }
3652
3653 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3654 {
3655 char last_idx;
3656 int i, rc = 0;
3657 __rte_unused uint32_t row0, row1, row2, row3;
3658
3659 /* XSTORM */
3660 last_idx =
3661 REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3662 if (last_idx)
3663 PMD_DRV_LOG(ERR, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3664
3665 /* print the asserts */
3666 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3667
3668 row0 =
3669 REG_RD(sc,
3670 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3671 row1 =
3672 REG_RD(sc,
3673 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3674 4);
3675 row2 =
3676 REG_RD(sc,
3677 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3678 8);
3679 row3 =
3680 REG_RD(sc,
3681 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3682 12);
3683
3684 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3685 PMD_DRV_LOG(ERR,
3686 "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3687 i, row3, row2, row1, row0);
3688 rc++;
3689 } else {
3690 break;
3691 }
3692 }
3693
3694 /* TSTORM */
3695 last_idx =
3696 REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3697 if (last_idx) {
3698 PMD_DRV_LOG(ERR, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3699 }
3700
3701 /* print the asserts */
3702 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3703
3704 row0 =
3705 REG_RD(sc,
3706 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3707 row1 =
3708 REG_RD(sc,
3709 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3710 4);
3711 row2 =
3712 REG_RD(sc,
3713 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3714 8);
3715 row3 =
3716 REG_RD(sc,
3717 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3718 12);
3719
3720 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3721 PMD_DRV_LOG(ERR,
3722 "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3723 i, row3, row2, row1, row0);
3724 rc++;
3725 } else {
3726 break;
3727 }
3728 }
3729
3730 /* CSTORM */
3731 last_idx =
3732 REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3733 if (last_idx) {
3734 PMD_DRV_LOG(ERR, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3735 }
3736
3737 /* print the asserts */
3738 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3739
3740 row0 =
3741 REG_RD(sc,
3742 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3743 row1 =
3744 REG_RD(sc,
3745 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3746 4);
3747 row2 =
3748 REG_RD(sc,
3749 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3750 8);
3751 row3 =
3752 REG_RD(sc,
3753 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3754 12);
3755
3756 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3757 PMD_DRV_LOG(ERR,
3758 "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3759 i, row3, row2, row1, row0);
3760 rc++;
3761 } else {
3762 break;
3763 }
3764 }
3765
3766 /* USTORM */
3767 last_idx =
3768 REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3769 if (last_idx) {
3770 PMD_DRV_LOG(ERR, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3771 }
3772
3773 /* print the asserts */
3774 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3775
3776 row0 =
3777 REG_RD(sc,
3778 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3779 row1 =
3780 REG_RD(sc,
3781 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3782 4);
3783 row2 =
3784 REG_RD(sc,
3785 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3786 8);
3787 row3 =
3788 REG_RD(sc,
3789 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3790 12);
3791
3792 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3793 PMD_DRV_LOG(ERR,
3794 "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3795 i, row3, row2, row1, row0);
3796 rc++;
3797 } else {
3798 break;
3799 }
3800 }
3801
3802 return rc;
3803 }
3804
3805 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3806 {
3807 int func = SC_FUNC(sc);
3808 uint32_t val;
3809
3810 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3811
3812 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3813
3814 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3815 bnx2x_read_mf_cfg(sc);
3816 sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3817 MFCFG_RD(sc,
3818 func_mf_config[SC_ABS_FUNC(sc)].config);
3819 val =
3820 SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3821
3822 if (val & DRV_STATUS_DCC_EVENT_MASK)
3823 bnx2x_dcc_event(sc,
3824 (val &
3825 DRV_STATUS_DCC_EVENT_MASK));
3826
3827 if (val & DRV_STATUS_SET_MF_BW)
3828 bnx2x_set_mf_bw(sc);
3829
3830 if (val & DRV_STATUS_DRV_INFO_REQ)
3831 bnx2x_handle_drv_info_req(sc);
3832
3833 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3834 bnx2x_pmf_update(sc);
3835
3836 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3837 bnx2x_handle_eee_event(sc);
3838
3839 if (sc->link_vars.periodic_flags &
3840 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3841 /* sync with link */
3842 sc->link_vars.periodic_flags &=
3843 ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3844 if (IS_MF(sc)) {
3845 bnx2x_link_sync_notify(sc);
3846 }
3847 bnx2x_link_report(sc);
3848 }
3849
3850 /*
3851 * Always call it here: bnx2x_link_report() will
3852 * prevent the link indication duplication.
3853 */
3854 bnx2x_link_status_update(sc);
3855
3856 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3857
3858 PMD_DRV_LOG(ERR, "MC assert!");
3859 bnx2x_mc_assert(sc);
3860 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3861 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3862 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3863 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3864 rte_panic("MC assert!");
3865
3866 } else if (attn & BNX2X_MCP_ASSERT) {
3867
3868 PMD_DRV_LOG(ERR, "MCP assert!");
3869 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3870
3871 } else {
3872 PMD_DRV_LOG(ERR,
3873 "Unknown HW assert! (attn 0x%08x)", attn);
3874 }
3875 }
3876
3877 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3878 PMD_DRV_LOG(ERR, "LATCHED attention 0x%08x (masked)", attn);
3879 if (attn & BNX2X_GRC_TIMEOUT) {
3880 val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3881 PMD_DRV_LOG(ERR, "GRC time-out 0x%08x", val);
3882 }
3883 if (attn & BNX2X_GRC_RSV) {
3884 val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3885 PMD_DRV_LOG(ERR, "GRC reserved 0x%08x", val);
3886 }
3887 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3888 }
3889 }
3890
3891 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3892 {
3893 int port = SC_PORT(sc);
3894 int reg_offset;
3895 uint32_t val0, mask0, val1, mask1;
3896 uint32_t val;
3897
3898 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3899 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3900 PMD_DRV_LOG(ERR, "CFC hw attention 0x%08x", val);
3901 /* CFC error attention */
3902 if (val & 0x2) {
3903 PMD_DRV_LOG(ERR, "FATAL error from CFC");
3904 }
3905 }
3906
3907 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3908 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3909 PMD_DRV_LOG(ERR, "PXP hw attention-0 0x%08x", val);
3910 /* RQ_USDMDP_FIFO_OVERFLOW */
3911 if (val & 0x18000) {
3912 PMD_DRV_LOG(ERR, "FATAL error from PXP");
3913 }
3914
3915 if (!CHIP_IS_E1x(sc)) {
3916 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3917 PMD_DRV_LOG(ERR, "PXP hw attention-1 0x%08x", val);
3918 }
3919 }
3920 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3921 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3922
3923 if (attn & AEU_PXP2_HW_INT_BIT) {
3924 /* CQ47854 workaround do not panic on
3925 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3926 */
3927 if (!CHIP_IS_E1x(sc)) {
3928 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3929 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3930 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3931 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3932 /*
3933 * If the olny PXP2_EOP_ERROR_BIT is set in
3934 * STS0 and STS1 - clear it
3935 *
3936 * probably we lose additional attentions between
3937 * STS0 and STS_CLR0, in this case user will not
3938 * be notified about them
3939 */
3940 if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3941 !(val1 & mask1))
3942 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3943
3944 /* print the register, since no one can restore it */
3945 PMD_DRV_LOG(ERR,
3946 "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
3947
3948 /*
3949 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3950 * then notify
3951 */
3952 if (val0 & PXP2_EOP_ERROR_BIT) {
3953 PMD_DRV_LOG(ERR, "PXP2_WR_PGLUE_EOP_ERROR");
3954
3955 /*
3956 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
3957 * set then clear attention from PXP2 block without panic
3958 */
3959 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
3960 ((val1 & mask1) == 0))
3961 attn &= ~AEU_PXP2_HW_INT_BIT;
3962 }
3963 }
3964 }
3965
3966 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3967 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3968 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3969
3970 val = REG_RD(sc, reg_offset);
3971 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3972 REG_WR(sc, reg_offset, val);
3973
3974 PMD_DRV_LOG(ERR,
3975 "FATAL HW block attention set2 0x%x",
3976 (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
3977 rte_panic("HW block attention set2");
3978 }
3979 }
3980
3981 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
3982 {
3983 int port = SC_PORT(sc);
3984 int reg_offset;
3985 uint32_t val;
3986
3987 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3988 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
3989 PMD_DRV_LOG(ERR, "DB hw attention 0x%08x", val);
3990 /* DORQ discard attention */
3991 if (val & 0x2) {
3992 PMD_DRV_LOG(ERR, "FATAL error from DORQ");
3993 }
3994 }
3995
3996 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3997 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3998 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3999
4000 val = REG_RD(sc, reg_offset);
4001 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4002 REG_WR(sc, reg_offset, val);
4003
4004 PMD_DRV_LOG(ERR,
4005 "FATAL HW block attention set1 0x%08x",
4006 (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4007 rte_panic("HW block attention set1");
4008 }
4009 }
4010
4011 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4012 {
4013 int port = SC_PORT(sc);
4014 int reg_offset;
4015 uint32_t val;
4016
4017 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4018 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4019
4020 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4021 val = REG_RD(sc, reg_offset);
4022 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4023 REG_WR(sc, reg_offset, val);
4024
4025 PMD_DRV_LOG(WARNING, "SPIO5 hw attention");
4026
4027 /* Fan failure attention */
4028 elink_hw_reset_phy(&sc->link_params);
4029 bnx2x_fan_failure(sc);
4030 }
4031
4032 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4033 elink_handle_module_detect_int(&sc->link_params);
4034 }
4035
4036 if (attn & HW_INTERRUT_ASSERT_SET_0) {
4037 val = REG_RD(sc, reg_offset);
4038 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4039 REG_WR(sc, reg_offset, val);
4040
4041 rte_panic("FATAL HW block attention set0 0x%lx",
4042 (attn & HW_INTERRUT_ASSERT_SET_0));
4043 }
4044 }
4045
4046 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4047 {
4048 struct attn_route attn;
4049 struct attn_route *group_mask;
4050 int port = SC_PORT(sc);
4051 int index;
4052 uint32_t reg_addr;
4053 uint32_t val;
4054 uint32_t aeu_mask;
4055 uint8_t global = FALSE;
4056
4057 /*
4058 * Need to take HW lock because MCP or other port might also
4059 * try to handle this event.
4060 */
4061 bnx2x_acquire_alr(sc);
4062
4063 if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4064 sc->recovery_state = BNX2X_RECOVERY_INIT;
4065
4066 /* disable HW interrupts */
4067 bnx2x_int_disable(sc);
4068 bnx2x_release_alr(sc);
4069 return;
4070 }
4071
4072 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4073 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4074 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4075 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4076 if (!CHIP_IS_E1x(sc)) {
4077 attn.sig[4] =
4078 REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4079 } else {
4080 attn.sig[4] = 0;
4081 }
4082
4083 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4084 if (deasserted & (1 << index)) {
4085 group_mask = &sc->attn_group[index];
4086
4087 bnx2x_attn_int_deasserted4(sc,
4088 attn.
4089 sig[4] & group_mask->sig[4]);
4090 bnx2x_attn_int_deasserted3(sc,
4091 attn.
4092 sig[3] & group_mask->sig[3]);
4093 bnx2x_attn_int_deasserted1(sc,
4094 attn.
4095 sig[1] & group_mask->sig[1]);
4096 bnx2x_attn_int_deasserted2(sc,
4097 attn.
4098 sig[2] & group_mask->sig[2]);
4099 bnx2x_attn_int_deasserted0(sc,
4100 attn.
4101 sig[0] & group_mask->sig[0]);
4102 }
4103 }
4104
4105 bnx2x_release_alr(sc);
4106
4107 if (sc->devinfo.int_block == INT_BLOCK_HC) {
4108 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4109 COMMAND_REG_ATTN_BITS_CLR);
4110 } else {
4111 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4112 }
4113
4114 val = ~deasserted;
4115 PMD_DRV_LOG(DEBUG,
4116 "about to mask 0x%08x at %s addr 0x%08x", val,
4117 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4118 reg_addr);
4119 REG_WR(sc, reg_addr, val);
4120
4121 if (~sc->attn_state & deasserted) {
4122 PMD_DRV_LOG(ERR, "IGU error");
4123 }
4124
4125 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4126 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4127
4128 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4129
4130 aeu_mask = REG_RD(sc, reg_addr);
4131
4132 aeu_mask |= (deasserted & 0x3ff);
4133
4134 REG_WR(sc, reg_addr, aeu_mask);
4135 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4136
4137 sc->attn_state &= ~deasserted;
4138 }
4139
4140 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4141 {
4142 /* read local copy of bits */
4143 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4144 uint32_t attn_ack =
4145 le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4146 uint32_t attn_state = sc->attn_state;
4147
4148 /* look for changed bits */
4149 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4150 uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4151
4152 PMD_DRV_LOG(DEBUG,
4153 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4154 attn_bits, attn_ack, asserted, deasserted);
4155
4156 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4157 PMD_DRV_LOG(ERR, "BAD attention state");
4158 }
4159
4160 /* handle bits that were raised */
4161 if (asserted) {
4162 bnx2x_attn_int_asserted(sc, asserted);
4163 }
4164
4165 if (deasserted) {
4166 bnx2x_attn_int_deasserted(sc, deasserted);
4167 }
4168 }
4169
4170 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4171 {
4172 struct host_sp_status_block *def_sb = sc->def_sb;
4173 uint16_t rc = 0;
4174
4175 mb(); /* status block is written to by the chip */
4176
4177 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4178 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4179 rc |= BNX2X_DEF_SB_ATT_IDX;
4180 }
4181
4182 if (sc->def_idx != def_sb->sp_sb.running_index) {
4183 sc->def_idx = def_sb->sp_sb.running_index;
4184 rc |= BNX2X_DEF_SB_IDX;
4185 }
4186
4187 mb();
4188
4189 return rc;
4190 }
4191
4192 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4193 uint32_t cid)
4194 {
4195 return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4196 }
4197
4198 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4199 {
4200 struct ecore_mcast_ramrod_params rparam;
4201 int rc;
4202
4203 memset(&rparam, 0, sizeof(rparam));
4204
4205 rparam.mcast_obj = &sc->mcast_obj;
4206
4207 /* clear pending state for the last command */
4208 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4209
4210 /* if there are pending mcast commands - send them */
4211 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4212 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4213 if (rc < 0) {
4214 PMD_DRV_LOG(INFO,
4215 "Failed to send pending mcast commands (%d)",
4216 rc);
4217 }
4218 }
4219 }
4220
4221 static void
4222 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4223 {
4224 unsigned long ramrod_flags = 0;
4225 int rc = 0;
4226 uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4227 struct ecore_vlan_mac_obj *vlan_mac_obj;
4228
4229 /* always push next commands out, don't wait here */
4230 bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4231
4232 switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4233 case ECORE_FILTER_MAC_PENDING:
4234 PMD_DRV_LOG(DEBUG, "Got SETUP_MAC completions");
4235 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4236 break;
4237
4238 case ECORE_FILTER_MCAST_PENDING:
4239 PMD_DRV_LOG(DEBUG, "Got SETUP_MCAST completions");
4240 bnx2x_handle_mcast_eqe(sc);
4241 return;
4242
4243 default:
4244 PMD_DRV_LOG(NOTICE, "Unsupported classification command: %d",
4245 elem->message.data.eth_event.echo);
4246 return;
4247 }
4248
4249 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4250
4251 if (rc < 0) {
4252 PMD_DRV_LOG(NOTICE, "Failed to schedule new commands (%d)", rc);
4253 } else if (rc > 0) {
4254 PMD_DRV_LOG(DEBUG, "Scheduled next pending commands...");
4255 }
4256 }
4257
4258 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4259 {
4260 bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4261
4262 /* send rx_mode command again if was requested */
4263 if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4264 bnx2x_set_storm_rx_mode(sc);
4265 }
4266 }
4267
4268 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4269 {
4270 storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4271 wmb(); /* keep prod updates ordered */
4272 }
4273
4274 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4275 {
4276 uint16_t hw_cons, sw_cons, sw_prod;
4277 union event_ring_elem *elem;
4278 uint8_t echo;
4279 uint32_t cid;
4280 uint8_t opcode;
4281 int spqe_cnt = 0;
4282 struct ecore_queue_sp_obj *q_obj;
4283 struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4284 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4285
4286 hw_cons = le16toh(*sc->eq_cons_sb);
4287
4288 /*
4289 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4290 * when we get to the next-page we need to adjust so the loop
4291 * condition below will be met. The next element is the size of a
4292 * regular element and hence incrementing by 1
4293 */
4294 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4295 hw_cons++;
4296 }
4297
4298 /*
4299 * This function may never run in parallel with itself for a
4300 * specific sc and no need for a read memory barrier here.
4301 */
4302 sw_cons = sc->eq_cons;
4303 sw_prod = sc->eq_prod;
4304
4305 for (;
4306 sw_cons != hw_cons;
4307 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4308
4309 elem = &sc->eq[EQ_DESC(sw_cons)];
4310
4311 /* elem CID originates from FW, actually LE */
4312 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4313 opcode = elem->message.opcode;
4314
4315 /* handle eq element */
4316 switch (opcode) {
4317 case EVENT_RING_OPCODE_STAT_QUERY:
4318 PMD_DEBUG_PERIODIC_LOG(DEBUG, "got statistics completion event %d",
4319 sc->stats_comp++);
4320 /* nothing to do with stats comp */
4321 goto next_spqe;
4322
4323 case EVENT_RING_OPCODE_CFC_DEL:
4324 /* handle according to cid range */
4325 /* we may want to verify here that the sc state is HALTING */
4326 PMD_DRV_LOG(DEBUG, "got delete ramrod for MULTI[%d]",
4327 cid);
4328 q_obj = bnx2x_cid_to_q_obj(sc, cid);
4329 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4330 break;
4331 }
4332 goto next_spqe;
4333
4334 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4335 PMD_DRV_LOG(DEBUG, "got STOP TRAFFIC");
4336 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4337 break;
4338 }
4339 goto next_spqe;
4340
4341 case EVENT_RING_OPCODE_START_TRAFFIC:
4342 PMD_DRV_LOG(DEBUG, "got START TRAFFIC");
4343 if (f_obj->complete_cmd
4344 (sc, f_obj, ECORE_F_CMD_TX_START)) {
4345 break;
4346 }
4347 goto next_spqe;
4348
4349 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4350 echo = elem->message.data.function_update_event.echo;
4351 if (echo == SWITCH_UPDATE) {
4352 PMD_DRV_LOG(DEBUG,
4353 "got FUNC_SWITCH_UPDATE ramrod");
4354 if (f_obj->complete_cmd(sc, f_obj,
4355 ECORE_F_CMD_SWITCH_UPDATE))
4356 {
4357 break;
4358 }
4359 } else {
4360 PMD_DRV_LOG(DEBUG,
4361 "AFEX: ramrod completed FUNCTION_UPDATE");
4362 f_obj->complete_cmd(sc, f_obj,
4363 ECORE_F_CMD_AFEX_UPDATE);
4364 }
4365 goto next_spqe;
4366
4367 case EVENT_RING_OPCODE_FORWARD_SETUP:
4368 q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4369 if (q_obj->complete_cmd(sc, q_obj,
4370 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4371 break;
4372 }
4373 goto next_spqe;
4374
4375 case EVENT_RING_OPCODE_FUNCTION_START:
4376 PMD_DRV_LOG(DEBUG, "got FUNC_START ramrod");
4377 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4378 break;
4379 }
4380 goto next_spqe;
4381
4382 case EVENT_RING_OPCODE_FUNCTION_STOP:
4383 PMD_DRV_LOG(DEBUG, "got FUNC_STOP ramrod");
4384 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4385 break;
4386 }
4387 goto next_spqe;
4388 }
4389
4390 switch (opcode | sc->state) {
4391 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4392 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4393 cid =
4394 elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4395 PMD_DRV_LOG(DEBUG, "got RSS_UPDATE ramrod. CID %d",
4396 cid);
4397 rss_raw->clear_pending(rss_raw);
4398 break;
4399
4400 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4401 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4402 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4403 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4404 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4405 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4406 PMD_DRV_LOG(DEBUG,
4407 "got (un)set mac ramrod");
4408 bnx2x_handle_classification_eqe(sc, elem);
4409 break;
4410
4411 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4412 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4413 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4414 PMD_DRV_LOG(DEBUG,
4415 "got mcast ramrod");
4416 bnx2x_handle_mcast_eqe(sc);
4417 break;
4418
4419 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4420 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4421 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4422 PMD_DRV_LOG(DEBUG,
4423 "got rx_mode ramrod");
4424 bnx2x_handle_rx_mode_eqe(sc);
4425 break;
4426
4427 default:
4428 /* unknown event log error and continue */
4429 PMD_DRV_LOG(INFO, "Unknown EQ event %d, sc->state 0x%x",
4430 elem->message.opcode, sc->state);
4431 }
4432
4433 next_spqe:
4434 spqe_cnt++;
4435 } /* for */
4436
4437 mb();
4438 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4439
4440 sc->eq_cons = sw_cons;
4441 sc->eq_prod = sw_prod;
4442
4443 /* make sure that above mem writes were issued towards the memory */
4444 wmb();
4445
4446 /* update producer */
4447 bnx2x_update_eq_prod(sc, sc->eq_prod);
4448 }
4449
4450 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4451 {
4452 uint16_t status;
4453 int rc = 0;
4454
4455 /* what work needs to be performed? */
4456 status = bnx2x_update_dsb_idx(sc);
4457
4458 /* HW attentions */
4459 if (status & BNX2X_DEF_SB_ATT_IDX) {
4460 PMD_DRV_LOG(DEBUG, "---> ATTN INTR <---");
4461 bnx2x_attn_int(sc);
4462 status &= ~BNX2X_DEF_SB_ATT_IDX;
4463 rc = 1;
4464 }
4465
4466 /* SP events: STAT_QUERY and others */
4467 if (status & BNX2X_DEF_SB_IDX) {
4468 /* handle EQ completions */
4469 PMD_DEBUG_PERIODIC_LOG(DEBUG, "---> EQ INTR <---");
4470 bnx2x_eq_int(sc);
4471 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4472 le16toh(sc->def_idx), IGU_INT_NOP, 1);
4473 status &= ~BNX2X_DEF_SB_IDX;
4474 }
4475
4476 /* if status is non zero then something went wrong */
4477 if (unlikely(status)) {
4478 PMD_DRV_LOG(INFO,
4479 "Got an unknown SP interrupt! (0x%04x)", status);
4480 }
4481
4482 /* ack status block only if something was actually handled */
4483 bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4484 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4485
4486 return rc;
4487 }
4488
4489 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp)
4490 {
4491 struct bnx2x_softc *sc = fp->sc;
4492 uint8_t more_rx = FALSE;
4493
4494 /* update the fastpath index */
4495 bnx2x_update_fp_sb_idx(fp);
4496
4497 if (scan_fp) {
4498 if (bnx2x_has_rx_work(fp)) {
4499 more_rx = bnx2x_rxeof(sc, fp);
4500 }
4501
4502 if (more_rx) {
4503 /* still more work to do */
4504 bnx2x_handle_fp_tq(fp, scan_fp);
4505 return;
4506 }
4507 }
4508
4509 bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4510 le16toh(fp->fp_hc_idx), IGU_INT_DISABLE, 1);
4511 }
4512
4513 /*
4514 * Legacy interrupt entry point.
4515 *
4516 * Verifies that the controller generated the interrupt and
4517 * then calls a separate routine to handle the various
4518 * interrupt causes: link, RX, and TX.
4519 */
4520 int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp)
4521 {
4522 struct bnx2x_fastpath *fp;
4523 uint32_t status, mask;
4524 int i, rc = 0;
4525
4526 /*
4527 * 0 for ustorm, 1 for cstorm
4528 * the bits returned from ack_int() are 0-15
4529 * bit 0 = attention status block
4530 * bit 1 = fast path status block
4531 * a mask of 0x2 or more = tx/rx event
4532 * a mask of 1 = slow path event
4533 */
4534
4535 status = bnx2x_ack_int(sc);
4536
4537 /* the interrupt is not for us */
4538 if (unlikely(status == 0)) {
4539 return 0;
4540 }
4541
4542 PMD_DEBUG_PERIODIC_LOG(DEBUG, "Interrupt status 0x%04x", status);
4543 //bnx2x_dump_status_block(sc);
4544
4545 FOR_EACH_ETH_QUEUE(sc, i) {
4546 fp = &sc->fp[i];
4547 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4548 if (status & mask) {
4549 bnx2x_handle_fp_tq(fp, scan_fp);
4550 status &= ~mask;
4551 }
4552 }
4553
4554 if (unlikely(status & 0x1)) {
4555 rc = bnx2x_handle_sp_tq(sc);
4556 status &= ~0x1;
4557 }
4558
4559 if (unlikely(status)) {
4560 PMD_DRV_LOG(WARNING,
4561 "Unexpected fastpath status (0x%08x)!", status);
4562 }
4563
4564 return rc;
4565 }
4566
4567 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4568 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4569 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4570 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4571 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4572 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4573 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4574 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4575 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4576
4577 static struct
4578 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4579 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4580 .init_hw_cmn = bnx2x_init_hw_common,
4581 .init_hw_port = bnx2x_init_hw_port,
4582 .init_hw_func = bnx2x_init_hw_func,
4583
4584 .reset_hw_cmn = bnx2x_reset_common,
4585 .reset_hw_port = bnx2x_reset_port,
4586 .reset_hw_func = bnx2x_reset_func,
4587
4588 .init_fw = bnx2x_init_firmware,
4589 .release_fw = bnx2x_release_firmware,
4590 };
4591
4592 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4593 {
4594 sc->dmae_ready = 0;
4595
4596 PMD_INIT_FUNC_TRACE();
4597
4598 ecore_init_func_obj(sc,
4599 &sc->func_obj,
4600 BNX2X_SP(sc, func_rdata),
4601 (phys_addr_t)BNX2X_SP_MAPPING(sc, func_rdata),
4602 BNX2X_SP(sc, func_afex_rdata),
4603 (phys_addr_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4604 &bnx2x_func_sp_drv);
4605 }
4606
4607 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4608 {
4609 struct ecore_func_state_params func_params = { NULL };
4610 int rc;
4611
4612 PMD_INIT_FUNC_TRACE();
4613
4614 /* prepare the parameters for function state transitions */
4615 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4616
4617 func_params.f_obj = &sc->func_obj;
4618 func_params.cmd = ECORE_F_CMD_HW_INIT;
4619
4620 func_params.params.hw_init.load_phase = load_code;
4621
4622 /*
4623 * Via a plethora of function pointers, we will eventually reach
4624 * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4625 */
4626 rc = ecore_func_state_change(sc, &func_params);
4627
4628 return rc;
4629 }
4630
4631 static void
4632 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4633 {
4634 uint32_t i;
4635
4636 if (!(len % 4) && !(addr % 4)) {
4637 for (i = 0; i < len; i += 4) {
4638 REG_WR(sc, (addr + i), fill);
4639 }
4640 } else {
4641 for (i = 0; i < len; i++) {
4642 REG_WR8(sc, (addr + i), fill);
4643 }
4644 }
4645 }
4646
4647 /* writes FP SP data to FW - data_size in dwords */
4648 static void
4649 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4650 uint32_t data_size)
4651 {
4652 uint32_t index;
4653
4654 for (index = 0; index < data_size; index++) {
4655 REG_WR(sc,
4656 (BAR_CSTRORM_INTMEM +
4657 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4658 (sizeof(uint32_t) * index)), *(sb_data_p + index));
4659 }
4660 }
4661
4662 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4663 {
4664 struct hc_status_block_data_e2 sb_data_e2;
4665 struct hc_status_block_data_e1x sb_data_e1x;
4666 uint32_t *sb_data_p;
4667 uint32_t data_size = 0;
4668
4669 if (!CHIP_IS_E1x(sc)) {
4670 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4671 sb_data_e2.common.state = SB_DISABLED;
4672 sb_data_e2.common.p_func.vf_valid = FALSE;
4673 sb_data_p = (uint32_t *) & sb_data_e2;
4674 data_size = (sizeof(struct hc_status_block_data_e2) /
4675 sizeof(uint32_t));
4676 } else {
4677 memset(&sb_data_e1x, 0,
4678 sizeof(struct hc_status_block_data_e1x));
4679 sb_data_e1x.common.state = SB_DISABLED;
4680 sb_data_e1x.common.p_func.vf_valid = FALSE;
4681 sb_data_p = (uint32_t *) & sb_data_e1x;
4682 data_size = (sizeof(struct hc_status_block_data_e1x) /
4683 sizeof(uint32_t));
4684 }
4685
4686 bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4687
4688 bnx2x_fill(sc,
4689 (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4690 CSTORM_STATUS_BLOCK_SIZE);
4691 bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4692 0, CSTORM_SYNC_BLOCK_SIZE);
4693 }
4694
4695 static void
4696 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4697 struct hc_sp_status_block_data *sp_sb_data)
4698 {
4699 uint32_t i;
4700
4701 for (i = 0;
4702 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4703 i++) {
4704 REG_WR(sc,
4705 (BAR_CSTRORM_INTMEM +
4706 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4707 (i * sizeof(uint32_t))),
4708 *((uint32_t *) sp_sb_data + i));
4709 }
4710 }
4711
4712 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4713 {
4714 struct hc_sp_status_block_data sp_sb_data;
4715
4716 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4717
4718 sp_sb_data.state = SB_DISABLED;
4719 sp_sb_data.p_func.vf_valid = FALSE;
4720
4721 bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4722
4723 bnx2x_fill(sc,
4724 (BAR_CSTRORM_INTMEM +
4725 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4726 0, CSTORM_SP_STATUS_BLOCK_SIZE);
4727 bnx2x_fill(sc,
4728 (BAR_CSTRORM_INTMEM +
4729 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4730 0, CSTORM_SP_SYNC_BLOCK_SIZE);
4731 }
4732
4733 static void
4734 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4735 int igu_seg_id)
4736 {
4737 hc_sm->igu_sb_id = igu_sb_id;
4738 hc_sm->igu_seg_id = igu_seg_id;
4739 hc_sm->timer_value = 0xFF;
4740 hc_sm->time_to_expire = 0xFFFFFFFF;
4741 }
4742
4743 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4744 {
4745 /* zero out state machine indices */
4746
4747 /* rx indices */
4748 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4749
4750 /* tx indices */
4751 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4752 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4753 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4754 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4755
4756 /* map indices */
4757
4758 /* rx indices */
4759 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4760 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4761
4762 /* tx indices */
4763 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4764 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4765 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4766 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4767 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4768 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4769 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4770 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4771 }
4772
4773 static void
4774 bnx2x_init_sb(struct bnx2x_softc *sc, phys_addr_t busaddr, int vfid,
4775 uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4776 {
4777 struct hc_status_block_data_e2 sb_data_e2;
4778 struct hc_status_block_data_e1x sb_data_e1x;
4779 struct hc_status_block_sm *hc_sm_p;
4780 uint32_t *sb_data_p;
4781 int igu_seg_id;
4782 int data_size;
4783
4784 if (CHIP_INT_MODE_IS_BC(sc)) {
4785 igu_seg_id = HC_SEG_ACCESS_NORM;
4786 } else {
4787 igu_seg_id = IGU_SEG_ACCESS_NORM;
4788 }
4789
4790 bnx2x_zero_fp_sb(sc, fw_sb_id);
4791
4792 if (!CHIP_IS_E1x(sc)) {
4793 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4794 sb_data_e2.common.state = SB_ENABLED;
4795 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4796 sb_data_e2.common.p_func.vf_id = vfid;
4797 sb_data_e2.common.p_func.vf_valid = vf_valid;
4798 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4799 sb_data_e2.common.same_igu_sb_1b = TRUE;
4800 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4801 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4802 hc_sm_p = sb_data_e2.common.state_machine;
4803 sb_data_p = (uint32_t *) & sb_data_e2;
4804 data_size = (sizeof(struct hc_status_block_data_e2) /
4805 sizeof(uint32_t));
4806 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4807 } else {
4808 memset(&sb_data_e1x, 0,
4809 sizeof(struct hc_status_block_data_e1x));
4810 sb_data_e1x.common.state = SB_ENABLED;
4811 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4812 sb_data_e1x.common.p_func.vf_id = 0xff;
4813 sb_data_e1x.common.p_func.vf_valid = FALSE;
4814 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4815 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4816 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4817 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4818 hc_sm_p = sb_data_e1x.common.state_machine;
4819 sb_data_p = (uint32_t *) & sb_data_e1x;
4820 data_size = (sizeof(struct hc_status_block_data_e1x) /
4821 sizeof(uint32_t));
4822 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4823 }
4824
4825 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4826 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4827
4828 /* write indices to HW - PCI guarantees endianity of regpairs */
4829 bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4830 }
4831
4832 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4833 {
4834 if (CHIP_IS_E1x(fp->sc)) {
4835 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4836 } else {
4837 return fp->cl_id;
4838 }
4839 }
4840
4841 static uint32_t
4842 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4843 {
4844 uint32_t offset = BAR_USTRORM_INTMEM;
4845
4846 if (IS_VF(sc)) {
4847 return PXP_VF_ADDR_USDM_QUEUES_START +
4848 (sc->acquire_resp.resc.hw_qid[fp->index] *
4849 sizeof(struct ustorm_queue_zone_data));
4850 } else if (!CHIP_IS_E1x(sc)) {
4851 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4852 } else {
4853 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4854 }
4855
4856 return offset;
4857 }
4858
4859 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4860 {
4861 struct bnx2x_fastpath *fp = &sc->fp[idx];
4862 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4863 unsigned long q_type = 0;
4864 int cos;
4865
4866 fp->sc = sc;
4867 fp->index = idx;
4868
4869 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4870 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4871
4872 if (CHIP_IS_E1x(sc))
4873 fp->cl_id = SC_L_ID(sc) + idx;
4874 else
4875 /* want client ID same as IGU SB ID for non-E1 */
4876 fp->cl_id = fp->igu_sb_id;
4877 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4878
4879 /* setup sb indices */
4880 if (!CHIP_IS_E1x(sc)) {
4881 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4882 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4883 } else {
4884 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4885 fp->sb_running_index =
4886 fp->status_block.e1x_sb->sb.running_index;
4887 }
4888
4889 /* init shortcut */
4890 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4891
4892 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4893
4894 for (cos = 0; cos < sc->max_cos; cos++) {
4895 cids[cos] = idx;
4896 }
4897 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4898
4899 /* nothing more for a VF to do */
4900 if (IS_VF(sc)) {
4901 return;
4902 }
4903
4904 bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4905 fp->fw_sb_id, fp->igu_sb_id);
4906
4907 bnx2x_update_fp_sb_idx(fp);
4908
4909 /* Configure Queue State object */
4910 bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4911 bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4912
4913 ecore_init_queue_obj(sc,
4914 &sc->sp_objs[idx].q_obj,
4915 fp->cl_id,
4916 cids,
4917 sc->max_cos,
4918 SC_FUNC(sc),
4919 BNX2X_SP(sc, q_rdata),
4920 (phys_addr_t)BNX2X_SP_MAPPING(sc, q_rdata),
4921 q_type);
4922
4923 /* configure classification DBs */
4924 ecore_init_mac_obj(sc,
4925 &sc->sp_objs[idx].mac_obj,
4926 fp->cl_id,
4927 idx,
4928 SC_FUNC(sc),
4929 BNX2X_SP(sc, mac_rdata),
4930 (phys_addr_t)BNX2X_SP_MAPPING(sc, mac_rdata),
4931 ECORE_FILTER_MAC_PENDING, &sc->sp_state,
4932 ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
4933 }
4934
4935 static void
4936 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
4937 uint16_t rx_bd_prod, uint16_t rx_cq_prod)
4938 {
4939 union ustorm_eth_rx_producers rx_prods;
4940 uint32_t i;
4941
4942 /* update producers */
4943 rx_prods.prod.bd_prod = rx_bd_prod;
4944 rx_prods.prod.cqe_prod = rx_cq_prod;
4945 rx_prods.prod.reserved = 0;
4946
4947 /*
4948 * Make sure that the BD and SGE data is updated before updating the
4949 * producers since FW might read the BD/SGE right after the producer
4950 * is updated.
4951 * This is only applicable for weak-ordered memory model archs such
4952 * as IA-64. The following barrier is also mandatory since FW will
4953 * assumes BDs must have buffers.
4954 */
4955 wmb();
4956
4957 for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
4958 REG_WR(sc,
4959 (fp->ustorm_rx_prods_offset + (i * 4)),
4960 rx_prods.raw_data[i]);
4961 }
4962
4963 wmb(); /* keep prod updates ordered */
4964 }
4965
4966 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
4967 {
4968 struct bnx2x_fastpath *fp;
4969 int i;
4970 struct bnx2x_rx_queue *rxq;
4971
4972 for (i = 0; i < sc->num_queues; i++) {
4973 fp = &sc->fp[i];
4974 rxq = sc->rx_queues[fp->index];
4975 if (!rxq) {
4976 PMD_RX_LOG(ERR, "RX queue is NULL");
4977 return;
4978 }
4979
4980 rxq->rx_bd_head = 0;
4981 rxq->rx_bd_tail = rxq->nb_rx_desc;
4982 rxq->rx_cq_head = 0;
4983 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
4984 *fp->rx_cq_cons_sb = 0;
4985
4986 /*
4987 * Activate the BD ring...
4988 * Warning, this will generate an interrupt (to the TSTORM)
4989 * so this can only be done after the chip is initialized
4990 */
4991 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
4992
4993 if (i != 0) {
4994 continue;
4995 }
4996 }
4997 }
4998
4999 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5000 {
5001 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5002
5003 fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5004 fp->tx_db.data.zero_fill1 = 0;
5005 fp->tx_db.data.prod = 0;
5006
5007 if (!txq) {
5008 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5009 return;
5010 }
5011
5012 txq->tx_pkt_tail = 0;
5013 txq->tx_pkt_head = 0;
5014 txq->tx_bd_tail = 0;
5015 txq->tx_bd_head = 0;
5016 }
5017
5018 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5019 {
5020 int i;
5021
5022 for (i = 0; i < sc->num_queues; i++) {
5023 bnx2x_init_tx_ring_one(&sc->fp[i]);
5024 }
5025 }
5026
5027 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5028 {
5029 struct host_sp_status_block *def_sb = sc->def_sb;
5030 phys_addr_t mapping = sc->def_sb_dma.paddr;
5031 int igu_sp_sb_index;
5032 int igu_seg_id;
5033 int port = SC_PORT(sc);
5034 int func = SC_FUNC(sc);
5035 int reg_offset, reg_offset_en5;
5036 uint64_t section;
5037 int index, sindex;
5038 struct hc_sp_status_block_data sp_sb_data;
5039
5040 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5041
5042 if (CHIP_INT_MODE_IS_BC(sc)) {
5043 igu_sp_sb_index = DEF_SB_IGU_ID;
5044 igu_seg_id = HC_SEG_ACCESS_DEF;
5045 } else {
5046 igu_sp_sb_index = sc->igu_dsb_id;
5047 igu_seg_id = IGU_SEG_ACCESS_DEF;
5048 }
5049
5050 /* attentions */
5051 section = ((uint64_t) mapping +
5052 offsetof(struct host_sp_status_block, atten_status_block));
5053 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5054 sc->attn_state = 0;
5055
5056 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5057 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5058
5059 reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5060 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5061
5062 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5063 /* take care of sig[0]..sig[4] */
5064 for (sindex = 0; sindex < 4; sindex++) {
5065 sc->attn_group[index].sig[sindex] =
5066 REG_RD(sc,
5067 (reg_offset + (sindex * 0x4) +
5068 (0x10 * index)));
5069 }
5070
5071 if (!CHIP_IS_E1x(sc)) {
5072 /*
5073 * enable5 is separate from the rest of the registers,
5074 * and the address skip is 4 and not 16 between the
5075 * different groups
5076 */
5077 sc->attn_group[index].sig[4] =
5078 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5079 } else {
5080 sc->attn_group[index].sig[4] = 0;
5081 }
5082 }
5083
5084 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5085 reg_offset =
5086 port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5087 REG_WR(sc, reg_offset, U64_LO(section));
5088 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5089 } else if (!CHIP_IS_E1x(sc)) {
5090 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5091 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5092 }
5093
5094 section = ((uint64_t) mapping +
5095 offsetof(struct host_sp_status_block, sp_sb));
5096
5097 bnx2x_zero_sp_sb(sc);
5098
5099 /* PCI guarantees endianity of regpair */
5100 sp_sb_data.state = SB_ENABLED;
5101 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5102 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5103 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5104 sp_sb_data.igu_seg_id = igu_seg_id;
5105 sp_sb_data.p_func.pf_id = func;
5106 sp_sb_data.p_func.vnic_id = SC_VN(sc);
5107 sp_sb_data.p_func.vf_id = 0xff;
5108
5109 bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5110
5111 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5112 }
5113
5114 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5115 {
5116 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5117 sc->spq_prod_idx = 0;
5118 sc->dsb_sp_prod =
5119 &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5120 sc->spq_prod_bd = sc->spq;
5121 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5122 }
5123
5124 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5125 {
5126 union event_ring_elem *elem;
5127 int i;
5128
5129 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5130 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5131
5132 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5133 BNX2X_PAGE_SIZE *
5134 (i % NUM_EQ_PAGES)));
5135 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5136 BNX2X_PAGE_SIZE *
5137 (i % NUM_EQ_PAGES)));
5138 }
5139
5140 sc->eq_cons = 0;
5141 sc->eq_prod = NUM_EQ_DESC;
5142 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5143
5144 atomic_store_rel_long(&sc->eq_spq_left,
5145 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5146 NUM_EQ_DESC) - 1));
5147 }
5148
5149 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5150 {
5151 int i;
5152
5153 if (IS_MF_SI(sc)) {
5154 /*
5155 * In switch independent mode, the TSTORM needs to accept
5156 * packets that failed classification, since approximate match
5157 * mac addresses aren't written to NIG LLH.
5158 */
5159 REG_WR8(sc,
5160 (BAR_TSTRORM_INTMEM +
5161 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5162 } else
5163 REG_WR8(sc,
5164 (BAR_TSTRORM_INTMEM +
5165 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5166
5167 /*
5168 * Zero this manually as its initialization is currently missing
5169 * in the initTool.
5170 */
5171 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5172 REG_WR(sc,
5173 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5174 0);
5175 }
5176
5177 if (!CHIP_IS_E1x(sc)) {
5178 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5179 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5180 HC_IGU_NBC_MODE);
5181 }
5182 }
5183
5184 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5185 {
5186 switch (load_code) {
5187 case FW_MSG_CODE_DRV_LOAD_COMMON:
5188 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5189 bnx2x_init_internal_common(sc);
5190 /* no break */
5191
5192 case FW_MSG_CODE_DRV_LOAD_PORT:
5193 /* nothing to do */
5194 /* no break */
5195
5196 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5197 /* internal memory per function is initialized inside bnx2x_pf_init */
5198 break;
5199
5200 default:
5201 PMD_DRV_LOG(NOTICE, "Unknown load_code (0x%x) from MCP",
5202 load_code);
5203 break;
5204 }
5205 }
5206
5207 static void
5208 storm_memset_func_cfg(struct bnx2x_softc *sc,
5209 struct tstorm_eth_function_common_config *tcfg,
5210 uint16_t abs_fid)
5211 {
5212 uint32_t addr;
5213 size_t size;
5214
5215 addr = (BAR_TSTRORM_INTMEM +
5216 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5217 size = sizeof(struct tstorm_eth_function_common_config);
5218 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5219 }
5220
5221 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5222 {
5223 struct tstorm_eth_function_common_config tcfg = { 0 };
5224
5225 if (CHIP_IS_E1x(sc)) {
5226 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5227 }
5228
5229 /* Enable the function in the FW */
5230 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5231 storm_memset_func_en(sc, p->func_id, 1);
5232
5233 /* spq */
5234 if (p->func_flgs & FUNC_FLG_SPQ) {
5235 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5236 REG_WR(sc,
5237 (XSEM_REG_FAST_MEMORY +
5238 XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5239 }
5240 }
5241
5242 /*
5243 * Calculates the sum of vn_min_rates.
5244 * It's needed for further normalizing of the min_rates.
5245 * Returns:
5246 * sum of vn_min_rates.
5247 * or
5248 * 0 - if all the min_rates are 0.
5249 * In the later case fainess algorithm should be deactivated.
5250 * If all min rates are not zero then those that are zeroes will be set to 1.
5251 */
5252 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5253 {
5254 uint32_t vn_cfg;
5255 uint32_t vn_min_rate;
5256 int all_zero = 1;
5257 int vn;
5258
5259 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5260 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5261 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5262 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5263
5264 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5265 /* skip hidden VNs */
5266 vn_min_rate = 0;
5267 } else if (!vn_min_rate) {
5268 /* If min rate is zero - set it to 100 */
5269 vn_min_rate = DEF_MIN_RATE;
5270 } else {
5271 all_zero = 0;
5272 }
5273
5274 input->vnic_min_rate[vn] = vn_min_rate;
5275 }
5276
5277 /* if ETS or all min rates are zeros - disable fairness */
5278 if (all_zero) {
5279 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5280 } else {
5281 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5282 }
5283 }
5284
5285 static uint16_t
5286 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5287 {
5288 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5289 FUNC_MF_CFG_MAX_BW_SHIFT);
5290
5291 if (!max_cfg) {
5292 PMD_DRV_LOG(DEBUG,
5293 "Max BW configured to 0 - using 100 instead");
5294 max_cfg = 100;
5295 }
5296
5297 return max_cfg;
5298 }
5299
5300 static void
5301 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5302 {
5303 uint16_t vn_max_rate;
5304 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5305 uint32_t max_cfg;
5306
5307 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5308 vn_max_rate = 0;
5309 } else {
5310 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5311
5312 if (IS_MF_SI(sc)) {
5313 /* max_cfg in percents of linkspeed */
5314 vn_max_rate =
5315 ((sc->link_vars.line_speed * max_cfg) / 100);
5316 } else { /* SD modes */
5317 /* max_cfg is absolute in 100Mb units */
5318 vn_max_rate = (max_cfg * 100);
5319 }
5320 }
5321
5322 input->vnic_max_rate[vn] = vn_max_rate;
5323 }
5324
5325 static void
5326 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5327 {
5328 struct cmng_init_input input;
5329 int vn;
5330
5331 memset(&input, 0, sizeof(struct cmng_init_input));
5332
5333 input.port_rate = sc->link_vars.line_speed;
5334
5335 if (cmng_type == CMNG_FNS_MINMAX) {
5336 /* read mf conf from shmem */
5337 if (read_cfg) {
5338 bnx2x_read_mf_cfg(sc);
5339 }
5340
5341 /* get VN min rate and enable fairness if not 0 */
5342 bnx2x_calc_vn_min(sc, &input);
5343
5344 /* get VN max rate */
5345 if (sc->port.pmf) {
5346 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5347 bnx2x_calc_vn_max(sc, vn, &input);
5348 }
5349 }
5350
5351 /* always enable rate shaping and fairness */
5352 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5353
5354 ecore_init_cmng(&input, &sc->cmng);
5355 return;
5356 }
5357 }
5358
5359 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5360 {
5361 if (CHIP_REV_IS_SLOW(sc)) {
5362 return CMNG_FNS_NONE;
5363 }
5364
5365 if (IS_MF(sc)) {
5366 return CMNG_FNS_MINMAX;
5367 }
5368
5369 return CMNG_FNS_NONE;
5370 }
5371
5372 static void
5373 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5374 {
5375 int vn;
5376 int func;
5377 uint32_t addr;
5378 size_t size;
5379
5380 addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5381 size = sizeof(struct cmng_struct_per_port);
5382 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5383
5384 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5385 func = func_by_vn(sc, vn);
5386
5387 addr = (BAR_XSTRORM_INTMEM +
5388 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5389 size = sizeof(struct rate_shaping_vars_per_vn);
5390 ecore_storm_memset_struct(sc, addr, size,
5391 (uint32_t *) & cmng->
5392 vnic.vnic_max_rate[vn]);
5393
5394 addr = (BAR_XSTRORM_INTMEM +
5395 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5396 size = sizeof(struct fairness_vars_per_vn);
5397 ecore_storm_memset_struct(sc, addr, size,
5398 (uint32_t *) & cmng->
5399 vnic.vnic_min_rate[vn]);
5400 }
5401 }
5402
5403 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5404 {
5405 struct bnx2x_func_init_params func_init;
5406 struct event_ring_data eq_data;
5407 uint16_t flags;
5408
5409 memset(&eq_data, 0, sizeof(struct event_ring_data));
5410 memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5411
5412 if (!CHIP_IS_E1x(sc)) {
5413 /* reset IGU PF statistics: MSIX + ATTN */
5414 /* PF */
5415 REG_WR(sc,
5416 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5417 (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5418 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5419 4)), 0);
5420 /* ATTN */
5421 REG_WR(sc,
5422 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5423 (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5424 (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5425 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5426 4)), 0);
5427 }
5428
5429 /* function setup flags */
5430 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5431
5432 func_init.func_flgs = flags;
5433 func_init.pf_id = SC_FUNC(sc);
5434 func_init.func_id = SC_FUNC(sc);
5435 func_init.spq_map = sc->spq_dma.paddr;
5436 func_init.spq_prod = sc->spq_prod_idx;
5437
5438 bnx2x_func_init(sc, &func_init);
5439
5440 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5441
5442 /*
5443 * Congestion management values depend on the link rate.
5444 * There is no active link so initial link rate is set to 10Gbps.
5445 * When the link comes up the congestion management values are
5446 * re-calculated according to the actual link rate.
5447 */
5448 sc->link_vars.line_speed = SPEED_10000;
5449 bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5450
5451 /* Only the PMF sets the HW */
5452 if (sc->port.pmf) {
5453 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5454 }
5455
5456 /* init Event Queue - PCI bus guarantees correct endainity */
5457 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5458 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5459 eq_data.producer = sc->eq_prod;
5460 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5461 eq_data.sb_id = DEF_SB_ID;
5462 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5463 }
5464
5465 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5466 {
5467 int port = SC_PORT(sc);
5468 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5469 uint32_t val = REG_RD(sc, addr);
5470 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5471 || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5472 uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5473 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5474
5475 if (msix) {
5476 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5477 HC_CONFIG_0_REG_INT_LINE_EN_0);
5478 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5479 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5480 if (single_msix) {
5481 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5482 }
5483 } else if (msi) {
5484 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5485 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5486 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5487 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5488 } else {
5489 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5490 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5491 HC_CONFIG_0_REG_INT_LINE_EN_0 |
5492 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5493
5494 REG_WR(sc, addr, val);
5495
5496 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5497 }
5498
5499 REG_WR(sc, addr, val);
5500
5501 /* ensure that HC_CONFIG is written before leading/trailing edge config */
5502 mb();
5503
5504 /* init leading/trailing edge */
5505 if (IS_MF(sc)) {
5506 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5507 if (sc->port.pmf) {
5508 /* enable nig and gpio3 attention */
5509 val |= 0x1100;
5510 }
5511 } else {
5512 val = 0xffff;
5513 }
5514
5515 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5516 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5517
5518 /* make sure that interrupts are indeed enabled from here on */
5519 mb();
5520 }
5521
5522 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5523 {
5524 uint32_t val;
5525 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5526 || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5527 uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5528 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5529
5530 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5531
5532 if (msix) {
5533 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5534 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5535 if (single_msix) {
5536 val |= IGU_PF_CONF_SINGLE_ISR_EN;
5537 }
5538 } else if (msi) {
5539 val &= ~IGU_PF_CONF_INT_LINE_EN;
5540 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5541 IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5542 } else {
5543 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5544 val |= (IGU_PF_CONF_INT_LINE_EN |
5545 IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5546 }
5547
5548 /* clean previous status - need to configure igu prior to ack */
5549 if ((!msix) || single_msix) {
5550 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5551 bnx2x_ack_int(sc);
5552 }
5553
5554 val |= IGU_PF_CONF_FUNC_EN;
5555
5556 PMD_DRV_LOG(DEBUG, "write 0x%x to IGU mode %s",
5557 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5558
5559 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5560
5561 mb();
5562
5563 /* init leading/trailing edge */
5564 if (IS_MF(sc)) {
5565 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5566 if (sc->port.pmf) {
5567 /* enable nig and gpio3 attention */
5568 val |= 0x1100;
5569 }
5570 } else {
5571 val = 0xffff;
5572 }
5573
5574 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5575 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5576
5577 /* make sure that interrupts are indeed enabled from here on */
5578 mb();
5579 }
5580
5581 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5582 {
5583 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5584 bnx2x_hc_int_enable(sc);
5585 } else {
5586 bnx2x_igu_int_enable(sc);
5587 }
5588 }
5589
5590 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5591 {
5592 int port = SC_PORT(sc);
5593 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5594 uint32_t val = REG_RD(sc, addr);
5595
5596 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5597 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5598 HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5599 /* flush all outstanding writes */
5600 mb();
5601
5602 REG_WR(sc, addr, val);
5603 if (REG_RD(sc, addr) != val) {
5604 PMD_DRV_LOG(ERR, "proper val not read from HC IGU!");
5605 }
5606 }
5607
5608 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5609 {
5610 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5611
5612 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5613 IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5614
5615 PMD_DRV_LOG(DEBUG, "write %x to IGU", val);
5616
5617 /* flush all outstanding writes */
5618 mb();
5619
5620 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5621 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5622 PMD_DRV_LOG(ERR, "proper val not read from IGU!");
5623 }
5624 }
5625
5626 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5627 {
5628 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5629 bnx2x_hc_int_disable(sc);
5630 } else {
5631 bnx2x_igu_int_disable(sc);
5632 }
5633 }
5634
5635 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5636 {
5637 int i;
5638
5639 PMD_INIT_FUNC_TRACE();
5640
5641 for (i = 0; i < sc->num_queues; i++) {
5642 bnx2x_init_eth_fp(sc, i);
5643 }
5644
5645 rmb(); /* ensure status block indices were read */
5646
5647 bnx2x_init_rx_rings(sc);
5648 bnx2x_init_tx_rings(sc);
5649
5650 if (IS_VF(sc)) {
5651 bnx2x_memset_stats(sc);
5652 return;
5653 }
5654
5655 /* initialize MOD_ABS interrupts */
5656 elink_init_mod_abs_int(sc, &sc->link_vars,
5657 sc->devinfo.chip_id,
5658 sc->devinfo.shmem_base,
5659 sc->devinfo.shmem2_base, SC_PORT(sc));
5660
5661 bnx2x_init_def_sb(sc);
5662 bnx2x_update_dsb_idx(sc);
5663 bnx2x_init_sp_ring(sc);
5664 bnx2x_init_eq_ring(sc);
5665 bnx2x_init_internal(sc, load_code);
5666 bnx2x_pf_init(sc);
5667 bnx2x_stats_init(sc);
5668
5669 /* flush all before enabling interrupts */
5670 mb();
5671
5672 bnx2x_int_enable(sc);
5673
5674 /* check for SPIO5 */
5675 bnx2x_attn_int_deasserted0(sc,
5676 REG_RD(sc,
5677 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5678 SC_PORT(sc) * 4)) &
5679 AEU_INPUTS_ATTN_BITS_SPIO5);
5680 }
5681
5682 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5683 {
5684 /* mcast rules must be added to tx if tx switching is enabled */
5685 ecore_obj_type o_type;
5686 if (sc->flags & BNX2X_TX_SWITCHING)
5687 o_type = ECORE_OBJ_TYPE_RX_TX;
5688 else
5689 o_type = ECORE_OBJ_TYPE_RX;
5690
5691 /* RX_MODE controlling object */
5692 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5693
5694 /* multicast configuration controlling object */
5695 ecore_init_mcast_obj(sc,
5696 &sc->mcast_obj,
5697 sc->fp[0].cl_id,
5698 sc->fp[0].index,
5699 SC_FUNC(sc),
5700 SC_FUNC(sc),
5701 BNX2X_SP(sc, mcast_rdata),
5702 (phys_addr_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5703 ECORE_FILTER_MCAST_PENDING,
5704 &sc->sp_state, o_type);
5705
5706 /* Setup CAM credit pools */
5707 ecore_init_mac_credit_pool(sc,
5708 &sc->macs_pool,
5709 SC_FUNC(sc),
5710 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5711 VNICS_PER_PATH(sc));
5712
5713 ecore_init_vlan_credit_pool(sc,
5714 &sc->vlans_pool,
5715 SC_ABS_FUNC(sc) >> 1,
5716 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5717 VNICS_PER_PATH(sc));
5718
5719 /* RSS configuration object */
5720 ecore_init_rss_config_obj(&sc->rss_conf_obj,
5721 sc->fp[0].cl_id,
5722 sc->fp[0].index,
5723 SC_FUNC(sc),
5724 SC_FUNC(sc),
5725 BNX2X_SP(sc, rss_rdata),
5726 (phys_addr_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5727 ECORE_FILTER_RSS_CONF_PENDING,
5728 &sc->sp_state, ECORE_OBJ_TYPE_RX);
5729 }
5730
5731 /*
5732 * Initialize the function. This must be called before sending CLIENT_SETUP
5733 * for the first client.
5734 */
5735 static int bnx2x_func_start(struct bnx2x_softc *sc)
5736 {
5737 struct ecore_func_state_params func_params = { NULL };
5738 struct ecore_func_start_params *start_params =
5739 &func_params.params.start;
5740
5741 /* Prepare parameters for function state transitions */
5742 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5743
5744 func_params.f_obj = &sc->func_obj;
5745 func_params.cmd = ECORE_F_CMD_START;
5746
5747 /* Function parameters */
5748 start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5749 start_params->sd_vlan_tag = OVLAN(sc);
5750
5751 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5752 start_params->network_cos_mode = STATIC_COS;
5753 } else { /* CHIP_IS_E1X */
5754 start_params->network_cos_mode = FW_WRR;
5755 }
5756
5757 start_params->gre_tunnel_mode = 0;
5758 start_params->gre_tunnel_rss = 0;
5759
5760 return ecore_func_state_change(sc, &func_params);
5761 }
5762
5763 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5764 {
5765 uint16_t pmcsr;
5766
5767 /* If there is no power capability, silently succeed */
5768 if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5769 PMD_DRV_LOG(WARNING, "No power capability");
5770 return 0;
5771 }
5772
5773 pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5774 2);
5775
5776 switch (state) {
5777 case PCI_PM_D0:
5778 pci_write_word(sc,
5779 (sc->devinfo.pcie_pm_cap_reg +
5780 PCIR_POWER_STATUS),
5781 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5782
5783 if (pmcsr & PCIM_PSTAT_DMASK) {
5784 /* delay required during transition out of D3hot */
5785 DELAY(20000);
5786 }
5787
5788 break;
5789
5790 case PCI_PM_D3hot:
5791 /* don't shut down the power for emulation and FPGA */
5792 if (CHIP_REV_IS_SLOW(sc)) {
5793 return 0;
5794 }
5795
5796 pmcsr &= ~PCIM_PSTAT_DMASK;
5797 pmcsr |= PCIM_PSTAT_D3;
5798
5799 if (sc->wol) {
5800 pmcsr |= PCIM_PSTAT_PMEENABLE;
5801 }
5802
5803 pci_write_long(sc,
5804 (sc->devinfo.pcie_pm_cap_reg +
5805 PCIR_POWER_STATUS), pmcsr);
5806
5807 /*
5808 * No more memory access after this point until device is brought back
5809 * to D0 state.
5810 */
5811 break;
5812
5813 default:
5814 PMD_DRV_LOG(NOTICE, "Can't support PCI power state = %d",
5815 state);
5816 return -1;
5817 }
5818
5819 return 0;
5820 }
5821
5822 /* return true if succeeded to acquire the lock */
5823 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5824 {
5825 uint32_t lock_status;
5826 uint32_t resource_bit = (1 << resource);
5827 int func = SC_FUNC(sc);
5828 uint32_t hw_lock_control_reg;
5829
5830 /* Validating that the resource is within range */
5831 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5832 PMD_DRV_LOG(INFO,
5833 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5834 resource, HW_LOCK_MAX_RESOURCE_VALUE);
5835 return FALSE;
5836 }
5837
5838 if (func <= 5) {
5839 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5840 } else {
5841 hw_lock_control_reg =
5842 (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5843 }
5844
5845 /* try to acquire the lock */
5846 REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5847 lock_status = REG_RD(sc, hw_lock_control_reg);
5848 if (lock_status & resource_bit) {
5849 return TRUE;
5850 }
5851
5852 PMD_DRV_LOG(NOTICE, "Failed to get a resource lock 0x%x", resource);
5853
5854 return FALSE;
5855 }
5856
5857 /*
5858 * Get the recovery leader resource id according to the engine this function
5859 * belongs to. Currently only only 2 engines is supported.
5860 */
5861 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5862 {
5863 if (SC_PATH(sc)) {
5864 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5865 } else {
5866 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5867 }
5868 }
5869
5870 /* try to acquire a leader lock for current engine */
5871 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5872 {
5873 return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5874 }
5875
5876 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5877 {
5878 return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5879 }
5880
5881 /* close gates #2, #3 and #4 */
5882 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5883 {
5884 uint32_t val;
5885
5886 /* gates #2 and #4a are closed/opened */
5887 /* #4 */
5888 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5889 /* #2 */
5890 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5891
5892 /* #3 */
5893 if (CHIP_IS_E1x(sc)) {
5894 /* prevent interrupts from HC on both ports */
5895 val = REG_RD(sc, HC_REG_CONFIG_1);
5896 if (close)
5897 REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5898 HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5899 else
5900 REG_WR(sc, HC_REG_CONFIG_1,
5901 (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5902
5903 val = REG_RD(sc, HC_REG_CONFIG_0);
5904 if (close)
5905 REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5906 HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5907 else
5908 REG_WR(sc, HC_REG_CONFIG_0,
5909 (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5910
5911 } else {
5912 /* Prevent incomming interrupts in IGU */
5913 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5914
5915 if (close)
5916 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5917 (val & ~(uint32_t)
5918 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5919 else
5920 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5921 (val |
5922 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5923 }
5924
5925 wmb();
5926 }
5927
5928 /* poll for pending writes bit, it should get cleared in no more than 1s */
5929 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
5930 {
5931 uint32_t cnt = 1000;
5932 uint32_t pend_bits = 0;
5933
5934 do {
5935 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
5936
5937 if (pend_bits == 0) {
5938 break;
5939 }
5940
5941 DELAY(1000);
5942 } while (cnt-- > 0);
5943
5944 if (cnt <= 0) {
5945 PMD_DRV_LOG(NOTICE, "Still pending IGU requests bits=0x%08x!",
5946 pend_bits);
5947 return -1;
5948 }
5949
5950 return 0;
5951 }
5952
5953 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
5954
5955 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5956 {
5957 /* Do some magic... */
5958 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5959 *magic_val = val & SHARED_MF_CLP_MAGIC;
5960 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
5961 }
5962
5963 /* restore the value of the 'magic' bit */
5964 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
5965 {
5966 /* Restore the 'magic' bit value... */
5967 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5968 MFCFG_WR(sc, shared_mf_config.clp_mb,
5969 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
5970 }
5971
5972 /* prepare for MCP reset, takes care of CLP configurations */
5973 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5974 {
5975 uint32_t shmem;
5976 uint32_t validity_offset;
5977
5978 /* set `magic' bit in order to save MF config */
5979 bnx2x_clp_reset_prep(sc, magic_val);
5980
5981 /* get shmem offset */
5982 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
5983 validity_offset =
5984 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
5985
5986 /* Clear validity map flags */
5987 if (shmem > 0) {
5988 REG_WR(sc, shmem + validity_offset, 0);
5989 }
5990 }
5991
5992 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
5993 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
5994
5995 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
5996 {
5997 /* special handling for emulation and FPGA (10 times longer) */
5998 if (CHIP_REV_IS_SLOW(sc)) {
5999 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6000 } else {
6001 DELAY((MCP_ONE_TIMEOUT) * 1000);
6002 }
6003 }
6004
6005 /* initialize shmem_base and waits for validity signature to appear */
6006 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6007 {
6008 int cnt = 0;
6009 uint32_t val = 0;
6010
6011 do {
6012 sc->devinfo.shmem_base =
6013 sc->link_params.shmem_base =
6014 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6015
6016 if (sc->devinfo.shmem_base) {
6017 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6018 if (val & SHR_MEM_VALIDITY_MB)
6019 return 0;
6020 }
6021
6022 bnx2x_mcp_wait_one(sc);
6023
6024 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6025
6026 PMD_DRV_LOG(NOTICE, "BAD MCP validity signature");
6027
6028 return -1;
6029 }
6030
6031 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6032 {
6033 int rc = bnx2x_init_shmem(sc);
6034
6035 /* Restore the `magic' bit value */
6036 bnx2x_clp_reset_done(sc, magic_val);
6037
6038 return rc;
6039 }
6040
6041 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6042 {
6043 REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6044 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6045 wmb();
6046 }
6047
6048 /*
6049 * Reset the whole chip except for:
6050 * - PCIE core
6051 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6052 * - IGU
6053 * - MISC (including AEU)
6054 * - GRC
6055 * - RBCN, RBCP
6056 */
6057 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6058 {
6059 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6060 uint32_t global_bits2, stay_reset2;
6061
6062 /*
6063 * Bits that have to be set in reset_mask2 if we want to reset 'global'
6064 * (per chip) blocks.
6065 */
6066 global_bits2 =
6067 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6068 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6069
6070 /*
6071 * Don't reset the following blocks.
6072 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6073 * reset, as in 4 port device they might still be owned
6074 * by the MCP (there is only one leader per path).
6075 */
6076 not_reset_mask1 =
6077 MISC_REGISTERS_RESET_REG_1_RST_HC |
6078 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6079 MISC_REGISTERS_RESET_REG_1_RST_PXP;
6080
6081 not_reset_mask2 =
6082 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6083 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6084 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6085 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6086 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6087 MISC_REGISTERS_RESET_REG_2_RST_GRC |
6088 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6089 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6090 MISC_REGISTERS_RESET_REG_2_RST_ATC |
6091 MISC_REGISTERS_RESET_REG_2_PGLC |
6092 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6093 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6094 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6095 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6096 MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6097
6098 /*
6099 * Keep the following blocks in reset:
6100 * - all xxMACs are handled by the elink code.
6101 */
6102 stay_reset2 =
6103 MISC_REGISTERS_RESET_REG_2_XMAC |
6104 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6105
6106 /* Full reset masks according to the chip */
6107 reset_mask1 = 0xffffffff;
6108
6109 if (CHIP_IS_E1H(sc))
6110 reset_mask2 = 0x1ffff;
6111 else if (CHIP_IS_E2(sc))
6112 reset_mask2 = 0xfffff;
6113 else /* CHIP_IS_E3 */
6114 reset_mask2 = 0x3ffffff;
6115
6116 /* Don't reset global blocks unless we need to */
6117 if (!global)
6118 reset_mask2 &= ~global_bits2;
6119
6120 /*
6121 * In case of attention in the QM, we need to reset PXP
6122 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6123 * because otherwise QM reset would release 'close the gates' shortly
6124 * before resetting the PXP, then the PSWRQ would send a write
6125 * request to PGLUE. Then when PXP is reset, PGLUE would try to
6126 * read the payload data from PSWWR, but PSWWR would not
6127 * respond. The write queue in PGLUE would stuck, dmae commands
6128 * would not return. Therefore it's important to reset the second
6129 * reset register (containing the
6130 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6131 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6132 * bit).
6133 */
6134 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6135 reset_mask2 & (~not_reset_mask2));
6136
6137 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6138 reset_mask1 & (~not_reset_mask1));
6139
6140 mb();
6141 wmb();
6142
6143 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6144 reset_mask2 & (~stay_reset2));
6145
6146 mb();
6147 wmb();
6148
6149 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6150 wmb();
6151 }
6152
6153 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6154 {
6155 int cnt = 1000;
6156 uint32_t val = 0;
6157 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6158 uint32_t tags_63_32 = 0;
6159
6160 /* Empty the Tetris buffer, wait for 1s */
6161 do {
6162 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6163 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6164 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6165 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6166 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6167 if (CHIP_IS_E3(sc)) {
6168 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6169 }
6170
6171 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6172 ((port_is_idle_0 & 0x1) == 0x1) &&
6173 ((port_is_idle_1 & 0x1) == 0x1) &&
6174 (pgl_exp_rom2 == 0xffffffff) &&
6175 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6176 break;
6177 DELAY(1000);
6178 } while (cnt-- > 0);
6179
6180 if (cnt <= 0) {
6181 PMD_DRV_LOG(NOTICE,
6182 "ERROR: Tetris buffer didn't get empty or there "
6183 "are still outstanding read requests after 1s! "
6184 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6185 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6186 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6187 pgl_exp_rom2);
6188 return -1;
6189 }
6190
6191 mb();
6192
6193 /* Close gates #2, #3 and #4 */
6194 bnx2x_set_234_gates(sc, TRUE);
6195
6196 /* Poll for IGU VQs for 57712 and newer chips */
6197 if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6198 return -1;
6199 }
6200
6201 /* clear "unprepared" bit */
6202 REG_WR(sc, MISC_REG_UNPREPARED, 0);
6203 mb();
6204
6205 /* Make sure all is written to the chip before the reset */
6206 wmb();
6207
6208 /*
6209 * Wait for 1ms to empty GLUE and PCI-E core queues,
6210 * PSWHST, GRC and PSWRD Tetris buffer.
6211 */
6212 DELAY(1000);
6213
6214 /* Prepare to chip reset: */
6215 /* MCP */
6216 if (global) {
6217 bnx2x_reset_mcp_prep(sc, &val);
6218 }
6219
6220 /* PXP */
6221 bnx2x_pxp_prep(sc);
6222 mb();
6223
6224 /* reset the chip */
6225 bnx2x_process_kill_chip_reset(sc, global);
6226 mb();
6227
6228 /* Recover after reset: */
6229 /* MCP */
6230 if (global && bnx2x_reset_mcp_comp(sc, val)) {
6231 return -1;
6232 }
6233
6234 /* Open the gates #2, #3 and #4 */
6235 bnx2x_set_234_gates(sc, FALSE);
6236
6237 return 0;
6238 }
6239
6240 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6241 {
6242 int rc = 0;
6243 uint8_t global = bnx2x_reset_is_global(sc);
6244 uint32_t load_code;
6245
6246 /*
6247 * If not going to reset MCP, load "fake" driver to reset HW while
6248 * driver is owner of the HW.
6249 */
6250 if (!global && !BNX2X_NOMCP(sc)) {
6251 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6252 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6253 if (!load_code) {
6254 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6255 rc = -1;
6256 goto exit_leader_reset;
6257 }
6258
6259 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6260 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6261 PMD_DRV_LOG(NOTICE,
6262 "MCP unexpected response, aborting");
6263 rc = -1;
6264 goto exit_leader_reset2;
6265 }
6266
6267 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6268 if (!load_code) {
6269 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6270 rc = -1;
6271 goto exit_leader_reset2;
6272 }
6273 }
6274
6275 /* try to recover after the failure */
6276 if (bnx2x_process_kill(sc, global)) {
6277 PMD_DRV_LOG(NOTICE, "Something bad occurred on engine %d!",
6278 SC_PATH(sc));
6279 rc = -1;
6280 goto exit_leader_reset2;
6281 }
6282
6283 /*
6284 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6285 * state.
6286 */
6287 bnx2x_set_reset_done(sc);
6288 if (global) {
6289 bnx2x_clear_reset_global(sc);
6290 }
6291
6292 exit_leader_reset2:
6293
6294 /* unload "fake driver" if it was loaded */
6295 if (!global &&!BNX2X_NOMCP(sc)) {
6296 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6297 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6298 }
6299
6300 exit_leader_reset:
6301
6302 sc->is_leader = 0;
6303 bnx2x_release_leader_lock(sc);
6304
6305 mb();
6306 return rc;
6307 }
6308
6309 /*
6310 * prepare INIT transition, parameters configured:
6311 * - HC configuration
6312 * - Queue's CDU context
6313 */
6314 static void
6315 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6316 struct ecore_queue_init_params *init_params)
6317 {
6318 uint8_t cos;
6319 int cxt_index, cxt_offset;
6320
6321 bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6322 bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6323
6324 bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6325 bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6326
6327 /* HC rate */
6328 init_params->rx.hc_rate =
6329 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6330 init_params->tx.hc_rate =
6331 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6332
6333 /* FW SB ID */
6334 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6335
6336 /* CQ index among the SB indices */
6337 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6338 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6339
6340 /* set maximum number of COSs supported by this queue */
6341 init_params->max_cos = sc->max_cos;
6342
6343 /* set the context pointers queue object */
6344 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6345 cxt_index = fp->index / ILT_PAGE_CIDS;
6346 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6347 init_params->cxts[cos] =
6348 &sc->context[cxt_index].vcxt[cxt_offset].eth;
6349 }
6350 }
6351
6352 /* set flags that are common for the Tx-only and not normal connections */
6353 static unsigned long
6354 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6355 {
6356 unsigned long flags = 0;
6357
6358 /* PF driver will always initialize the Queue to an ACTIVE state */
6359 bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6360
6361 /*
6362 * tx only connections collect statistics (on the same index as the
6363 * parent connection). The statistics are zeroed when the parent
6364 * connection is initialized.
6365 */
6366
6367 bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6368 if (zero_stats) {
6369 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6370 }
6371
6372 /*
6373 * tx only connections can support tx-switching, though their
6374 * CoS-ness doesn't survive the loopback
6375 */
6376 if (sc->flags & BNX2X_TX_SWITCHING) {
6377 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6378 }
6379
6380 bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6381
6382 return flags;
6383 }
6384
6385 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6386 {
6387 unsigned long flags = 0;
6388
6389 if (IS_MF_SD(sc)) {
6390 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6391 }
6392
6393 if (leading) {
6394 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6395 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6396 }
6397
6398 bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6399
6400 /* merge with common flags */
6401 return flags | bnx2x_get_common_flags(sc, TRUE);
6402 }
6403
6404 static void
6405 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6406 struct ecore_general_setup_params *gen_init, uint8_t cos)
6407 {
6408 gen_init->stat_id = bnx2x_stats_id(fp);
6409 gen_init->spcl_id = fp->cl_id;
6410 gen_init->mtu = sc->mtu;
6411 gen_init->cos = cos;
6412 }
6413
6414 static void
6415 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6416 struct rxq_pause_params *pause,
6417 struct ecore_rxq_setup_params *rxq_init)
6418 {
6419 struct bnx2x_rx_queue *rxq;
6420
6421 rxq = sc->rx_queues[fp->index];
6422 if (!rxq) {
6423 PMD_RX_LOG(ERR, "RX queue is NULL");
6424 return;
6425 }
6426 /* pause */
6427 pause->bd_th_lo = BD_TH_LO(sc);
6428 pause->bd_th_hi = BD_TH_HI(sc);
6429
6430 pause->rcq_th_lo = RCQ_TH_LO(sc);
6431 pause->rcq_th_hi = RCQ_TH_HI(sc);
6432
6433 /* validate rings have enough entries to cross high thresholds */
6434 if (sc->dropless_fc &&
6435 pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6436 PMD_DRV_LOG(WARNING, "rx bd ring threshold limit");
6437 }
6438
6439 if (sc->dropless_fc &&
6440 pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6441 PMD_DRV_LOG(WARNING, "rcq ring threshold limit");
6442 }
6443
6444 pause->pri_map = 1;
6445
6446 /* rxq setup */
6447 rxq_init->dscr_map = (phys_addr_t)rxq->rx_ring_phys_addr;
6448 rxq_init->rcq_map = (phys_addr_t)rxq->cq_ring_phys_addr;
6449 rxq_init->rcq_np_map = (phys_addr_t)(rxq->cq_ring_phys_addr +
6450 BNX2X_PAGE_SIZE);
6451
6452 /*
6453 * This should be a maximum number of data bytes that may be
6454 * placed on the BD (not including paddings).
6455 */
6456 rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6457
6458 rxq_init->cl_qzone_id = fp->cl_qzone_id;
6459 rxq_init->rss_engine_id = SC_FUNC(sc);
6460 rxq_init->mcast_engine_id = SC_FUNC(sc);
6461
6462 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6463 rxq_init->fw_sb_id = fp->fw_sb_id;
6464
6465 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6466
6467 /*
6468 * configure silent vlan removal
6469 * if multi function mode is afex, then mask default vlan
6470 */
6471 if (IS_MF_AFEX(sc)) {
6472 rxq_init->silent_removal_value =
6473 sc->devinfo.mf_info.afex_def_vlan_tag;
6474 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6475 }
6476 }
6477
6478 static void
6479 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6480 struct ecore_txq_setup_params *txq_init, uint8_t cos)
6481 {
6482 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6483
6484 if (!txq) {
6485 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6486 return;
6487 }
6488 txq_init->dscr_map = (phys_addr_t)txq->tx_ring_phys_addr;
6489 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6490 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6491 txq_init->fw_sb_id = fp->fw_sb_id;
6492
6493 /*
6494 * set the TSS leading client id for TX classfication to the
6495 * leading RSS client id
6496 */
6497 txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6498 }
6499
6500 /*
6501 * This function performs 2 steps in a queue state machine:
6502 * 1) RESET->INIT
6503 * 2) INIT->SETUP
6504 */
6505 static int
6506 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6507 {
6508 struct ecore_queue_state_params q_params = { NULL };
6509 struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6510 int rc;
6511
6512 PMD_DRV_LOG(DEBUG, "setting up queue %d", fp->index);
6513
6514 bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6515
6516 q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6517
6518 /* we want to wait for completion in this context */
6519 bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6520
6521 /* prepare the INIT parameters */
6522 bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6523
6524 /* Set the command */
6525 q_params.cmd = ECORE_Q_CMD_INIT;
6526
6527 /* Change the state to INIT */
6528 rc = ecore_queue_state_change(sc, &q_params);
6529 if (rc) {
6530 PMD_DRV_LOG(NOTICE, "Queue(%d) INIT failed", fp->index);
6531 return rc;
6532 }
6533
6534 PMD_DRV_LOG(DEBUG, "init complete");
6535
6536 /* now move the Queue to the SETUP state */
6537 memset(setup_params, 0, sizeof(*setup_params));
6538
6539 /* set Queue flags */
6540 setup_params->flags = bnx2x_get_q_flags(sc, leading);
6541
6542 /* set general SETUP parameters */
6543 bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6544 FIRST_TX_COS_INDEX);
6545
6546 bnx2x_pf_rx_q_prep(sc, fp,
6547 &setup_params->pause_params,
6548 &setup_params->rxq_params);
6549
6550 bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6551
6552 /* Set the command */
6553 q_params.cmd = ECORE_Q_CMD_SETUP;
6554
6555 /* change the state to SETUP */
6556 rc = ecore_queue_state_change(sc, &q_params);
6557 if (rc) {
6558 PMD_DRV_LOG(NOTICE, "Queue(%d) SETUP failed", fp->index);
6559 return rc;
6560 }
6561
6562 return rc;
6563 }
6564
6565 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6566 {
6567 if (IS_PF(sc))
6568 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6569 else /* VF */
6570 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6571 }
6572
6573 static int
6574 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6575 uint8_t config_hash)
6576 {
6577 struct ecore_config_rss_params params = { NULL };
6578 uint32_t i;
6579
6580 /*
6581 * Although RSS is meaningless when there is a single HW queue we
6582 * still need it enabled in order to have HW Rx hash generated.
6583 */
6584
6585 params.rss_obj = rss_obj;
6586
6587 bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6588
6589 bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6590
6591 /* RSS configuration */
6592 bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6593 bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6594 bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6595 bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6596 if (rss_obj->udp_rss_v4) {
6597 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6598 }
6599 if (rss_obj->udp_rss_v6) {
6600 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6601 }
6602
6603 /* Hash bits */
6604 params.rss_result_mask = MULTI_MASK;
6605
6606 (void)rte_memcpy(params.ind_table, rss_obj->ind_table,
6607 sizeof(params.ind_table));
6608
6609 if (config_hash) {
6610 /* RSS keys */
6611 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6612 params.rss_key[i] = (uint32_t) rte_rand();
6613 }
6614
6615 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6616 }
6617
6618 if (IS_PF(sc))
6619 return ecore_config_rss(sc, &params);
6620 else
6621 return bnx2x_vf_config_rss(sc, &params);
6622 }
6623
6624 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6625 {
6626 return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6627 }
6628
6629 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6630 {
6631 uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6632 uint32_t i;
6633
6634 /*
6635 * Prepare the initial contents of the indirection table if
6636 * RSS is enabled
6637 */
6638 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6639 sc->rss_conf_obj.ind_table[i] =
6640 (sc->fp->cl_id + (i % num_eth_queues));
6641 }
6642
6643 if (sc->udp_rss) {
6644 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6645 }
6646
6647 /*
6648 * For 57711 SEARCHER configuration (rss_keys) is
6649 * per-port, so if explicit configuration is needed, do it only
6650 * for a PMF.
6651 *
6652 * For 57712 and newer it's a per-function configuration.
6653 */
6654 return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6655 }
6656
6657 static int
6658 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6659 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6660 unsigned long *ramrod_flags)
6661 {
6662 struct ecore_vlan_mac_ramrod_params ramrod_param;
6663 int rc;
6664
6665 memset(&ramrod_param, 0, sizeof(ramrod_param));
6666
6667 /* fill in general parameters */
6668 ramrod_param.vlan_mac_obj = obj;
6669 ramrod_param.ramrod_flags = *ramrod_flags;
6670
6671 /* fill a user request section if needed */
6672 if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6673 (void)rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6674 ETH_ALEN);
6675
6676 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6677
6678 /* Set the command: ADD or DEL */
6679 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6680 ECORE_VLAN_MAC_DEL;
6681 }
6682
6683 rc = ecore_config_vlan_mac(sc, &ramrod_param);
6684
6685 if (rc == ECORE_EXISTS) {
6686 PMD_DRV_LOG(INFO, "Failed to schedule ADD operations (EEXIST)");
6687 /* do not treat adding same MAC as error */
6688 rc = 0;
6689 } else if (rc < 0) {
6690 PMD_DRV_LOG(ERR,
6691 "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6692 }
6693
6694 return rc;
6695 }
6696
6697 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6698 {
6699 unsigned long ramrod_flags = 0;
6700
6701 PMD_DRV_LOG(DEBUG, "Adding Ethernet MAC");
6702
6703 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6704
6705 /* Eth MAC is set on RSS leading client (fp[0]) */
6706 return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6707 &sc->sp_objs->mac_obj,
6708 set, ECORE_ETH_MAC, &ramrod_flags);
6709 }
6710
6711 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6712 {
6713 uint32_t sel_phy_idx = 0;
6714
6715 if (sc->link_params.num_phys <= 1) {
6716 return ELINK_INT_PHY;
6717 }
6718
6719 if (sc->link_vars.link_up) {
6720 sel_phy_idx = ELINK_EXT_PHY1;
6721 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6722 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6723 (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6724 ELINK_SUPPORTED_FIBRE))
6725 sel_phy_idx = ELINK_EXT_PHY2;
6726 } else {
6727 switch (elink_phy_selection(&sc->link_params)) {
6728 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6729 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6730 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6731 sel_phy_idx = ELINK_EXT_PHY1;
6732 break;
6733 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6734 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6735 sel_phy_idx = ELINK_EXT_PHY2;
6736 break;
6737 }
6738 }
6739
6740 return sel_phy_idx;
6741 }
6742
6743 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6744 {
6745 uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6746
6747 /*
6748 * The selected activated PHY is always after swapping (in case PHY
6749 * swapping is enabled). So when swapping is enabled, we need to reverse
6750 * the configuration
6751 */
6752
6753 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6754 if (sel_phy_idx == ELINK_EXT_PHY1)
6755 sel_phy_idx = ELINK_EXT_PHY2;
6756 else if (sel_phy_idx == ELINK_EXT_PHY2)
6757 sel_phy_idx = ELINK_EXT_PHY1;
6758 }
6759
6760 return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6761 }
6762
6763 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6764 {
6765 /*
6766 * Initialize link parameters structure variables
6767 * It is recommended to turn off RX FC for jumbo frames
6768 * for better performance
6769 */
6770 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6771 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6772 } else {
6773 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6774 }
6775 }
6776
6777 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6778 {
6779 uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6780 switch (sc->link_vars.ieee_fc &
6781 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6782 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6783 default:
6784 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6785 ADVERTISED_Pause);
6786 break;
6787
6788 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6789 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6790 ADVERTISED_Pause);
6791 break;
6792
6793 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6794 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6795 break;
6796 }
6797 }
6798
6799 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6800 {
6801 uint16_t line_speed = sc->link_vars.line_speed;
6802 if (IS_MF(sc)) {
6803 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6804 sc->devinfo.
6805 mf_info.mf_config[SC_VN
6806 (sc)]);
6807
6808 /* calculate the current MAX line speed limit for the MF devices */
6809 if (IS_MF_SI(sc)) {
6810 line_speed = (line_speed * maxCfg) / 100;
6811 } else { /* SD mode */
6812 uint16_t vn_max_rate = maxCfg * 100;
6813
6814 if (vn_max_rate < line_speed) {
6815 line_speed = vn_max_rate;
6816 }
6817 }
6818 }
6819
6820 return line_speed;
6821 }
6822
6823 static void
6824 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6825 {
6826 uint16_t line_speed = bnx2x_get_mf_speed(sc);
6827
6828 memset(data, 0, sizeof(*data));
6829
6830 /* fill the report data with the effective line speed */
6831 data->line_speed = line_speed;
6832
6833 /* Link is down */
6834 if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6835 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6836 &data->link_report_flags);
6837 }
6838
6839 /* Full DUPLEX */
6840 if (sc->link_vars.duplex == DUPLEX_FULL) {
6841 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6842 &data->link_report_flags);
6843 }
6844
6845 /* Rx Flow Control is ON */
6846 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6847 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6848 }
6849
6850 /* Tx Flow Control is ON */
6851 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6852 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6853 }
6854 }
6855
6856 /* report link status to OS, should be called under phy_lock */
6857 static void bnx2x_link_report(struct bnx2x_softc *sc)
6858 {
6859 struct bnx2x_link_report_data cur_data;
6860
6861 /* reread mf_cfg */
6862 if (IS_PF(sc)) {
6863 bnx2x_read_mf_cfg(sc);
6864 }
6865
6866 /* Read the current link report info */
6867 bnx2x_fill_report_data(sc, &cur_data);
6868
6869 /* Don't report link down or exactly the same link status twice */
6870 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6871 (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6872 &sc->last_reported_link.link_report_flags) &&
6873 bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6874 &cur_data.link_report_flags))) {
6875 return;
6876 }
6877
6878 sc->link_cnt++;
6879
6880 /* report new link params and remember the state for the next time */
6881 (void)rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6882
6883 if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6884 &cur_data.link_report_flags)) {
6885 PMD_DRV_LOG(INFO, "NIC Link is Down");
6886 } else {
6887 __rte_unused const char *duplex;
6888 __rte_unused const char *flow;
6889
6890 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6891 &cur_data.link_report_flags)) {
6892 duplex = "full";
6893 } else {
6894 duplex = "half";
6895 }
6896
6897 /*
6898 * Handle the FC at the end so that only these flags would be
6899 * possibly set. This way we may easily check if there is no FC
6900 * enabled.
6901 */
6902 if (cur_data.link_report_flags) {
6903 if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6904 &cur_data.link_report_flags) &&
6905 bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6906 &cur_data.link_report_flags)) {
6907 flow = "ON - receive & transmit";
6908 } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6909 &cur_data.link_report_flags) &&
6910 !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6911 &cur_data.link_report_flags)) {
6912 flow = "ON - receive";
6913 } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6914 &cur_data.link_report_flags) &&
6915 bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6916 &cur_data.link_report_flags)) {
6917 flow = "ON - transmit";
6918 } else {
6919 flow = "none"; /* possible? */
6920 }
6921 } else {
6922 flow = "none";
6923 }
6924
6925 PMD_DRV_LOG(INFO,
6926 "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
6927 cur_data.line_speed, duplex, flow);
6928 }
6929 }
6930
6931 void bnx2x_link_status_update(struct bnx2x_softc *sc)
6932 {
6933 if (sc->state != BNX2X_STATE_OPEN) {
6934 return;
6935 }
6936
6937 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
6938 elink_link_status_update(&sc->link_params, &sc->link_vars);
6939 } else {
6940 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
6941 ELINK_SUPPORTED_10baseT_Full |
6942 ELINK_SUPPORTED_100baseT_Half |
6943 ELINK_SUPPORTED_100baseT_Full |
6944 ELINK_SUPPORTED_1000baseT_Full |
6945 ELINK_SUPPORTED_2500baseX_Full |
6946 ELINK_SUPPORTED_10000baseT_Full |
6947 ELINK_SUPPORTED_TP |
6948 ELINK_SUPPORTED_FIBRE |
6949 ELINK_SUPPORTED_Autoneg |
6950 ELINK_SUPPORTED_Pause |
6951 ELINK_SUPPORTED_Asym_Pause);
6952 sc->port.advertising[0] = sc->port.supported[0];
6953
6954 sc->link_params.sc = sc;
6955 sc->link_params.port = SC_PORT(sc);
6956 sc->link_params.req_duplex[0] = DUPLEX_FULL;
6957 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
6958 sc->link_params.req_line_speed[0] = SPEED_10000;
6959 sc->link_params.speed_cap_mask[0] = 0x7f0000;
6960 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
6961
6962 if (CHIP_REV_IS_FPGA(sc)) {
6963 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
6964 sc->link_vars.line_speed = ELINK_SPEED_1000;
6965 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6966 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
6967 } else {
6968 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
6969 sc->link_vars.line_speed = ELINK_SPEED_10000;
6970 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6971 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
6972 }
6973
6974 sc->link_vars.link_up = 1;
6975
6976 sc->link_vars.duplex = DUPLEX_FULL;
6977 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
6978
6979 if (IS_PF(sc)) {
6980 REG_WR(sc,
6981 NIG_REG_EGRESS_DRAIN0_MODE +
6982 sc->link_params.port * 4, 0);
6983 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6984 bnx2x_link_report(sc);
6985 }
6986 }
6987
6988 if (IS_PF(sc)) {
6989 if (sc->link_vars.link_up) {
6990 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6991 } else {
6992 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
6993 }
6994 bnx2x_link_report(sc);
6995 } else {
6996 bnx2x_link_report(sc);
6997 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6998 }
6999 }
7000
7001 static void bnx2x_periodic_start(struct bnx2x_softc *sc)
7002 {
7003 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
7004 }
7005
7006 static void bnx2x_periodic_stop(struct bnx2x_softc *sc)
7007 {
7008 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
7009 }
7010
7011 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7012 {
7013 int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7014 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7015 struct elink_params *lp = &sc->link_params;
7016
7017 bnx2x_set_requested_fc(sc);
7018
7019 if (load_mode == LOAD_DIAG) {
7020 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7021 /* Prefer doing PHY loopback at 10G speed, if possible */
7022 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7023 if (lp->speed_cap_mask[cfg_idx] &
7024 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7025 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7026 } else {
7027 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7028 }
7029 }
7030 }
7031
7032 if (load_mode == LOAD_LOOPBACK_EXT) {
7033 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7034 }
7035
7036 rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7037
7038 bnx2x_calc_fc_adv(sc);
7039
7040 if (sc->link_vars.link_up) {
7041 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7042 bnx2x_link_report(sc);
7043 }
7044
7045 if (!CHIP_REV_IS_SLOW(sc)) {
7046 bnx2x_periodic_start(sc);
7047 }
7048
7049 sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7050 return rc;
7051 }
7052
7053 /* update flags in shmem */
7054 static void
7055 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7056 {
7057 uint32_t drv_flags;
7058
7059 if (SHMEM2_HAS(sc, drv_flags)) {
7060 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7061 drv_flags = SHMEM2_RD(sc, drv_flags);
7062
7063 if (set) {
7064 drv_flags |= flags;
7065 } else {
7066 drv_flags &= ~flags;
7067 }
7068
7069 SHMEM2_WR(sc, drv_flags, drv_flags);
7070
7071 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7072 }
7073 }
7074
7075 /* periodic timer callout routine, only runs when the interface is up */
7076 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7077 {
7078 if ((sc->state != BNX2X_STATE_OPEN) ||
7079 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7080 PMD_DRV_LOG(WARNING, "periodic callout exit (state=0x%x)",
7081 sc->state);
7082 return;
7083 }
7084 if (!CHIP_REV_IS_SLOW(sc)) {
7085 /*
7086 * This barrier is needed to ensure the ordering between the writing
7087 * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7088 * the reading here.
7089 */
7090 mb();
7091 if (sc->port.pmf) {
7092 elink_period_func(&sc->link_params, &sc->link_vars);
7093 }
7094 }
7095 #ifdef BNX2X_PULSE
7096 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7097 int mb_idx = SC_FW_MB_IDX(sc);
7098 uint32_t drv_pulse;
7099 uint32_t mcp_pulse;
7100
7101 ++sc->fw_drv_pulse_wr_seq;
7102 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7103
7104 drv_pulse = sc->fw_drv_pulse_wr_seq;
7105 bnx2x_drv_pulse(sc);
7106
7107 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7108 MCP_PULSE_SEQ_MASK);
7109
7110 /*
7111 * The delta between driver pulse and mcp response should
7112 * be 1 (before mcp response) or 0 (after mcp response).
7113 */
7114 if ((drv_pulse != mcp_pulse) &&
7115 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7116 /* someone lost a heartbeat... */
7117 PMD_DRV_LOG(ERR,
7118 "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7119 drv_pulse, mcp_pulse);
7120 }
7121 }
7122 #endif
7123 }
7124
7125 /* start the controller */
7126 static __attribute__ ((noinline))
7127 int bnx2x_nic_load(struct bnx2x_softc *sc)
7128 {
7129 uint32_t val;
7130 uint32_t load_code = 0;
7131 int i, rc = 0;
7132
7133 PMD_INIT_FUNC_TRACE();
7134
7135 sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7136
7137 if (IS_PF(sc)) {
7138 /* must be called before memory allocation and HW init */
7139 bnx2x_ilt_set_info(sc);
7140 }
7141
7142 bnx2x_set_fp_rx_buf_size(sc);
7143
7144 if (IS_PF(sc)) {
7145 if (bnx2x_alloc_mem(sc) != 0) {
7146 sc->state = BNX2X_STATE_CLOSED;
7147 rc = -ENOMEM;
7148 goto bnx2x_nic_load_error0;
7149 }
7150 }
7151
7152 if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7153 sc->state = BNX2X_STATE_CLOSED;
7154 rc = -ENOMEM;
7155 goto bnx2x_nic_load_error0;
7156 }
7157
7158 if (IS_VF(sc)) {
7159 rc = bnx2x_vf_init(sc);
7160 if (rc) {
7161 sc->state = BNX2X_STATE_ERROR;
7162 goto bnx2x_nic_load_error0;
7163 }
7164 }
7165
7166 if (IS_PF(sc)) {
7167 /* set pf load just before approaching the MCP */
7168 bnx2x_set_pf_load(sc);
7169
7170 /* if MCP exists send load request and analyze response */
7171 if (!BNX2X_NOMCP(sc)) {
7172 /* attempt to load pf */
7173 if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7174 sc->state = BNX2X_STATE_CLOSED;
7175 rc = -ENXIO;
7176 goto bnx2x_nic_load_error1;
7177 }
7178
7179 /* what did the MCP say? */
7180 if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7181 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7182 sc->state = BNX2X_STATE_CLOSED;
7183 rc = -ENXIO;
7184 goto bnx2x_nic_load_error2;
7185 }
7186 } else {
7187 PMD_DRV_LOG(INFO, "Device has no MCP!");
7188 load_code = bnx2x_nic_load_no_mcp(sc);
7189 }
7190
7191 /* mark PMF if applicable */
7192 bnx2x_nic_load_pmf(sc, load_code);
7193
7194 /* Init Function state controlling object */
7195 bnx2x_init_func_obj(sc);
7196
7197 /* Initialize HW */
7198 if (bnx2x_init_hw(sc, load_code) != 0) {
7199 PMD_DRV_LOG(NOTICE, "HW init failed");
7200 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7201 sc->state = BNX2X_STATE_CLOSED;
7202 rc = -ENXIO;
7203 goto bnx2x_nic_load_error2;
7204 }
7205 }
7206
7207 bnx2x_nic_init(sc, load_code);
7208
7209 /* Init per-function objects */
7210 if (IS_PF(sc)) {
7211 bnx2x_init_objs(sc);
7212
7213 /* set AFEX default VLAN tag to an invalid value */
7214 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7215
7216 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7217 rc = bnx2x_func_start(sc);
7218 if (rc) {
7219 PMD_DRV_LOG(NOTICE, "Function start failed!");
7220 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7221 sc->state = BNX2X_STATE_ERROR;
7222 goto bnx2x_nic_load_error3;
7223 }
7224
7225 /* send LOAD_DONE command to MCP */
7226 if (!BNX2X_NOMCP(sc)) {
7227 load_code =
7228 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7229 if (!load_code) {
7230 PMD_DRV_LOG(NOTICE,
7231 "MCP response failure, aborting");
7232 sc->state = BNX2X_STATE_ERROR;
7233 rc = -ENXIO;
7234 goto bnx2x_nic_load_error3;
7235 }
7236 }
7237 }
7238
7239 rc = bnx2x_setup_leading(sc);
7240 if (rc) {
7241 PMD_DRV_LOG(NOTICE, "Setup leading failed!");
7242 sc->state = BNX2X_STATE_ERROR;
7243 goto bnx2x_nic_load_error3;
7244 }
7245
7246 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7247 if (IS_PF(sc))
7248 rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7249 else /* IS_VF(sc) */
7250 rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7251
7252 if (rc) {
7253 PMD_DRV_LOG(NOTICE, "Queue(%d) setup failed", i);
7254 sc->state = BNX2X_STATE_ERROR;
7255 goto bnx2x_nic_load_error3;
7256 }
7257 }
7258
7259 rc = bnx2x_init_rss_pf(sc);
7260 if (rc) {
7261 PMD_DRV_LOG(NOTICE, "PF RSS init failed");
7262 sc->state = BNX2X_STATE_ERROR;
7263 goto bnx2x_nic_load_error3;
7264 }
7265
7266 /* now when Clients are configured we are ready to work */
7267 sc->state = BNX2X_STATE_OPEN;
7268
7269 /* Configure a ucast MAC */
7270 if (IS_PF(sc)) {
7271 rc = bnx2x_set_eth_mac(sc, TRUE);
7272 } else { /* IS_VF(sc) */
7273 rc = bnx2x_vf_set_mac(sc, TRUE);
7274 }
7275
7276 if (rc) {
7277 PMD_DRV_LOG(NOTICE, "Setting Ethernet MAC failed");
7278 sc->state = BNX2X_STATE_ERROR;
7279 goto bnx2x_nic_load_error3;
7280 }
7281
7282 if (sc->port.pmf) {
7283 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7284 if (rc) {
7285 sc->state = BNX2X_STATE_ERROR;
7286 goto bnx2x_nic_load_error3;
7287 }
7288 }
7289
7290 sc->link_params.feature_config_flags &=
7291 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7292
7293 /* start the Tx */
7294 switch (LOAD_OPEN) {
7295 case LOAD_NORMAL:
7296 case LOAD_OPEN:
7297 break;
7298
7299 case LOAD_DIAG:
7300 case LOAD_LOOPBACK_EXT:
7301 sc->state = BNX2X_STATE_DIAG;
7302 break;
7303
7304 default:
7305 break;
7306 }
7307
7308 if (sc->port.pmf) {
7309 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7310 } else {
7311 bnx2x_link_status_update(sc);
7312 }
7313
7314 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7315 /* mark driver is loaded in shmem2 */
7316 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7317 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7318 (val |
7319 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7320 DRV_FLAGS_CAPABILITIES_LOADED_L2));
7321 }
7322
7323 /* start fast path */
7324 /* Initialize Rx filter */
7325 bnx2x_set_rx_mode(sc);
7326
7327 /* wait for all pending SP commands to complete */
7328 if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7329 PMD_DRV_LOG(NOTICE, "Timeout waiting for all SPs to complete!");
7330 bnx2x_periodic_stop(sc);
7331 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7332 return -ENXIO;
7333 }
7334
7335 PMD_DRV_LOG(DEBUG, "NIC successfully loaded");
7336
7337 return 0;
7338
7339 bnx2x_nic_load_error3:
7340
7341 if (IS_PF(sc)) {
7342 bnx2x_int_disable_sync(sc, 1);
7343
7344 /* clean out queued objects */
7345 bnx2x_squeeze_objects(sc);
7346 }
7347
7348 bnx2x_nic_load_error2:
7349
7350 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7351 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7352 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7353 }
7354
7355 sc->port.pmf = 0;
7356
7357 bnx2x_nic_load_error1:
7358
7359 /* clear pf_load status, as it was already set */
7360 if (IS_PF(sc)) {
7361 bnx2x_clear_pf_load(sc);
7362 }
7363
7364 bnx2x_nic_load_error0:
7365
7366 bnx2x_free_fw_stats_mem(sc);
7367 bnx2x_free_mem(sc);
7368
7369 return rc;
7370 }
7371
7372 /*
7373 * Handles controller initialization.
7374 */
7375 int bnx2x_init(struct bnx2x_softc *sc)
7376 {
7377 int other_engine = SC_PATH(sc) ? 0 : 1;
7378 uint8_t other_load_status, load_status;
7379 uint8_t global = FALSE;
7380 int rc;
7381
7382 /* Check if the driver is still running and bail out if it is. */
7383 if (sc->state != BNX2X_STATE_CLOSED) {
7384 PMD_DRV_LOG(DEBUG, "Init called while driver is running!");
7385 rc = 0;
7386 goto bnx2x_init_done;
7387 }
7388
7389 bnx2x_set_power_state(sc, PCI_PM_D0);
7390
7391 /*
7392 * If parity occurred during the unload, then attentions and/or
7393 * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7394 * loaded on the current engine to complete the recovery. Parity recovery
7395 * is only relevant for PF driver.
7396 */
7397 if (IS_PF(sc)) {
7398 other_load_status = bnx2x_get_load_status(sc, other_engine);
7399 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7400
7401 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7402 bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7403 do {
7404 /*
7405 * If there are attentions and they are in global blocks, set
7406 * the GLOBAL_RESET bit regardless whether it will be this
7407 * function that will complete the recovery or not.
7408 */
7409 if (global) {
7410 bnx2x_set_reset_global(sc);
7411 }
7412
7413 /*
7414 * Only the first function on the current engine should try
7415 * to recover in open. In case of attentions in global blocks
7416 * only the first in the chip should try to recover.
7417 */
7418 if ((!load_status
7419 && (!global ||!other_load_status))
7420 && bnx2x_trylock_leader_lock(sc)
7421 && !bnx2x_leader_reset(sc)) {
7422 PMD_DRV_LOG(INFO,
7423 "Recovered during init");
7424 break;
7425 }
7426
7427 /* recovery has failed... */
7428 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7429
7430 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7431
7432 PMD_DRV_LOG(NOTICE,
7433 "Recovery flow hasn't properly "
7434 "completed yet, try again later. "
7435 "If you still see this message after a "
7436 "few retries then power cycle is required.");
7437
7438 rc = -ENXIO;
7439 goto bnx2x_init_done;
7440 } while (0);
7441 }
7442 }
7443
7444 sc->recovery_state = BNX2X_RECOVERY_DONE;
7445
7446 rc = bnx2x_nic_load(sc);
7447
7448 bnx2x_init_done:
7449
7450 if (rc) {
7451 PMD_DRV_LOG(NOTICE, "Initialization failed, "
7452 "stack notified driver is NOT running!");
7453 }
7454
7455 return rc;
7456 }
7457
7458 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7459 {
7460 uint32_t val = 0;
7461
7462 /*
7463 * Read the ME register to get the function number. The ME register
7464 * holds the relative-function number and absolute-function number. The
7465 * absolute-function number appears only in E2 and above. Before that
7466 * these bits always contained zero, therefore we cannot blindly use them.
7467 */
7468
7469 val = REG_RD(sc, BAR_ME_REGISTER);
7470
7471 sc->pfunc_rel =
7472 (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7473 sc->path_id =
7474 (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7475 1;
7476
7477 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7478 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7479 } else {
7480 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7481 }
7482
7483 PMD_DRV_LOG(DEBUG,
7484 "Relative function %d, Absolute function %d, Path %d",
7485 sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7486 }
7487
7488 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7489 {
7490 uint32_t shmem2_size;
7491 uint32_t offset;
7492 uint32_t mf_cfg_offset_value;
7493
7494 /* Non 57712 */
7495 offset = (SHMEM_ADDR(sc, func_mb) +
7496 (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7497
7498 /* 57712 plus */
7499 if (sc->devinfo.shmem2_base != 0) {
7500 shmem2_size = SHMEM2_RD(sc, size);
7501 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7502 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7503 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7504 offset = mf_cfg_offset_value;
7505 }
7506 }
7507 }
7508
7509 return offset;
7510 }
7511
7512 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7513 {
7514 uint32_t ret;
7515 struct bnx2x_pci_cap *caps;
7516
7517 /* ensure PCIe capability is enabled */
7518 caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7519 if (NULL != caps) {
7520 PMD_DRV_LOG(DEBUG, "Found PCIe capability: "
7521 "id=0x%04X type=0x%04X addr=0x%08X",
7522 caps->id, caps->type, caps->addr);
7523 pci_read(sc, (caps->addr + reg), &ret, 2);
7524 return ret;
7525 }
7526
7527 PMD_DRV_LOG(WARNING, "PCIe capability NOT FOUND!!!");
7528
7529 return 0;
7530 }
7531
7532 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7533 {
7534 return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7535 PCIM_EXP_STA_TRANSACTION_PND;
7536 }
7537
7538 /*
7539 * Walk the PCI capabiites list for the device to find what features are
7540 * supported. These capabilites may be enabled/disabled by firmware so it's
7541 * best to walk the list rather than make assumptions.
7542 */
7543 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7544 {
7545 PMD_INIT_FUNC_TRACE();
7546
7547 struct bnx2x_pci_cap *caps;
7548 uint16_t link_status;
7549 #ifdef RTE_LIBRTE_BNX2X_DEBUG
7550 int reg = 0;
7551 #endif
7552
7553 /* check if PCI Power Management is enabled */
7554 caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7555 if (NULL != caps) {
7556 PMD_DRV_LOG(DEBUG, "Found PM capability: "
7557 "id=0x%04X type=0x%04X addr=0x%08X",
7558 caps->id, caps->type, caps->addr);
7559
7560 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7561 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7562 }
7563
7564 link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7565
7566 sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7567 sc->devinfo.pcie_link_width =
7568 ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7569
7570 PMD_DRV_LOG(DEBUG, "PCIe link speed=%d width=%d",
7571 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7572
7573 sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7574
7575 /* check if MSI capability is enabled */
7576 caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7577 if (NULL != caps) {
7578 PMD_DRV_LOG(DEBUG, "Found MSI capability at 0x%04x", reg);
7579
7580 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7581 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7582 }
7583
7584 /* check if MSI-X capability is enabled */
7585 caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7586 if (NULL != caps) {
7587 PMD_DRV_LOG(DEBUG, "Found MSI-X capability at 0x%04x", reg);
7588
7589 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7590 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7591 }
7592 }
7593
7594 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7595 {
7596 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7597 uint32_t val;
7598
7599 /* get the outer vlan if we're in switch-dependent mode */
7600
7601 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7602 mf_info->ext_id = (uint16_t) val;
7603
7604 mf_info->multi_vnics_mode = 1;
7605
7606 if (!VALID_OVLAN(mf_info->ext_id)) {
7607 PMD_DRV_LOG(NOTICE, "Invalid VLAN (%d)", mf_info->ext_id);
7608 return 1;
7609 }
7610
7611 /* get the capabilities */
7612 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7613 FUNC_MF_CFG_PROTOCOL_ISCSI) {
7614 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7615 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7616 == FUNC_MF_CFG_PROTOCOL_FCOE) {
7617 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7618 } else {
7619 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7620 }
7621
7622 mf_info->vnics_per_port =
7623 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7624
7625 return 0;
7626 }
7627
7628 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7629 {
7630 uint32_t retval = 0;
7631 uint32_t val;
7632
7633 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7634
7635 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7636 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7637 retval |= MF_PROTO_SUPPORT_ETHERNET;
7638 }
7639 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7640 retval |= MF_PROTO_SUPPORT_ISCSI;
7641 }
7642 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7643 retval |= MF_PROTO_SUPPORT_FCOE;
7644 }
7645 }
7646
7647 return retval;
7648 }
7649
7650 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7651 {
7652 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7653 uint32_t val;
7654
7655 /*
7656 * There is no outer vlan if we're in switch-independent mode.
7657 * If the mac is valid then assume multi-function.
7658 */
7659
7660 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7661
7662 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7663
7664 mf_info->mf_protos_supported =
7665 bnx2x_get_shmem_ext_proto_support_flags(sc);
7666
7667 mf_info->vnics_per_port =
7668 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7669
7670 return 0;
7671 }
7672
7673 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7674 {
7675 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7676 uint32_t e1hov_tag;
7677 uint32_t func_config;
7678 uint32_t niv_config;
7679
7680 mf_info->multi_vnics_mode = 1;
7681
7682 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7683 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7684 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7685
7686 mf_info->ext_id =
7687 (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7688 FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7689
7690 mf_info->default_vlan =
7691 (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7692 FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7693
7694 mf_info->niv_allowed_priorities =
7695 (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7696 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7697
7698 mf_info->niv_default_cos =
7699 (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7700 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7701
7702 mf_info->afex_vlan_mode =
7703 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7704 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7705
7706 mf_info->niv_mba_enabled =
7707 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7708 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7709
7710 mf_info->mf_protos_supported =
7711 bnx2x_get_shmem_ext_proto_support_flags(sc);
7712
7713 mf_info->vnics_per_port =
7714 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7715
7716 return 0;
7717 }
7718
7719 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7720 {
7721 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7722 uint32_t mf_cfg1;
7723 uint32_t mf_cfg2;
7724 uint32_t ovlan1;
7725 uint32_t ovlan2;
7726 uint8_t i, j;
7727
7728 /* various MF mode sanity checks... */
7729
7730 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7731 PMD_DRV_LOG(NOTICE,
7732 "Enumerated function %d is marked as hidden",
7733 SC_PORT(sc));
7734 return 1;
7735 }
7736
7737 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7738 PMD_DRV_LOG(NOTICE, "vnics_per_port=%d multi_vnics_mode=%d",
7739 mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7740 return 1;
7741 }
7742
7743 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7744 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7745 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7746 PMD_DRV_LOG(NOTICE, "mf_mode=SD vnic_id=%d ovlan=%d",
7747 SC_VN(sc), OVLAN(sc));
7748 return 1;
7749 }
7750
7751 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7752 PMD_DRV_LOG(NOTICE,
7753 "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7754 mf_info->multi_vnics_mode, OVLAN(sc));
7755 return 1;
7756 }
7757
7758 /*
7759 * Verify all functions are either MF or SF mode. If MF, make sure
7760 * sure that all non-hidden functions have a valid ovlan. If SF,
7761 * make sure that all non-hidden functions have an invalid ovlan.
7762 */
7763 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7764 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7765 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7766 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7767 (((mf_info->multi_vnics_mode)
7768 && !VALID_OVLAN(ovlan1))
7769 || ((!mf_info->multi_vnics_mode)
7770 && VALID_OVLAN(ovlan1)))) {
7771 PMD_DRV_LOG(NOTICE,
7772 "mf_mode=SD function %d MF config "
7773 "mismatch, multi_vnics_mode=%d ovlan=%d",
7774 i, mf_info->multi_vnics_mode,
7775 ovlan1);
7776 return 1;
7777 }
7778 }
7779
7780 /* Verify all funcs on the same port each have a different ovlan. */
7781 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7782 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7783 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7784 /* iterate from the next function on the port to the max func */
7785 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7786 mf_cfg2 =
7787 MFCFG_RD(sc, func_mf_config[j].config);
7788 ovlan2 =
7789 MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7790 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7791 && VALID_OVLAN(ovlan1)
7792 && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7793 && VALID_OVLAN(ovlan2)
7794 && (ovlan1 == ovlan2)) {
7795 PMD_DRV_LOG(NOTICE,
7796 "mf_mode=SD functions %d and %d "
7797 "have the same ovlan (%d)",
7798 i, j, ovlan1);
7799 return 1;
7800 }
7801 }
7802 }
7803 }
7804 /* MULTI_FUNCTION_SD */
7805 return 0;
7806 }
7807
7808 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7809 {
7810 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7811 uint32_t val, mac_upper;
7812 uint8_t i, vnic;
7813
7814 /* initialize mf_info defaults */
7815 mf_info->vnics_per_port = 1;
7816 mf_info->multi_vnics_mode = FALSE;
7817 mf_info->path_has_ovlan = FALSE;
7818 mf_info->mf_mode = SINGLE_FUNCTION;
7819
7820 if (!CHIP_IS_MF_CAP(sc)) {
7821 return 0;
7822 }
7823
7824 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7825 PMD_DRV_LOG(NOTICE, "Invalid mf_cfg_base!");
7826 return 1;
7827 }
7828
7829 /* get the MF mode (switch dependent / independent / single-function) */
7830
7831 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7832
7833 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7834 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7835
7836 mac_upper =
7837 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7838
7839 /* check for legal upper mac bytes */
7840 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7841 mf_info->mf_mode = MULTI_FUNCTION_SI;
7842 } else {
7843 PMD_DRV_LOG(NOTICE,
7844 "Invalid config for Switch Independent mode");
7845 }
7846
7847 break;
7848
7849 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7850 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7851
7852 /* get outer vlan configuration */
7853 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7854
7855 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7856 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7857 mf_info->mf_mode = MULTI_FUNCTION_SD;
7858 } else {
7859 PMD_DRV_LOG(NOTICE,
7860 "Invalid config for Switch Dependent mode");
7861 }
7862
7863 break;
7864
7865 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7866
7867 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7868 return 0;
7869
7870 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7871
7872 /*
7873 * Mark MF mode as NIV if MCP version includes NPAR-SD support
7874 * and the MAC address is valid.
7875 */
7876 mac_upper =
7877 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7878
7879 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7880 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7881 mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7882 } else {
7883 PMD_DRV_LOG(NOTICE, "Invalid config for AFEX mode");
7884 }
7885
7886 break;
7887
7888 default:
7889
7890 PMD_DRV_LOG(NOTICE, "Unknown MF mode (0x%08x)",
7891 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7892
7893 return 1;
7894 }
7895
7896 /* set path mf_mode (which could be different than function mf_mode) */
7897 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7898 mf_info->path_has_ovlan = TRUE;
7899 } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7900 /*
7901 * Decide on path multi vnics mode. If we're not in MF mode and in
7902 * 4-port mode, this is good enough to check vnic-0 of the other port
7903 * on the same path
7904 */
7905 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7906 uint8_t other_port = !(PORT_ID(sc) & 1);
7907 uint8_t abs_func_other_port =
7908 (SC_PATH(sc) + (2 * other_port));
7909
7910 val =
7911 MFCFG_RD(sc,
7912 func_mf_config
7913 [abs_func_other_port].e1hov_tag);
7914
7915 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7916 }
7917 }
7918
7919 if (mf_info->mf_mode == SINGLE_FUNCTION) {
7920 /* invalid MF config */
7921 if (SC_VN(sc) >= 1) {
7922 PMD_DRV_LOG(NOTICE, "VNIC ID >= 1 in SF mode");
7923 return 1;
7924 }
7925
7926 return 0;
7927 }
7928
7929 /* get the MF configuration */
7930 mf_info->mf_config[SC_VN(sc)] =
7931 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7932
7933 switch (mf_info->mf_mode) {
7934 case MULTI_FUNCTION_SD:
7935
7936 bnx2x_get_shmem_mf_cfg_info_sd(sc);
7937 break;
7938
7939 case MULTI_FUNCTION_SI:
7940
7941 bnx2x_get_shmem_mf_cfg_info_si(sc);
7942 break;
7943
7944 case MULTI_FUNCTION_AFEX:
7945
7946 bnx2x_get_shmem_mf_cfg_info_niv(sc);
7947 break;
7948
7949 default:
7950
7951 PMD_DRV_LOG(NOTICE, "Get MF config failed (mf_mode=0x%08x)",
7952 mf_info->mf_mode);
7953 return 1;
7954 }
7955
7956 /* get the congestion management parameters */
7957
7958 vnic = 0;
7959 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7960 /* get min/max bw */
7961 val = MFCFG_RD(sc, func_mf_config[i].config);
7962 mf_info->min_bw[vnic] =
7963 ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
7964 FUNC_MF_CFG_MIN_BW_SHIFT);
7965 mf_info->max_bw[vnic] =
7966 ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
7967 FUNC_MF_CFG_MAX_BW_SHIFT);
7968 vnic++;
7969 }
7970
7971 return bnx2x_check_valid_mf_cfg(sc);
7972 }
7973
7974 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
7975 {
7976 int port;
7977 uint32_t mac_hi, mac_lo, val;
7978
7979 PMD_INIT_FUNC_TRACE();
7980
7981 port = SC_PORT(sc);
7982 mac_hi = mac_lo = 0;
7983
7984 sc->link_params.sc = sc;
7985 sc->link_params.port = port;
7986
7987 /* get the hardware config info */
7988 sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
7989 sc->devinfo.hw_config2 =
7990 SHMEM_RD(sc, dev_info.shared_hw_config.config2);
7991
7992 sc->link_params.hw_led_mode =
7993 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
7994 SHARED_HW_CFG_LED_MODE_SHIFT);
7995
7996 /* get the port feature config */
7997 sc->port.config =
7998 SHMEM_RD(sc, dev_info.port_feature_config[port].config);
7999
8000 /* get the link params */
8001 sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8002 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8003 & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8004 sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8005 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8006 & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8007
8008 /* get the lane config */
8009 sc->link_params.lane_config =
8010 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8011
8012 /* get the link config */
8013 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8014 sc->port.link_config[ELINK_INT_PHY] = val;
8015 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8016 sc->port.link_config[ELINK_EXT_PHY1] =
8017 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8018
8019 /* get the override preemphasis flag and enable it or turn it off */
8020 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8021 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8022 sc->link_params.feature_config_flags |=
8023 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8024 } else {
8025 sc->link_params.feature_config_flags &=
8026 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8027 }
8028
8029 /* get the initial value of the link params */
8030 sc->link_params.multi_phy_config =
8031 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8032
8033 /* get external phy info */
8034 sc->port.ext_phy_config =
8035 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8036
8037 /* get the multifunction configuration */
8038 bnx2x_get_mf_cfg_info(sc);
8039
8040 /* get the mac address */
8041 if (IS_MF(sc)) {
8042 mac_hi =
8043 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8044 mac_lo =
8045 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8046 } else {
8047 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8048 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8049 }
8050
8051 if ((mac_lo == 0) && (mac_hi == 0)) {
8052 *sc->mac_addr_str = 0;
8053 PMD_DRV_LOG(NOTICE, "No Ethernet address programmed!");
8054 } else {
8055 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8056 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8057 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8058 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8059 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8060 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8061 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8062 "%02x:%02x:%02x:%02x:%02x:%02x",
8063 sc->link_params.mac_addr[0],
8064 sc->link_params.mac_addr[1],
8065 sc->link_params.mac_addr[2],
8066 sc->link_params.mac_addr[3],
8067 sc->link_params.mac_addr[4],
8068 sc->link_params.mac_addr[5]);
8069 PMD_DRV_LOG(DEBUG, "Ethernet address: %s", sc->mac_addr_str);
8070 }
8071
8072 return 0;
8073 }
8074
8075 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8076 {
8077 uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8078 switch (sc->link_params.phy[phy_idx].media_type) {
8079 case ELINK_ETH_PHY_SFPP_10G_FIBER:
8080 case ELINK_ETH_PHY_SFP_1G_FIBER:
8081 case ELINK_ETH_PHY_XFP_FIBER:
8082 case ELINK_ETH_PHY_KR:
8083 case ELINK_ETH_PHY_CX4:
8084 PMD_DRV_LOG(INFO, "Found 10GBase-CX4 media.");
8085 sc->media = IFM_10G_CX4;
8086 break;
8087 case ELINK_ETH_PHY_DA_TWINAX:
8088 PMD_DRV_LOG(INFO, "Found 10Gb Twinax media.");
8089 sc->media = IFM_10G_TWINAX;
8090 break;
8091 case ELINK_ETH_PHY_BASE_T:
8092 PMD_DRV_LOG(INFO, "Found 10GBase-T media.");
8093 sc->media = IFM_10G_T;
8094 break;
8095 case ELINK_ETH_PHY_NOT_PRESENT:
8096 PMD_DRV_LOG(INFO, "Media not present.");
8097 sc->media = 0;
8098 break;
8099 case ELINK_ETH_PHY_UNSPECIFIED:
8100 default:
8101 PMD_DRV_LOG(INFO, "Unknown media!");
8102 sc->media = 0;
8103 break;
8104 }
8105 }
8106
8107 #define GET_FIELD(value, fname) \
8108 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8109 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8110 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8111
8112 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8113 {
8114 int pfid = SC_FUNC(sc);
8115 int igu_sb_id;
8116 uint32_t val;
8117 uint8_t fid, igu_sb_cnt = 0;
8118
8119 sc->igu_base_sb = 0xff;
8120
8121 if (CHIP_INT_MODE_IS_BC(sc)) {
8122 int vn = SC_VN(sc);
8123 igu_sb_cnt = sc->igu_sb_cnt;
8124 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8125 FP_SB_MAX_E1x);
8126 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8127 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8128 return 0;
8129 }
8130
8131 /* IGU in normal mode - read CAM */
8132 for (igu_sb_id = 0;
8133 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8134 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8135 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8136 continue;
8137 }
8138 fid = IGU_FID(val);
8139 if ((fid & IGU_FID_ENCODE_IS_PF)) {
8140 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8141 continue;
8142 }
8143 if (IGU_VEC(val) == 0) {
8144 /* default status block */
8145 sc->igu_dsb_id = igu_sb_id;
8146 } else {
8147 if (sc->igu_base_sb == 0xff) {
8148 sc->igu_base_sb = igu_sb_id;
8149 }
8150 igu_sb_cnt++;
8151 }
8152 }
8153 }
8154
8155 /*
8156 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8157 * that number of CAM entries will not be equal to the value advertised in
8158 * PCI. Driver should use the minimal value of both as the actual status
8159 * block count
8160 */
8161 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8162
8163 if (igu_sb_cnt == 0) {
8164 PMD_DRV_LOG(ERR, "CAM configuration error");
8165 return -1;
8166 }
8167
8168 return 0;
8169 }
8170
8171 /*
8172 * Gather various information from the device config space, the device itself,
8173 * shmem, and the user input.
8174 */
8175 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8176 {
8177 uint32_t val;
8178 int rc;
8179
8180 /* get the chip revision (chip metal comes from pci config space) */
8181 sc->devinfo.chip_id = sc->link_params.chip_id =
8182 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8183 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8184 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8185 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8186
8187 /* force 57811 according to MISC register */
8188 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8189 if (CHIP_IS_57810(sc)) {
8190 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8191 (sc->
8192 devinfo.chip_id & 0x0000ffff));
8193 } else if (CHIP_IS_57810_MF(sc)) {
8194 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8195 (sc->
8196 devinfo.chip_id & 0x0000ffff));
8197 }
8198 sc->devinfo.chip_id |= 0x1;
8199 }
8200
8201 PMD_DRV_LOG(DEBUG,
8202 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8203 sc->devinfo.chip_id,
8204 ((sc->devinfo.chip_id >> 16) & 0xffff),
8205 ((sc->devinfo.chip_id >> 12) & 0xf),
8206 ((sc->devinfo.chip_id >> 4) & 0xff),
8207 ((sc->devinfo.chip_id >> 0) & 0xf));
8208
8209 val = (REG_RD(sc, 0x2874) & 0x55);
8210 if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8211 sc->flags |= BNX2X_ONE_PORT_FLAG;
8212 PMD_DRV_LOG(DEBUG, "single port device");
8213 }
8214
8215 /* set the doorbell size */
8216 sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8217
8218 /* determine whether the device is in 2 port or 4 port mode */
8219 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1h */
8220 if (CHIP_IS_E2E3(sc)) {
8221 /*
8222 * Read port4mode_en_ovwr[0]:
8223 * If 1, four port mode is in port4mode_en_ovwr[1].
8224 * If 0, four port mode is in port4mode_en[0].
8225 */
8226 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8227 if (val & 1) {
8228 val = ((val >> 1) & 1);
8229 } else {
8230 val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8231 }
8232
8233 sc->devinfo.chip_port_mode =
8234 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8235
8236 PMD_DRV_LOG(DEBUG, "Port mode = %s", (val) ? "4" : "2");
8237 }
8238
8239 /* get the function and path info for the device */
8240 bnx2x_get_function_num(sc);
8241
8242 /* get the shared memory base address */
8243 sc->devinfo.shmem_base =
8244 sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8245 sc->devinfo.shmem2_base =
8246 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8247 MISC_REG_GENERIC_CR_0));
8248
8249 if (!sc->devinfo.shmem_base) {
8250 /* this should ONLY prevent upcoming shmem reads */
8251 PMD_DRV_LOG(INFO, "MCP not active");
8252 sc->flags |= BNX2X_NO_MCP_FLAG;
8253 return 0;
8254 }
8255
8256 /* make sure the shared memory contents are valid */
8257 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8258 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8259 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8260 PMD_DRV_LOG(NOTICE, "Invalid SHMEM validity signature: 0x%08x",
8261 val);
8262 return 0;
8263 }
8264
8265 /* get the bootcode version */
8266 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8267 snprintf(sc->devinfo.bc_ver_str,
8268 sizeof(sc->devinfo.bc_ver_str),
8269 "%d.%d.%d",
8270 ((sc->devinfo.bc_ver >> 24) & 0xff),
8271 ((sc->devinfo.bc_ver >> 16) & 0xff),
8272 ((sc->devinfo.bc_ver >> 8) & 0xff));
8273 PMD_DRV_LOG(INFO, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8274
8275 /* get the bootcode shmem address */
8276 sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8277
8278 /* clean indirect addresses as they're not used */
8279 pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8280 if (IS_PF(sc)) {
8281 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8282 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8283 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8284 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8285 if (CHIP_IS_E1x(sc)) {
8286 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8287 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8288 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8289 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8290 }
8291
8292 /*
8293 * Enable internal target-read (in case we are probed after PF
8294 * FLR). Must be done prior to any BAR read access. Only for
8295 * 57712 and up
8296 */
8297 if (!CHIP_IS_E1x(sc)) {
8298 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
8299 1);
8300 }
8301 }
8302
8303 /* get the nvram size */
8304 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8305 sc->devinfo.flash_size =
8306 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8307
8308 bnx2x_set_power_state(sc, PCI_PM_D0);
8309 /* get various configuration parameters from shmem */
8310 bnx2x_get_shmem_info(sc);
8311
8312 /* initialize IGU parameters */
8313 if (CHIP_IS_E1x(sc)) {
8314 sc->devinfo.int_block = INT_BLOCK_HC;
8315 sc->igu_dsb_id = DEF_SB_IGU_ID;
8316 sc->igu_base_sb = 0;
8317 } else {
8318 sc->devinfo.int_block = INT_BLOCK_IGU;
8319
8320 /* do not allow device reset during IGU info preocessing */
8321 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8322
8323 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8324
8325 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8326 int tout = 5000;
8327
8328 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8329 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8330 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8331
8332 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8333 tout--;
8334 DELAY(1000);
8335 }
8336
8337 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8338 PMD_DRV_LOG(NOTICE,
8339 "FORCING IGU Normal Mode failed!!!");
8340 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8341 return -1;
8342 }
8343 }
8344
8345 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8346 PMD_DRV_LOG(DEBUG, "IGU Backward Compatible Mode");
8347 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8348 } else {
8349 PMD_DRV_LOG(DEBUG, "IGU Normal Mode");
8350 }
8351
8352 rc = bnx2x_get_igu_cam_info(sc);
8353
8354 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8355
8356 if (rc) {
8357 return rc;
8358 }
8359 }
8360
8361 /*
8362 * Get base FW non-default (fast path) status block ID. This value is
8363 * used to initialize the fw_sb_id saved on the fp/queue structure to
8364 * determine the id used by the FW.
8365 */
8366 if (CHIP_IS_E1x(sc)) {
8367 sc->base_fw_ndsb =
8368 ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8369 } else {
8370 /*
8371 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8372 * the same queue are indicated on the same IGU SB). So we prefer
8373 * FW and IGU SBs to be the same value.
8374 */
8375 sc->base_fw_ndsb = sc->igu_base_sb;
8376 }
8377
8378 elink_phy_probe(&sc->link_params);
8379
8380 return 0;
8381 }
8382
8383 static void
8384 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8385 {
8386 uint32_t cfg_size = 0;
8387 uint32_t idx;
8388 uint8_t port = SC_PORT(sc);
8389
8390 /* aggregation of supported attributes of all external phys */
8391 sc->port.supported[0] = 0;
8392 sc->port.supported[1] = 0;
8393
8394 switch (sc->link_params.num_phys) {
8395 case 1:
8396 sc->port.supported[0] =
8397 sc->link_params.phy[ELINK_INT_PHY].supported;
8398 cfg_size = 1;
8399 break;
8400 case 2:
8401 sc->port.supported[0] =
8402 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8403 cfg_size = 1;
8404 break;
8405 case 3:
8406 if (sc->link_params.multi_phy_config &
8407 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8408 sc->port.supported[1] =
8409 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8410 sc->port.supported[0] =
8411 sc->link_params.phy[ELINK_EXT_PHY2].supported;
8412 } else {
8413 sc->port.supported[0] =
8414 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8415 sc->port.supported[1] =
8416 sc->link_params.phy[ELINK_EXT_PHY2].supported;
8417 }
8418 cfg_size = 2;
8419 break;
8420 }
8421
8422 if (!(sc->port.supported[0] || sc->port.supported[1])) {
8423 PMD_DRV_LOG(ERR,
8424 "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8425 SHMEM_RD(sc,
8426 dev_info.port_hw_config
8427 [port].external_phy_config),
8428 SHMEM_RD(sc,
8429 dev_info.port_hw_config
8430 [port].external_phy_config2));
8431 return;
8432 }
8433
8434 if (CHIP_IS_E3(sc))
8435 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8436 else {
8437 switch (switch_cfg) {
8438 case ELINK_SWITCH_CFG_1G:
8439 sc->port.phy_addr =
8440 REG_RD(sc,
8441 NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8442 break;
8443 case ELINK_SWITCH_CFG_10G:
8444 sc->port.phy_addr =
8445 REG_RD(sc,
8446 NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8447 break;
8448 default:
8449 PMD_DRV_LOG(ERR,
8450 "Invalid switch config in"
8451 "link_config=0x%08x",
8452 sc->port.link_config[0]);
8453 return;
8454 }
8455 }
8456
8457 PMD_DRV_LOG(INFO, "PHY addr 0x%08x", sc->port.phy_addr);
8458
8459 /* mask what we support according to speed_cap_mask per configuration */
8460 for (idx = 0; idx < cfg_size; idx++) {
8461 if (!(sc->link_params.speed_cap_mask[idx] &
8462 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8463 sc->port.supported[idx] &=
8464 ~ELINK_SUPPORTED_10baseT_Half;
8465 }
8466
8467 if (!(sc->link_params.speed_cap_mask[idx] &
8468 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8469 sc->port.supported[idx] &=
8470 ~ELINK_SUPPORTED_10baseT_Full;
8471 }
8472
8473 if (!(sc->link_params.speed_cap_mask[idx] &
8474 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8475 sc->port.supported[idx] &=
8476 ~ELINK_SUPPORTED_100baseT_Half;
8477 }
8478
8479 if (!(sc->link_params.speed_cap_mask[idx] &
8480 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8481 sc->port.supported[idx] &=
8482 ~ELINK_SUPPORTED_100baseT_Full;
8483 }
8484
8485 if (!(sc->link_params.speed_cap_mask[idx] &
8486 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8487 sc->port.supported[idx] &=
8488 ~ELINK_SUPPORTED_1000baseT_Full;
8489 }
8490
8491 if (!(sc->link_params.speed_cap_mask[idx] &
8492 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8493 sc->port.supported[idx] &=
8494 ~ELINK_SUPPORTED_2500baseX_Full;
8495 }
8496
8497 if (!(sc->link_params.speed_cap_mask[idx] &
8498 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8499 sc->port.supported[idx] &=
8500 ~ELINK_SUPPORTED_10000baseT_Full;
8501 }
8502
8503 if (!(sc->link_params.speed_cap_mask[idx] &
8504 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8505 sc->port.supported[idx] &=
8506 ~ELINK_SUPPORTED_20000baseKR2_Full;
8507 }
8508 }
8509
8510 PMD_DRV_LOG(INFO, "PHY supported 0=0x%08x 1=0x%08x",
8511 sc->port.supported[0], sc->port.supported[1]);
8512 }
8513
8514 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8515 {
8516 uint32_t link_config;
8517 uint32_t idx;
8518 uint32_t cfg_size = 0;
8519
8520 sc->port.advertising[0] = 0;
8521 sc->port.advertising[1] = 0;
8522
8523 switch (sc->link_params.num_phys) {
8524 case 1:
8525 case 2:
8526 cfg_size = 1;
8527 break;
8528 case 3:
8529 cfg_size = 2;
8530 break;
8531 }
8532
8533 for (idx = 0; idx < cfg_size; idx++) {
8534 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8535 link_config = sc->port.link_config[idx];
8536
8537 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8538 case PORT_FEATURE_LINK_SPEED_AUTO:
8539 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8540 sc->link_params.req_line_speed[idx] =
8541 ELINK_SPEED_AUTO_NEG;
8542 sc->port.advertising[idx] |=
8543 sc->port.supported[idx];
8544 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8545 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8546 sc->port.advertising[idx] |=
8547 (ELINK_SUPPORTED_100baseT_Half |
8548 ELINK_SUPPORTED_100baseT_Full);
8549 } else {
8550 /* force 10G, no AN */
8551 sc->link_params.req_line_speed[idx] =
8552 ELINK_SPEED_10000;
8553 sc->port.advertising[idx] |=
8554 (ADVERTISED_10000baseT_Full |
8555 ADVERTISED_FIBRE);
8556 continue;
8557 }
8558 break;
8559
8560 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8561 if (sc->
8562 port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8563 {
8564 sc->link_params.req_line_speed[idx] =
8565 ELINK_SPEED_10;
8566 sc->port.advertising[idx] |=
8567 (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8568 } else {
8569 PMD_DRV_LOG(ERR,
8570 "Invalid NVRAM config link_config=0x%08x "
8571 "speed_cap_mask=0x%08x",
8572 link_config,
8573 sc->
8574 link_params.speed_cap_mask[idx]);
8575 return;
8576 }
8577 break;
8578
8579 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8580 if (sc->
8581 port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8582 {
8583 sc->link_params.req_line_speed[idx] =
8584 ELINK_SPEED_10;
8585 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8586 sc->port.advertising[idx] |=
8587 (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8588 } else {
8589 PMD_DRV_LOG(ERR,
8590 "Invalid NVRAM config link_config=0x%08x "
8591 "speed_cap_mask=0x%08x",
8592 link_config,
8593 sc->
8594 link_params.speed_cap_mask[idx]);
8595 return;
8596 }
8597 break;
8598
8599 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8600 if (sc->
8601 port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8602 {
8603 sc->link_params.req_line_speed[idx] =
8604 ELINK_SPEED_100;
8605 sc->port.advertising[idx] |=
8606 (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8607 } else {
8608 PMD_DRV_LOG(ERR,
8609 "Invalid NVRAM config link_config=0x%08x "
8610 "speed_cap_mask=0x%08x",
8611 link_config,
8612 sc->
8613 link_params.speed_cap_mask[idx]);
8614 return;
8615 }
8616 break;
8617
8618 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8619 if (sc->
8620 port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8621 {
8622 sc->link_params.req_line_speed[idx] =
8623 ELINK_SPEED_100;
8624 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8625 sc->port.advertising[idx] |=
8626 (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8627 } else {
8628 PMD_DRV_LOG(ERR,
8629 "Invalid NVRAM config link_config=0x%08x "
8630 "speed_cap_mask=0x%08x",
8631 link_config,
8632 sc->
8633 link_params.speed_cap_mask[idx]);
8634 return;
8635 }
8636 break;
8637
8638 case PORT_FEATURE_LINK_SPEED_1G:
8639 if (sc->port.supported[idx] &
8640 ELINK_SUPPORTED_1000baseT_Full) {
8641 sc->link_params.req_line_speed[idx] =
8642 ELINK_SPEED_1000;
8643 sc->port.advertising[idx] |=
8644 (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8645 } else {
8646 PMD_DRV_LOG(ERR,
8647 "Invalid NVRAM config link_config=0x%08x "
8648 "speed_cap_mask=0x%08x",
8649 link_config,
8650 sc->
8651 link_params.speed_cap_mask[idx]);
8652 return;
8653 }
8654 break;
8655
8656 case PORT_FEATURE_LINK_SPEED_2_5G:
8657 if (sc->port.supported[idx] &
8658 ELINK_SUPPORTED_2500baseX_Full) {
8659 sc->link_params.req_line_speed[idx] =
8660 ELINK_SPEED_2500;
8661 sc->port.advertising[idx] |=
8662 (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8663 } else {
8664 PMD_DRV_LOG(ERR,
8665 "Invalid NVRAM config link_config=0x%08x "
8666 "speed_cap_mask=0x%08x",
8667 link_config,
8668 sc->
8669 link_params.speed_cap_mask[idx]);
8670 return;
8671 }
8672 break;
8673
8674 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8675 if (sc->port.supported[idx] &
8676 ELINK_SUPPORTED_10000baseT_Full) {
8677 sc->link_params.req_line_speed[idx] =
8678 ELINK_SPEED_10000;
8679 sc->port.advertising[idx] |=
8680 (ADVERTISED_10000baseT_Full |
8681 ADVERTISED_FIBRE);
8682 } else {
8683 PMD_DRV_LOG(ERR,
8684 "Invalid NVRAM config link_config=0x%08x "
8685 "speed_cap_mask=0x%08x",
8686 link_config,
8687 sc->
8688 link_params.speed_cap_mask[idx]);
8689 return;
8690 }
8691 break;
8692
8693 case PORT_FEATURE_LINK_SPEED_20G:
8694 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8695 break;
8696
8697 default:
8698 PMD_DRV_LOG(ERR,
8699 "Invalid NVRAM config link_config=0x%08x "
8700 "speed_cap_mask=0x%08x", link_config,
8701 sc->link_params.speed_cap_mask[idx]);
8702 sc->link_params.req_line_speed[idx] =
8703 ELINK_SPEED_AUTO_NEG;
8704 sc->port.advertising[idx] = sc->port.supported[idx];
8705 break;
8706 }
8707
8708 sc->link_params.req_flow_ctrl[idx] =
8709 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8710
8711 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8712 if (!
8713 (sc->
8714 port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8715 sc->link_params.req_flow_ctrl[idx] =
8716 ELINK_FLOW_CTRL_NONE;
8717 } else {
8718 bnx2x_set_requested_fc(sc);
8719 }
8720 }
8721 }
8722 }
8723
8724 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8725 {
8726 uint8_t port = SC_PORT(sc);
8727 uint32_t eee_mode;
8728
8729 PMD_INIT_FUNC_TRACE();
8730
8731 /* shmem data already read in bnx2x_get_shmem_info() */
8732
8733 bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8734 bnx2x_link_settings_requested(sc);
8735
8736 /* configure link feature according to nvram value */
8737 eee_mode =
8738 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8739 & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8740 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8741 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8742 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8743 ELINK_EEE_MODE_ENABLE_LPI |
8744 ELINK_EEE_MODE_OUTPUT_TIME);
8745 } else {
8746 sc->link_params.eee_mode = 0;
8747 }
8748
8749 /* get the media type */
8750 bnx2x_media_detect(sc);
8751 }
8752
8753 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8754 {
8755 uint32_t flags = MODE_ASIC | MODE_PORT2;
8756
8757 if (CHIP_IS_E2(sc)) {
8758 flags |= MODE_E2;
8759 } else if (CHIP_IS_E3(sc)) {
8760 flags |= MODE_E3;
8761 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8762 flags |= MODE_E3_A0;
8763 } else { /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8764
8765 flags |= MODE_E3_B0 | MODE_COS3;
8766 }
8767 }
8768
8769 if (IS_MF(sc)) {
8770 flags |= MODE_MF;
8771 switch (sc->devinfo.mf_info.mf_mode) {
8772 case MULTI_FUNCTION_SD:
8773 flags |= MODE_MF_SD;
8774 break;
8775 case MULTI_FUNCTION_SI:
8776 flags |= MODE_MF_SI;
8777 break;
8778 case MULTI_FUNCTION_AFEX:
8779 flags |= MODE_MF_AFEX;
8780 break;
8781 }
8782 } else {
8783 flags |= MODE_SF;
8784 }
8785
8786 #if defined(__LITTLE_ENDIAN)
8787 flags |= MODE_LITTLE_ENDIAN;
8788 #else /* __BIG_ENDIAN */
8789 flags |= MODE_BIG_ENDIAN;
8790 #endif
8791
8792 INIT_MODE_FLAGS(sc) = flags;
8793 }
8794
8795 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8796 {
8797 struct bnx2x_fastpath *fp;
8798 char buf[32];
8799 uint32_t i;
8800
8801 if (IS_PF(sc)) {
8802 /************************/
8803 /* DEFAULT STATUS BLOCK */
8804 /************************/
8805
8806 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8807 &sc->def_sb_dma, "def_sb",
8808 RTE_CACHE_LINE_SIZE) != 0) {
8809 return -1;
8810 }
8811
8812 sc->def_sb =
8813 (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8814 /***************/
8815 /* EVENT QUEUE */
8816 /***************/
8817
8818 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8819 &sc->eq_dma, "ev_queue",
8820 RTE_CACHE_LINE_SIZE) != 0) {
8821 sc->def_sb = NULL;
8822 return -1;
8823 }
8824
8825 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8826
8827 /*************/
8828 /* SLOW PATH */
8829 /*************/
8830
8831 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8832 &sc->sp_dma, "sp",
8833 RTE_CACHE_LINE_SIZE) != 0) {
8834 sc->eq = NULL;
8835 sc->def_sb = NULL;
8836 return -1;
8837 }
8838
8839 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8840
8841 /*******************/
8842 /* SLOW PATH QUEUE */
8843 /*******************/
8844
8845 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8846 &sc->spq_dma, "sp_queue",
8847 RTE_CACHE_LINE_SIZE) != 0) {
8848 sc->sp = NULL;
8849 sc->eq = NULL;
8850 sc->def_sb = NULL;
8851 return -1;
8852 }
8853
8854 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8855
8856 /***************************/
8857 /* FW DECOMPRESSION BUFFER */
8858 /***************************/
8859
8860 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8861 "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8862 sc->spq = NULL;
8863 sc->sp = NULL;
8864 sc->eq = NULL;
8865 sc->def_sb = NULL;
8866 return -1;
8867 }
8868
8869 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8870 }
8871
8872 /*************/
8873 /* FASTPATHS */
8874 /*************/
8875
8876 /* allocate DMA memory for each fastpath structure */
8877 for (i = 0; i < sc->num_queues; i++) {
8878 fp = &sc->fp[i];
8879 fp->sc = sc;
8880 fp->index = i;
8881
8882 /*******************/
8883 /* FP STATUS BLOCK */
8884 /*******************/
8885
8886 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8887 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8888 &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8889 PMD_DRV_LOG(NOTICE, "Failed to alloc %s", buf);
8890 return -1;
8891 } else {
8892 if (CHIP_IS_E2E3(sc)) {
8893 fp->status_block.e2_sb =
8894 (struct host_hc_status_block_e2 *)
8895 fp->sb_dma.vaddr;
8896 } else {
8897 fp->status_block.e1x_sb =
8898 (struct host_hc_status_block_e1x *)
8899 fp->sb_dma.vaddr;
8900 }
8901 }
8902 }
8903
8904 return 0;
8905 }
8906
8907 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8908 {
8909 struct bnx2x_fastpath *fp;
8910 int i;
8911
8912 for (i = 0; i < sc->num_queues; i++) {
8913 fp = &sc->fp[i];
8914
8915 /*******************/
8916 /* FP STATUS BLOCK */
8917 /*******************/
8918
8919 memset(&fp->status_block, 0, sizeof(fp->status_block));
8920 }
8921
8922 /***************************/
8923 /* FW DECOMPRESSION BUFFER */
8924 /***************************/
8925
8926 sc->gz_buf = NULL;
8927
8928 /*******************/
8929 /* SLOW PATH QUEUE */
8930 /*******************/
8931
8932 sc->spq = NULL;
8933
8934 /*************/
8935 /* SLOW PATH */
8936 /*************/
8937
8938 sc->sp = NULL;
8939
8940 /***************/
8941 /* EVENT QUEUE */
8942 /***************/
8943
8944 sc->eq = NULL;
8945
8946 /************************/
8947 /* DEFAULT STATUS BLOCK */
8948 /************************/
8949
8950 sc->def_sb = NULL;
8951
8952 }
8953
8954 /*
8955 * Previous driver DMAE transaction may have occurred when pre-boot stage
8956 * ended and boot began. This would invalidate the addresses of the
8957 * transaction, resulting in was-error bit set in the PCI causing all
8958 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
8959 * the interrupt which detected this from the pglueb and the was-done bit
8960 */
8961 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
8962 {
8963 uint32_t val;
8964
8965 if (!CHIP_IS_E1x(sc)) {
8966 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
8967 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
8968 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
8969 1 << SC_FUNC(sc));
8970 }
8971 }
8972 }
8973
8974 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
8975 {
8976 uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
8977 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
8978 if (!rc) {
8979 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
8980 return -1;
8981 }
8982
8983 return 0;
8984 }
8985
8986 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
8987 {
8988 struct bnx2x_prev_list_node *tmp;
8989
8990 LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
8991 if ((sc->pcie_bus == tmp->bus) &&
8992 (sc->pcie_device == tmp->slot) &&
8993 (SC_PATH(sc) == tmp->path)) {
8994 return tmp;
8995 }
8996 }
8997
8998 return NULL;
8999 }
9000
9001 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9002 {
9003 struct bnx2x_prev_list_node *tmp;
9004 int rc = FALSE;
9005
9006 rte_spinlock_lock(&bnx2x_prev_mtx);
9007
9008 tmp = bnx2x_prev_path_get_entry(sc);
9009 if (tmp) {
9010 if (tmp->aer) {
9011 PMD_DRV_LOG(DEBUG,
9012 "Path %d/%d/%d was marked by AER",
9013 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9014 } else {
9015 rc = TRUE;
9016 PMD_DRV_LOG(DEBUG,
9017 "Path %d/%d/%d was already cleaned from previous drivers",
9018 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9019 }
9020 }
9021
9022 rte_spinlock_unlock(&bnx2x_prev_mtx);
9023
9024 return rc;
9025 }
9026
9027 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9028 {
9029 struct bnx2x_prev_list_node *tmp;
9030
9031 rte_spinlock_lock(&bnx2x_prev_mtx);
9032
9033 /* Check whether the entry for this path already exists */
9034 tmp = bnx2x_prev_path_get_entry(sc);
9035 if (tmp) {
9036 if (!tmp->aer) {
9037 PMD_DRV_LOG(DEBUG,
9038 "Re-marking AER in path %d/%d/%d",
9039 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9040 } else {
9041 PMD_DRV_LOG(DEBUG,
9042 "Removing AER indication from path %d/%d/%d",
9043 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9044 tmp->aer = 0;
9045 }
9046
9047 rte_spinlock_unlock(&bnx2x_prev_mtx);
9048 return 0;
9049 }
9050
9051 rte_spinlock_unlock(&bnx2x_prev_mtx);
9052
9053 /* Create an entry for this path and add it */
9054 tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9055 RTE_CACHE_LINE_SIZE);
9056 if (!tmp) {
9057 PMD_DRV_LOG(NOTICE, "Failed to allocate 'bnx2x_prev_list_node'");
9058 return -1;
9059 }
9060
9061 tmp->bus = sc->pcie_bus;
9062 tmp->slot = sc->pcie_device;
9063 tmp->path = SC_PATH(sc);
9064 tmp->aer = 0;
9065 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9066
9067 rte_spinlock_lock(&bnx2x_prev_mtx);
9068
9069 LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9070
9071 rte_spinlock_unlock(&bnx2x_prev_mtx);
9072
9073 return 0;
9074 }
9075
9076 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9077 {
9078 int i;
9079
9080 /* only E2 and onwards support FLR */
9081 if (CHIP_IS_E1x(sc)) {
9082 PMD_DRV_LOG(WARNING, "FLR not supported in E1H");
9083 return -1;
9084 }
9085
9086 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9087 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9088 PMD_DRV_LOG(WARNING,
9089 "FLR not supported by BC_VER: 0x%08x",
9090 sc->devinfo.bc_ver);
9091 return -1;
9092 }
9093
9094 /* Wait for Transaction Pending bit clean */
9095 for (i = 0; i < 4; i++) {
9096 if (i) {
9097 DELAY(((1 << (i - 1)) * 100) * 1000);
9098 }
9099
9100 if (!bnx2x_is_pcie_pending(sc)) {
9101 goto clear;
9102 }
9103 }
9104
9105 PMD_DRV_LOG(NOTICE, "PCIE transaction is not cleared, "
9106 "proceeding with reset anyway");
9107
9108 clear:
9109 bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9110
9111 return 0;
9112 }
9113
9114 struct bnx2x_mac_vals {
9115 uint32_t xmac_addr;
9116 uint32_t xmac_val;
9117 uint32_t emac_addr;
9118 uint32_t emac_val;
9119 uint32_t umac_addr;
9120 uint32_t umac_val;
9121 uint32_t bmac_addr;
9122 uint32_t bmac_val[2];
9123 };
9124
9125 static void
9126 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9127 {
9128 uint32_t val, base_addr, offset, mask, reset_reg;
9129 uint8_t mac_stopped = FALSE;
9130 uint8_t port = SC_PORT(sc);
9131 uint32_t wb_data[2];
9132
9133 /* reset addresses as they also mark which values were changed */
9134 vals->bmac_addr = 0;
9135 vals->umac_addr = 0;
9136 vals->xmac_addr = 0;
9137 vals->emac_addr = 0;
9138
9139 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9140
9141 if (!CHIP_IS_E3(sc)) {
9142 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9143 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9144 if ((mask & reset_reg) && val) {
9145 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9146 : NIG_REG_INGRESS_BMAC0_MEM;
9147 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9148 : BIGMAC_REGISTER_BMAC_CONTROL;
9149
9150 /*
9151 * use rd/wr since we cannot use dmae. This is safe
9152 * since MCP won't access the bus due to the request
9153 * to unload, and no function on the path can be
9154 * loaded at this time.
9155 */
9156 wb_data[0] = REG_RD(sc, base_addr + offset);
9157 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9158 vals->bmac_addr = base_addr + offset;
9159 vals->bmac_val[0] = wb_data[0];
9160 vals->bmac_val[1] = wb_data[1];
9161 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9162 REG_WR(sc, vals->bmac_addr, wb_data[0]);
9163 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9164 }
9165
9166 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9167 vals->emac_val = REG_RD(sc, vals->emac_addr);
9168 REG_WR(sc, vals->emac_addr, 0);
9169 mac_stopped = TRUE;
9170 } else {
9171 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9172 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9173 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9174 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9175 val & ~(1 << 1));
9176 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9177 val | (1 << 1));
9178 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9179 vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9180 REG_WR(sc, vals->xmac_addr, 0);
9181 mac_stopped = TRUE;
9182 }
9183
9184 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9185 if (mask & reset_reg) {
9186 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9187 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9188 vals->umac_val = REG_RD(sc, vals->umac_addr);
9189 REG_WR(sc, vals->umac_addr, 0);
9190 mac_stopped = TRUE;
9191 }
9192 }
9193
9194 if (mac_stopped) {
9195 DELAY(20000);
9196 }
9197 }
9198
9199 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9200 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9201 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9202 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9203
9204 static void
9205 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9206 {
9207 uint16_t rcq, bd;
9208 uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9209
9210 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9211 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9212
9213 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9214 REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9215 }
9216
9217 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9218 {
9219 uint32_t reset_reg, tmp_reg = 0, rc;
9220 uint8_t prev_undi = FALSE;
9221 struct bnx2x_mac_vals mac_vals;
9222 uint32_t timer_count = 1000;
9223 uint32_t prev_brb;
9224
9225 /*
9226 * It is possible a previous function received 'common' answer,
9227 * but hasn't loaded yet, therefore creating a scenario of
9228 * multiple functions receiving 'common' on the same path.
9229 */
9230 memset(&mac_vals, 0, sizeof(mac_vals));
9231
9232 if (bnx2x_prev_is_path_marked(sc)) {
9233 return bnx2x_prev_mcp_done(sc);
9234 }
9235
9236 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9237
9238 /* Reset should be performed after BRB is emptied */
9239 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9240 /* Close the MAC Rx to prevent BRB from filling up */
9241 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9242
9243 /* close LLH filters towards the BRB */
9244 elink_set_rx_filter(&sc->link_params, 0);
9245
9246 /*
9247 * Check if the UNDI driver was previously loaded.
9248 * UNDI driver initializes CID offset for normal bell to 0x7
9249 */
9250 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9251 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9252 if (tmp_reg == 0x7) {
9253 PMD_DRV_LOG(DEBUG, "UNDI previously loaded");
9254 prev_undi = TRUE;
9255 /* clear the UNDI indication */
9256 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9257 /* clear possible idle check errors */
9258 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9259 }
9260 }
9261
9262 /* wait until BRB is empty */
9263 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9264 while (timer_count) {
9265 prev_brb = tmp_reg;
9266
9267 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9268 if (!tmp_reg) {
9269 break;
9270 }
9271
9272 PMD_DRV_LOG(DEBUG, "BRB still has 0x%08x", tmp_reg);
9273
9274 /* reset timer as long as BRB actually gets emptied */
9275 if (prev_brb > tmp_reg) {
9276 timer_count = 1000;
9277 } else {
9278 timer_count--;
9279 }
9280
9281 /* If UNDI resides in memory, manually increment it */
9282 if (prev_undi) {
9283 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9284 }
9285
9286 DELAY(10);
9287 }
9288
9289 if (!timer_count) {
9290 PMD_DRV_LOG(NOTICE, "Failed to empty BRB");
9291 }
9292 }
9293
9294 /* No packets are in the pipeline, path is ready for reset */
9295 bnx2x_reset_common(sc);
9296
9297 if (mac_vals.xmac_addr) {
9298 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9299 }
9300 if (mac_vals.umac_addr) {
9301 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9302 }
9303 if (mac_vals.emac_addr) {
9304 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9305 }
9306 if (mac_vals.bmac_addr) {
9307 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9308 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9309 }
9310
9311 rc = bnx2x_prev_mark_path(sc, prev_undi);
9312 if (rc) {
9313 bnx2x_prev_mcp_done(sc);
9314 return rc;
9315 }
9316
9317 return bnx2x_prev_mcp_done(sc);
9318 }
9319
9320 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9321 {
9322 int rc;
9323
9324 /* Test if previous unload process was already finished for this path */
9325 if (bnx2x_prev_is_path_marked(sc)) {
9326 return bnx2x_prev_mcp_done(sc);
9327 }
9328
9329 /*
9330 * If function has FLR capabilities, and existing FW version matches
9331 * the one required, then FLR will be sufficient to clean any residue
9332 * left by previous driver
9333 */
9334 rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9335 if (!rc) {
9336 /* fw version is good */
9337 rc = bnx2x_do_flr(sc);
9338 }
9339
9340 if (!rc) {
9341 /* FLR was performed */
9342 return 0;
9343 }
9344
9345 PMD_DRV_LOG(INFO, "Could not FLR");
9346
9347 /* Close the MCP request, return failure */
9348 rc = bnx2x_prev_mcp_done(sc);
9349 if (!rc) {
9350 rc = BNX2X_PREV_WAIT_NEEDED;
9351 }
9352
9353 return rc;
9354 }
9355
9356 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9357 {
9358 int time_counter = 10;
9359 uint32_t fw, hw_lock_reg, hw_lock_val;
9360 uint32_t rc = 0;
9361
9362 /*
9363 * Clear HW from errors which may have resulted from an interrupted
9364 * DMAE transaction.
9365 */
9366 bnx2x_prev_interrupted_dmae(sc);
9367
9368 /* Release previously held locks */
9369 if (SC_FUNC(sc) <= 5)
9370 hw_lock_reg = (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8);
9371 else
9372 hw_lock_reg =
9373 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9374
9375 hw_lock_val = (REG_RD(sc, hw_lock_reg));
9376 if (hw_lock_val) {
9377 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9378 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9379 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9380 }
9381 REG_WR(sc, hw_lock_reg, 0xffffffff);
9382 }
9383
9384 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9385 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9386 }
9387
9388 do {
9389 /* Lock MCP using an unload request */
9390 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9391 if (!fw) {
9392 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
9393 rc = -1;
9394 break;
9395 }
9396
9397 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9398 rc = bnx2x_prev_unload_common(sc);
9399 break;
9400 }
9401
9402 /* non-common reply from MCP might require looping */
9403 rc = bnx2x_prev_unload_uncommon(sc);
9404 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9405 break;
9406 }
9407
9408 DELAY(20000);
9409 } while (--time_counter);
9410
9411 if (!time_counter || rc) {
9412 PMD_DRV_LOG(NOTICE, "Failed to unload previous driver!");
9413 rc = -1;
9414 }
9415
9416 return rc;
9417 }
9418
9419 static void
9420 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9421 {
9422 if (!CHIP_IS_E1x(sc)) {
9423 sc->dcb_state = dcb_on;
9424 sc->dcbx_enabled = dcbx_enabled;
9425 } else {
9426 sc->dcb_state = FALSE;
9427 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9428 }
9429 PMD_DRV_LOG(DEBUG,
9430 "DCB state [%s:%s]",
9431 dcb_on ? "ON" : "OFF",
9432 (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9433 (dcbx_enabled ==
9434 BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9435 : (dcbx_enabled ==
9436 BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9437 "on-chip with negotiation" : "invalid");
9438 }
9439
9440 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9441 {
9442 int cid_count = BNX2X_L2_MAX_CID(sc);
9443
9444 if (CNIC_SUPPORT(sc)) {
9445 cid_count += CNIC_CID_MAX;
9446 }
9447
9448 return roundup(cid_count, QM_CID_ROUND);
9449 }
9450
9451 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9452 {
9453 int pri, cos;
9454
9455 uint32_t pri_map = 0;
9456
9457 for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9458 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9459 if (cos < sc->max_cos) {
9460 sc->prio_to_cos[pri] = cos;
9461 } else {
9462 PMD_DRV_LOG(WARNING,
9463 "Invalid COS %d for priority %d "
9464 "(max COS is %d), setting to 0", cos, pri,
9465 (sc->max_cos - 1));
9466 sc->prio_to_cos[pri] = 0;
9467 }
9468 }
9469 }
9470
9471 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9472 {
9473 struct {
9474 uint8_t id;
9475 uint8_t next;
9476 } pci_cap;
9477 uint16_t status;
9478 struct bnx2x_pci_cap *cap;
9479
9480 cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9481 RTE_CACHE_LINE_SIZE);
9482 if (!cap) {
9483 PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9484 return -ENOMEM;
9485 }
9486
9487 #ifndef __FreeBSD__
9488 pci_read(sc, PCI_STATUS, &status, 2);
9489 if (!(status & PCI_STATUS_CAP_LIST)) {
9490 #else
9491 pci_read(sc, PCIR_STATUS, &status, 2);
9492 if (!(status & PCIM_STATUS_CAPPRESENT)) {
9493 #endif
9494 PMD_DRV_LOG(NOTICE, "PCIe capability reading failed");
9495 return -1;
9496 }
9497
9498 #ifndef __FreeBSD__
9499 pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9500 #else
9501 pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9502 #endif
9503 while (pci_cap.next) {
9504 cap->addr = pci_cap.next & ~3;
9505 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9506 if (pci_cap.id == 0xff)
9507 break;
9508 cap->id = pci_cap.id;
9509 cap->type = BNX2X_PCI_CAP;
9510 cap->next = rte_zmalloc("pci_cap",
9511 sizeof(struct bnx2x_pci_cap),
9512 RTE_CACHE_LINE_SIZE);
9513 if (!cap->next) {
9514 PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9515 return -ENOMEM;
9516 }
9517 cap = cap->next;
9518 }
9519
9520 return 0;
9521 }
9522
9523 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9524 {
9525 if (IS_VF(sc)) {
9526 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9527 sc->igu_sb_cnt);
9528 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9529 sc->igu_sb_cnt);
9530 } else {
9531 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9532 sc->max_tx_queues = sc->max_rx_queues;
9533 }
9534 }
9535
9536 #define FW_HEADER_LEN 104
9537 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9538 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9539
9540 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9541 {
9542 const char *fwname;
9543 int f;
9544 struct stat st;
9545
9546 fwname = sc->devinfo.device_id == CHIP_NUM_57711
9547 ? FW_NAME_57711 : FW_NAME_57810;
9548 f = open(fwname, O_RDONLY);
9549 if (f < 0) {
9550 PMD_DRV_LOG(NOTICE, "Can't open firmware file");
9551 return;
9552 }
9553
9554 if (fstat(f, &st) < 0) {
9555 PMD_DRV_LOG(NOTICE, "Can't stat firmware file");
9556 close(f);
9557 return;
9558 }
9559
9560 sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9561 if (!sc->firmware) {
9562 PMD_DRV_LOG(NOTICE, "Can't allocate memory for firmware");
9563 close(f);
9564 return;
9565 }
9566
9567 if (read(f, sc->firmware, st.st_size) != st.st_size) {
9568 PMD_DRV_LOG(NOTICE, "Can't read firmware data");
9569 close(f);
9570 return;
9571 }
9572 close(f);
9573
9574 sc->fw_len = st.st_size;
9575 if (sc->fw_len < FW_HEADER_LEN) {
9576 PMD_DRV_LOG(NOTICE, "Invalid fw size: %" PRIu64, sc->fw_len);
9577 return;
9578 }
9579 PMD_DRV_LOG(DEBUG, "fw_len = %" PRIu64, sc->fw_len);
9580 }
9581
9582 static void
9583 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9584 {
9585 uint32_t *src = (uint32_t *) data;
9586 uint32_t i, j, tmp;
9587
9588 for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9589 tmp = rte_be_to_cpu_32(src[j]);
9590 dst[i].op = (tmp >> 24) & 0xFF;
9591 dst[i].offset = tmp & 0xFFFFFF;
9592 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9593 }
9594 }
9595
9596 static void
9597 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9598 {
9599 uint16_t *src = (uint16_t *) data;
9600 uint32_t i;
9601
9602 for (i = 0; i < len / 2; ++i)
9603 dst[i] = rte_be_to_cpu_16(src[i]);
9604 }
9605
9606 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9607 {
9608 uint32_t *src = (uint32_t *) data;
9609 uint32_t i;
9610
9611 for (i = 0; i < len / 4; ++i)
9612 dst[i] = rte_be_to_cpu_32(src[i]);
9613 }
9614
9615 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9616 {
9617 uint32_t *src = (uint32_t *) data;
9618 uint32_t i, j, tmp;
9619
9620 for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9621 dst[i].base = rte_be_to_cpu_32(src[j++]);
9622 tmp = rte_be_to_cpu_32(src[j]);
9623 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9624 dst[i].m2 = tmp & 0xFFFF;
9625 ++j;
9626 tmp = rte_be_to_cpu_32(src[j]);
9627 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9628 dst[i].size = tmp & 0xFFFF;
9629 }
9630 }
9631
9632 /*
9633 * Device attach function.
9634 *
9635 * Allocates device resources, performs secondary chip identification, and
9636 * initializes driver instance variables. This function is called from driver
9637 * load after a successful probe.
9638 *
9639 * Returns:
9640 * 0 = Success, >0 = Failure
9641 */
9642 int bnx2x_attach(struct bnx2x_softc *sc)
9643 {
9644 int rc;
9645
9646 PMD_DRV_LOG(DEBUG, "Starting attach...");
9647
9648 rc = bnx2x_pci_get_caps(sc);
9649 if (rc) {
9650 PMD_DRV_LOG(NOTICE, "PCIe caps reading was failed");
9651 return rc;
9652 }
9653
9654 sc->state = BNX2X_STATE_CLOSED;
9655
9656 pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9657
9658 sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9659
9660 /* get PCI capabilites */
9661 bnx2x_probe_pci_caps(sc);
9662
9663 if (sc->devinfo.pcie_msix_cap_reg != 0) {
9664 uint32_t val;
9665 pci_read(sc,
9666 (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9667 2);
9668 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9669 } else {
9670 sc->igu_sb_cnt = 1;
9671 }
9672
9673 /* Init RTE stuff */
9674 bnx2x_init_rte(sc);
9675
9676 if (IS_PF(sc)) {
9677 /* get device info and set params */
9678 if (bnx2x_get_device_info(sc) != 0) {
9679 PMD_DRV_LOG(NOTICE, "getting device info");
9680 return -ENXIO;
9681 }
9682
9683 /* get phy settings from shmem and 'and' against admin settings */
9684 bnx2x_get_phy_info(sc);
9685 } else {
9686 /* Left mac of VF unfilled, PF should set it for VF */
9687 memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN);
9688 }
9689
9690 sc->wol = 0;
9691
9692 /* set the default MTU (changed via ifconfig) */
9693 sc->mtu = ETHER_MTU;
9694
9695 bnx2x_set_modes_bitmap(sc);
9696
9697 /* need to reset chip if UNDI was active */
9698 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9699 /* init fw_seq */
9700 sc->fw_seq =
9701 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9702 DRV_MSG_SEQ_NUMBER_MASK);
9703 bnx2x_prev_unload(sc);
9704 }
9705
9706 bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9707
9708 /* calculate qm_cid_count */
9709 sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9710
9711 sc->max_cos = 1;
9712 bnx2x_init_multi_cos(sc);
9713
9714 return 0;
9715 }
9716
9717 static void
9718 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9719 uint16_t index, uint8_t op, uint8_t update)
9720 {
9721 uint32_t igu_addr = sc->igu_base_addr;
9722 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9723 bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9724 }
9725
9726 static void
9727 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9728 uint16_t index, uint8_t op, uint8_t update)
9729 {
9730 if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9731 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9732 else {
9733 uint8_t segment;
9734 if (CHIP_INT_MODE_IS_BC(sc)) {
9735 segment = storm;
9736 } else if (igu_sb_id != sc->igu_dsb_id) {
9737 segment = IGU_SEG_ACCESS_DEF;
9738 } else if (storm == ATTENTION_ID) {
9739 segment = IGU_SEG_ACCESS_ATTN;
9740 } else {
9741 segment = IGU_SEG_ACCESS_DEF;
9742 }
9743 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9744 }
9745 }
9746
9747 static void
9748 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9749 uint8_t is_pf)
9750 {
9751 uint32_t data, ctl, cnt = 100;
9752 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9753 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9754 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9755 (idu_sb_id / 32) * 4;
9756 uint32_t sb_bit = 1 << (idu_sb_id % 32);
9757 uint32_t func_encode = func |
9758 (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9759 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9760
9761 /* Not supported in BC mode */
9762 if (CHIP_INT_MODE_IS_BC(sc)) {
9763 return;
9764 }
9765
9766 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9767 IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9768 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9769
9770 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9771 (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9772 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9773
9774 REG_WR(sc, igu_addr_data, data);
9775
9776 mb();
9777
9778 PMD_DRV_LOG(DEBUG, "write 0x%08x to IGU(via GRC) addr 0x%x",
9779 ctl, igu_addr_ctl);
9780 REG_WR(sc, igu_addr_ctl, ctl);
9781
9782 mb();
9783
9784 /* wait for clean up to finish */
9785 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9786 DELAY(20000);
9787 }
9788
9789 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9790 PMD_DRV_LOG(DEBUG,
9791 "Unable to finish IGU cleanup: "
9792 "idu_sb_id %d offset %d bit %d (cnt %d)",
9793 idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9794 }
9795 }
9796
9797 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9798 {
9799 bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9800 }
9801
9802 /*******************/
9803 /* ECORE CALLBACKS */
9804 /*******************/
9805
9806 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9807 {
9808 uint32_t val = 0x1400;
9809
9810 PMD_INIT_FUNC_TRACE();
9811
9812 /* reset_common */
9813 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9814 0xd3ffff7f);
9815
9816 if (CHIP_IS_E3(sc)) {
9817 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9818 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9819 }
9820
9821 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9822 }
9823
9824 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9825 {
9826 uint32_t shmem_base[2];
9827 uint32_t shmem2_base[2];
9828
9829 /* Avoid common init in case MFW supports LFA */
9830 if (SHMEM2_RD(sc, size) >
9831 (uint32_t) offsetof(struct shmem2_region,
9832 lfa_host_addr[SC_PORT(sc)])) {
9833 return;
9834 }
9835
9836 shmem_base[0] = sc->devinfo.shmem_base;
9837 shmem2_base[0] = sc->devinfo.shmem2_base;
9838
9839 if (!CHIP_IS_E1x(sc)) {
9840 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9841 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9842 }
9843
9844 elink_common_init_phy(sc, shmem_base, shmem2_base,
9845 sc->devinfo.chip_id, 0);
9846 }
9847
9848 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9849 {
9850 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9851
9852 val &= ~IGU_PF_CONF_FUNC_EN;
9853
9854 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9855 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9856 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9857 }
9858
9859 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9860 {
9861 uint16_t devctl;
9862 int r_order, w_order;
9863
9864 devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9865
9866 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9867 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9868
9869 ecore_init_pxp_arb(sc, r_order, w_order);
9870 }
9871
9872 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9873 {
9874 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9875 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9876 return base + (SC_ABS_FUNC(sc)) * stride;
9877 }
9878
9879 /*
9880 * Called only on E1H or E2.
9881 * When pretending to be PF, the pretend value is the function number 0..7.
9882 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9883 * combination.
9884 */
9885 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9886 {
9887 uint32_t pretend_reg;
9888
9889 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
9890 return -1;
9891
9892 /* get my own pretend register */
9893 pretend_reg = bnx2x_get_pretend_reg(sc);
9894 REG_WR(sc, pretend_reg, pretend_func_val);
9895 REG_RD(sc, pretend_reg);
9896 return 0;
9897 }
9898
9899 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
9900 {
9901 int is_required;
9902 uint32_t val;
9903 int port;
9904
9905 is_required = 0;
9906 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
9907 SHARED_HW_CFG_FAN_FAILURE_MASK);
9908
9909 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
9910 is_required = 1;
9911 }
9912 /*
9913 * The fan failure mechanism is usually related to the PHY type since
9914 * the power consumption of the board is affected by the PHY. Currently,
9915 * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
9916 */
9917 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
9918 for (port = PORT_0; port < PORT_MAX; port++) {
9919 is_required |= elink_fan_failure_det_req(sc,
9920 sc->
9921 devinfo.shmem_base,
9922 sc->
9923 devinfo.shmem2_base,
9924 port);
9925 }
9926 }
9927
9928 if (is_required == 0) {
9929 return;
9930 }
9931
9932 /* Fan failure is indicated by SPIO 5 */
9933 bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
9934
9935 /* set to active low mode */
9936 val = REG_RD(sc, MISC_REG_SPIO_INT);
9937 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
9938 REG_WR(sc, MISC_REG_SPIO_INT, val);
9939
9940 /* enable interrupt to signal the IGU */
9941 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
9942 val |= MISC_SPIO_SPIO5;
9943 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
9944 }
9945
9946 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
9947 {
9948 uint32_t val;
9949
9950 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
9951 if (!CHIP_IS_E1x(sc)) {
9952 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
9953 } else {
9954 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
9955 }
9956 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
9957 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
9958 /*
9959 * mask read length error interrupts in brb for parser
9960 * (parsing unit and 'checksum and crc' unit)
9961 * these errors are legal (PU reads fixed length and CAC can cause
9962 * read length error on truncated packets)
9963 */
9964 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
9965 REG_WR(sc, QM_REG_QM_INT_MASK, 0);
9966 REG_WR(sc, TM_REG_TM_INT_MASK, 0);
9967 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
9968 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
9969 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
9970 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
9971 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
9972 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
9973 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
9974 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
9975 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
9976 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
9977 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
9978 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
9979 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
9980 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
9981 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
9982 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
9983
9984 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
9985 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
9986 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
9987 if (!CHIP_IS_E1x(sc)) {
9988 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
9989 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
9990 }
9991 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
9992
9993 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
9994 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
9995 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
9996 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
9997
9998 if (!CHIP_IS_E1x(sc)) {
9999 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10000 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10001 }
10002
10003 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10004 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10005 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10006 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10007 }
10008
10009 /**
10010 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10011 *
10012 * @sc: driver handle
10013 */
10014 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10015 {
10016 uint8_t abs_func_id;
10017 uint32_t val;
10018
10019 PMD_DRV_LOG(DEBUG, "starting common init for func %d", SC_ABS_FUNC(sc));
10020
10021 /*
10022 * take the RESET lock to protect undi_unload flow from accessing
10023 * registers while we are resetting the chip
10024 */
10025 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10026
10027 bnx2x_reset_common(sc);
10028
10029 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10030
10031 val = 0xfffc;
10032 if (CHIP_IS_E3(sc)) {
10033 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10034 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10035 }
10036
10037 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10038
10039 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10040
10041 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10042
10043 if (!CHIP_IS_E1x(sc)) {
10044 /*
10045 * 4-port mode or 2-port mode we need to turn off master-enable for
10046 * everyone. After that we turn it back on for self. So, we disregard
10047 * multi-function, and always disable all functions on the given path,
10048 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10049 */
10050 for (abs_func_id = SC_PATH(sc);
10051 abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10052 if (abs_func_id == SC_ABS_FUNC(sc)) {
10053 REG_WR(sc,
10054 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10055 1);
10056 continue;
10057 }
10058
10059 bnx2x_pretend_func(sc, abs_func_id);
10060
10061 /* clear pf enable */
10062 bnx2x_pf_disable(sc);
10063
10064 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10065 }
10066 }
10067
10068 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10069
10070 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10071 bnx2x_init_pxp(sc);
10072
10073 #ifdef __BIG_ENDIAN
10074 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10075 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10076 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10077 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10078 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10079 /* make sure this value is 0 */
10080 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10081
10082 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10083 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10084 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10085 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10086 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10087 #endif
10088
10089 ecore_ilt_init_page_size(sc, INITOP_SET);
10090
10091 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10092 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10093 }
10094
10095 /* let the HW do it's magic... */
10096 DELAY(100000);
10097
10098 /* finish PXP init */
10099
10100 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10101 if (val != 1) {
10102 PMD_DRV_LOG(NOTICE, "PXP2 CFG failed");
10103 return -1;
10104 }
10105 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10106 if (val != 1) {
10107 PMD_DRV_LOG(NOTICE, "PXP2 RD_INIT failed");
10108 return -1;
10109 }
10110
10111 /*
10112 * Timer bug workaround for E2 only. We need to set the entire ILT to have
10113 * entries with value "0" and valid bit on. This needs to be done by the
10114 * first PF that is loaded in a path (i.e. common phase)
10115 */
10116 if (!CHIP_IS_E1x(sc)) {
10117 /*
10118 * In E2 there is a bug in the timers block that can cause function 6 / 7
10119 * (i.e. vnic3) to start even if it is marked as "scan-off".
10120 * This occurs when a different function (func2,3) is being marked
10121 * as "scan-off". Real-life scenario for example: if a driver is being
10122 * load-unloaded while func6,7 are down. This will cause the timer to access
10123 * the ilt, translate to a logical address and send a request to read/write.
10124 * Since the ilt for the function that is down is not valid, this will cause
10125 * a translation error which is unrecoverable.
10126 * The Workaround is intended to make sure that when this happens nothing
10127 * fatal will occur. The workaround:
10128 * 1. First PF driver which loads on a path will:
10129 * a. After taking the chip out of reset, by using pretend,
10130 * it will write "0" to the following registers of
10131 * the other vnics.
10132 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10133 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10134 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10135 * And for itself it will write '1' to
10136 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10137 * dmae-operations (writing to pram for example.)
10138 * note: can be done for only function 6,7 but cleaner this
10139 * way.
10140 * b. Write zero+valid to the entire ILT.
10141 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
10142 * VNIC3 (of that port). The range allocated will be the
10143 * entire ILT. This is needed to prevent ILT range error.
10144 * 2. Any PF driver load flow:
10145 * a. ILT update with the physical addresses of the allocated
10146 * logical pages.
10147 * b. Wait 20msec. - note that this timeout is needed to make
10148 * sure there are no requests in one of the PXP internal
10149 * queues with "old" ILT addresses.
10150 * c. PF enable in the PGLC.
10151 * d. Clear the was_error of the PF in the PGLC. (could have
10152 * occurred while driver was down)
10153 * e. PF enable in the CFC (WEAK + STRONG)
10154 * f. Timers scan enable
10155 * 3. PF driver unload flow:
10156 * a. Clear the Timers scan_en.
10157 * b. Polling for scan_on=0 for that PF.
10158 * c. Clear the PF enable bit in the PXP.
10159 * d. Clear the PF enable in the CFC (WEAK + STRONG)
10160 * e. Write zero+valid to all ILT entries (The valid bit must
10161 * stay set)
10162 * f. If this is VNIC 3 of a port then also init
10163 * first_timers_ilt_entry to zero and last_timers_ilt_entry
10164 * to the last enrty in the ILT.
10165 *
10166 * Notes:
10167 * Currently the PF error in the PGLC is non recoverable.
10168 * In the future the there will be a recovery routine for this error.
10169 * Currently attention is masked.
10170 * Having an MCP lock on the load/unload process does not guarantee that
10171 * there is no Timer disable during Func6/7 enable. This is because the
10172 * Timers scan is currently being cleared by the MCP on FLR.
10173 * Step 2.d can be done only for PF6/7 and the driver can also check if
10174 * there is error before clearing it. But the flow above is simpler and
10175 * more general.
10176 * All ILT entries are written by zero+valid and not just PF6/7
10177 * ILT entries since in the future the ILT entries allocation for
10178 * PF-s might be dynamic.
10179 */
10180 struct ilt_client_info ilt_cli;
10181 struct ecore_ilt ilt;
10182
10183 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10184 memset(&ilt, 0, sizeof(struct ecore_ilt));
10185
10186 /* initialize dummy TM client */
10187 ilt_cli.start = 0;
10188 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10189 ilt_cli.client_num = ILT_CLIENT_TM;
10190
10191 /*
10192 * Step 1: set zeroes to all ilt page entries with valid bit on
10193 * Step 2: set the timers first/last ilt entry to point
10194 * to the entire range to prevent ILT range error for 3rd/4th
10195 * vnic (this code assumes existence of the vnic)
10196 *
10197 * both steps performed by call to ecore_ilt_client_init_op()
10198 * with dummy TM client
10199 *
10200 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10201 * and his brother are split registers
10202 */
10203
10204 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10205 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10206 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10207
10208 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10209 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10210 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10211 }
10212
10213 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10214 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10215
10216 if (!CHIP_IS_E1x(sc)) {
10217 int factor = 0;
10218
10219 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10220 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10221
10222 /* let the HW do it's magic... */
10223 do {
10224 DELAY(200000);
10225 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10226 } while (factor-- && (val != 1));
10227
10228 if (val != 1) {
10229 PMD_DRV_LOG(NOTICE, "ATC_INIT failed");
10230 return -1;
10231 }
10232 }
10233
10234 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10235
10236 /* clean the DMAE memory */
10237 sc->dmae_ready = 1;
10238 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10239
10240 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10241
10242 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10243
10244 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10245
10246 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10247
10248 bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10249 bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10250 bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10251 bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10252
10253 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10254
10255 /* QM queues pointers table */
10256 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10257
10258 /* soft reset pulse */
10259 REG_WR(sc, QM_REG_SOFT_RESET, 1);
10260 REG_WR(sc, QM_REG_SOFT_RESET, 0);
10261
10262 if (CNIC_SUPPORT(sc))
10263 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10264
10265 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10266 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10267
10268 if (!CHIP_REV_IS_SLOW(sc)) {
10269 /* enable hw interrupt from doorbell Q */
10270 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10271 }
10272
10273 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10274
10275 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10276 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10277 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10278
10279 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10280 if (IS_MF_AFEX(sc)) {
10281 /*
10282 * configure that AFEX and VLAN headers must be
10283 * received in AFEX mode
10284 */
10285 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10286 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10287 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10288 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10289 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10290 } else {
10291 /*
10292 * Bit-map indicating which L2 hdrs may appear
10293 * after the basic Ethernet header
10294 */
10295 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10296 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10297 }
10298 }
10299
10300 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10301 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10302 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10303 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10304
10305 if (!CHIP_IS_E1x(sc)) {
10306 /* reset VFC memories */
10307 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10308 VFC_MEMORIES_RST_REG_CAM_RST |
10309 VFC_MEMORIES_RST_REG_RAM_RST);
10310 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10311 VFC_MEMORIES_RST_REG_CAM_RST |
10312 VFC_MEMORIES_RST_REG_RAM_RST);
10313
10314 DELAY(20000);
10315 }
10316
10317 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10318 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10319 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10320 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10321
10322 /* sync semi rtc */
10323 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10324 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10325
10326 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10327 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10328 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10329
10330 if (!CHIP_IS_E1x(sc)) {
10331 if (IS_MF_AFEX(sc)) {
10332 /*
10333 * configure that AFEX and VLAN headers must be
10334 * sent in AFEX mode
10335 */
10336 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10337 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10338 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10339 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10340 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10341 } else {
10342 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10343 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10344 }
10345 }
10346
10347 REG_WR(sc, SRC_REG_SOFT_RST, 1);
10348
10349 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10350
10351 if (CNIC_SUPPORT(sc)) {
10352 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10353 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10354 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10355 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10356 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10357 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10358 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10359 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10360 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10361 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10362 }
10363 REG_WR(sc, SRC_REG_SOFT_RST, 0);
10364
10365 if (sizeof(union cdu_context) != 1024) {
10366 /* we currently assume that a context is 1024 bytes */
10367 PMD_DRV_LOG(NOTICE,
10368 "please adjust the size of cdu_context(%ld)",
10369 (long)sizeof(union cdu_context));
10370 }
10371
10372 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10373 val = (4 << 24) + (0 << 12) + 1024;
10374 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10375
10376 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10377
10378 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10379 /* enable context validation interrupt from CFC */
10380 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10381
10382 /* set the thresholds to prevent CFC/CDU race */
10383 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10384 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10385
10386 if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10387 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10388 }
10389
10390 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10391 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10392
10393 /* Reset PCIE errors for debug */
10394 REG_WR(sc, 0x2814, 0xffffffff);
10395 REG_WR(sc, 0x3820, 0xffffffff);
10396
10397 if (!CHIP_IS_E1x(sc)) {
10398 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10399 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10400 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10401 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10402 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10403 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10404 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10405 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10406 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10407 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10408 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10409 }
10410
10411 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10412
10413 /* in E3 this done in per-port section */
10414 if (!CHIP_IS_E3(sc))
10415 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10416
10417 if (CHIP_IS_E1H(sc)) {
10418 /* not applicable for E2 (and above ...) */
10419 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10420 }
10421
10422 if (CHIP_REV_IS_SLOW(sc)) {
10423 DELAY(200000);
10424 }
10425
10426 /* finish CFC init */
10427 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10428 if (val != 1) {
10429 PMD_DRV_LOG(NOTICE, "CFC LL_INIT failed");
10430 return -1;
10431 }
10432 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10433 if (val != 1) {
10434 PMD_DRV_LOG(NOTICE, "CFC AC_INIT failed");
10435 return -1;
10436 }
10437 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10438 if (val != 1) {
10439 PMD_DRV_LOG(NOTICE, "CFC CAM_INIT failed");
10440 return -1;
10441 }
10442 REG_WR(sc, CFC_REG_DEBUG0, 0);
10443
10444 bnx2x_setup_fan_failure_detection(sc);
10445
10446 /* clear PXP2 attentions */
10447 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10448
10449 bnx2x_enable_blocks_attention(sc);
10450
10451 if (!CHIP_REV_IS_SLOW(sc)) {
10452 ecore_enable_blocks_parity(sc);
10453 }
10454
10455 if (!BNX2X_NOMCP(sc)) {
10456 if (CHIP_IS_E1x(sc)) {
10457 bnx2x_common_init_phy(sc);
10458 }
10459 }
10460
10461 return 0;
10462 }
10463
10464 /**
10465 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10466 *
10467 * @sc: driver handle
10468 */
10469 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10470 {
10471 int rc = bnx2x_init_hw_common(sc);
10472
10473 if (rc) {
10474 return rc;
10475 }
10476
10477 /* In E2 2-PORT mode, same ext phy is used for the two paths */
10478 if (!BNX2X_NOMCP(sc)) {
10479 bnx2x_common_init_phy(sc);
10480 }
10481
10482 return 0;
10483 }
10484
10485 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10486 {
10487 int port = SC_PORT(sc);
10488 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10489 uint32_t low, high;
10490 uint32_t val;
10491
10492 PMD_DRV_LOG(DEBUG, "starting port init for port %d", port);
10493
10494 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10495
10496 ecore_init_block(sc, BLOCK_MISC, init_phase);
10497 ecore_init_block(sc, BLOCK_PXP, init_phase);
10498 ecore_init_block(sc, BLOCK_PXP2, init_phase);
10499
10500 /*
10501 * Timers bug workaround: disables the pf_master bit in pglue at
10502 * common phase, we need to enable it here before any dmae access are
10503 * attempted. Therefore we manually added the enable-master to the
10504 * port phase (it also happens in the function phase)
10505 */
10506 if (!CHIP_IS_E1x(sc)) {
10507 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10508 }
10509
10510 ecore_init_block(sc, BLOCK_ATC, init_phase);
10511 ecore_init_block(sc, BLOCK_DMAE, init_phase);
10512 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10513 ecore_init_block(sc, BLOCK_QM, init_phase);
10514
10515 ecore_init_block(sc, BLOCK_TCM, init_phase);
10516 ecore_init_block(sc, BLOCK_UCM, init_phase);
10517 ecore_init_block(sc, BLOCK_CCM, init_phase);
10518 ecore_init_block(sc, BLOCK_XCM, init_phase);
10519
10520 /* QM cid (connection) count */
10521 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10522
10523 if (CNIC_SUPPORT(sc)) {
10524 ecore_init_block(sc, BLOCK_TM, init_phase);
10525 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10526 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10527 }
10528
10529 ecore_init_block(sc, BLOCK_DORQ, init_phase);
10530
10531 ecore_init_block(sc, BLOCK_BRB1, init_phase);
10532
10533 if (CHIP_IS_E1H(sc)) {
10534 if (IS_MF(sc)) {
10535 low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10536 } else if (sc->mtu > 4096) {
10537 if (BNX2X_ONE_PORT(sc)) {
10538 low = 160;
10539 } else {
10540 val = sc->mtu;
10541 /* (24*1024 + val*4)/256 */
10542 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10543 }
10544 } else {
10545 low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10546 }
10547 high = (low + 56); /* 14*1024/256 */
10548 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10549 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10550 }
10551
10552 if (CHIP_IS_MODE_4_PORT(sc)) {
10553 REG_WR(sc, SC_PORT(sc) ?
10554 BRB1_REG_MAC_GUARANTIED_1 :
10555 BRB1_REG_MAC_GUARANTIED_0, 40);
10556 }
10557
10558 ecore_init_block(sc, BLOCK_PRS, init_phase);
10559 if (CHIP_IS_E3B0(sc)) {
10560 if (IS_MF_AFEX(sc)) {
10561 /* configure headers for AFEX mode */
10562 if (SC_PORT(sc)) {
10563 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10564 0xE);
10565 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10566 0x6);
10567 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10568 } else {
10569 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10570 0xE);
10571 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10572 0x6);
10573 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10574 }
10575 } else {
10576 /* Ovlan exists only if we are in multi-function +
10577 * switch-dependent mode, in switch-independent there
10578 * is no ovlan headers
10579 */
10580 REG_WR(sc, SC_PORT(sc) ?
10581 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10582 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10583 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10584 }
10585 }
10586
10587 ecore_init_block(sc, BLOCK_TSDM, init_phase);
10588 ecore_init_block(sc, BLOCK_CSDM, init_phase);
10589 ecore_init_block(sc, BLOCK_USDM, init_phase);
10590 ecore_init_block(sc, BLOCK_XSDM, init_phase);
10591
10592 ecore_init_block(sc, BLOCK_TSEM, init_phase);
10593 ecore_init_block(sc, BLOCK_USEM, init_phase);
10594 ecore_init_block(sc, BLOCK_CSEM, init_phase);
10595 ecore_init_block(sc, BLOCK_XSEM, init_phase);
10596
10597 ecore_init_block(sc, BLOCK_UPB, init_phase);
10598 ecore_init_block(sc, BLOCK_XPB, init_phase);
10599
10600 ecore_init_block(sc, BLOCK_PBF, init_phase);
10601
10602 if (CHIP_IS_E1x(sc)) {
10603 /* configure PBF to work without PAUSE mtu 9000 */
10604 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10605
10606 /* update threshold */
10607 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10608 /* update init credit */
10609 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10610 (9040 / 16) + 553 - 22);
10611
10612 /* probe changes */
10613 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10614 DELAY(50);
10615 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10616 }
10617
10618 if (CNIC_SUPPORT(sc)) {
10619 ecore_init_block(sc, BLOCK_SRC, init_phase);
10620 }
10621
10622 ecore_init_block(sc, BLOCK_CDU, init_phase);
10623 ecore_init_block(sc, BLOCK_CFC, init_phase);
10624 ecore_init_block(sc, BLOCK_HC, init_phase);
10625 ecore_init_block(sc, BLOCK_IGU, init_phase);
10626 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10627 /* init aeu_mask_attn_func_0/1:
10628 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10629 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10630 * bits 4-7 are used for "per vn group attention" */
10631 val = IS_MF(sc) ? 0xF7 : 0x7;
10632 val |= 0x10;
10633 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10634
10635 ecore_init_block(sc, BLOCK_NIG, init_phase);
10636
10637 if (!CHIP_IS_E1x(sc)) {
10638 /* Bit-map indicating which L2 hdrs may appear after the
10639 * basic Ethernet header
10640 */
10641 if (IS_MF_AFEX(sc)) {
10642 REG_WR(sc, SC_PORT(sc) ?
10643 NIG_REG_P1_HDRS_AFTER_BASIC :
10644 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10645 } else {
10646 REG_WR(sc, SC_PORT(sc) ?
10647 NIG_REG_P1_HDRS_AFTER_BASIC :
10648 NIG_REG_P0_HDRS_AFTER_BASIC,
10649 IS_MF_SD(sc) ? 7 : 6);
10650 }
10651
10652 if (CHIP_IS_E3(sc)) {
10653 REG_WR(sc, SC_PORT(sc) ?
10654 NIG_REG_LLH1_MF_MODE :
10655 NIG_REG_LLH_MF_MODE, IS_MF(sc));
10656 }
10657 }
10658 if (!CHIP_IS_E3(sc)) {
10659 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10660 }
10661
10662 /* 0x2 disable mf_ov, 0x1 enable */
10663 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10664 (IS_MF_SD(sc) ? 0x1 : 0x2));
10665
10666 if (!CHIP_IS_E1x(sc)) {
10667 val = 0;
10668 switch (sc->devinfo.mf_info.mf_mode) {
10669 case MULTI_FUNCTION_SD:
10670 val = 1;
10671 break;
10672 case MULTI_FUNCTION_SI:
10673 case MULTI_FUNCTION_AFEX:
10674 val = 2;
10675 break;
10676 }
10677
10678 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10679 NIG_REG_LLH0_CLS_TYPE), val);
10680 }
10681 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10682 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10683 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10684
10685 /* If SPIO5 is set to generate interrupts, enable it for this port */
10686 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10687 if (val & MISC_SPIO_SPIO5) {
10688 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10689 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10690 val = REG_RD(sc, reg_addr);
10691 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10692 REG_WR(sc, reg_addr, val);
10693 }
10694
10695 return 0;
10696 }
10697
10698 static uint32_t
10699 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10700 uint32_t expected, uint32_t poll_count)
10701 {
10702 uint32_t cur_cnt = poll_count;
10703 uint32_t val;
10704
10705 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10706 DELAY(FLR_WAIT_INTERVAL);
10707 }
10708
10709 return val;
10710 }
10711
10712 static int
10713 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10714 __rte_unused const char *msg, uint32_t poll_cnt)
10715 {
10716 uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10717
10718 if (val != 0) {
10719 PMD_DRV_LOG(NOTICE, "%s usage count=%d", msg, val);
10720 return -1;
10721 }
10722
10723 return 0;
10724 }
10725
10726 /* Common routines with VF FLR cleanup */
10727 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10728 {
10729 /* adjust polling timeout */
10730 if (CHIP_REV_IS_EMUL(sc)) {
10731 return FLR_POLL_CNT * 2000;
10732 }
10733
10734 if (CHIP_REV_IS_FPGA(sc)) {
10735 return FLR_POLL_CNT * 120;
10736 }
10737
10738 return FLR_POLL_CNT;
10739 }
10740
10741 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10742 {
10743 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10744 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10745 CFC_REG_NUM_LCIDS_INSIDE_PF,
10746 "CFC PF usage counter timed out",
10747 poll_cnt)) {
10748 return -1;
10749 }
10750
10751 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10752 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10753 DORQ_REG_PF_USAGE_CNT,
10754 "DQ PF usage counter timed out",
10755 poll_cnt)) {
10756 return -1;
10757 }
10758
10759 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10760 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10761 QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10762 "QM PF usage counter timed out",
10763 poll_cnt)) {
10764 return -1;
10765 }
10766
10767 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10768 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10769 TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10770 "Timers VNIC usage counter timed out",
10771 poll_cnt)) {
10772 return -1;
10773 }
10774
10775 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10776 TM_REG_LIN0_NUM_SCANS +
10777 4 * SC_PORT(sc),
10778 "Timers NUM_SCANS usage counter timed out",
10779 poll_cnt)) {
10780 return -1;
10781 }
10782
10783 /* Wait DMAE PF usage counter to zero */
10784 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10785 dmae_reg_go_c[INIT_DMAE_C(sc)],
10786 "DMAE dommand register timed out",
10787 poll_cnt)) {
10788 return -1;
10789 }
10790
10791 return 0;
10792 }
10793
10794 #define OP_GEN_PARAM(param) \
10795 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10796 #define OP_GEN_TYPE(type) \
10797 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10798 #define OP_GEN_AGG_VECT(index) \
10799 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10800
10801 static int
10802 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10803 uint32_t poll_cnt)
10804 {
10805 uint32_t op_gen_command = 0;
10806 uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10807 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10808 int ret = 0;
10809
10810 if (REG_RD(sc, comp_addr)) {
10811 PMD_DRV_LOG(NOTICE,
10812 "Cleanup complete was not 0 before sending");
10813 return -1;
10814 }
10815
10816 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10817 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10818 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10819 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10820
10821 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10822
10823 if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10824 PMD_DRV_LOG(NOTICE, "FW final cleanup did not succeed");
10825 PMD_DRV_LOG(DEBUG, "At timeout completion address contained %x",
10826 (REG_RD(sc, comp_addr)));
10827 rte_panic("FLR cleanup failed");
10828 return -1;
10829 }
10830
10831 /* Zero completion for nxt FLR */
10832 REG_WR(sc, comp_addr, 0);
10833
10834 return ret;
10835 }
10836
10837 static void
10838 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10839 uint32_t poll_count)
10840 {
10841 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10842 uint32_t cur_cnt = poll_count;
10843
10844 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10845 crd = crd_start = REG_RD(sc, regs->crd);
10846 init_crd = REG_RD(sc, regs->init_crd);
10847
10848 while ((crd != init_crd) &&
10849 ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10850 (init_crd - crd_start))) {
10851 if (cur_cnt--) {
10852 DELAY(FLR_WAIT_INTERVAL);
10853 crd = REG_RD(sc, regs->crd);
10854 crd_freed = REG_RD(sc, regs->crd_freed);
10855 } else {
10856 break;
10857 }
10858 }
10859 }
10860
10861 static void
10862 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10863 uint32_t poll_count)
10864 {
10865 uint32_t occup, to_free, freed, freed_start;
10866 uint32_t cur_cnt = poll_count;
10867
10868 occup = to_free = REG_RD(sc, regs->lines_occup);
10869 freed = freed_start = REG_RD(sc, regs->lines_freed);
10870
10871 while (occup &&
10872 ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10873 to_free)) {
10874 if (cur_cnt--) {
10875 DELAY(FLR_WAIT_INTERVAL);
10876 occup = REG_RD(sc, regs->lines_occup);
10877 freed = REG_RD(sc, regs->lines_freed);
10878 } else {
10879 break;
10880 }
10881 }
10882 }
10883
10884 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10885 {
10886 struct pbf_pN_cmd_regs cmd_regs[] = {
10887 {0, (CHIP_IS_E3B0(sc)) ?
10888 PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
10889 (CHIP_IS_E3B0(sc)) ?
10890 PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
10891 {1, (CHIP_IS_E3B0(sc)) ?
10892 PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
10893 (CHIP_IS_E3B0(sc)) ?
10894 PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
10895 {4, (CHIP_IS_E3B0(sc)) ?
10896 PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
10897 (CHIP_IS_E3B0(sc)) ?
10898 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
10899 PBF_REG_P4_TQ_LINES_FREED_CNT}
10900 };
10901
10902 struct pbf_pN_buf_regs buf_regs[] = {
10903 {0, (CHIP_IS_E3B0(sc)) ?
10904 PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
10905 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
10906 (CHIP_IS_E3B0(sc)) ?
10907 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
10908 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
10909 {1, (CHIP_IS_E3B0(sc)) ?
10910 PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
10911 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
10912 (CHIP_IS_E3B0(sc)) ?
10913 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
10914 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
10915 {4, (CHIP_IS_E3B0(sc)) ?
10916 PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
10917 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
10918 (CHIP_IS_E3B0(sc)) ?
10919 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
10920 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
10921 };
10922
10923 uint32_t i;
10924
10925 /* Verify the command queues are flushed P0, P1, P4 */
10926 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
10927 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
10928 }
10929
10930 /* Verify the transmission buffers are flushed P0, P1, P4 */
10931 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
10932 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
10933 }
10934 }
10935
10936 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
10937 {
10938 __rte_unused uint32_t val;
10939
10940 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
10941 PMD_DRV_LOG(DEBUG, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
10942
10943 val = REG_RD(sc, PBF_REG_DISABLE_PF);
10944 PMD_DRV_LOG(DEBUG, "PBF_REG_DISABLE_PF is 0x%x", val);
10945
10946 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
10947 PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
10948
10949 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
10950 PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
10951
10952 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
10953 PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
10954
10955 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
10956 PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
10957
10958 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
10959 PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
10960
10961 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
10962 PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
10963 val);
10964 }
10965
10966 /**
10967 * bnx2x_pf_flr_clnup
10968 * a. re-enable target read on the PF
10969 * b. poll cfc per function usgae counter
10970 * c. poll the qm perfunction usage counter
10971 * d. poll the tm per function usage counter
10972 * e. poll the tm per function scan-done indication
10973 * f. clear the dmae channel associated wit hthe PF
10974 * g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
10975 * h. call the common flr cleanup code with -1 (pf indication)
10976 */
10977 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
10978 {
10979 uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
10980
10981 /* Re-enable PF target read access */
10982 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10983
10984 /* Poll HW usage counters */
10985 if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
10986 return -1;
10987 }
10988
10989 /* Zero the igu 'trailing edge' and 'leading edge' */
10990
10991 /* Send the FW cleanup command */
10992 if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
10993 return -1;
10994 }
10995
10996 /* ATC cleanup */
10997
10998 /* Verify TX hw is flushed */
10999 bnx2x_tx_hw_flushed(sc, poll_cnt);
11000
11001 /* Wait 100ms (not adjusted according to platform) */
11002 DELAY(100000);
11003
11004 /* Verify no pending pci transactions */
11005 if (bnx2x_is_pcie_pending(sc)) {
11006 PMD_DRV_LOG(NOTICE, "PCIE Transactions still pending");
11007 }
11008
11009 /* Debug */
11010 bnx2x_hw_enable_status(sc);
11011
11012 /*
11013 * Master enable - Due to WB DMAE writes performed before this
11014 * register is re-initialized as part of the regular function init
11015 */
11016 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11017
11018 return 0;
11019 }
11020
11021 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11022 {
11023 int port = SC_PORT(sc);
11024 int func = SC_FUNC(sc);
11025 int init_phase = PHASE_PF0 + func;
11026 struct ecore_ilt *ilt = sc->ilt;
11027 uint16_t cdu_ilt_start;
11028 uint32_t addr, val;
11029 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11030 int main_mem_width, rc;
11031 uint32_t i;
11032
11033 PMD_DRV_LOG(DEBUG, "starting func init for func %d", func);
11034
11035 /* FLR cleanup */
11036 if (!CHIP_IS_E1x(sc)) {
11037 rc = bnx2x_pf_flr_clnup(sc);
11038 if (rc) {
11039 PMD_DRV_LOG(NOTICE, "FLR cleanup failed!");
11040 return rc;
11041 }
11042 }
11043
11044 /* set MSI reconfigure capability */
11045 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11046 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11047 val = REG_RD(sc, addr);
11048 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11049 REG_WR(sc, addr, val);
11050 }
11051
11052 ecore_init_block(sc, BLOCK_PXP, init_phase);
11053 ecore_init_block(sc, BLOCK_PXP2, init_phase);
11054
11055 ilt = sc->ilt;
11056 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11057
11058 for (i = 0; i < L2_ILT_LINES(sc); i++) {
11059 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11060 ilt->lines[cdu_ilt_start + i].page_mapping =
11061 (phys_addr_t)sc->context[i].vcxt_dma.paddr;
11062 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11063 }
11064 ecore_ilt_init_op(sc, INITOP_SET);
11065
11066 REG_WR(sc, PRS_REG_NIC_MODE, 1);
11067
11068 if (!CHIP_IS_E1x(sc)) {
11069 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11070
11071 /* Turn on a single ISR mode in IGU if driver is going to use
11072 * INT#x or MSI
11073 */
11074 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11075 || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11076 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11077 }
11078
11079 /*
11080 * Timers workaround bug: function init part.
11081 * Need to wait 20msec after initializing ILT,
11082 * needed to make sure there are no requests in
11083 * one of the PXP internal queues with "old" ILT addresses
11084 */
11085 DELAY(20000);
11086
11087 /*
11088 * Master enable - Due to WB DMAE writes performed before this
11089 * register is re-initialized as part of the regular function
11090 * init
11091 */
11092 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11093 /* Enable the function in IGU */
11094 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11095 }
11096
11097 sc->dmae_ready = 1;
11098
11099 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11100
11101 if (!CHIP_IS_E1x(sc))
11102 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11103
11104 ecore_init_block(sc, BLOCK_ATC, init_phase);
11105 ecore_init_block(sc, BLOCK_DMAE, init_phase);
11106 ecore_init_block(sc, BLOCK_NIG, init_phase);
11107 ecore_init_block(sc, BLOCK_SRC, init_phase);
11108 ecore_init_block(sc, BLOCK_MISC, init_phase);
11109 ecore_init_block(sc, BLOCK_TCM, init_phase);
11110 ecore_init_block(sc, BLOCK_UCM, init_phase);
11111 ecore_init_block(sc, BLOCK_CCM, init_phase);
11112 ecore_init_block(sc, BLOCK_XCM, init_phase);
11113 ecore_init_block(sc, BLOCK_TSEM, init_phase);
11114 ecore_init_block(sc, BLOCK_USEM, init_phase);
11115 ecore_init_block(sc, BLOCK_CSEM, init_phase);
11116 ecore_init_block(sc, BLOCK_XSEM, init_phase);
11117
11118 if (!CHIP_IS_E1x(sc))
11119 REG_WR(sc, QM_REG_PF_EN, 1);
11120
11121 if (!CHIP_IS_E1x(sc)) {
11122 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11123 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11124 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11125 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11126 }
11127 ecore_init_block(sc, BLOCK_QM, init_phase);
11128
11129 ecore_init_block(sc, BLOCK_TM, init_phase);
11130 ecore_init_block(sc, BLOCK_DORQ, init_phase);
11131
11132 ecore_init_block(sc, BLOCK_BRB1, init_phase);
11133 ecore_init_block(sc, BLOCK_PRS, init_phase);
11134 ecore_init_block(sc, BLOCK_TSDM, init_phase);
11135 ecore_init_block(sc, BLOCK_CSDM, init_phase);
11136 ecore_init_block(sc, BLOCK_USDM, init_phase);
11137 ecore_init_block(sc, BLOCK_XSDM, init_phase);
11138 ecore_init_block(sc, BLOCK_UPB, init_phase);
11139 ecore_init_block(sc, BLOCK_XPB, init_phase);
11140 ecore_init_block(sc, BLOCK_PBF, init_phase);
11141 if (!CHIP_IS_E1x(sc))
11142 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11143
11144 ecore_init_block(sc, BLOCK_CDU, init_phase);
11145
11146 ecore_init_block(sc, BLOCK_CFC, init_phase);
11147
11148 if (!CHIP_IS_E1x(sc))
11149 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11150
11151 if (IS_MF(sc)) {
11152 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11153 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11154 }
11155
11156 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11157
11158 /* HC init per function */
11159 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11160 if (CHIP_IS_E1H(sc)) {
11161 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11162
11163 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11164 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11165 }
11166 ecore_init_block(sc, BLOCK_HC, init_phase);
11167
11168 } else {
11169 uint32_t num_segs, sb_idx, prod_offset;
11170
11171 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11172
11173 if (!CHIP_IS_E1x(sc)) {
11174 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11175 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11176 }
11177
11178 ecore_init_block(sc, BLOCK_IGU, init_phase);
11179
11180 if (!CHIP_IS_E1x(sc)) {
11181 int dsb_idx = 0;
11182 /**
11183 * Producer memory:
11184 * E2 mode: address 0-135 match to the mapping memory;
11185 * 136 - PF0 default prod; 137 - PF1 default prod;
11186 * 138 - PF2 default prod; 139 - PF3 default prod;
11187 * 140 - PF0 attn prod; 141 - PF1 attn prod;
11188 * 142 - PF2 attn prod; 143 - PF3 attn prod;
11189 * 144-147 reserved.
11190 *
11191 * E1.5 mode - In backward compatible mode;
11192 * for non default SB; each even line in the memory
11193 * holds the U producer and each odd line hold
11194 * the C producer. The first 128 producers are for
11195 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11196 * producers are for the DSB for each PF.
11197 * Each PF has five segments: (the order inside each
11198 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11199 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11200 * 144-147 attn prods;
11201 */
11202 /* non-default-status-blocks */
11203 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11204 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11205 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11206 prod_offset = (sc->igu_base_sb + sb_idx) *
11207 num_segs;
11208
11209 for (i = 0; i < num_segs; i++) {
11210 addr = IGU_REG_PROD_CONS_MEMORY +
11211 (prod_offset + i) * 4;
11212 REG_WR(sc, addr, 0);
11213 }
11214 /* send consumer update with value 0 */
11215 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11216 USTORM_ID, 0, IGU_INT_NOP, 1);
11217 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11218 }
11219
11220 /* default-status-blocks */
11221 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11222 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11223
11224 if (CHIP_IS_MODE_4_PORT(sc))
11225 dsb_idx = SC_FUNC(sc);
11226 else
11227 dsb_idx = SC_VN(sc);
11228
11229 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11230 IGU_BC_BASE_DSB_PROD + dsb_idx :
11231 IGU_NORM_BASE_DSB_PROD + dsb_idx);
11232
11233 /*
11234 * igu prods come in chunks of E1HVN_MAX (4) -
11235 * does not matters what is the current chip mode
11236 */
11237 for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11238 addr = IGU_REG_PROD_CONS_MEMORY +
11239 (prod_offset + i) * 4;
11240 REG_WR(sc, addr, 0);
11241 }
11242 /* send consumer update with 0 */
11243 if (CHIP_INT_MODE_IS_BC(sc)) {
11244 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11245 USTORM_ID, 0, IGU_INT_NOP, 1);
11246 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11247 CSTORM_ID, 0, IGU_INT_NOP, 1);
11248 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11249 XSTORM_ID, 0, IGU_INT_NOP, 1);
11250 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11251 TSTORM_ID, 0, IGU_INT_NOP, 1);
11252 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11253 ATTENTION_ID, 0, IGU_INT_NOP, 1);
11254 } else {
11255 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11256 USTORM_ID, 0, IGU_INT_NOP, 1);
11257 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11258 ATTENTION_ID, 0, IGU_INT_NOP, 1);
11259 }
11260 bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11261
11262 /* !!! these should become driver const once
11263 rf-tool supports split-68 const */
11264 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11265 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11266 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11267 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11268 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11269 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11270 }
11271 }
11272
11273 /* Reset PCIE errors for debug */
11274 REG_WR(sc, 0x2114, 0xffffffff);
11275 REG_WR(sc, 0x2120, 0xffffffff);
11276
11277 if (CHIP_IS_E1x(sc)) {
11278 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords */
11279 main_mem_base = HC_REG_MAIN_MEMORY +
11280 SC_PORT(sc) * (main_mem_size * 4);
11281 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11282 main_mem_width = 8;
11283
11284 val = REG_RD(sc, main_mem_prty_clr);
11285 if (val) {
11286 PMD_DRV_LOG(DEBUG,
11287 "Parity errors in HC block during function init (0x%x)!",
11288 val);
11289 }
11290
11291 /* Clear "false" parity errors in MSI-X table */
11292 for (i = main_mem_base;
11293 i < main_mem_base + main_mem_size * 4;
11294 i += main_mem_width) {
11295 bnx2x_read_dmae(sc, i, main_mem_width / 4);
11296 bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11297 i, main_mem_width / 4);
11298 }
11299 /* Clear HC parity attention */
11300 REG_RD(sc, main_mem_prty_clr);
11301 }
11302
11303 /* Enable STORMs SP logging */
11304 REG_WR8(sc, BAR_USTRORM_INTMEM +
11305 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11306 REG_WR8(sc, BAR_TSTRORM_INTMEM +
11307 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11308 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11309 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11310 REG_WR8(sc, BAR_XSTRORM_INTMEM +
11311 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11312
11313 elink_phy_probe(&sc->link_params);
11314
11315 return 0;
11316 }
11317
11318 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11319 {
11320 if (!BNX2X_NOMCP(sc)) {
11321 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11322 } else {
11323 if (!CHIP_REV_IS_SLOW(sc)) {
11324 PMD_DRV_LOG(WARNING,
11325 "Bootcode is missing - cannot reset link");
11326 }
11327 }
11328 }
11329
11330 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11331 {
11332 int port = SC_PORT(sc);
11333 uint32_t val;
11334
11335 /* reset physical Link */
11336 bnx2x_link_reset(sc);
11337
11338 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11339
11340 /* Do not rcv packets to BRB */
11341 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11342 /* Do not direct rcv packets that are not for MCP to the BRB */
11343 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11344 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11345
11346 /* Configure AEU */
11347 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11348
11349 DELAY(100000);
11350
11351 /* Check for BRB port occupancy */
11352 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11353 if (val) {
11354 PMD_DRV_LOG(DEBUG,
11355 "BRB1 is not empty, %d blocks are occupied", val);
11356 }
11357 }
11358
11359 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, phys_addr_t addr)
11360 {
11361 int reg;
11362 uint32_t wb_write[2];
11363
11364 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11365
11366 wb_write[0] = ONCHIP_ADDR1(addr);
11367 wb_write[1] = ONCHIP_ADDR2(addr);
11368 REG_WR_DMAE(sc, reg, wb_write, 2);
11369 }
11370
11371 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11372 {
11373 uint32_t i, base = FUNC_ILT_BASE(func);
11374 for (i = base; i < base + ILT_PER_FUNC; i++) {
11375 bnx2x_ilt_wr(sc, i, 0);
11376 }
11377 }
11378
11379 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11380 {
11381 struct bnx2x_fastpath *fp;
11382 int port = SC_PORT(sc);
11383 int func = SC_FUNC(sc);
11384 int i;
11385
11386 /* Disable the function in the FW */
11387 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11388 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11389 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11390 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11391
11392 /* FP SBs */
11393 FOR_EACH_ETH_QUEUE(sc, i) {
11394 fp = &sc->fp[i];
11395 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11396 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11397 SB_DISABLED);
11398 }
11399
11400 /* SP SB */
11401 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11402 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11403
11404 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11405 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11406 0);
11407 }
11408
11409 /* Configure IGU */
11410 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11411 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11412 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11413 } else {
11414 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11415 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11416 }
11417
11418 if (CNIC_LOADED(sc)) {
11419 /* Disable Timer scan */
11420 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11421 /*
11422 * Wait for at least 10ms and up to 2 second for the timers
11423 * scan to complete
11424 */
11425 for (i = 0; i < 200; i++) {
11426 DELAY(10000);
11427 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11428 break;
11429 }
11430 }
11431
11432 /* Clear ILT */
11433 bnx2x_clear_func_ilt(sc, func);
11434
11435 /*
11436 * Timers workaround bug for E2: if this is vnic-3,
11437 * we need to set the entire ilt range for this timers.
11438 */
11439 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11440 struct ilt_client_info ilt_cli;
11441 /* use dummy TM client */
11442 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11443 ilt_cli.start = 0;
11444 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11445 ilt_cli.client_num = ILT_CLIENT_TM;
11446
11447 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11448 }
11449
11450 /* this assumes that reset_port() called before reset_func() */
11451 if (!CHIP_IS_E1x(sc)) {
11452 bnx2x_pf_disable(sc);
11453 }
11454
11455 sc->dmae_ready = 0;
11456 }
11457
11458 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11459 {
11460 rte_free(sc->init_ops);
11461 rte_free(sc->init_ops_offsets);
11462 rte_free(sc->init_data);
11463 rte_free(sc->iro_array);
11464 }
11465
11466 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11467 {
11468 uint32_t len, i;
11469 uint8_t *p = sc->firmware;
11470 uint32_t off[24];
11471
11472 for (i = 0; i < 24; ++i)
11473 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11474
11475 len = off[0];
11476 sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11477 if (!sc->init_ops)
11478 goto alloc_failed;
11479 bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11480
11481 len = off[2];
11482 sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11483 if (!sc->init_ops_offsets)
11484 goto alloc_failed;
11485 bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11486
11487 len = off[4];
11488 sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11489 if (!sc->init_data)
11490 goto alloc_failed;
11491 bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11492
11493 sc->tsem_int_table_data = p + off[7];
11494 sc->tsem_pram_data = p + off[9];
11495 sc->usem_int_table_data = p + off[11];
11496 sc->usem_pram_data = p + off[13];
11497 sc->csem_int_table_data = p + off[15];
11498 sc->csem_pram_data = p + off[17];
11499 sc->xsem_int_table_data = p + off[19];
11500 sc->xsem_pram_data = p + off[21];
11501
11502 len = off[22];
11503 sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11504 if (!sc->iro_array)
11505 goto alloc_failed;
11506 bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11507
11508 return 0;
11509
11510 alloc_failed:
11511 bnx2x_release_firmware(sc);
11512 return -1;
11513 }
11514
11515 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11516 {
11517 #define MIN_PREFIX_SIZE (10)
11518
11519 int n = MIN_PREFIX_SIZE;
11520 uint16_t xlen;
11521
11522 if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11523 len <= MIN_PREFIX_SIZE) {
11524 return -1;
11525 }
11526
11527 /* optional extra fields are present */
11528 if (zbuf[3] & 0x4) {
11529 xlen = zbuf[13];
11530 xlen <<= 8;
11531 xlen += zbuf[12];
11532
11533 n += xlen;
11534 }
11535 /* file name is present */
11536 if (zbuf[3] & 0x8) {
11537 while ((zbuf[n++] != 0) && (n < len)) ;
11538 }
11539
11540 return n;
11541 }
11542
11543 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11544 {
11545 int ret;
11546 int data_begin = cut_gzip_prefix(zbuf, len);
11547
11548 PMD_DRV_LOG(DEBUG, "ecore_gunzip %d", len);
11549
11550 if (data_begin <= 0) {
11551 PMD_DRV_LOG(NOTICE, "bad gzip prefix");
11552 return -1;
11553 }
11554
11555 memset(&zlib_stream, 0, sizeof(zlib_stream));
11556 zlib_stream.next_in = zbuf + data_begin;
11557 zlib_stream.avail_in = len - data_begin;
11558 zlib_stream.next_out = sc->gz_buf;
11559 zlib_stream.avail_out = FW_BUF_SIZE;
11560
11561 ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11562 if (ret != Z_OK) {
11563 PMD_DRV_LOG(NOTICE, "zlib inflateInit2 error");
11564 return ret;
11565 }
11566
11567 ret = inflate(&zlib_stream, Z_FINISH);
11568 if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11569 PMD_DRV_LOG(NOTICE, "zlib inflate error: %d %s", ret,
11570 zlib_stream.msg);
11571 }
11572
11573 sc->gz_outlen = zlib_stream.total_out;
11574 if (sc->gz_outlen & 0x3) {
11575 PMD_DRV_LOG(NOTICE, "firmware is not aligned. gz_outlen == %d",
11576 sc->gz_outlen);
11577 }
11578 sc->gz_outlen >>= 2;
11579
11580 inflateEnd(&zlib_stream);
11581
11582 if (ret == Z_STREAM_END)
11583 return 0;
11584
11585 return ret;
11586 }
11587
11588 static void
11589 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr,
11590 uint32_t addr, uint32_t len)
11591 {
11592 bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11593 }
11594
11595 void
11596 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11597 uint32_t * data)
11598 {
11599 uint8_t i;
11600 for (i = 0; i < size / 4; i++) {
11601 REG_WR(sc, addr + (i * 4), data[i]);
11602 }
11603 }
11604
11605 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11606 {
11607 uint32_t phy_type_idx = ext_phy_type >> 8;
11608 static const char *types[] =
11609 { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11610 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11611 "BNX2X-8727",
11612 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11613 };
11614
11615 if (phy_type_idx < 12)
11616 return types[phy_type_idx];
11617 else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11618 return types[12];
11619 else
11620 return types[13];
11621 }
11622
11623 static const char *get_state(uint32_t state)
11624 {
11625 uint32_t state_idx = state >> 12;
11626 static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11627 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11628 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11629 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11630 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11631 };
11632
11633 if (state_idx <= 0xF)
11634 return states[state_idx];
11635 else
11636 return states[0x10];
11637 }
11638
11639 static const char *get_recovery_state(uint32_t state)
11640 {
11641 static const char *states[] = { "NONE", "DONE", "INIT",
11642 "WAIT", "FAILED", "NIC_LOADING"
11643 };
11644 return states[state];
11645 }
11646
11647 static const char *get_rx_mode(uint32_t mode)
11648 {
11649 static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11650 "PROMISC", "MAX_MULTICAST", "ERROR"
11651 };
11652
11653 if (mode < 0x4)
11654 return modes[mode];
11655 else if (BNX2X_MAX_MULTICAST == mode)
11656 return modes[4];
11657 else
11658 return modes[5];
11659 }
11660
11661 #define BNX2X_INFO_STR_MAX 256
11662 static const char *get_bnx2x_flags(uint32_t flags)
11663 {
11664 int i;
11665 static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11666 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11667 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11668 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11669 };
11670 static char flag_str[BNX2X_INFO_STR_MAX];
11671 memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11672
11673 for (i = 0; i < 5; i++)
11674 if (flags & (1 << i)) {
11675 strcat(flag_str, flag[i]);
11676 flags ^= (1 << i);
11677 }
11678 if (flags) {
11679 static char unknown[BNX2X_INFO_STR_MAX];
11680 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11681 strcat(flag_str, unknown);
11682 }
11683 return flag_str;
11684 }
11685
11686 /*
11687 * Prints useful adapter info.
11688 */
11689 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11690 {
11691 int i = 0;
11692 __rte_unused uint32_t ext_phy_type;
11693
11694 PMD_INIT_FUNC_TRACE();
11695 if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11696 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(REG_RD(sc,
11697 sc->
11698 devinfo.shmem_base
11699 + offsetof(struct
11700 shmem_region,
11701 dev_info.port_hw_config
11702 [0].external_phy_config)));
11703 else
11704 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(REG_RD(sc,
11705 sc->
11706 devinfo.shmem_base
11707 +
11708 offsetof(struct
11709 shmem_region,
11710 dev_info.port_hw_config
11711 [0].external_phy_config)));
11712
11713 PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11714 /* Hardware chip info. */
11715 PMD_INIT_LOG(DEBUG, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11716 PMD_INIT_LOG(DEBUG, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11717 (CHIP_METAL(sc) >> 4));
11718
11719 /* Bus info. */
11720 PMD_INIT_LOG(DEBUG, "%12s : %d, ", "Bus PCIe", sc->devinfo.pcie_link_width);
11721 switch (sc->devinfo.pcie_link_speed) {
11722 case 1:
11723 PMD_INIT_LOG(DEBUG, "%23s", "2.5 Gbps");
11724 break;
11725 case 2:
11726 PMD_INIT_LOG(DEBUG, "%21s", "5 Gbps");
11727 break;
11728 case 4:
11729 PMD_INIT_LOG(DEBUG, "%21s", "8 Gbps");
11730 break;
11731 default:
11732 PMD_INIT_LOG(DEBUG, "%33s", "Unknown link speed");
11733 }
11734
11735 /* Device features. */
11736 PMD_INIT_LOG(DEBUG, "%12s : ", "Flags");
11737
11738 /* Miscellaneous flags. */
11739 if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11740 PMD_INIT_LOG(DEBUG, "%18s", "MSI");
11741 i++;
11742 }
11743
11744 if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11745 if (i > 0)
11746 PMD_INIT_LOG(DEBUG, "|");
11747 PMD_INIT_LOG(DEBUG, "%20s", "MSI-X");
11748 i++;
11749 }
11750
11751 if (IS_PF(sc)) {
11752 PMD_INIT_LOG(DEBUG, "%12s : ", "Queues");
11753 switch (sc->sp->rss_rdata.rss_mode) {
11754 case ETH_RSS_MODE_DISABLED:
11755 PMD_INIT_LOG(DEBUG, "%19s", "None");
11756 break;
11757 case ETH_RSS_MODE_REGULAR:
11758 PMD_INIT_LOG(DEBUG, "%18s : %d", "RSS", sc->num_queues);
11759 break;
11760 default:
11761 PMD_INIT_LOG(DEBUG, "%22s", "Unknown");
11762 break;
11763 }
11764 }
11765
11766 /* RTE and Driver versions */
11767 PMD_INIT_LOG(DEBUG, "%12s : %s", "DPDK",
11768 rte_version());
11769 PMD_INIT_LOG(DEBUG, "%12s : %s", "Driver",
11770 bnx2x_pmd_version());
11771
11772 /* Firmware versions and device features. */
11773 PMD_INIT_LOG(DEBUG, "%12s : %d.%d.%d",
11774 "Firmware",
11775 BNX2X_5710_FW_MAJOR_VERSION,
11776 BNX2X_5710_FW_MINOR_VERSION,
11777 BNX2X_5710_FW_REVISION_VERSION);
11778 PMD_INIT_LOG(DEBUG, "%12s : %s",
11779 "Bootcode", sc->devinfo.bc_ver_str);
11780
11781 PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11782 PMD_INIT_LOG(DEBUG, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11783 PMD_INIT_LOG(DEBUG, "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11784 PMD_INIT_LOG(DEBUG, "%12s : %s", "DMAE Is",
11785 (sc->dmae_ready ? "Ready" : "Not Ready"));
11786 PMD_INIT_LOG(DEBUG, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11787 PMD_INIT_LOG(DEBUG, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11788 PMD_INIT_LOG(DEBUG, "%12s : %u", "MTU", sc->mtu);
11789 PMD_INIT_LOG(DEBUG, "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11790 PMD_INIT_LOG(DEBUG, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11791 sc->link_params.mac_addr[0],
11792 sc->link_params.mac_addr[1],
11793 sc->link_params.mac_addr[2],
11794 sc->link_params.mac_addr[3],
11795 sc->link_params.mac_addr[4],
11796 sc->link_params.mac_addr[5]);
11797 PMD_INIT_LOG(DEBUG, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11798 PMD_INIT_LOG(DEBUG, "%12s : %s", "State", get_state(sc->state));
11799 if (sc->recovery_state)
11800 PMD_INIT_LOG(DEBUG, "%12s : %s", "Recovery",
11801 get_recovery_state(sc->recovery_state));
11802 PMD_INIT_LOG(DEBUG, "%12s : CQ = %lx, EQ = %lx", "SPQ Left",
11803 sc->cq_spq_left, sc->eq_spq_left);
11804 PMD_INIT_LOG(DEBUG, "%12s : %x", "Switch", sc->link_params.switch_cfg);
11805 PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11806 }