]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/drivers/net/cxgbe/base/t4_hw.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / drivers / net / cxgbe / base / t4_hw.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2014-2016 Chelsio Communications.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Chelsio Communications nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <netinet/in.h>
35
36 #include <rte_interrupts.h>
37 #include <rte_log.h>
38 #include <rte_debug.h>
39 #include <rte_pci.h>
40 #include <rte_atomic.h>
41 #include <rte_branch_prediction.h>
42 #include <rte_memory.h>
43 #include <rte_memzone.h>
44 #include <rte_tailq.h>
45 #include <rte_eal.h>
46 #include <rte_alarm.h>
47 #include <rte_ether.h>
48 #include <rte_ethdev.h>
49 #include <rte_atomic.h>
50 #include <rte_malloc.h>
51 #include <rte_random.h>
52 #include <rte_dev.h>
53 #include <rte_byteorder.h>
54
55 #include "common.h"
56 #include "t4_regs.h"
57 #include "t4_regs_values.h"
58 #include "t4fw_interface.h"
59
60 static void init_link_config(struct link_config *lc, unsigned int caps);
61
62 /**
63 * t4_read_mtu_tbl - returns the values in the HW path MTU table
64 * @adap: the adapter
65 * @mtus: where to store the MTU values
66 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
67 *
68 * Reads the HW path MTU table.
69 */
70 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
71 {
72 u32 v;
73 int i;
74
75 for (i = 0; i < NMTUS; ++i) {
76 t4_write_reg(adap, A_TP_MTU_TABLE,
77 V_MTUINDEX(0xff) | V_MTUVALUE(i));
78 v = t4_read_reg(adap, A_TP_MTU_TABLE);
79 mtus[i] = G_MTUVALUE(v);
80 if (mtu_log)
81 mtu_log[i] = G_MTUWIDTH(v);
82 }
83 }
84
85 /**
86 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
87 * @adap: the adapter
88 * @addr: the indirect TP register address
89 * @mask: specifies the field within the register to modify
90 * @val: new value for the field
91 *
92 * Sets a field of an indirect TP register to the given value.
93 */
94 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
95 unsigned int mask, unsigned int val)
96 {
97 t4_write_reg(adap, A_TP_PIO_ADDR, addr);
98 val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
99 t4_write_reg(adap, A_TP_PIO_DATA, val);
100 }
101
102 /* The minimum additive increment value for the congestion control table */
103 #define CC_MIN_INCR 2U
104
105 /**
106 * t4_load_mtus - write the MTU and congestion control HW tables
107 * @adap: the adapter
108 * @mtus: the values for the MTU table
109 * @alpha: the values for the congestion control alpha parameter
110 * @beta: the values for the congestion control beta parameter
111 *
112 * Write the HW MTU table with the supplied MTUs and the high-speed
113 * congestion control table with the supplied alpha, beta, and MTUs.
114 * We write the two tables together because the additive increments
115 * depend on the MTUs.
116 */
117 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
118 const unsigned short *alpha, const unsigned short *beta)
119 {
120 static const unsigned int avg_pkts[NCCTRL_WIN] = {
121 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
122 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
123 28672, 40960, 57344, 81920, 114688, 163840, 229376
124 };
125
126 unsigned int i, w;
127
128 for (i = 0; i < NMTUS; ++i) {
129 unsigned int mtu = mtus[i];
130 unsigned int log2 = cxgbe_fls(mtu);
131
132 if (!(mtu & ((1 << log2) >> 2))) /* round */
133 log2--;
134 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
135 V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
136
137 for (w = 0; w < NCCTRL_WIN; ++w) {
138 unsigned int inc;
139
140 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
141 CC_MIN_INCR);
142
143 t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
144 (w << 16) | (beta[w] << 13) | inc);
145 }
146 }
147 }
148
149 /**
150 * t4_wait_op_done_val - wait until an operation is completed
151 * @adapter: the adapter performing the operation
152 * @reg: the register to check for completion
153 * @mask: a single-bit field within @reg that indicates completion
154 * @polarity: the value of the field when the operation is completed
155 * @attempts: number of check iterations
156 * @delay: delay in usecs between iterations
157 * @valp: where to store the value of the register at completion time
158 *
159 * Wait until an operation is completed by checking a bit in a register
160 * up to @attempts times. If @valp is not NULL the value of the register
161 * at the time it indicated completion is stored there. Returns 0 if the
162 * operation completes and -EAGAIN otherwise.
163 */
164 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
165 int polarity, int attempts, int delay, u32 *valp)
166 {
167 while (1) {
168 u32 val = t4_read_reg(adapter, reg);
169
170 if (!!(val & mask) == polarity) {
171 if (valp)
172 *valp = val;
173 return 0;
174 }
175 if (--attempts == 0)
176 return -EAGAIN;
177 if (delay)
178 udelay(delay);
179 }
180 }
181
182 /**
183 * t4_set_reg_field - set a register field to a value
184 * @adapter: the adapter to program
185 * @addr: the register address
186 * @mask: specifies the portion of the register to modify
187 * @val: the new value for the register field
188 *
189 * Sets a register field specified by the supplied mask to the
190 * given value.
191 */
192 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
193 u32 val)
194 {
195 u32 v = t4_read_reg(adapter, addr) & ~mask;
196
197 t4_write_reg(adapter, addr, v | val);
198 (void)t4_read_reg(adapter, addr); /* flush */
199 }
200
201 /**
202 * t4_read_indirect - read indirectly addressed registers
203 * @adap: the adapter
204 * @addr_reg: register holding the indirect address
205 * @data_reg: register holding the value of the indirect register
206 * @vals: where the read register values are stored
207 * @nregs: how many indirect registers to read
208 * @start_idx: index of first indirect register to read
209 *
210 * Reads registers that are accessed indirectly through an address/data
211 * register pair.
212 */
213 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
214 unsigned int data_reg, u32 *vals, unsigned int nregs,
215 unsigned int start_idx)
216 {
217 while (nregs--) {
218 t4_write_reg(adap, addr_reg, start_idx);
219 *vals++ = t4_read_reg(adap, data_reg);
220 start_idx++;
221 }
222 }
223
224 /**
225 * t4_write_indirect - write indirectly addressed registers
226 * @adap: the adapter
227 * @addr_reg: register holding the indirect addresses
228 * @data_reg: register holding the value for the indirect registers
229 * @vals: values to write
230 * @nregs: how many indirect registers to write
231 * @start_idx: address of first indirect register to write
232 *
233 * Writes a sequential block of registers that are accessed indirectly
234 * through an address/data register pair.
235 */
236 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
237 unsigned int data_reg, const u32 *vals,
238 unsigned int nregs, unsigned int start_idx)
239 {
240 while (nregs--) {
241 t4_write_reg(adap, addr_reg, start_idx++);
242 t4_write_reg(adap, data_reg, *vals++);
243 }
244 }
245
246 /**
247 * t4_report_fw_error - report firmware error
248 * @adap: the adapter
249 *
250 * The adapter firmware can indicate error conditions to the host.
251 * If the firmware has indicated an error, print out the reason for
252 * the firmware error.
253 */
254 static void t4_report_fw_error(struct adapter *adap)
255 {
256 static const char * const reason[] = {
257 "Crash", /* PCIE_FW_EVAL_CRASH */
258 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
259 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
260 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
261 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
262 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
263 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
264 "Reserved", /* reserved */
265 };
266 u32 pcie_fw;
267
268 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
269 if (pcie_fw & F_PCIE_FW_ERR)
270 pr_err("%s: Firmware reports adapter error: %s\n",
271 __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
272 }
273
274 /*
275 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
276 */
277 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
278 u32 mbox_addr)
279 {
280 for ( ; nflit; nflit--, mbox_addr += 8)
281 *rpl++ = htobe64(t4_read_reg64(adap, mbox_addr));
282 }
283
284 /*
285 * Handle a FW assertion reported in a mailbox.
286 */
287 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
288 {
289 struct fw_debug_cmd asrt;
290
291 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
292 pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
293 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
294 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
295 }
296
297 #define X_CIM_PF_NOACCESS 0xeeeeeeee
298
299 /*
300 * If the Host OS Driver needs locking arround accesses to the mailbox, this
301 * can be turned on via the T4_OS_NEEDS_MBOX_LOCKING CPP define ...
302 */
303 /* makes single-statement usage a bit cleaner ... */
304 #ifdef T4_OS_NEEDS_MBOX_LOCKING
305 #define T4_OS_MBOX_LOCKING(x) x
306 #else
307 #define T4_OS_MBOX_LOCKING(x) do {} while (0)
308 #endif
309
310 /**
311 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
312 * @adap: the adapter
313 * @mbox: index of the mailbox to use
314 * @cmd: the command to write
315 * @size: command length in bytes
316 * @rpl: where to optionally store the reply
317 * @sleep_ok: if true we may sleep while awaiting command completion
318 * @timeout: time to wait for command to finish before timing out
319 * (negative implies @sleep_ok=false)
320 *
321 * Sends the given command to FW through the selected mailbox and waits
322 * for the FW to execute the command. If @rpl is not %NULL it is used to
323 * store the FW's reply to the command. The command and its optional
324 * reply are of the same length. Some FW commands like RESET and
325 * INITIALIZE can take a considerable amount of time to execute.
326 * @sleep_ok determines whether we may sleep while awaiting the response.
327 * If sleeping is allowed we use progressive backoff otherwise we spin.
328 * Note that passing in a negative @timeout is an alternate mechanism
329 * for specifying @sleep_ok=false. This is useful when a higher level
330 * interface allows for specification of @timeout but not @sleep_ok ...
331 *
332 * Returns 0 on success or a negative errno on failure. A
333 * failure can happen either because we are not able to execute the
334 * command or FW executes it but signals an error. In the latter case
335 * the return value is the error code indicated by FW (negated).
336 */
337 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
338 const void __attribute__((__may_alias__)) *cmd,
339 int size, void *rpl, bool sleep_ok, int timeout)
340 {
341 /*
342 * We delay in small increments at first in an effort to maintain
343 * responsiveness for simple, fast executing commands but then back
344 * off to larger delays to a maximum retry delay.
345 */
346 static const int delay[] = {
347 1, 1, 3, 5, 10, 10, 20, 50, 100
348 };
349
350 u32 v;
351 u64 res;
352 int i, ms;
353 unsigned int delay_idx;
354 __be64 *temp = (__be64 *)malloc(size * sizeof(char));
355 __be64 *p = temp;
356 u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
357 u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
358 u32 ctl;
359 struct mbox_entry entry;
360 u32 pcie_fw = 0;
361
362 if ((size & 15) || size > MBOX_LEN) {
363 free(temp);
364 return -EINVAL;
365 }
366
367 bzero(p, size);
368 memcpy(p, (const __be64 *)cmd, size);
369
370 /*
371 * If we have a negative timeout, that implies that we can't sleep.
372 */
373 if (timeout < 0) {
374 sleep_ok = false;
375 timeout = -timeout;
376 }
377
378 #ifdef T4_OS_NEEDS_MBOX_LOCKING
379 /*
380 * Queue ourselves onto the mailbox access list. When our entry is at
381 * the front of the list, we have rights to access the mailbox. So we
382 * wait [for a while] till we're at the front [or bail out with an
383 * EBUSY] ...
384 */
385 t4_os_atomic_add_tail(&entry, &adap->mbox_list, &adap->mbox_lock);
386
387 delay_idx = 0;
388 ms = delay[0];
389
390 for (i = 0; ; i += ms) {
391 /*
392 * If we've waited too long, return a busy indication. This
393 * really ought to be based on our initial position in the
394 * mailbox access list but this is a start. We very rarely
395 * contend on access to the mailbox ... Also check for a
396 * firmware error which we'll report as a device error.
397 */
398 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
399 if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
400 t4_os_atomic_list_del(&entry, &adap->mbox_list,
401 &adap->mbox_lock);
402 t4_report_fw_error(adap);
403 return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -EBUSY;
404 }
405
406 /*
407 * If we're at the head, break out and start the mailbox
408 * protocol.
409 */
410 if (t4_os_list_first_entry(&adap->mbox_list) == &entry)
411 break;
412
413 /*
414 * Delay for a bit before checking again ...
415 */
416 if (sleep_ok) {
417 ms = delay[delay_idx]; /* last element may repeat */
418 if (delay_idx < ARRAY_SIZE(delay) - 1)
419 delay_idx++;
420 msleep(ms);
421 } else {
422 rte_delay_ms(ms);
423 }
424 }
425 #endif /* T4_OS_NEEDS_MBOX_LOCKING */
426
427 /*
428 * Attempt to gain access to the mailbox.
429 */
430 for (i = 0; i < 4; i++) {
431 ctl = t4_read_reg(adap, ctl_reg);
432 v = G_MBOWNER(ctl);
433 if (v != X_MBOWNER_NONE)
434 break;
435 }
436
437 /*
438 * If we were unable to gain access, dequeue ourselves from the
439 * mailbox atomic access list and report the error to our caller.
440 */
441 if (v != X_MBOWNER_PL) {
442 T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
443 &adap->mbox_list,
444 &adap->mbox_lock));
445 t4_report_fw_error(adap);
446 return (v == X_MBOWNER_FW ? -EBUSY : -ETIMEDOUT);
447 }
448
449 /*
450 * If we gain ownership of the mailbox and there's a "valid" message
451 * in it, this is likely an asynchronous error message from the
452 * firmware. So we'll report that and then proceed on with attempting
453 * to issue our own command ... which may well fail if the error
454 * presaged the firmware crashing ...
455 */
456 if (ctl & F_MBMSGVALID) {
457 dev_err(adap, "found VALID command in mbox %u: "
458 "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
459 (unsigned long long)t4_read_reg64(adap, data_reg),
460 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
461 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
462 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
463 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
464 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
465 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
466 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
467 }
468
469 /*
470 * Copy in the new mailbox command and send it on its way ...
471 */
472 for (i = 0; i < size; i += 8, p++)
473 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
474
475 CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
476 "%016llx %016llx %016llx %016llx\n", __func__, (mbox),
477 (unsigned long long)t4_read_reg64(adap, data_reg),
478 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
479 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
480 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
481 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
482 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
483 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
484 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
485
486 t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
487 t4_read_reg(adap, ctl_reg); /* flush write */
488
489 delay_idx = 0;
490 ms = delay[0];
491
492 /*
493 * Loop waiting for the reply; bail out if we time out or the firmware
494 * reports an error.
495 */
496 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
497 for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
498 if (sleep_ok) {
499 ms = delay[delay_idx]; /* last element may repeat */
500 if (delay_idx < ARRAY_SIZE(delay) - 1)
501 delay_idx++;
502 msleep(ms);
503 } else {
504 msleep(ms);
505 }
506
507 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
508 v = t4_read_reg(adap, ctl_reg);
509 if (v == X_CIM_PF_NOACCESS)
510 continue;
511 if (G_MBOWNER(v) == X_MBOWNER_PL) {
512 if (!(v & F_MBMSGVALID)) {
513 t4_write_reg(adap, ctl_reg,
514 V_MBOWNER(X_MBOWNER_NONE));
515 continue;
516 }
517
518 CXGBE_DEBUG_MBOX(adap,
519 "%s: mbox %u: %016llx %016llx %016llx %016llx "
520 "%016llx %016llx %016llx %016llx\n", __func__, (mbox),
521 (unsigned long long)t4_read_reg64(adap, data_reg),
522 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
523 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
524 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
525 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
526 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
527 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
528 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
529
530 CXGBE_DEBUG_MBOX(adap,
531 "command %#x completed in %d ms (%ssleeping)\n",
532 *(const u8 *)cmd,
533 i + ms, sleep_ok ? "" : "non-");
534
535 res = t4_read_reg64(adap, data_reg);
536 if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
537 fw_asrt(adap, data_reg);
538 res = V_FW_CMD_RETVAL(EIO);
539 } else if (rpl) {
540 get_mbox_rpl(adap, rpl, size / 8, data_reg);
541 }
542 t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
543 T4_OS_MBOX_LOCKING(
544 t4_os_atomic_list_del(&entry, &adap->mbox_list,
545 &adap->mbox_lock));
546 return -G_FW_CMD_RETVAL((int)res);
547 }
548 }
549
550 /*
551 * We timed out waiting for a reply to our mailbox command. Report
552 * the error and also check to see if the firmware reported any
553 * errors ...
554 */
555 dev_err(adap, "command %#x in mailbox %d timed out\n",
556 *(const u8 *)cmd, mbox);
557 T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
558 &adap->mbox_list,
559 &adap->mbox_lock));
560 t4_report_fw_error(adap);
561 free(temp);
562 return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
563 }
564
565 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
566 void *rpl, bool sleep_ok)
567 {
568 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
569 FW_CMD_MAX_TIMEOUT);
570 }
571
572 /**
573 * t4_get_regs_len - return the size of the chips register set
574 * @adapter: the adapter
575 *
576 * Returns the size of the chip's BAR0 register space.
577 */
578 unsigned int t4_get_regs_len(struct adapter *adapter)
579 {
580 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
581
582 switch (chip_version) {
583 case CHELSIO_T5:
584 return T5_REGMAP_SIZE;
585 }
586
587 dev_err(adapter,
588 "Unsupported chip version %d\n", chip_version);
589 return 0;
590 }
591
592 /**
593 * t4_get_regs - read chip registers into provided buffer
594 * @adap: the adapter
595 * @buf: register buffer
596 * @buf_size: size (in bytes) of register buffer
597 *
598 * If the provided register buffer isn't large enough for the chip's
599 * full register range, the register dump will be truncated to the
600 * register buffer's size.
601 */
602 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
603 {
604 static const unsigned int t5_reg_ranges[] = {
605 0x1008, 0x10c0,
606 0x10cc, 0x10f8,
607 0x1100, 0x1100,
608 0x110c, 0x1148,
609 0x1180, 0x1184,
610 0x1190, 0x1194,
611 0x11a0, 0x11a4,
612 0x11b0, 0x11b4,
613 0x11fc, 0x123c,
614 0x1280, 0x173c,
615 0x1800, 0x18fc,
616 0x3000, 0x3028,
617 0x3060, 0x30b0,
618 0x30b8, 0x30d8,
619 0x30e0, 0x30fc,
620 0x3140, 0x357c,
621 0x35a8, 0x35cc,
622 0x35ec, 0x35ec,
623 0x3600, 0x5624,
624 0x56cc, 0x56ec,
625 0x56f4, 0x5720,
626 0x5728, 0x575c,
627 0x580c, 0x5814,
628 0x5890, 0x589c,
629 0x58a4, 0x58ac,
630 0x58b8, 0x58bc,
631 0x5940, 0x59c8,
632 0x59d0, 0x59dc,
633 0x59fc, 0x5a18,
634 0x5a60, 0x5a70,
635 0x5a80, 0x5a9c,
636 0x5b94, 0x5bfc,
637 0x6000, 0x6020,
638 0x6028, 0x6040,
639 0x6058, 0x609c,
640 0x60a8, 0x614c,
641 0x7700, 0x7798,
642 0x77c0, 0x78fc,
643 0x7b00, 0x7b58,
644 0x7b60, 0x7b84,
645 0x7b8c, 0x7c54,
646 0x7d00, 0x7d38,
647 0x7d40, 0x7d80,
648 0x7d8c, 0x7ddc,
649 0x7de4, 0x7e04,
650 0x7e10, 0x7e1c,
651 0x7e24, 0x7e38,
652 0x7e40, 0x7e44,
653 0x7e4c, 0x7e78,
654 0x7e80, 0x7edc,
655 0x7ee8, 0x7efc,
656 0x8dc0, 0x8de0,
657 0x8df8, 0x8e04,
658 0x8e10, 0x8e84,
659 0x8ea0, 0x8f84,
660 0x8fc0, 0x9058,
661 0x9060, 0x9060,
662 0x9068, 0x90f8,
663 0x9400, 0x9408,
664 0x9410, 0x9470,
665 0x9600, 0x9600,
666 0x9608, 0x9638,
667 0x9640, 0x96f4,
668 0x9800, 0x9808,
669 0x9820, 0x983c,
670 0x9850, 0x9864,
671 0x9c00, 0x9c6c,
672 0x9c80, 0x9cec,
673 0x9d00, 0x9d6c,
674 0x9d80, 0x9dec,
675 0x9e00, 0x9e6c,
676 0x9e80, 0x9eec,
677 0x9f00, 0x9f6c,
678 0x9f80, 0xa020,
679 0xd004, 0xd004,
680 0xd010, 0xd03c,
681 0xdfc0, 0xdfe0,
682 0xe000, 0x1106c,
683 0x11074, 0x11088,
684 0x1109c, 0x1117c,
685 0x11190, 0x11204,
686 0x19040, 0x1906c,
687 0x19078, 0x19080,
688 0x1908c, 0x190e8,
689 0x190f0, 0x190f8,
690 0x19100, 0x19110,
691 0x19120, 0x19124,
692 0x19150, 0x19194,
693 0x1919c, 0x191b0,
694 0x191d0, 0x191e8,
695 0x19238, 0x19290,
696 0x193f8, 0x19428,
697 0x19430, 0x19444,
698 0x1944c, 0x1946c,
699 0x19474, 0x19474,
700 0x19490, 0x194cc,
701 0x194f0, 0x194f8,
702 0x19c00, 0x19c08,
703 0x19c10, 0x19c60,
704 0x19c94, 0x19ce4,
705 0x19cf0, 0x19d40,
706 0x19d50, 0x19d94,
707 0x19da0, 0x19de8,
708 0x19df0, 0x19e10,
709 0x19e50, 0x19e90,
710 0x19ea0, 0x19f24,
711 0x19f34, 0x19f34,
712 0x19f40, 0x19f50,
713 0x19f90, 0x19fb4,
714 0x19fc4, 0x19fe4,
715 0x1a000, 0x1a004,
716 0x1a010, 0x1a06c,
717 0x1a0b0, 0x1a0e4,
718 0x1a0ec, 0x1a0f8,
719 0x1a100, 0x1a108,
720 0x1a114, 0x1a120,
721 0x1a128, 0x1a130,
722 0x1a138, 0x1a138,
723 0x1a190, 0x1a1c4,
724 0x1a1fc, 0x1a1fc,
725 0x1e008, 0x1e00c,
726 0x1e040, 0x1e044,
727 0x1e04c, 0x1e04c,
728 0x1e284, 0x1e290,
729 0x1e2c0, 0x1e2c0,
730 0x1e2e0, 0x1e2e0,
731 0x1e300, 0x1e384,
732 0x1e3c0, 0x1e3c8,
733 0x1e408, 0x1e40c,
734 0x1e440, 0x1e444,
735 0x1e44c, 0x1e44c,
736 0x1e684, 0x1e690,
737 0x1e6c0, 0x1e6c0,
738 0x1e6e0, 0x1e6e0,
739 0x1e700, 0x1e784,
740 0x1e7c0, 0x1e7c8,
741 0x1e808, 0x1e80c,
742 0x1e840, 0x1e844,
743 0x1e84c, 0x1e84c,
744 0x1ea84, 0x1ea90,
745 0x1eac0, 0x1eac0,
746 0x1eae0, 0x1eae0,
747 0x1eb00, 0x1eb84,
748 0x1ebc0, 0x1ebc8,
749 0x1ec08, 0x1ec0c,
750 0x1ec40, 0x1ec44,
751 0x1ec4c, 0x1ec4c,
752 0x1ee84, 0x1ee90,
753 0x1eec0, 0x1eec0,
754 0x1eee0, 0x1eee0,
755 0x1ef00, 0x1ef84,
756 0x1efc0, 0x1efc8,
757 0x1f008, 0x1f00c,
758 0x1f040, 0x1f044,
759 0x1f04c, 0x1f04c,
760 0x1f284, 0x1f290,
761 0x1f2c0, 0x1f2c0,
762 0x1f2e0, 0x1f2e0,
763 0x1f300, 0x1f384,
764 0x1f3c0, 0x1f3c8,
765 0x1f408, 0x1f40c,
766 0x1f440, 0x1f444,
767 0x1f44c, 0x1f44c,
768 0x1f684, 0x1f690,
769 0x1f6c0, 0x1f6c0,
770 0x1f6e0, 0x1f6e0,
771 0x1f700, 0x1f784,
772 0x1f7c0, 0x1f7c8,
773 0x1f808, 0x1f80c,
774 0x1f840, 0x1f844,
775 0x1f84c, 0x1f84c,
776 0x1fa84, 0x1fa90,
777 0x1fac0, 0x1fac0,
778 0x1fae0, 0x1fae0,
779 0x1fb00, 0x1fb84,
780 0x1fbc0, 0x1fbc8,
781 0x1fc08, 0x1fc0c,
782 0x1fc40, 0x1fc44,
783 0x1fc4c, 0x1fc4c,
784 0x1fe84, 0x1fe90,
785 0x1fec0, 0x1fec0,
786 0x1fee0, 0x1fee0,
787 0x1ff00, 0x1ff84,
788 0x1ffc0, 0x1ffc8,
789 0x30000, 0x30030,
790 0x30038, 0x30038,
791 0x30040, 0x30040,
792 0x30100, 0x30144,
793 0x30190, 0x301a0,
794 0x301a8, 0x301b8,
795 0x301c4, 0x301c8,
796 0x301d0, 0x301d0,
797 0x30200, 0x30318,
798 0x30400, 0x304b4,
799 0x304c0, 0x3052c,
800 0x30540, 0x3061c,
801 0x30800, 0x30828,
802 0x30834, 0x30834,
803 0x308c0, 0x30908,
804 0x30910, 0x309ac,
805 0x30a00, 0x30a14,
806 0x30a1c, 0x30a2c,
807 0x30a44, 0x30a50,
808 0x30a74, 0x30a74,
809 0x30a7c, 0x30afc,
810 0x30b08, 0x30c24,
811 0x30d00, 0x30d00,
812 0x30d08, 0x30d14,
813 0x30d1c, 0x30d20,
814 0x30d3c, 0x30d3c,
815 0x30d48, 0x30d50,
816 0x31200, 0x3120c,
817 0x31220, 0x31220,
818 0x31240, 0x31240,
819 0x31600, 0x3160c,
820 0x31a00, 0x31a1c,
821 0x31e00, 0x31e20,
822 0x31e38, 0x31e3c,
823 0x31e80, 0x31e80,
824 0x31e88, 0x31ea8,
825 0x31eb0, 0x31eb4,
826 0x31ec8, 0x31ed4,
827 0x31fb8, 0x32004,
828 0x32200, 0x32200,
829 0x32208, 0x32240,
830 0x32248, 0x32280,
831 0x32288, 0x322c0,
832 0x322c8, 0x322fc,
833 0x32600, 0x32630,
834 0x32a00, 0x32abc,
835 0x32b00, 0x32b10,
836 0x32b20, 0x32b30,
837 0x32b40, 0x32b50,
838 0x32b60, 0x32b70,
839 0x33000, 0x33028,
840 0x33030, 0x33048,
841 0x33060, 0x33068,
842 0x33070, 0x3309c,
843 0x330f0, 0x33128,
844 0x33130, 0x33148,
845 0x33160, 0x33168,
846 0x33170, 0x3319c,
847 0x331f0, 0x33238,
848 0x33240, 0x33240,
849 0x33248, 0x33250,
850 0x3325c, 0x33264,
851 0x33270, 0x332b8,
852 0x332c0, 0x332e4,
853 0x332f8, 0x33338,
854 0x33340, 0x33340,
855 0x33348, 0x33350,
856 0x3335c, 0x33364,
857 0x33370, 0x333b8,
858 0x333c0, 0x333e4,
859 0x333f8, 0x33428,
860 0x33430, 0x33448,
861 0x33460, 0x33468,
862 0x33470, 0x3349c,
863 0x334f0, 0x33528,
864 0x33530, 0x33548,
865 0x33560, 0x33568,
866 0x33570, 0x3359c,
867 0x335f0, 0x33638,
868 0x33640, 0x33640,
869 0x33648, 0x33650,
870 0x3365c, 0x33664,
871 0x33670, 0x336b8,
872 0x336c0, 0x336e4,
873 0x336f8, 0x33738,
874 0x33740, 0x33740,
875 0x33748, 0x33750,
876 0x3375c, 0x33764,
877 0x33770, 0x337b8,
878 0x337c0, 0x337e4,
879 0x337f8, 0x337fc,
880 0x33814, 0x33814,
881 0x3382c, 0x3382c,
882 0x33880, 0x3388c,
883 0x338e8, 0x338ec,
884 0x33900, 0x33928,
885 0x33930, 0x33948,
886 0x33960, 0x33968,
887 0x33970, 0x3399c,
888 0x339f0, 0x33a38,
889 0x33a40, 0x33a40,
890 0x33a48, 0x33a50,
891 0x33a5c, 0x33a64,
892 0x33a70, 0x33ab8,
893 0x33ac0, 0x33ae4,
894 0x33af8, 0x33b10,
895 0x33b28, 0x33b28,
896 0x33b3c, 0x33b50,
897 0x33bf0, 0x33c10,
898 0x33c28, 0x33c28,
899 0x33c3c, 0x33c50,
900 0x33cf0, 0x33cfc,
901 0x34000, 0x34030,
902 0x34038, 0x34038,
903 0x34040, 0x34040,
904 0x34100, 0x34144,
905 0x34190, 0x341a0,
906 0x341a8, 0x341b8,
907 0x341c4, 0x341c8,
908 0x341d0, 0x341d0,
909 0x34200, 0x34318,
910 0x34400, 0x344b4,
911 0x344c0, 0x3452c,
912 0x34540, 0x3461c,
913 0x34800, 0x34828,
914 0x34834, 0x34834,
915 0x348c0, 0x34908,
916 0x34910, 0x349ac,
917 0x34a00, 0x34a14,
918 0x34a1c, 0x34a2c,
919 0x34a44, 0x34a50,
920 0x34a74, 0x34a74,
921 0x34a7c, 0x34afc,
922 0x34b08, 0x34c24,
923 0x34d00, 0x34d00,
924 0x34d08, 0x34d14,
925 0x34d1c, 0x34d20,
926 0x34d3c, 0x34d3c,
927 0x34d48, 0x34d50,
928 0x35200, 0x3520c,
929 0x35220, 0x35220,
930 0x35240, 0x35240,
931 0x35600, 0x3560c,
932 0x35a00, 0x35a1c,
933 0x35e00, 0x35e20,
934 0x35e38, 0x35e3c,
935 0x35e80, 0x35e80,
936 0x35e88, 0x35ea8,
937 0x35eb0, 0x35eb4,
938 0x35ec8, 0x35ed4,
939 0x35fb8, 0x36004,
940 0x36200, 0x36200,
941 0x36208, 0x36240,
942 0x36248, 0x36280,
943 0x36288, 0x362c0,
944 0x362c8, 0x362fc,
945 0x36600, 0x36630,
946 0x36a00, 0x36abc,
947 0x36b00, 0x36b10,
948 0x36b20, 0x36b30,
949 0x36b40, 0x36b50,
950 0x36b60, 0x36b70,
951 0x37000, 0x37028,
952 0x37030, 0x37048,
953 0x37060, 0x37068,
954 0x37070, 0x3709c,
955 0x370f0, 0x37128,
956 0x37130, 0x37148,
957 0x37160, 0x37168,
958 0x37170, 0x3719c,
959 0x371f0, 0x37238,
960 0x37240, 0x37240,
961 0x37248, 0x37250,
962 0x3725c, 0x37264,
963 0x37270, 0x372b8,
964 0x372c0, 0x372e4,
965 0x372f8, 0x37338,
966 0x37340, 0x37340,
967 0x37348, 0x37350,
968 0x3735c, 0x37364,
969 0x37370, 0x373b8,
970 0x373c0, 0x373e4,
971 0x373f8, 0x37428,
972 0x37430, 0x37448,
973 0x37460, 0x37468,
974 0x37470, 0x3749c,
975 0x374f0, 0x37528,
976 0x37530, 0x37548,
977 0x37560, 0x37568,
978 0x37570, 0x3759c,
979 0x375f0, 0x37638,
980 0x37640, 0x37640,
981 0x37648, 0x37650,
982 0x3765c, 0x37664,
983 0x37670, 0x376b8,
984 0x376c0, 0x376e4,
985 0x376f8, 0x37738,
986 0x37740, 0x37740,
987 0x37748, 0x37750,
988 0x3775c, 0x37764,
989 0x37770, 0x377b8,
990 0x377c0, 0x377e4,
991 0x377f8, 0x377fc,
992 0x37814, 0x37814,
993 0x3782c, 0x3782c,
994 0x37880, 0x3788c,
995 0x378e8, 0x378ec,
996 0x37900, 0x37928,
997 0x37930, 0x37948,
998 0x37960, 0x37968,
999 0x37970, 0x3799c,
1000 0x379f0, 0x37a38,
1001 0x37a40, 0x37a40,
1002 0x37a48, 0x37a50,
1003 0x37a5c, 0x37a64,
1004 0x37a70, 0x37ab8,
1005 0x37ac0, 0x37ae4,
1006 0x37af8, 0x37b10,
1007 0x37b28, 0x37b28,
1008 0x37b3c, 0x37b50,
1009 0x37bf0, 0x37c10,
1010 0x37c28, 0x37c28,
1011 0x37c3c, 0x37c50,
1012 0x37cf0, 0x37cfc,
1013 0x38000, 0x38030,
1014 0x38038, 0x38038,
1015 0x38040, 0x38040,
1016 0x38100, 0x38144,
1017 0x38190, 0x381a0,
1018 0x381a8, 0x381b8,
1019 0x381c4, 0x381c8,
1020 0x381d0, 0x381d0,
1021 0x38200, 0x38318,
1022 0x38400, 0x384b4,
1023 0x384c0, 0x3852c,
1024 0x38540, 0x3861c,
1025 0x38800, 0x38828,
1026 0x38834, 0x38834,
1027 0x388c0, 0x38908,
1028 0x38910, 0x389ac,
1029 0x38a00, 0x38a14,
1030 0x38a1c, 0x38a2c,
1031 0x38a44, 0x38a50,
1032 0x38a74, 0x38a74,
1033 0x38a7c, 0x38afc,
1034 0x38b08, 0x38c24,
1035 0x38d00, 0x38d00,
1036 0x38d08, 0x38d14,
1037 0x38d1c, 0x38d20,
1038 0x38d3c, 0x38d3c,
1039 0x38d48, 0x38d50,
1040 0x39200, 0x3920c,
1041 0x39220, 0x39220,
1042 0x39240, 0x39240,
1043 0x39600, 0x3960c,
1044 0x39a00, 0x39a1c,
1045 0x39e00, 0x39e20,
1046 0x39e38, 0x39e3c,
1047 0x39e80, 0x39e80,
1048 0x39e88, 0x39ea8,
1049 0x39eb0, 0x39eb4,
1050 0x39ec8, 0x39ed4,
1051 0x39fb8, 0x3a004,
1052 0x3a200, 0x3a200,
1053 0x3a208, 0x3a240,
1054 0x3a248, 0x3a280,
1055 0x3a288, 0x3a2c0,
1056 0x3a2c8, 0x3a2fc,
1057 0x3a600, 0x3a630,
1058 0x3aa00, 0x3aabc,
1059 0x3ab00, 0x3ab10,
1060 0x3ab20, 0x3ab30,
1061 0x3ab40, 0x3ab50,
1062 0x3ab60, 0x3ab70,
1063 0x3b000, 0x3b028,
1064 0x3b030, 0x3b048,
1065 0x3b060, 0x3b068,
1066 0x3b070, 0x3b09c,
1067 0x3b0f0, 0x3b128,
1068 0x3b130, 0x3b148,
1069 0x3b160, 0x3b168,
1070 0x3b170, 0x3b19c,
1071 0x3b1f0, 0x3b238,
1072 0x3b240, 0x3b240,
1073 0x3b248, 0x3b250,
1074 0x3b25c, 0x3b264,
1075 0x3b270, 0x3b2b8,
1076 0x3b2c0, 0x3b2e4,
1077 0x3b2f8, 0x3b338,
1078 0x3b340, 0x3b340,
1079 0x3b348, 0x3b350,
1080 0x3b35c, 0x3b364,
1081 0x3b370, 0x3b3b8,
1082 0x3b3c0, 0x3b3e4,
1083 0x3b3f8, 0x3b428,
1084 0x3b430, 0x3b448,
1085 0x3b460, 0x3b468,
1086 0x3b470, 0x3b49c,
1087 0x3b4f0, 0x3b528,
1088 0x3b530, 0x3b548,
1089 0x3b560, 0x3b568,
1090 0x3b570, 0x3b59c,
1091 0x3b5f0, 0x3b638,
1092 0x3b640, 0x3b640,
1093 0x3b648, 0x3b650,
1094 0x3b65c, 0x3b664,
1095 0x3b670, 0x3b6b8,
1096 0x3b6c0, 0x3b6e4,
1097 0x3b6f8, 0x3b738,
1098 0x3b740, 0x3b740,
1099 0x3b748, 0x3b750,
1100 0x3b75c, 0x3b764,
1101 0x3b770, 0x3b7b8,
1102 0x3b7c0, 0x3b7e4,
1103 0x3b7f8, 0x3b7fc,
1104 0x3b814, 0x3b814,
1105 0x3b82c, 0x3b82c,
1106 0x3b880, 0x3b88c,
1107 0x3b8e8, 0x3b8ec,
1108 0x3b900, 0x3b928,
1109 0x3b930, 0x3b948,
1110 0x3b960, 0x3b968,
1111 0x3b970, 0x3b99c,
1112 0x3b9f0, 0x3ba38,
1113 0x3ba40, 0x3ba40,
1114 0x3ba48, 0x3ba50,
1115 0x3ba5c, 0x3ba64,
1116 0x3ba70, 0x3bab8,
1117 0x3bac0, 0x3bae4,
1118 0x3baf8, 0x3bb10,
1119 0x3bb28, 0x3bb28,
1120 0x3bb3c, 0x3bb50,
1121 0x3bbf0, 0x3bc10,
1122 0x3bc28, 0x3bc28,
1123 0x3bc3c, 0x3bc50,
1124 0x3bcf0, 0x3bcfc,
1125 0x3c000, 0x3c030,
1126 0x3c038, 0x3c038,
1127 0x3c040, 0x3c040,
1128 0x3c100, 0x3c144,
1129 0x3c190, 0x3c1a0,
1130 0x3c1a8, 0x3c1b8,
1131 0x3c1c4, 0x3c1c8,
1132 0x3c1d0, 0x3c1d0,
1133 0x3c200, 0x3c318,
1134 0x3c400, 0x3c4b4,
1135 0x3c4c0, 0x3c52c,
1136 0x3c540, 0x3c61c,
1137 0x3c800, 0x3c828,
1138 0x3c834, 0x3c834,
1139 0x3c8c0, 0x3c908,
1140 0x3c910, 0x3c9ac,
1141 0x3ca00, 0x3ca14,
1142 0x3ca1c, 0x3ca2c,
1143 0x3ca44, 0x3ca50,
1144 0x3ca74, 0x3ca74,
1145 0x3ca7c, 0x3cafc,
1146 0x3cb08, 0x3cc24,
1147 0x3cd00, 0x3cd00,
1148 0x3cd08, 0x3cd14,
1149 0x3cd1c, 0x3cd20,
1150 0x3cd3c, 0x3cd3c,
1151 0x3cd48, 0x3cd50,
1152 0x3d200, 0x3d20c,
1153 0x3d220, 0x3d220,
1154 0x3d240, 0x3d240,
1155 0x3d600, 0x3d60c,
1156 0x3da00, 0x3da1c,
1157 0x3de00, 0x3de20,
1158 0x3de38, 0x3de3c,
1159 0x3de80, 0x3de80,
1160 0x3de88, 0x3dea8,
1161 0x3deb0, 0x3deb4,
1162 0x3dec8, 0x3ded4,
1163 0x3dfb8, 0x3e004,
1164 0x3e200, 0x3e200,
1165 0x3e208, 0x3e240,
1166 0x3e248, 0x3e280,
1167 0x3e288, 0x3e2c0,
1168 0x3e2c8, 0x3e2fc,
1169 0x3e600, 0x3e630,
1170 0x3ea00, 0x3eabc,
1171 0x3eb00, 0x3eb10,
1172 0x3eb20, 0x3eb30,
1173 0x3eb40, 0x3eb50,
1174 0x3eb60, 0x3eb70,
1175 0x3f000, 0x3f028,
1176 0x3f030, 0x3f048,
1177 0x3f060, 0x3f068,
1178 0x3f070, 0x3f09c,
1179 0x3f0f0, 0x3f128,
1180 0x3f130, 0x3f148,
1181 0x3f160, 0x3f168,
1182 0x3f170, 0x3f19c,
1183 0x3f1f0, 0x3f238,
1184 0x3f240, 0x3f240,
1185 0x3f248, 0x3f250,
1186 0x3f25c, 0x3f264,
1187 0x3f270, 0x3f2b8,
1188 0x3f2c0, 0x3f2e4,
1189 0x3f2f8, 0x3f338,
1190 0x3f340, 0x3f340,
1191 0x3f348, 0x3f350,
1192 0x3f35c, 0x3f364,
1193 0x3f370, 0x3f3b8,
1194 0x3f3c0, 0x3f3e4,
1195 0x3f3f8, 0x3f428,
1196 0x3f430, 0x3f448,
1197 0x3f460, 0x3f468,
1198 0x3f470, 0x3f49c,
1199 0x3f4f0, 0x3f528,
1200 0x3f530, 0x3f548,
1201 0x3f560, 0x3f568,
1202 0x3f570, 0x3f59c,
1203 0x3f5f0, 0x3f638,
1204 0x3f640, 0x3f640,
1205 0x3f648, 0x3f650,
1206 0x3f65c, 0x3f664,
1207 0x3f670, 0x3f6b8,
1208 0x3f6c0, 0x3f6e4,
1209 0x3f6f8, 0x3f738,
1210 0x3f740, 0x3f740,
1211 0x3f748, 0x3f750,
1212 0x3f75c, 0x3f764,
1213 0x3f770, 0x3f7b8,
1214 0x3f7c0, 0x3f7e4,
1215 0x3f7f8, 0x3f7fc,
1216 0x3f814, 0x3f814,
1217 0x3f82c, 0x3f82c,
1218 0x3f880, 0x3f88c,
1219 0x3f8e8, 0x3f8ec,
1220 0x3f900, 0x3f928,
1221 0x3f930, 0x3f948,
1222 0x3f960, 0x3f968,
1223 0x3f970, 0x3f99c,
1224 0x3f9f0, 0x3fa38,
1225 0x3fa40, 0x3fa40,
1226 0x3fa48, 0x3fa50,
1227 0x3fa5c, 0x3fa64,
1228 0x3fa70, 0x3fab8,
1229 0x3fac0, 0x3fae4,
1230 0x3faf8, 0x3fb10,
1231 0x3fb28, 0x3fb28,
1232 0x3fb3c, 0x3fb50,
1233 0x3fbf0, 0x3fc10,
1234 0x3fc28, 0x3fc28,
1235 0x3fc3c, 0x3fc50,
1236 0x3fcf0, 0x3fcfc,
1237 0x40000, 0x4000c,
1238 0x40040, 0x40050,
1239 0x40060, 0x40068,
1240 0x4007c, 0x4008c,
1241 0x40094, 0x400b0,
1242 0x400c0, 0x40144,
1243 0x40180, 0x4018c,
1244 0x40200, 0x40254,
1245 0x40260, 0x40264,
1246 0x40270, 0x40288,
1247 0x40290, 0x40298,
1248 0x402ac, 0x402c8,
1249 0x402d0, 0x402e0,
1250 0x402f0, 0x402f0,
1251 0x40300, 0x4033c,
1252 0x403f8, 0x403fc,
1253 0x41304, 0x413c4,
1254 0x41400, 0x4140c,
1255 0x41414, 0x4141c,
1256 0x41480, 0x414d0,
1257 0x44000, 0x44054,
1258 0x4405c, 0x44078,
1259 0x440c0, 0x44174,
1260 0x44180, 0x441ac,
1261 0x441b4, 0x441b8,
1262 0x441c0, 0x44254,
1263 0x4425c, 0x44278,
1264 0x442c0, 0x44374,
1265 0x44380, 0x443ac,
1266 0x443b4, 0x443b8,
1267 0x443c0, 0x44454,
1268 0x4445c, 0x44478,
1269 0x444c0, 0x44574,
1270 0x44580, 0x445ac,
1271 0x445b4, 0x445b8,
1272 0x445c0, 0x44654,
1273 0x4465c, 0x44678,
1274 0x446c0, 0x44774,
1275 0x44780, 0x447ac,
1276 0x447b4, 0x447b8,
1277 0x447c0, 0x44854,
1278 0x4485c, 0x44878,
1279 0x448c0, 0x44974,
1280 0x44980, 0x449ac,
1281 0x449b4, 0x449b8,
1282 0x449c0, 0x449fc,
1283 0x45000, 0x45004,
1284 0x45010, 0x45030,
1285 0x45040, 0x45060,
1286 0x45068, 0x45068,
1287 0x45080, 0x45084,
1288 0x450a0, 0x450b0,
1289 0x45200, 0x45204,
1290 0x45210, 0x45230,
1291 0x45240, 0x45260,
1292 0x45268, 0x45268,
1293 0x45280, 0x45284,
1294 0x452a0, 0x452b0,
1295 0x460c0, 0x460e4,
1296 0x47000, 0x4703c,
1297 0x47044, 0x4708c,
1298 0x47200, 0x47250,
1299 0x47400, 0x47408,
1300 0x47414, 0x47420,
1301 0x47600, 0x47618,
1302 0x47800, 0x47814,
1303 0x48000, 0x4800c,
1304 0x48040, 0x48050,
1305 0x48060, 0x48068,
1306 0x4807c, 0x4808c,
1307 0x48094, 0x480b0,
1308 0x480c0, 0x48144,
1309 0x48180, 0x4818c,
1310 0x48200, 0x48254,
1311 0x48260, 0x48264,
1312 0x48270, 0x48288,
1313 0x48290, 0x48298,
1314 0x482ac, 0x482c8,
1315 0x482d0, 0x482e0,
1316 0x482f0, 0x482f0,
1317 0x48300, 0x4833c,
1318 0x483f8, 0x483fc,
1319 0x49304, 0x493c4,
1320 0x49400, 0x4940c,
1321 0x49414, 0x4941c,
1322 0x49480, 0x494d0,
1323 0x4c000, 0x4c054,
1324 0x4c05c, 0x4c078,
1325 0x4c0c0, 0x4c174,
1326 0x4c180, 0x4c1ac,
1327 0x4c1b4, 0x4c1b8,
1328 0x4c1c0, 0x4c254,
1329 0x4c25c, 0x4c278,
1330 0x4c2c0, 0x4c374,
1331 0x4c380, 0x4c3ac,
1332 0x4c3b4, 0x4c3b8,
1333 0x4c3c0, 0x4c454,
1334 0x4c45c, 0x4c478,
1335 0x4c4c0, 0x4c574,
1336 0x4c580, 0x4c5ac,
1337 0x4c5b4, 0x4c5b8,
1338 0x4c5c0, 0x4c654,
1339 0x4c65c, 0x4c678,
1340 0x4c6c0, 0x4c774,
1341 0x4c780, 0x4c7ac,
1342 0x4c7b4, 0x4c7b8,
1343 0x4c7c0, 0x4c854,
1344 0x4c85c, 0x4c878,
1345 0x4c8c0, 0x4c974,
1346 0x4c980, 0x4c9ac,
1347 0x4c9b4, 0x4c9b8,
1348 0x4c9c0, 0x4c9fc,
1349 0x4d000, 0x4d004,
1350 0x4d010, 0x4d030,
1351 0x4d040, 0x4d060,
1352 0x4d068, 0x4d068,
1353 0x4d080, 0x4d084,
1354 0x4d0a0, 0x4d0b0,
1355 0x4d200, 0x4d204,
1356 0x4d210, 0x4d230,
1357 0x4d240, 0x4d260,
1358 0x4d268, 0x4d268,
1359 0x4d280, 0x4d284,
1360 0x4d2a0, 0x4d2b0,
1361 0x4e0c0, 0x4e0e4,
1362 0x4f000, 0x4f03c,
1363 0x4f044, 0x4f08c,
1364 0x4f200, 0x4f250,
1365 0x4f400, 0x4f408,
1366 0x4f414, 0x4f420,
1367 0x4f600, 0x4f618,
1368 0x4f800, 0x4f814,
1369 0x50000, 0x50084,
1370 0x50090, 0x500cc,
1371 0x50400, 0x50400,
1372 0x50800, 0x50884,
1373 0x50890, 0x508cc,
1374 0x50c00, 0x50c00,
1375 0x51000, 0x5101c,
1376 0x51300, 0x51308,
1377 };
1378
1379 u32 *buf_end = (u32 *)((char *)buf + buf_size);
1380 const unsigned int *reg_ranges;
1381 int reg_ranges_size, range;
1382 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1383
1384 /* Select the right set of register ranges to dump depending on the
1385 * adapter chip type.
1386 */
1387 switch (chip_version) {
1388 case CHELSIO_T5:
1389 reg_ranges = t5_reg_ranges;
1390 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1391 break;
1392
1393 default:
1394 dev_err(adap,
1395 "Unsupported chip version %d\n", chip_version);
1396 return;
1397 }
1398
1399 /* Clear the register buffer and insert the appropriate register
1400 * values selected by the above register ranges.
1401 */
1402 memset(buf, 0, buf_size);
1403 for (range = 0; range < reg_ranges_size; range += 2) {
1404 unsigned int reg = reg_ranges[range];
1405 unsigned int last_reg = reg_ranges[range + 1];
1406 u32 *bufp = (u32 *)((char *)buf + reg);
1407
1408 /* Iterate across the register range filling in the register
1409 * buffer but don't write past the end of the register buffer.
1410 */
1411 while (reg <= last_reg && bufp < buf_end) {
1412 *bufp++ = t4_read_reg(adap, reg);
1413 reg += sizeof(u32);
1414 }
1415 }
1416 }
1417
1418 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1419 #define EEPROM_DELAY 10 /* 10us per poll spin */
1420 #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */
1421
1422 #define EEPROM_STAT_ADDR 0x7bfc
1423
1424 /**
1425 * Small utility function to wait till any outstanding VPD Access is complete.
1426 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1427 * VPD Access in flight. This allows us to handle the problem of having a
1428 * previous VPD Access time out and prevent an attempt to inject a new VPD
1429 * Request before any in-flight VPD request has completed.
1430 */
1431 static int t4_seeprom_wait(struct adapter *adapter)
1432 {
1433 unsigned int base = adapter->params.pci.vpd_cap_addr;
1434 int max_poll;
1435
1436 /* If no VPD Access is in flight, we can just return success right
1437 * away.
1438 */
1439 if (!adapter->vpd_busy)
1440 return 0;
1441
1442 /* Poll the VPD Capability Address/Flag register waiting for it
1443 * to indicate that the operation is complete.
1444 */
1445 max_poll = EEPROM_MAX_POLL;
1446 do {
1447 u16 val;
1448
1449 udelay(EEPROM_DELAY);
1450 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
1451
1452 /* If the operation is complete, mark the VPD as no longer
1453 * busy and return success.
1454 */
1455 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
1456 adapter->vpd_busy = 0;
1457 return 0;
1458 }
1459 } while (--max_poll);
1460
1461 /* Failure! Note that we leave the VPD Busy status set in order to
1462 * avoid pushing a new VPD Access request into the VPD Capability till
1463 * the current operation eventually succeeds. It's a bug to issue a
1464 * new request when an existing request is in flight and will result
1465 * in corrupt hardware state.
1466 */
1467 return -ETIMEDOUT;
1468 }
1469
1470 /**
1471 * t4_seeprom_read - read a serial EEPROM location
1472 * @adapter: adapter to read
1473 * @addr: EEPROM virtual address
1474 * @data: where to store the read data
1475 *
1476 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
1477 * VPD capability. Note that this function must be called with a virtual
1478 * address.
1479 */
1480 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
1481 {
1482 unsigned int base = adapter->params.pci.vpd_cap_addr;
1483 int ret;
1484
1485 /* VPD Accesses must alway be 4-byte aligned!
1486 */
1487 if (addr >= EEPROMVSIZE || (addr & 3))
1488 return -EINVAL;
1489
1490 /* Wait for any previous operation which may still be in flight to
1491 * complete.
1492 */
1493 ret = t4_seeprom_wait(adapter);
1494 if (ret) {
1495 dev_err(adapter, "VPD still busy from previous operation\n");
1496 return ret;
1497 }
1498
1499 /* Issue our new VPD Read request, mark the VPD as being busy and wait
1500 * for our request to complete. If it doesn't complete, note the
1501 * error and return it to our caller. Note that we do not reset the
1502 * VPD Busy status!
1503 */
1504 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
1505 adapter->vpd_busy = 1;
1506 adapter->vpd_flag = PCI_VPD_ADDR_F;
1507 ret = t4_seeprom_wait(adapter);
1508 if (ret) {
1509 dev_err(adapter, "VPD read of address %#x failed\n", addr);
1510 return ret;
1511 }
1512
1513 /* Grab the returned data, swizzle it into our endianness and
1514 * return success.
1515 */
1516 t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
1517 *data = le32_to_cpu(*data);
1518 return 0;
1519 }
1520
1521 /**
1522 * t4_seeprom_write - write a serial EEPROM location
1523 * @adapter: adapter to write
1524 * @addr: virtual EEPROM address
1525 * @data: value to write
1526 *
1527 * Write a 32-bit word to a location in serial EEPROM using the card's PCI
1528 * VPD capability. Note that this function must be called with a virtual
1529 * address.
1530 */
1531 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
1532 {
1533 unsigned int base = adapter->params.pci.vpd_cap_addr;
1534 int ret;
1535 u32 stats_reg;
1536 int max_poll;
1537
1538 /* VPD Accesses must alway be 4-byte aligned!
1539 */
1540 if (addr >= EEPROMVSIZE || (addr & 3))
1541 return -EINVAL;
1542
1543 /* Wait for any previous operation which may still be in flight to
1544 * complete.
1545 */
1546 ret = t4_seeprom_wait(adapter);
1547 if (ret) {
1548 dev_err(adapter, "VPD still busy from previous operation\n");
1549 return ret;
1550 }
1551
1552 /* Issue our new VPD Read request, mark the VPD as being busy and wait
1553 * for our request to complete. If it doesn't complete, note the
1554 * error and return it to our caller. Note that we do not reset the
1555 * VPD Busy status!
1556 */
1557 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
1558 cpu_to_le32(data));
1559 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
1560 (u16)addr | PCI_VPD_ADDR_F);
1561 adapter->vpd_busy = 1;
1562 adapter->vpd_flag = 0;
1563 ret = t4_seeprom_wait(adapter);
1564 if (ret) {
1565 dev_err(adapter, "VPD write of address %#x failed\n", addr);
1566 return ret;
1567 }
1568
1569 /* Reset PCI_VPD_DATA register after a transaction and wait for our
1570 * request to complete. If it doesn't complete, return error.
1571 */
1572 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
1573 max_poll = EEPROM_MAX_POLL;
1574 do {
1575 udelay(EEPROM_DELAY);
1576 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
1577 } while ((stats_reg & 0x1) && --max_poll);
1578 if (!max_poll)
1579 return -ETIMEDOUT;
1580
1581 /* Return success! */
1582 return 0;
1583 }
1584
1585 /**
1586 * t4_seeprom_wp - enable/disable EEPROM write protection
1587 * @adapter: the adapter
1588 * @enable: whether to enable or disable write protection
1589 *
1590 * Enables or disables write protection on the serial EEPROM.
1591 */
1592 int t4_seeprom_wp(struct adapter *adapter, int enable)
1593 {
1594 return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
1595 }
1596
1597 /**
1598 * t4_config_rss_range - configure a portion of the RSS mapping table
1599 * @adapter: the adapter
1600 * @mbox: mbox to use for the FW command
1601 * @viid: virtual interface whose RSS subtable is to be written
1602 * @start: start entry in the table to write
1603 * @n: how many table entries to write
1604 * @rspq: values for the "response queue" (Ingress Queue) lookup table
1605 * @nrspq: number of values in @rspq
1606 *
1607 * Programs the selected part of the VI's RSS mapping table with the
1608 * provided values. If @nrspq < @n the supplied values are used repeatedly
1609 * until the full table range is populated.
1610 *
1611 * The caller must ensure the values in @rspq are in the range allowed for
1612 * @viid.
1613 */
1614 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
1615 int start, int n, const u16 *rspq, unsigned int nrspq)
1616 {
1617 int ret;
1618 const u16 *rsp = rspq;
1619 const u16 *rsp_end = rspq + nrspq;
1620 struct fw_rss_ind_tbl_cmd cmd;
1621
1622 memset(&cmd, 0, sizeof(cmd));
1623 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
1624 F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
1625 V_FW_RSS_IND_TBL_CMD_VIID(viid));
1626 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1627
1628 /*
1629 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1630 * Queue Identifiers. These Ingress Queue IDs are packed three to
1631 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1632 * reserved.
1633 */
1634 while (n > 0) {
1635 int nq = min(n, 32);
1636 int nq_packed = 0;
1637 __be32 *qp = &cmd.iq0_to_iq2;
1638
1639 /*
1640 * Set up the firmware RSS command header to send the next
1641 * "nq" Ingress Queue IDs to the firmware.
1642 */
1643 cmd.niqid = cpu_to_be16(nq);
1644 cmd.startidx = cpu_to_be16(start);
1645
1646 /*
1647 * "nq" more done for the start of the next loop.
1648 */
1649 start += nq;
1650 n -= nq;
1651
1652 /*
1653 * While there are still Ingress Queue IDs to stuff into the
1654 * current firmware RSS command, retrieve them from the
1655 * Ingress Queue ID array and insert them into the command.
1656 */
1657 while (nq > 0) {
1658 /*
1659 * Grab up to the next 3 Ingress Queue IDs (wrapping
1660 * around the Ingress Queue ID array if necessary) and
1661 * insert them into the firmware RSS command at the
1662 * current 3-tuple position within the commad.
1663 */
1664 u16 qbuf[3];
1665 u16 *qbp = qbuf;
1666 int nqbuf = min(3, nq);
1667
1668 nq -= nqbuf;
1669 qbuf[0] = 0;
1670 qbuf[1] = 0;
1671 qbuf[2] = 0;
1672 while (nqbuf && nq_packed < 32) {
1673 nqbuf--;
1674 nq_packed++;
1675 *qbp++ = *rsp++;
1676 if (rsp >= rsp_end)
1677 rsp = rspq;
1678 }
1679 *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
1680 V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
1681 V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
1682 }
1683
1684 /*
1685 * Send this portion of the RRS table update to the firmware;
1686 * bail out on any errors.
1687 */
1688 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
1689 if (ret)
1690 return ret;
1691 }
1692
1693 return 0;
1694 }
1695
1696 /**
1697 * t4_config_vi_rss - configure per VI RSS settings
1698 * @adapter: the adapter
1699 * @mbox: mbox to use for the FW command
1700 * @viid: the VI id
1701 * @flags: RSS flags
1702 * @defq: id of the default RSS queue for the VI.
1703 *
1704 * Configures VI-specific RSS properties.
1705 */
1706 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
1707 unsigned int flags, unsigned int defq)
1708 {
1709 struct fw_rss_vi_config_cmd c;
1710
1711 memset(&c, 0, sizeof(c));
1712 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
1713 F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
1714 V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
1715 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
1716 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
1717 V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
1718 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
1719 }
1720
1721 /**
1722 * init_cong_ctrl - initialize congestion control parameters
1723 * @a: the alpha values for congestion control
1724 * @b: the beta values for congestion control
1725 *
1726 * Initialize the congestion control parameters.
1727 */
1728 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
1729 {
1730 int i;
1731
1732 for (i = 0; i < 9; i++) {
1733 a[i] = 1;
1734 b[i] = 0;
1735 }
1736
1737 a[9] = 2;
1738 a[10] = 3;
1739 a[11] = 4;
1740 a[12] = 5;
1741 a[13] = 6;
1742 a[14] = 7;
1743 a[15] = 8;
1744 a[16] = 9;
1745 a[17] = 10;
1746 a[18] = 14;
1747 a[19] = 17;
1748 a[20] = 21;
1749 a[21] = 25;
1750 a[22] = 30;
1751 a[23] = 35;
1752 a[24] = 45;
1753 a[25] = 60;
1754 a[26] = 80;
1755 a[27] = 100;
1756 a[28] = 200;
1757 a[29] = 300;
1758 a[30] = 400;
1759 a[31] = 500;
1760
1761 b[9] = 1;
1762 b[10] = 1;
1763 b[11] = 2;
1764 b[12] = 2;
1765 b[13] = 3;
1766 b[14] = 3;
1767 b[15] = 3;
1768 b[16] = 3;
1769 b[17] = 4;
1770 b[18] = 4;
1771 b[19] = 4;
1772 b[20] = 4;
1773 b[21] = 4;
1774 b[22] = 5;
1775 b[23] = 5;
1776 b[24] = 5;
1777 b[25] = 5;
1778 b[26] = 5;
1779 b[27] = 5;
1780 b[28] = 6;
1781 b[29] = 6;
1782 b[30] = 7;
1783 b[31] = 7;
1784 }
1785
1786 #define INIT_CMD(var, cmd, rd_wr) do { \
1787 (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
1788 F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
1789 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
1790 } while (0)
1791
1792 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
1793 {
1794 u32 cclk_param, cclk_val;
1795 int ret;
1796
1797 /*
1798 * Ask firmware for the Core Clock since it knows how to translate the
1799 * Reference Clock ('V2') VPD field into a Core Clock value ...
1800 */
1801 cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1802 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
1803 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1804 1, &cclk_param, &cclk_val);
1805 if (ret) {
1806 dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
1807 __func__, ret);
1808 return ret;
1809 }
1810
1811 p->cclk = cclk_val;
1812 dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
1813 return 0;
1814 }
1815
1816 /* serial flash and firmware constants and flash config file constants */
1817 enum {
1818 SF_ATTEMPTS = 10, /* max retries for SF operations */
1819
1820 /* flash command opcodes */
1821 SF_PROG_PAGE = 2, /* program page */
1822 SF_WR_DISABLE = 4, /* disable writes */
1823 SF_RD_STATUS = 5, /* read status register */
1824 SF_WR_ENABLE = 6, /* enable writes */
1825 SF_RD_DATA_FAST = 0xb, /* read flash */
1826 SF_RD_ID = 0x9f, /* read ID */
1827 SF_ERASE_SECTOR = 0xd8, /* erase sector */
1828 };
1829
1830 /**
1831 * sf1_read - read data from the serial flash
1832 * @adapter: the adapter
1833 * @byte_cnt: number of bytes to read
1834 * @cont: whether another operation will be chained
1835 * @lock: whether to lock SF for PL access only
1836 * @valp: where to store the read data
1837 *
1838 * Reads up to 4 bytes of data from the serial flash. The location of
1839 * the read needs to be specified prior to calling this by issuing the
1840 * appropriate commands to the serial flash.
1841 */
1842 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1843 int lock, u32 *valp)
1844 {
1845 int ret;
1846
1847 if (!byte_cnt || byte_cnt > 4)
1848 return -EINVAL;
1849 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
1850 return -EBUSY;
1851 t4_write_reg(adapter, A_SF_OP,
1852 V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
1853 ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
1854 if (!ret)
1855 *valp = t4_read_reg(adapter, A_SF_DATA);
1856 return ret;
1857 }
1858
1859 /**
1860 * sf1_write - write data to the serial flash
1861 * @adapter: the adapter
1862 * @byte_cnt: number of bytes to write
1863 * @cont: whether another operation will be chained
1864 * @lock: whether to lock SF for PL access only
1865 * @val: value to write
1866 *
1867 * Writes up to 4 bytes of data to the serial flash. The location of
1868 * the write needs to be specified prior to calling this by issuing the
1869 * appropriate commands to the serial flash.
1870 */
1871 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1872 int lock, u32 val)
1873 {
1874 if (!byte_cnt || byte_cnt > 4)
1875 return -EINVAL;
1876 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
1877 return -EBUSY;
1878 t4_write_reg(adapter, A_SF_DATA, val);
1879 t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
1880 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
1881 return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
1882 }
1883
1884 /**
1885 * t4_read_flash - read words from serial flash
1886 * @adapter: the adapter
1887 * @addr: the start address for the read
1888 * @nwords: how many 32-bit words to read
1889 * @data: where to store the read data
1890 * @byte_oriented: whether to store data as bytes or as words
1891 *
1892 * Read the specified number of 32-bit words from the serial flash.
1893 * If @byte_oriented is set the read data is stored as a byte array
1894 * (i.e., big-endian), otherwise as 32-bit words in the platform's
1895 * natural endianness.
1896 */
1897 int t4_read_flash(struct adapter *adapter, unsigned int addr,
1898 unsigned int nwords, u32 *data, int byte_oriented)
1899 {
1900 int ret;
1901
1902 if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
1903 (addr & 3))
1904 return -EINVAL;
1905
1906 addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
1907
1908 ret = sf1_write(adapter, 4, 1, 0, addr);
1909 if (ret != 0)
1910 return ret;
1911
1912 ret = sf1_read(adapter, 1, 1, 0, data);
1913 if (ret != 0)
1914 return ret;
1915
1916 for ( ; nwords; nwords--, data++) {
1917 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
1918 if (nwords == 1)
1919 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
1920 if (ret)
1921 return ret;
1922 if (byte_oriented)
1923 *data = cpu_to_be32(*data);
1924 }
1925 return 0;
1926 }
1927
1928 /**
1929 * t4_get_fw_version - read the firmware version
1930 * @adapter: the adapter
1931 * @vers: where to place the version
1932 *
1933 * Reads the FW version from flash.
1934 */
1935 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
1936 {
1937 return t4_read_flash(adapter, FLASH_FW_START +
1938 offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
1939 }
1940
1941 /**
1942 * t4_get_tp_version - read the TP microcode version
1943 * @adapter: the adapter
1944 * @vers: where to place the version
1945 *
1946 * Reads the TP microcode version from flash.
1947 */
1948 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
1949 {
1950 return t4_read_flash(adapter, FLASH_FW_START +
1951 offsetof(struct fw_hdr, tp_microcode_ver),
1952 1, vers, 0);
1953 }
1954
1955 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1956 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
1957 FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
1958
1959 /**
1960 * t4_link_l1cfg - apply link configuration to MAC/PHY
1961 * @phy: the PHY to setup
1962 * @mac: the MAC to setup
1963 * @lc: the requested link configuration
1964 *
1965 * Set up a port's MAC and PHY according to a desired link configuration.
1966 * - If the PHY can auto-negotiate first decide what to advertise, then
1967 * enable/disable auto-negotiation as desired, and reset.
1968 * - If the PHY does not auto-negotiate just reset it.
1969 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1970 * otherwise do it later based on the outcome of auto-negotiation.
1971 */
1972 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
1973 struct link_config *lc)
1974 {
1975 struct fw_port_cmd c;
1976 unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
1977
1978 lc->link_ok = 0;
1979 if (lc->requested_fc & PAUSE_RX)
1980 fc |= FW_PORT_CAP_FC_RX;
1981 if (lc->requested_fc & PAUSE_TX)
1982 fc |= FW_PORT_CAP_FC_TX;
1983
1984 memset(&c, 0, sizeof(c));
1985 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
1986 F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
1987 V_FW_PORT_CMD_PORTID(port));
1988 c.action_to_len16 =
1989 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1990 FW_LEN16(c));
1991
1992 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1993 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
1994 fc);
1995 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1996 } else if (lc->autoneg == AUTONEG_DISABLE) {
1997 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
1998 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1999 } else {
2000 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2001 }
2002
2003 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2004 }
2005
2006 /**
2007 * t4_flash_cfg_addr - return the address of the flash configuration file
2008 * @adapter: the adapter
2009 *
2010 * Return the address within the flash where the Firmware Configuration
2011 * File is stored, or an error if the device FLASH is too small to contain
2012 * a Firmware Configuration File.
2013 */
2014 int t4_flash_cfg_addr(struct adapter *adapter)
2015 {
2016 /*
2017 * If the device FLASH isn't large enough to hold a Firmware
2018 * Configuration File, return an error.
2019 */
2020 if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
2021 return -ENOSPC;
2022
2023 return FLASH_CFG_START;
2024 }
2025
2026 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2027
2028 /**
2029 * t4_intr_enable - enable interrupts
2030 * @adapter: the adapter whose interrupts should be enabled
2031 *
2032 * Enable PF-specific interrupts for the calling function and the top-level
2033 * interrupt concentrator for global interrupts. Interrupts are already
2034 * enabled at each module, here we just enable the roots of the interrupt
2035 * hierarchies.
2036 *
2037 * Note: this function should be called only when the driver manages
2038 * non PF-specific interrupts from the various HW modules. Only one PCI
2039 * function at a time should be doing this.
2040 */
2041 void t4_intr_enable(struct adapter *adapter)
2042 {
2043 u32 val = 0;
2044 u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2045
2046 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2047 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
2048 t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2049 F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2050 F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
2051 F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2052 F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2053 F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2054 F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
2055 t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2056 t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2057 }
2058
2059 /**
2060 * t4_intr_disable - disable interrupts
2061 * @adapter: the adapter whose interrupts should be disabled
2062 *
2063 * Disable interrupts. We only disable the top-level interrupt
2064 * concentrators. The caller must be a PCI function managing global
2065 * interrupts.
2066 */
2067 void t4_intr_disable(struct adapter *adapter)
2068 {
2069 u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2070
2071 t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2072 t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2073 }
2074
2075 /**
2076 * t4_get_port_type_description - return Port Type string description
2077 * @port_type: firmware Port Type enumeration
2078 */
2079 const char *t4_get_port_type_description(enum fw_port_type port_type)
2080 {
2081 static const char * const port_type_description[] = {
2082 "Fiber_XFI",
2083 "Fiber_XAUI",
2084 "BT_SGMII",
2085 "BT_XFI",
2086 "BT_XAUI",
2087 "KX4",
2088 "CX4",
2089 "KX",
2090 "KR",
2091 "SFP",
2092 "BP_AP",
2093 "BP4_AP",
2094 "QSFP_10G",
2095 "QSA",
2096 "QSFP",
2097 "BP40_BA",
2098 };
2099
2100 if (port_type < ARRAY_SIZE(port_type_description))
2101 return port_type_description[port_type];
2102 return "UNKNOWN";
2103 }
2104
2105 /**
2106 * t4_get_mps_bg_map - return the buffer groups associated with a port
2107 * @adap: the adapter
2108 * @idx: the port index
2109 *
2110 * Returns a bitmap indicating which MPS buffer groups are associated
2111 * with the given port. Bit i is set if buffer group i is used by the
2112 * port.
2113 */
2114 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
2115 {
2116 u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
2117
2118 if (n == 0)
2119 return idx == 0 ? 0xf : 0;
2120 if (n == 1)
2121 return idx < 2 ? (3 << (2 * idx)) : 0;
2122 return 1 << idx;
2123 }
2124
2125 /**
2126 * t4_get_port_stats - collect port statistics
2127 * @adap: the adapter
2128 * @idx: the port index
2129 * @p: the stats structure to fill
2130 *
2131 * Collect statistics related to the given port from HW.
2132 */
2133 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
2134 {
2135 u32 bgmap = t4_get_mps_bg_map(adap, idx);
2136
2137 #define GET_STAT(name) \
2138 t4_read_reg64(adap, \
2139 (is_t4(adap->params.chip) ? \
2140 PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
2141 T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
2142 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
2143
2144 p->tx_octets = GET_STAT(TX_PORT_BYTES);
2145 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
2146 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
2147 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
2148 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
2149 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
2150 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
2151 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
2152 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
2153 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
2154 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
2155 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
2156 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
2157 p->tx_drop = GET_STAT(TX_PORT_DROP);
2158 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
2159 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
2160 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
2161 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
2162 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
2163 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
2164 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
2165 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
2166 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
2167
2168 p->rx_octets = GET_STAT(RX_PORT_BYTES);
2169 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
2170 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
2171 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
2172 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
2173 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
2174 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
2175 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
2176 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
2177 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
2178 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
2179 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
2180 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
2181 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
2182 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
2183 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
2184 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
2185 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
2186 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
2187 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
2188 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
2189 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
2190 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
2191 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
2192 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
2193 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
2194 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
2195 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
2196 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
2197 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
2198 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
2199 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
2200 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
2201 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
2202 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
2203
2204 #undef GET_STAT
2205 #undef GET_STAT_COM
2206 }
2207
2208 /**
2209 * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
2210 * @adap: The adapter
2211 * @idx: The port
2212 * @stats: Current stats to fill
2213 * @offset: Previous stats snapshot
2214 */
2215 void t4_get_port_stats_offset(struct adapter *adap, int idx,
2216 struct port_stats *stats,
2217 struct port_stats *offset)
2218 {
2219 u64 *s, *o;
2220 unsigned int i;
2221
2222 t4_get_port_stats(adap, idx, stats);
2223 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
2224 i < (sizeof(struct port_stats) / sizeof(u64));
2225 i++, s++, o++)
2226 *s -= *o;
2227 }
2228
2229 /**
2230 * t4_clr_port_stats - clear port statistics
2231 * @adap: the adapter
2232 * @idx: the port index
2233 *
2234 * Clear HW statistics for the given port.
2235 */
2236 void t4_clr_port_stats(struct adapter *adap, int idx)
2237 {
2238 unsigned int i;
2239 u32 bgmap = t4_get_mps_bg_map(adap, idx);
2240 u32 port_base_addr;
2241
2242 if (is_t4(adap->params.chip))
2243 port_base_addr = PORT_BASE(idx);
2244 else
2245 port_base_addr = T5_PORT_BASE(idx);
2246
2247 for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
2248 i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
2249 t4_write_reg(adap, port_base_addr + i, 0);
2250 for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
2251 i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
2252 t4_write_reg(adap, port_base_addr + i, 0);
2253 for (i = 0; i < 4; i++)
2254 if (bgmap & (1 << i)) {
2255 t4_write_reg(adap,
2256 A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
2257 i * 8, 0);
2258 t4_write_reg(adap,
2259 A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
2260 i * 8, 0);
2261 }
2262 }
2263
2264 /**
2265 * t4_fw_hello - establish communication with FW
2266 * @adap: the adapter
2267 * @mbox: mailbox to use for the FW command
2268 * @evt_mbox: mailbox to receive async FW events
2269 * @master: specifies the caller's willingness to be the device master
2270 * @state: returns the current device state (if non-NULL)
2271 *
2272 * Issues a command to establish communication with FW. Returns either
2273 * an error (negative integer) or the mailbox of the Master PF.
2274 */
2275 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
2276 enum dev_master master, enum dev_state *state)
2277 {
2278 int ret;
2279 struct fw_hello_cmd c;
2280 u32 v;
2281 unsigned int master_mbox;
2282 int retries = FW_CMD_HELLO_RETRIES;
2283
2284 retry:
2285 memset(&c, 0, sizeof(c));
2286 INIT_CMD(c, HELLO, WRITE);
2287 c.err_to_clearinit = cpu_to_be32(
2288 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
2289 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
2290 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
2291 M_FW_HELLO_CMD_MBMASTER) |
2292 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
2293 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
2294 F_FW_HELLO_CMD_CLEARINIT);
2295
2296 /*
2297 * Issue the HELLO command to the firmware. If it's not successful
2298 * but indicates that we got a "busy" or "timeout" condition, retry
2299 * the HELLO until we exhaust our retry limit. If we do exceed our
2300 * retry limit, check to see if the firmware left us any error
2301 * information and report that if so ...
2302 */
2303 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2304 if (ret != FW_SUCCESS) {
2305 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
2306 goto retry;
2307 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
2308 t4_report_fw_error(adap);
2309 return ret;
2310 }
2311
2312 v = be32_to_cpu(c.err_to_clearinit);
2313 master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
2314 if (state) {
2315 if (v & F_FW_HELLO_CMD_ERR)
2316 *state = DEV_STATE_ERR;
2317 else if (v & F_FW_HELLO_CMD_INIT)
2318 *state = DEV_STATE_INIT;
2319 else
2320 *state = DEV_STATE_UNINIT;
2321 }
2322
2323 /*
2324 * If we're not the Master PF then we need to wait around for the
2325 * Master PF Driver to finish setting up the adapter.
2326 *
2327 * Note that we also do this wait if we're a non-Master-capable PF and
2328 * there is no current Master PF; a Master PF may show up momentarily
2329 * and we wouldn't want to fail pointlessly. (This can happen when an
2330 * OS loads lots of different drivers rapidly at the same time). In
2331 * this case, the Master PF returned by the firmware will be
2332 * M_PCIE_FW_MASTER so the test below will work ...
2333 */
2334 if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
2335 master_mbox != mbox) {
2336 int waiting = FW_CMD_HELLO_TIMEOUT;
2337
2338 /*
2339 * Wait for the firmware to either indicate an error or
2340 * initialized state. If we see either of these we bail out
2341 * and report the issue to the caller. If we exhaust the
2342 * "hello timeout" and we haven't exhausted our retries, try
2343 * again. Otherwise bail with a timeout error.
2344 */
2345 for (;;) {
2346 u32 pcie_fw;
2347
2348 msleep(50);
2349 waiting -= 50;
2350
2351 /*
2352 * If neither Error nor Initialialized are indicated
2353 * by the firmware keep waiting till we exaust our
2354 * timeout ... and then retry if we haven't exhausted
2355 * our retries ...
2356 */
2357 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
2358 if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
2359 if (waiting <= 0) {
2360 if (retries-- > 0)
2361 goto retry;
2362
2363 return -ETIMEDOUT;
2364 }
2365 continue;
2366 }
2367
2368 /*
2369 * We either have an Error or Initialized condition
2370 * report errors preferentially.
2371 */
2372 if (state) {
2373 if (pcie_fw & F_PCIE_FW_ERR)
2374 *state = DEV_STATE_ERR;
2375 else if (pcie_fw & F_PCIE_FW_INIT)
2376 *state = DEV_STATE_INIT;
2377 }
2378
2379 /*
2380 * If we arrived before a Master PF was selected and
2381 * there's not a valid Master PF, grab its identity
2382 * for our caller.
2383 */
2384 if (master_mbox == M_PCIE_FW_MASTER &&
2385 (pcie_fw & F_PCIE_FW_MASTER_VLD))
2386 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
2387 break;
2388 }
2389 }
2390
2391 return master_mbox;
2392 }
2393
2394 /**
2395 * t4_fw_bye - end communication with FW
2396 * @adap: the adapter
2397 * @mbox: mailbox to use for the FW command
2398 *
2399 * Issues a command to terminate communication with FW.
2400 */
2401 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
2402 {
2403 struct fw_bye_cmd c;
2404
2405 memset(&c, 0, sizeof(c));
2406 INIT_CMD(c, BYE, WRITE);
2407 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2408 }
2409
2410 /**
2411 * t4_fw_reset - issue a reset to FW
2412 * @adap: the adapter
2413 * @mbox: mailbox to use for the FW command
2414 * @reset: specifies the type of reset to perform
2415 *
2416 * Issues a reset command of the specified type to FW.
2417 */
2418 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
2419 {
2420 struct fw_reset_cmd c;
2421
2422 memset(&c, 0, sizeof(c));
2423 INIT_CMD(c, RESET, WRITE);
2424 c.val = cpu_to_be32(reset);
2425 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2426 }
2427
2428 /**
2429 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
2430 * @adap: the adapter
2431 * @mbox: mailbox to use for the FW RESET command (if desired)
2432 * @force: force uP into RESET even if FW RESET command fails
2433 *
2434 * Issues a RESET command to firmware (if desired) with a HALT indication
2435 * and then puts the microprocessor into RESET state. The RESET command
2436 * will only be issued if a legitimate mailbox is provided (mbox <=
2437 * M_PCIE_FW_MASTER).
2438 *
2439 * This is generally used in order for the host to safely manipulate the
2440 * adapter without fear of conflicting with whatever the firmware might
2441 * be doing. The only way out of this state is to RESTART the firmware
2442 * ...
2443 */
2444 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
2445 {
2446 int ret = 0;
2447
2448 /*
2449 * If a legitimate mailbox is provided, issue a RESET command
2450 * with a HALT indication.
2451 */
2452 if (mbox <= M_PCIE_FW_MASTER) {
2453 struct fw_reset_cmd c;
2454
2455 memset(&c, 0, sizeof(c));
2456 INIT_CMD(c, RESET, WRITE);
2457 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
2458 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
2459 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2460 }
2461
2462 /*
2463 * Normally we won't complete the operation if the firmware RESET
2464 * command fails but if our caller insists we'll go ahead and put the
2465 * uP into RESET. This can be useful if the firmware is hung or even
2466 * missing ... We'll have to take the risk of putting the uP into
2467 * RESET without the cooperation of firmware in that case.
2468 *
2469 * We also force the firmware's HALT flag to be on in case we bypassed
2470 * the firmware RESET command above or we're dealing with old firmware
2471 * which doesn't have the HALT capability. This will serve as a flag
2472 * for the incoming firmware to know that it's coming out of a HALT
2473 * rather than a RESET ... if it's new enough to understand that ...
2474 */
2475 if (ret == 0 || force) {
2476 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
2477 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
2478 F_PCIE_FW_HALT);
2479 }
2480
2481 /*
2482 * And we always return the result of the firmware RESET command
2483 * even when we force the uP into RESET ...
2484 */
2485 return ret;
2486 }
2487
2488 /**
2489 * t4_fw_restart - restart the firmware by taking the uP out of RESET
2490 * @adap: the adapter
2491 * @mbox: mailbox to use for the FW RESET command (if desired)
2492 * @reset: if we want to do a RESET to restart things
2493 *
2494 * Restart firmware previously halted by t4_fw_halt(). On successful
2495 * return the previous PF Master remains as the new PF Master and there
2496 * is no need to issue a new HELLO command, etc.
2497 *
2498 * We do this in two ways:
2499 *
2500 * 1. If we're dealing with newer firmware we'll simply want to take
2501 * the chip's microprocessor out of RESET. This will cause the
2502 * firmware to start up from its start vector. And then we'll loop
2503 * until the firmware indicates it's started again (PCIE_FW.HALT
2504 * reset to 0) or we timeout.
2505 *
2506 * 2. If we're dealing with older firmware then we'll need to RESET
2507 * the chip since older firmware won't recognize the PCIE_FW.HALT
2508 * flag and automatically RESET itself on startup.
2509 */
2510 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
2511 {
2512 if (reset) {
2513 /*
2514 * Since we're directing the RESET instead of the firmware
2515 * doing it automatically, we need to clear the PCIE_FW.HALT
2516 * bit.
2517 */
2518 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
2519
2520 /*
2521 * If we've been given a valid mailbox, first try to get the
2522 * firmware to do the RESET. If that works, great and we can
2523 * return success. Otherwise, if we haven't been given a
2524 * valid mailbox or the RESET command failed, fall back to
2525 * hitting the chip with a hammer.
2526 */
2527 if (mbox <= M_PCIE_FW_MASTER) {
2528 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
2529 msleep(100);
2530 if (t4_fw_reset(adap, mbox,
2531 F_PIORST | F_PIORSTMODE) == 0)
2532 return 0;
2533 }
2534
2535 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
2536 msleep(2000);
2537 } else {
2538 int ms;
2539
2540 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
2541 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
2542 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
2543 return FW_SUCCESS;
2544 msleep(100);
2545 ms += 100;
2546 }
2547 return -ETIMEDOUT;
2548 }
2549 return 0;
2550 }
2551
2552 /**
2553 * t4_fixup_host_params_compat - fix up host-dependent parameters
2554 * @adap: the adapter
2555 * @page_size: the host's Base Page Size
2556 * @cache_line_size: the host's Cache Line Size
2557 * @chip_compat: maintain compatibility with designated chip
2558 *
2559 * Various registers in the chip contain values which are dependent on the
2560 * host's Base Page and Cache Line Sizes. This function will fix all of
2561 * those registers with the appropriate values as passed in ...
2562 *
2563 * @chip_compat is used to limit the set of changes that are made
2564 * to be compatible with the indicated chip release. This is used by
2565 * drivers to maintain compatibility with chip register settings when
2566 * the drivers haven't [yet] been updated with new chip support.
2567 */
2568 int t4_fixup_host_params_compat(struct adapter *adap,
2569 unsigned int page_size,
2570 unsigned int cache_line_size,
2571 enum chip_type chip_compat)
2572 {
2573 unsigned int page_shift = cxgbe_fls(page_size) - 1;
2574 unsigned int sge_hps = page_shift - 10;
2575 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
2576 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
2577 unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
2578
2579 t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
2580 V_HOSTPAGESIZEPF0(sge_hps) |
2581 V_HOSTPAGESIZEPF1(sge_hps) |
2582 V_HOSTPAGESIZEPF2(sge_hps) |
2583 V_HOSTPAGESIZEPF3(sge_hps) |
2584 V_HOSTPAGESIZEPF4(sge_hps) |
2585 V_HOSTPAGESIZEPF5(sge_hps) |
2586 V_HOSTPAGESIZEPF6(sge_hps) |
2587 V_HOSTPAGESIZEPF7(sge_hps));
2588
2589 if (is_t4(adap->params.chip) || is_t4(chip_compat))
2590 t4_set_reg_field(adap, A_SGE_CONTROL,
2591 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
2592 F_EGRSTATUSPAGESIZE,
2593 V_INGPADBOUNDARY(fl_align_log -
2594 X_INGPADBOUNDARY_SHIFT) |
2595 V_EGRSTATUSPAGESIZE(stat_len != 64));
2596 else {
2597 /*
2598 * T5 introduced the separation of the Free List Padding and
2599 * Packing Boundaries. Thus, we can select a smaller Padding
2600 * Boundary to avoid uselessly chewing up PCIe Link and Memory
2601 * Bandwidth, and use a Packing Boundary which is large enough
2602 * to avoid false sharing between CPUs, etc.
2603 *
2604 * For the PCI Link, the smaller the Padding Boundary the
2605 * better. For the Memory Controller, a smaller Padding
2606 * Boundary is better until we cross under the Memory Line
2607 * Size (the minimum unit of transfer to/from Memory). If we
2608 * have a Padding Boundary which is smaller than the Memory
2609 * Line Size, that'll involve a Read-Modify-Write cycle on the
2610 * Memory Controller which is never good. For T5 the smallest
2611 * Padding Boundary which we can select is 32 bytes which is
2612 * larger than any known Memory Controller Line Size so we'll
2613 * use that.
2614 */
2615
2616 /*
2617 * N.B. T5 has a different interpretation of the "0" value for
2618 * the Packing Boundary. This corresponds to 16 bytes instead
2619 * of the expected 32 bytes. We never have a Packing Boundary
2620 * less than 32 bytes so we can't use that special value but
2621 * on the other hand, if we wanted 32 bytes, the best we can
2622 * really do is 64 bytes ...
2623 */
2624 if (fl_align <= 32) {
2625 fl_align = 64;
2626 fl_align_log = 6;
2627 }
2628 t4_set_reg_field(adap, A_SGE_CONTROL,
2629 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
2630 F_EGRSTATUSPAGESIZE,
2631 V_INGPADBOUNDARY(X_INGPCIEBOUNDARY_32B) |
2632 V_EGRSTATUSPAGESIZE(stat_len != 64));
2633 t4_set_reg_field(adap, A_SGE_CONTROL2,
2634 V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
2635 V_INGPACKBOUNDARY(fl_align_log -
2636 X_INGPACKBOUNDARY_SHIFT));
2637 }
2638
2639 /*
2640 * Adjust various SGE Free List Host Buffer Sizes.
2641 *
2642 * The first four entries are:
2643 *
2644 * 0: Host Page Size
2645 * 1: 64KB
2646 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
2647 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
2648 *
2649 * For the single-MTU buffers in unpacked mode we need to include
2650 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
2651 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
2652 * Padding boundary. All of these are accommodated in the Factory
2653 * Default Firmware Configuration File but we need to adjust it for
2654 * this host's cache line size.
2655 */
2656 t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
2657 t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
2658 (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
2659 & ~(fl_align - 1));
2660 t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
2661 (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
2662 & ~(fl_align - 1));
2663
2664 t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
2665
2666 return 0;
2667 }
2668
2669 /**
2670 * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
2671 * @adap: the adapter
2672 * @page_size: the host's Base Page Size
2673 * @cache_line_size: the host's Cache Line Size
2674 *
2675 * Various registers in T4 contain values which are dependent on the
2676 * host's Base Page and Cache Line Sizes. This function will fix all of
2677 * those registers with the appropriate values as passed in ...
2678 *
2679 * This routine makes changes which are compatible with T4 chips.
2680 */
2681 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
2682 unsigned int cache_line_size)
2683 {
2684 return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
2685 T4_LAST_REV);
2686 }
2687
2688 /**
2689 * t4_fw_initialize - ask FW to initialize the device
2690 * @adap: the adapter
2691 * @mbox: mailbox to use for the FW command
2692 *
2693 * Issues a command to FW to partially initialize the device. This
2694 * performs initialization that generally doesn't depend on user input.
2695 */
2696 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
2697 {
2698 struct fw_initialize_cmd c;
2699
2700 memset(&c, 0, sizeof(c));
2701 INIT_CMD(c, INITIALIZE, WRITE);
2702 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2703 }
2704
2705 /**
2706 * t4_query_params_rw - query FW or device parameters
2707 * @adap: the adapter
2708 * @mbox: mailbox to use for the FW command
2709 * @pf: the PF
2710 * @vf: the VF
2711 * @nparams: the number of parameters
2712 * @params: the parameter names
2713 * @val: the parameter values
2714 * @rw: Write and read flag
2715 *
2716 * Reads the value of FW or device parameters. Up to 7 parameters can be
2717 * queried at once.
2718 */
2719 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
2720 unsigned int pf, unsigned int vf,
2721 unsigned int nparams, const u32 *params,
2722 u32 *val, int rw)
2723 {
2724 unsigned int i;
2725 int ret;
2726 struct fw_params_cmd c;
2727 __be32 *p = &c.param[0].mnem;
2728
2729 if (nparams > 7)
2730 return -EINVAL;
2731
2732 memset(&c, 0, sizeof(c));
2733 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
2734 F_FW_CMD_REQUEST | F_FW_CMD_READ |
2735 V_FW_PARAMS_CMD_PFN(pf) |
2736 V_FW_PARAMS_CMD_VFN(vf));
2737 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2738
2739 for (i = 0; i < nparams; i++) {
2740 *p++ = cpu_to_be32(*params++);
2741 if (rw)
2742 *p = cpu_to_be32(*(val + i));
2743 p++;
2744 }
2745
2746 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2747 if (ret == 0)
2748 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
2749 *val++ = be32_to_cpu(*p);
2750 return ret;
2751 }
2752
2753 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
2754 unsigned int vf, unsigned int nparams, const u32 *params,
2755 u32 *val)
2756 {
2757 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
2758 }
2759
2760 /**
2761 * t4_set_params_timeout - sets FW or device parameters
2762 * @adap: the adapter
2763 * @mbox: mailbox to use for the FW command
2764 * @pf: the PF
2765 * @vf: the VF
2766 * @nparams: the number of parameters
2767 * @params: the parameter names
2768 * @val: the parameter values
2769 * @timeout: the timeout time
2770 *
2771 * Sets the value of FW or device parameters. Up to 7 parameters can be
2772 * specified at once.
2773 */
2774 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
2775 unsigned int pf, unsigned int vf,
2776 unsigned int nparams, const u32 *params,
2777 const u32 *val, int timeout)
2778 {
2779 struct fw_params_cmd c;
2780 __be32 *p = &c.param[0].mnem;
2781
2782 if (nparams > 7)
2783 return -EINVAL;
2784
2785 memset(&c, 0, sizeof(c));
2786 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
2787 F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2788 V_FW_PARAMS_CMD_PFN(pf) |
2789 V_FW_PARAMS_CMD_VFN(vf));
2790 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2791
2792 while (nparams--) {
2793 *p++ = cpu_to_be32(*params++);
2794 *p++ = cpu_to_be32(*val++);
2795 }
2796
2797 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
2798 }
2799
2800 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
2801 unsigned int vf, unsigned int nparams, const u32 *params,
2802 const u32 *val)
2803 {
2804 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
2805 FW_CMD_MAX_TIMEOUT);
2806 }
2807
2808 /**
2809 * t4_alloc_vi_func - allocate a virtual interface
2810 * @adap: the adapter
2811 * @mbox: mailbox to use for the FW command
2812 * @port: physical port associated with the VI
2813 * @pf: the PF owning the VI
2814 * @vf: the VF owning the VI
2815 * @nmac: number of MAC addresses needed (1 to 5)
2816 * @mac: the MAC addresses of the VI
2817 * @rss_size: size of RSS table slice associated with this VI
2818 * @portfunc: which Port Application Function MAC Address is desired
2819 * @idstype: Intrusion Detection Type
2820 *
2821 * Allocates a virtual interface for the given physical port. If @mac is
2822 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
2823 * @mac should be large enough to hold @nmac Ethernet addresses, they are
2824 * stored consecutively so the space needed is @nmac * 6 bytes.
2825 * Returns a negative error number or the non-negative VI id.
2826 */
2827 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
2828 unsigned int port, unsigned int pf, unsigned int vf,
2829 unsigned int nmac, u8 *mac, unsigned int *rss_size,
2830 unsigned int portfunc, unsigned int idstype)
2831 {
2832 int ret;
2833 struct fw_vi_cmd c;
2834
2835 memset(&c, 0, sizeof(c));
2836 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
2837 F_FW_CMD_WRITE | F_FW_CMD_EXEC |
2838 V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
2839 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
2840 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
2841 V_FW_VI_CMD_FUNC(portfunc));
2842 c.portid_pkd = V_FW_VI_CMD_PORTID(port);
2843 c.nmac = nmac - 1;
2844
2845 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2846 if (ret)
2847 return ret;
2848
2849 if (mac) {
2850 memcpy(mac, c.mac, sizeof(c.mac));
2851 switch (nmac) {
2852 case 5:
2853 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
2854 /* FALLTHROUGH */
2855 case 4:
2856 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
2857 /* FALLTHROUGH */
2858 case 3:
2859 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
2860 /* FALLTHROUGH */
2861 case 2:
2862 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
2863 /* FALLTHROUGH */
2864 }
2865 }
2866 if (rss_size)
2867 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
2868 return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
2869 }
2870
2871 /**
2872 * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
2873 * @adap: the adapter
2874 * @mbox: mailbox to use for the FW command
2875 * @port: physical port associated with the VI
2876 * @pf: the PF owning the VI
2877 * @vf: the VF owning the VI
2878 * @nmac: number of MAC addresses needed (1 to 5)
2879 * @mac: the MAC addresses of the VI
2880 * @rss_size: size of RSS table slice associated with this VI
2881 *
2882 * Backwards compatible and convieniance routine to allocate a Virtual
2883 * Interface with a Ethernet Port Application Function and Intrustion
2884 * Detection System disabled.
2885 */
2886 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
2887 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
2888 unsigned int *rss_size)
2889 {
2890 return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
2891 FW_VI_FUNC_ETH, 0);
2892 }
2893
2894 /**
2895 * t4_free_vi - free a virtual interface
2896 * @adap: the adapter
2897 * @mbox: mailbox to use for the FW command
2898 * @pf: the PF owning the VI
2899 * @vf: the VF owning the VI
2900 * @viid: virtual interface identifiler
2901 *
2902 * Free a previously allocated virtual interface.
2903 */
2904 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
2905 unsigned int vf, unsigned int viid)
2906 {
2907 struct fw_vi_cmd c;
2908
2909 memset(&c, 0, sizeof(c));
2910 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
2911 F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) |
2912 V_FW_VI_CMD_VFN(vf));
2913 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
2914 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
2915
2916 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2917 }
2918
2919 /**
2920 * t4_set_rxmode - set Rx properties of a virtual interface
2921 * @adap: the adapter
2922 * @mbox: mailbox to use for the FW command
2923 * @viid: the VI id
2924 * @mtu: the new MTU or -1
2925 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
2926 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
2927 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
2928 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
2929 * -1 no change
2930 * @sleep_ok: if true we may sleep while awaiting command completion
2931 *
2932 * Sets Rx properties of a virtual interface.
2933 */
2934 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
2935 int mtu, int promisc, int all_multi, int bcast, int vlanex,
2936 bool sleep_ok)
2937 {
2938 struct fw_vi_rxmode_cmd c;
2939
2940 /* convert to FW values */
2941 if (mtu < 0)
2942 mtu = M_FW_VI_RXMODE_CMD_MTU;
2943 if (promisc < 0)
2944 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
2945 if (all_multi < 0)
2946 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
2947 if (bcast < 0)
2948 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
2949 if (vlanex < 0)
2950 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
2951
2952 memset(&c, 0, sizeof(c));
2953 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
2954 F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2955 V_FW_VI_RXMODE_CMD_VIID(viid));
2956 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2957 c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
2958 V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
2959 V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
2960 V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
2961 V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
2962 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
2963 }
2964
2965 /**
2966 * t4_change_mac - modifies the exact-match filter for a MAC address
2967 * @adap: the adapter
2968 * @mbox: mailbox to use for the FW command
2969 * @viid: the VI id
2970 * @idx: index of existing filter for old value of MAC address, or -1
2971 * @addr: the new MAC address value
2972 * @persist: whether a new MAC allocation should be persistent
2973 * @add_smt: if true also add the address to the HW SMT
2974 *
2975 * Modifies an exact-match filter and sets it to the new MAC address if
2976 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the
2977 * latter case the address is added persistently if @persist is %true.
2978 *
2979 * Note that in general it is not possible to modify the value of a given
2980 * filter so the generic way to modify an address filter is to free the one
2981 * being used by the old address value and allocate a new filter for the
2982 * new address value.
2983 *
2984 * Returns a negative error number or the index of the filter with the new
2985 * MAC value. Note that this index may differ from @idx.
2986 */
2987 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
2988 int idx, const u8 *addr, bool persist, bool add_smt)
2989 {
2990 int ret, mode;
2991 struct fw_vi_mac_cmd c;
2992 struct fw_vi_mac_exact *p = c.u.exact;
2993 int max_mac_addr = adap->params.arch.mps_tcam_size;
2994
2995 if (idx < 0) /* new allocation */
2996 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
2997 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
2998
2999 memset(&c, 0, sizeof(c));
3000 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
3001 F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3002 V_FW_VI_MAC_CMD_VIID(viid));
3003 c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
3004 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
3005 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
3006 V_FW_VI_MAC_CMD_IDX(idx));
3007 memcpy(p->macaddr, addr, sizeof(p->macaddr));
3008
3009 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3010 if (ret == 0) {
3011 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
3012 if (ret >= max_mac_addr)
3013 ret = -ENOMEM;
3014 }
3015 return ret;
3016 }
3017
3018 /**
3019 * t4_enable_vi_params - enable/disable a virtual interface
3020 * @adap: the adapter
3021 * @mbox: mailbox to use for the FW command
3022 * @viid: the VI id
3023 * @rx_en: 1=enable Rx, 0=disable Rx
3024 * @tx_en: 1=enable Tx, 0=disable Tx
3025 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
3026 *
3027 * Enables/disables a virtual interface. Note that setting DCB Enable
3028 * only makes sense when enabling a Virtual Interface ...
3029 */
3030 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
3031 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
3032 {
3033 struct fw_vi_enable_cmd c;
3034
3035 memset(&c, 0, sizeof(c));
3036 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
3037 F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3038 V_FW_VI_ENABLE_CMD_VIID(viid));
3039 c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
3040 V_FW_VI_ENABLE_CMD_EEN(tx_en) |
3041 V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
3042 FW_LEN16(c));
3043 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3044 }
3045
3046 /**
3047 * t4_enable_vi - enable/disable a virtual interface
3048 * @adap: the adapter
3049 * @mbox: mailbox to use for the FW command
3050 * @viid: the VI id
3051 * @rx_en: 1=enable Rx, 0=disable Rx
3052 * @tx_en: 1=enable Tx, 0=disable Tx
3053 *
3054 * Enables/disables a virtual interface. Note that setting DCB Enable
3055 * only makes sense when enabling a Virtual Interface ...
3056 */
3057 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
3058 bool rx_en, bool tx_en)
3059 {
3060 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
3061 }
3062
3063 /**
3064 * t4_iq_start_stop - enable/disable an ingress queue and its FLs
3065 * @adap: the adapter
3066 * @mbox: mailbox to use for the FW command
3067 * @start: %true to enable the queues, %false to disable them
3068 * @pf: the PF owning the queues
3069 * @vf: the VF owning the queues
3070 * @iqid: ingress queue id
3071 * @fl0id: FL0 queue id or 0xffff if no attached FL0
3072 * @fl1id: FL1 queue id or 0xffff if no attached FL1
3073 *
3074 * Starts or stops an ingress queue and its associated FLs, if any.
3075 */
3076 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
3077 unsigned int pf, unsigned int vf, unsigned int iqid,
3078 unsigned int fl0id, unsigned int fl1id)
3079 {
3080 struct fw_iq_cmd c;
3081
3082 memset(&c, 0, sizeof(c));
3083 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3084 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
3085 V_FW_IQ_CMD_VFN(vf));
3086 c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
3087 V_FW_IQ_CMD_IQSTOP(!start) |
3088 FW_LEN16(c));
3089 c.iqid = cpu_to_be16(iqid);
3090 c.fl0id = cpu_to_be16(fl0id);
3091 c.fl1id = cpu_to_be16(fl1id);
3092 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3093 }
3094
3095 /**
3096 * t4_iq_free - free an ingress queue and its FLs
3097 * @adap: the adapter
3098 * @mbox: mailbox to use for the FW command
3099 * @pf: the PF owning the queues
3100 * @vf: the VF owning the queues
3101 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
3102 * @iqid: ingress queue id
3103 * @fl0id: FL0 queue id or 0xffff if no attached FL0
3104 * @fl1id: FL1 queue id or 0xffff if no attached FL1
3105 *
3106 * Frees an ingress queue and its associated FLs, if any.
3107 */
3108 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3109 unsigned int vf, unsigned int iqtype, unsigned int iqid,
3110 unsigned int fl0id, unsigned int fl1id)
3111 {
3112 struct fw_iq_cmd c;
3113
3114 memset(&c, 0, sizeof(c));
3115 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3116 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
3117 V_FW_IQ_CMD_VFN(vf));
3118 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
3119 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
3120 c.iqid = cpu_to_be16(iqid);
3121 c.fl0id = cpu_to_be16(fl0id);
3122 c.fl1id = cpu_to_be16(fl1id);
3123 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3124 }
3125
3126 /**
3127 * t4_eth_eq_free - free an Ethernet egress queue
3128 * @adap: the adapter
3129 * @mbox: mailbox to use for the FW command
3130 * @pf: the PF owning the queue
3131 * @vf: the VF owning the queue
3132 * @eqid: egress queue id
3133 *
3134 * Frees an Ethernet egress queue.
3135 */
3136 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3137 unsigned int vf, unsigned int eqid)
3138 {
3139 struct fw_eq_eth_cmd c;
3140
3141 memset(&c, 0, sizeof(c));
3142 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
3143 F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3144 V_FW_EQ_ETH_CMD_PFN(pf) |
3145 V_FW_EQ_ETH_CMD_VFN(vf));
3146 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
3147 c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
3148 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3149 }
3150
3151 /**
3152 * t4_handle_fw_rpl - process a FW reply message
3153 * @adap: the adapter
3154 * @rpl: start of the FW message
3155 *
3156 * Processes a FW message, such as link state change messages.
3157 */
3158 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
3159 {
3160 u8 opcode = *(const u8 *)rpl;
3161
3162 /*
3163 * This might be a port command ... this simplifies the following
3164 * conditionals ... We can get away with pre-dereferencing
3165 * action_to_len16 because it's in the first 16 bytes and all messages
3166 * will be at least that long.
3167 */
3168 const struct fw_port_cmd *p = (const void *)rpl;
3169 unsigned int action =
3170 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
3171
3172 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
3173 /* link/module state change message */
3174 int speed = 0, fc = 0, i;
3175 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
3176 struct port_info *pi = NULL;
3177 struct link_config *lc;
3178 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
3179 int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
3180 u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
3181
3182 if (stat & F_FW_PORT_CMD_RXPAUSE)
3183 fc |= PAUSE_RX;
3184 if (stat & F_FW_PORT_CMD_TXPAUSE)
3185 fc |= PAUSE_TX;
3186 if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
3187 speed = ETH_SPEED_NUM_100M;
3188 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
3189 speed = ETH_SPEED_NUM_1G;
3190 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
3191 speed = ETH_SPEED_NUM_10G;
3192 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
3193 speed = ETH_SPEED_NUM_40G;
3194
3195 for_each_port(adap, i) {
3196 pi = adap2pinfo(adap, i);
3197 if (pi->tx_chan == chan)
3198 break;
3199 }
3200 lc = &pi->link_cfg;
3201
3202 if (mod != pi->mod_type) {
3203 pi->mod_type = mod;
3204 t4_os_portmod_changed(adap, i);
3205 }
3206 if (link_ok != lc->link_ok || speed != lc->speed ||
3207 fc != lc->fc) { /* something changed */
3208 if (!link_ok && lc->link_ok) {
3209 static const char * const reason[] = {
3210 "Link Down",
3211 "Remote Fault",
3212 "Auto-negotiation Failure",
3213 "Reserved",
3214 "Insufficient Airflow",
3215 "Unable To Determine Reason",
3216 "No RX Signal Detected",
3217 "Reserved",
3218 };
3219 unsigned int rc = G_FW_PORT_CMD_LINKDNRC(stat);
3220
3221 dev_warn(adap, "Port %d link down, reason: %s\n",
3222 chan, reason[rc]);
3223 }
3224 lc->link_ok = link_ok;
3225 lc->speed = speed;
3226 lc->fc = fc;
3227 lc->supported = be16_to_cpu(p->u.info.pcap);
3228 }
3229 } else {
3230 dev_warn(adap, "Unknown firmware reply %d\n", opcode);
3231 return -EINVAL;
3232 }
3233 return 0;
3234 }
3235
3236 void t4_reset_link_config(struct adapter *adap, int idx)
3237 {
3238 struct port_info *pi = adap2pinfo(adap, idx);
3239 struct link_config *lc = &pi->link_cfg;
3240
3241 lc->link_ok = 0;
3242 lc->requested_speed = 0;
3243 lc->requested_fc = 0;
3244 lc->speed = 0;
3245 lc->fc = 0;
3246 }
3247
3248 /**
3249 * init_link_config - initialize a link's SW state
3250 * @lc: structure holding the link state
3251 * @caps: link capabilities
3252 *
3253 * Initializes the SW state maintained for each link, including the link's
3254 * capabilities and default speed/flow-control/autonegotiation settings.
3255 */
3256 static void init_link_config(struct link_config *lc,
3257 unsigned int caps)
3258 {
3259 lc->supported = caps;
3260 lc->requested_speed = 0;
3261 lc->speed = 0;
3262 lc->requested_fc = 0;
3263 lc->fc = 0;
3264 if (lc->supported & FW_PORT_CAP_ANEG) {
3265 lc->advertising = lc->supported & ADVERT_MASK;
3266 lc->autoneg = AUTONEG_ENABLE;
3267 } else {
3268 lc->advertising = 0;
3269 lc->autoneg = AUTONEG_DISABLE;
3270 }
3271 }
3272
3273 /**
3274 * t4_wait_dev_ready - wait till to reads of registers work
3275 *
3276 * Right after the device is RESET is can take a small amount of time
3277 * for it to respond to register reads. Until then, all reads will
3278 * return either 0xff...ff or 0xee...ee. Return an error if reads
3279 * don't work within a reasonable time frame.
3280 */
3281 static int t4_wait_dev_ready(struct adapter *adapter)
3282 {
3283 u32 whoami;
3284
3285 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
3286
3287 if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
3288 return 0;
3289
3290 msleep(500);
3291 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
3292 return (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS
3293 ? 0 : -EIO);
3294 }
3295
3296 struct flash_desc {
3297 u32 vendor_and_model_id;
3298 u32 size_mb;
3299 };
3300
3301 int t4_get_flash_params(struct adapter *adapter)
3302 {
3303 /*
3304 * Table for non-Numonix supported flash parts. Numonix parts are left
3305 * to the preexisting well-tested code. All flash parts have 64KB
3306 * sectors.
3307 */
3308 static struct flash_desc supported_flash[] = {
3309 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
3310 };
3311
3312 int ret;
3313 unsigned int i;
3314 u32 info = 0;
3315
3316 ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
3317 if (!ret)
3318 ret = sf1_read(adapter, 3, 0, 1, &info);
3319 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */
3320 if (ret < 0)
3321 return ret;
3322
3323 for (i = 0; i < ARRAY_SIZE(supported_flash); ++i)
3324 if (supported_flash[i].vendor_and_model_id == info) {
3325 adapter->params.sf_size = supported_flash[i].size_mb;
3326 adapter->params.sf_nsec =
3327 adapter->params.sf_size / SF_SEC_SIZE;
3328 return 0;
3329 }
3330
3331 if ((info & 0xff) != 0x20) /* not a Numonix flash */
3332 return -EINVAL;
3333 info >>= 16; /* log2 of size */
3334 if (info >= 0x14 && info < 0x18)
3335 adapter->params.sf_nsec = 1 << (info - 16);
3336 else if (info == 0x18)
3337 adapter->params.sf_nsec = 64;
3338 else
3339 return -EINVAL;
3340 adapter->params.sf_size = 1 << info;
3341
3342 /*
3343 * We should reject adapters with FLASHes which are too small. So, emit
3344 * a warning.
3345 */
3346 if (adapter->params.sf_size < FLASH_MIN_SIZE) {
3347 dev_warn(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
3348 adapter->params.sf_size, FLASH_MIN_SIZE);
3349 }
3350
3351 return 0;
3352 }
3353
3354 static void set_pcie_completion_timeout(struct adapter *adapter,
3355 u8 range)
3356 {
3357 u32 pcie_cap;
3358 u16 val;
3359
3360 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
3361 if (pcie_cap) {
3362 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
3363 val &= 0xfff0;
3364 val |= range;
3365 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
3366 }
3367 }
3368
3369 /**
3370 * t4_prep_adapter - prepare SW and HW for operation
3371 * @adapter: the adapter
3372 *
3373 * Initialize adapter SW state for the various HW modules, set initial
3374 * values for some adapter tunables, take PHYs out of reset, and
3375 * initialize the MDIO interface.
3376 */
3377 int t4_prep_adapter(struct adapter *adapter)
3378 {
3379 int ret, ver;
3380 u32 pl_rev;
3381
3382 ret = t4_wait_dev_ready(adapter);
3383 if (ret < 0)
3384 return ret;
3385
3386 pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
3387 adapter->params.pci.device_id = adapter->pdev->id.device_id;
3388 adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
3389
3390 /*
3391 * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
3392 * ADAPTER (VERSION << 4 | REVISION)
3393 */
3394 ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
3395 adapter->params.chip = 0;
3396 switch (ver) {
3397 case CHELSIO_T5:
3398 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3399 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
3400 adapter->params.arch.mps_tcam_size =
3401 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
3402 adapter->params.arch.mps_rplc_size = 128;
3403 adapter->params.arch.nchan = NCHAN;
3404 adapter->params.arch.vfcount = 128;
3405 break;
3406 default:
3407 dev_err(adapter, "%s: Device %d is not supported\n",
3408 __func__, adapter->params.pci.device_id);
3409 return -EINVAL;
3410 }
3411
3412 adapter->params.pci.vpd_cap_addr =
3413 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
3414
3415 ret = t4_get_flash_params(adapter);
3416 if (ret < 0)
3417 return ret;
3418
3419 adapter->params.cim_la_size = CIMLA_SIZE;
3420
3421 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3422
3423 /*
3424 * Default port and clock for debugging in case we can't reach FW.
3425 */
3426 adapter->params.nports = 1;
3427 adapter->params.portvec = 1;
3428 adapter->params.vpd.cclk = 50000;
3429
3430 /* Set pci completion timeout value to 4 seconds. */
3431 set_pcie_completion_timeout(adapter, 0xd);
3432 return 0;
3433 }
3434
3435 /**
3436 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
3437 * @adapter: the adapter
3438 * @qid: the Queue ID
3439 * @qtype: the Ingress or Egress type for @qid
3440 * @pbar2_qoffset: BAR2 Queue Offset
3441 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
3442 *
3443 * Returns the BAR2 SGE Queue Registers information associated with the
3444 * indicated Absolute Queue ID. These are passed back in return value
3445 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
3446 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
3447 *
3448 * This may return an error which indicates that BAR2 SGE Queue
3449 * registers aren't available. If an error is not returned, then the
3450 * following values are returned:
3451 *
3452 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
3453 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
3454 *
3455 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
3456 * require the "Inferred Queue ID" ability may be used. E.g. the
3457 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
3458 * then these "Inferred Queue ID" register may not be used.
3459 */
3460 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
3461 enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
3462 unsigned int *pbar2_qid)
3463 {
3464 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
3465 u64 bar2_page_offset, bar2_qoffset;
3466 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
3467
3468 /*
3469 * T4 doesn't support BAR2 SGE Queue registers.
3470 */
3471 if (is_t4(adapter->params.chip))
3472 return -EINVAL;
3473
3474 /*
3475 * Get our SGE Page Size parameters.
3476 */
3477 page_shift = adapter->params.sge.hps + 10;
3478 page_size = 1 << page_shift;
3479
3480 /*
3481 * Get the right Queues per Page parameters for our Queue.
3482 */
3483 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
3484 adapter->params.sge.eq_qpp :
3485 adapter->params.sge.iq_qpp);
3486 qpp_mask = (1 << qpp_shift) - 1;
3487
3488 /*
3489 * Calculate the basics of the BAR2 SGE Queue register area:
3490 * o The BAR2 page the Queue registers will be in.
3491 * o The BAR2 Queue ID.
3492 * o The BAR2 Queue ID Offset into the BAR2 page.
3493 */
3494 bar2_page_offset = ((qid >> qpp_shift) << page_shift);
3495 bar2_qid = qid & qpp_mask;
3496 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
3497
3498 /*
3499 * If the BAR2 Queue ID Offset is less than the Page Size, then the
3500 * hardware will infer the Absolute Queue ID simply from the writes to
3501 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
3502 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
3503 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
3504 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
3505 * from the BAR2 Page and BAR2 Queue ID.
3506 *
3507 * One important censequence of this is that some BAR2 SGE registers
3508 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
3509 * there. But other registers synthesize the SGE Queue ID purely
3510 * from the writes to the registers -- the Write Combined Doorbell
3511 * Buffer is a good example. These BAR2 SGE Registers are only
3512 * available for those BAR2 SGE Register areas where the SGE Absolute
3513 * Queue ID can be inferred from simple writes.
3514 */
3515 bar2_qoffset = bar2_page_offset;
3516 bar2_qinferred = (bar2_qid_offset < page_size);
3517 if (bar2_qinferred) {
3518 bar2_qoffset += bar2_qid_offset;
3519 bar2_qid = 0;
3520 }
3521
3522 *pbar2_qoffset = bar2_qoffset;
3523 *pbar2_qid = bar2_qid;
3524 return 0;
3525 }
3526
3527 /**
3528 * t4_init_sge_params - initialize adap->params.sge
3529 * @adapter: the adapter
3530 *
3531 * Initialize various fields of the adapter's SGE Parameters structure.
3532 */
3533 int t4_init_sge_params(struct adapter *adapter)
3534 {
3535 struct sge_params *sge_params = &adapter->params.sge;
3536 u32 hps, qpp;
3537 unsigned int s_hps, s_qpp;
3538
3539 /*
3540 * Extract the SGE Page Size for our PF.
3541 */
3542 hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
3543 s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
3544 adapter->pf);
3545 sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
3546
3547 /*
3548 * Extract the SGE Egress and Ingess Queues Per Page for our PF.
3549 */
3550 s_qpp = (S_QUEUESPERPAGEPF0 +
3551 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
3552 qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
3553 sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
3554 qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
3555 sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
3556
3557 return 0;
3558 }
3559
3560 /**
3561 * t4_init_tp_params - initialize adap->params.tp
3562 * @adap: the adapter
3563 *
3564 * Initialize various fields of the adapter's TP Parameters structure.
3565 */
3566 int t4_init_tp_params(struct adapter *adap)
3567 {
3568 int chan;
3569 u32 v;
3570
3571 v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
3572 adap->params.tp.tre = G_TIMERRESOLUTION(v);
3573 adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
3574
3575 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
3576 for (chan = 0; chan < NCHAN; chan++)
3577 adap->params.tp.tx_modq[chan] = chan;
3578
3579 /*
3580 * Cache the adapter's Compressed Filter Mode and global Incress
3581 * Configuration.
3582 */
3583 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3584 &adap->params.tp.vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
3585 t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3586 &adap->params.tp.ingress_config, 1,
3587 A_TP_INGRESS_CONFIG);
3588
3589 /*
3590 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
3591 * shift positions of several elements of the Compressed Filter Tuple
3592 * for this adapter which we need frequently ...
3593 */
3594 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
3595 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
3596 adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
3597 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
3598 F_PROTOCOL);
3599
3600 /*
3601 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
3602 * represents the presense of an Outer VLAN instead of a VNIC ID.
3603 */
3604 if ((adap->params.tp.ingress_config & F_VNIC) == 0)
3605 adap->params.tp.vnic_shift = -1;
3606
3607 return 0;
3608 }
3609
3610 /**
3611 * t4_filter_field_shift - calculate filter field shift
3612 * @adap: the adapter
3613 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
3614 *
3615 * Return the shift position of a filter field within the Compressed
3616 * Filter Tuple. The filter field is specified via its selection bit
3617 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
3618 */
3619 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
3620 {
3621 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
3622 unsigned int sel;
3623 int field_shift;
3624
3625 if ((filter_mode & filter_sel) == 0)
3626 return -1;
3627
3628 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
3629 switch (filter_mode & sel) {
3630 case F_FCOE:
3631 field_shift += W_FT_FCOE;
3632 break;
3633 case F_PORT:
3634 field_shift += W_FT_PORT;
3635 break;
3636 case F_VNIC_ID:
3637 field_shift += W_FT_VNIC_ID;
3638 break;
3639 case F_VLAN:
3640 field_shift += W_FT_VLAN;
3641 break;
3642 case F_TOS:
3643 field_shift += W_FT_TOS;
3644 break;
3645 case F_PROTOCOL:
3646 field_shift += W_FT_PROTOCOL;
3647 break;
3648 case F_ETHERTYPE:
3649 field_shift += W_FT_ETHERTYPE;
3650 break;
3651 case F_MACMATCH:
3652 field_shift += W_FT_MACMATCH;
3653 break;
3654 case F_MPSHITTYPE:
3655 field_shift += W_FT_MPSHITTYPE;
3656 break;
3657 case F_FRAGMENTATION:
3658 field_shift += W_FT_FRAGMENTATION;
3659 break;
3660 }
3661 }
3662 return field_shift;
3663 }
3664
3665 int t4_init_rss_mode(struct adapter *adap, int mbox)
3666 {
3667 int i, ret;
3668 struct fw_rss_vi_config_cmd rvc;
3669
3670 memset(&rvc, 0, sizeof(rvc));
3671
3672 for_each_port(adap, i) {
3673 struct port_info *p = adap2pinfo(adap, i);
3674
3675 rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
3676 F_FW_CMD_REQUEST | F_FW_CMD_READ |
3677 V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
3678 rvc.retval_len16 = htonl(FW_LEN16(rvc));
3679 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
3680 if (ret)
3681 return ret;
3682 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
3683 }
3684 return 0;
3685 }
3686
3687 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
3688 {
3689 u8 addr[6];
3690 int ret, i, j = 0;
3691 struct fw_port_cmd c;
3692
3693 memset(&c, 0, sizeof(c));
3694
3695 for_each_port(adap, i) {
3696 unsigned int rss_size = 0;
3697 struct port_info *p = adap2pinfo(adap, i);
3698
3699 while ((adap->params.portvec & (1 << j)) == 0)
3700 j++;
3701
3702 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3703 F_FW_CMD_REQUEST | F_FW_CMD_READ |
3704 V_FW_PORT_CMD_PORTID(j));
3705 c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(
3706 FW_PORT_ACTION_GET_PORT_INFO) |
3707 FW_LEN16(c));
3708 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3709 if (ret)
3710 return ret;
3711
3712 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
3713 if (ret < 0)
3714 return ret;
3715
3716 p->viid = ret;
3717 p->tx_chan = j;
3718 p->rss_size = rss_size;
3719 t4_os_set_hw_addr(adap, i, addr);
3720
3721 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
3722 p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
3723 G_FW_PORT_CMD_MDIOADDR(ret) : -1;
3724 p->port_type = G_FW_PORT_CMD_PTYPE(ret);
3725 p->mod_type = FW_PORT_MOD_TYPE_NA;
3726
3727 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
3728 j++;
3729 }
3730 return 0;
3731 }