]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/drivers/net/e1000/base/e1000_82543.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / drivers / net / e1000 / base / e1000_82543.c
1 /*******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ***************************************************************************/
33
34 /*
35 * 82543GC Gigabit Ethernet Controller (Fiber)
36 * 82543GC Gigabit Ethernet Controller (Copper)
37 * 82544EI Gigabit Ethernet Controller (Copper)
38 * 82544EI Gigabit Ethernet Controller (Fiber)
39 * 82544GC Gigabit Ethernet Controller (Copper)
40 * 82544GC Gigabit Ethernet Controller (LOM)
41 */
42
43 #include "e1000_api.h"
44
45 STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw);
46 STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw);
47 STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw);
48 STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
49 u16 *data);
50 STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
51 u16 data);
52 STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
53 STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw);
54 STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw);
55 STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw);
56 STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw);
57 STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw);
58 STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw);
59 STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw);
60 STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
61 STATIC s32 e1000_led_on_82543(struct e1000_hw *hw);
62 STATIC s32 e1000_led_off_82543(struct e1000_hw *hw);
63 STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
64 u32 value);
65 STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
66 STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
67 STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
68 STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
69 STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
70 STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
71 STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
72 STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
73 u16 count);
74 STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
75 STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
76
77 /**
78 * e1000_init_phy_params_82543 - Init PHY func ptrs.
79 * @hw: pointer to the HW structure
80 **/
81 STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
82 {
83 struct e1000_phy_info *phy = &hw->phy;
84 s32 ret_val = E1000_SUCCESS;
85
86 DEBUGFUNC("e1000_init_phy_params_82543");
87
88 if (hw->phy.media_type != e1000_media_type_copper) {
89 phy->type = e1000_phy_none;
90 goto out;
91 } else {
92 phy->ops.power_up = e1000_power_up_phy_copper;
93 phy->ops.power_down = e1000_power_down_phy_copper;
94 }
95
96 phy->addr = 1;
97 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
98 phy->reset_delay_us = 10000;
99 phy->type = e1000_phy_m88;
100
101 /* Function Pointers */
102 phy->ops.check_polarity = e1000_check_polarity_m88;
103 phy->ops.commit = e1000_phy_sw_reset_generic;
104 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
105 phy->ops.get_cable_length = e1000_get_cable_length_m88;
106 phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
107 phy->ops.read_reg = (hw->mac.type == e1000_82543)
108 ? e1000_read_phy_reg_82543
109 : e1000_read_phy_reg_m88;
110 phy->ops.reset = (hw->mac.type == e1000_82543)
111 ? e1000_phy_hw_reset_82543
112 : e1000_phy_hw_reset_generic;
113 phy->ops.write_reg = (hw->mac.type == e1000_82543)
114 ? e1000_write_phy_reg_82543
115 : e1000_write_phy_reg_m88;
116 phy->ops.get_info = e1000_get_phy_info_m88;
117
118 /*
119 * The external PHY of the 82543 can be in a funky state.
120 * Resetting helps us read the PHY registers for acquiring
121 * the PHY ID.
122 */
123 if (!e1000_init_phy_disabled_82543(hw)) {
124 ret_val = phy->ops.reset(hw);
125 if (ret_val) {
126 DEBUGOUT("Resetting PHY during init failed.\n");
127 goto out;
128 }
129 msec_delay(20);
130 }
131
132 ret_val = e1000_get_phy_id(hw);
133 if (ret_val)
134 goto out;
135
136 /* Verify phy id */
137 switch (hw->mac.type) {
138 case e1000_82543:
139 if (phy->id != M88E1000_E_PHY_ID) {
140 ret_val = -E1000_ERR_PHY;
141 goto out;
142 }
143 break;
144 case e1000_82544:
145 if (phy->id != M88E1000_I_PHY_ID) {
146 ret_val = -E1000_ERR_PHY;
147 goto out;
148 }
149 break;
150 default:
151 ret_val = -E1000_ERR_PHY;
152 goto out;
153 break;
154 }
155
156 out:
157 return ret_val;
158 }
159
160 /**
161 * e1000_init_nvm_params_82543 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
163 **/
164 STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
165 {
166 struct e1000_nvm_info *nvm = &hw->nvm;
167
168 DEBUGFUNC("e1000_init_nvm_params_82543");
169
170 nvm->type = e1000_nvm_eeprom_microwire;
171 nvm->word_size = 64;
172 nvm->delay_usec = 50;
173 nvm->address_bits = 6;
174 nvm->opcode_bits = 3;
175
176 /* Function Pointers */
177 nvm->ops.read = e1000_read_nvm_microwire;
178 nvm->ops.update = e1000_update_nvm_checksum_generic;
179 nvm->ops.valid_led_default = e1000_valid_led_default_generic;
180 nvm->ops.validate = e1000_validate_nvm_checksum_generic;
181 nvm->ops.write = e1000_write_nvm_microwire;
182
183 return E1000_SUCCESS;
184 }
185
186 /**
187 * e1000_init_mac_params_82543 - Init MAC func ptrs.
188 * @hw: pointer to the HW structure
189 **/
190 STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
191 {
192 struct e1000_mac_info *mac = &hw->mac;
193
194 DEBUGFUNC("e1000_init_mac_params_82543");
195
196 /* Set media type */
197 switch (hw->device_id) {
198 case E1000_DEV_ID_82543GC_FIBER:
199 case E1000_DEV_ID_82544EI_FIBER:
200 hw->phy.media_type = e1000_media_type_fiber;
201 break;
202 default:
203 hw->phy.media_type = e1000_media_type_copper;
204 break;
205 }
206
207 /* Set mta register count */
208 mac->mta_reg_count = 128;
209 /* Set rar entry count */
210 mac->rar_entry_count = E1000_RAR_ENTRIES;
211
212 /* Function pointers */
213
214 /* bus type/speed/width */
215 mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
216 /* function id */
217 mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
218 /* reset */
219 mac->ops.reset_hw = e1000_reset_hw_82543;
220 /* hw initialization */
221 mac->ops.init_hw = e1000_init_hw_82543;
222 /* link setup */
223 mac->ops.setup_link = e1000_setup_link_82543;
224 /* physical interface setup */
225 mac->ops.setup_physical_interface =
226 (hw->phy.media_type == e1000_media_type_copper)
227 ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
228 /* check for link */
229 mac->ops.check_for_link =
230 (hw->phy.media_type == e1000_media_type_copper)
231 ? e1000_check_for_copper_link_82543
232 : e1000_check_for_fiber_link_82543;
233 /* link info */
234 mac->ops.get_link_up_info =
235 (hw->phy.media_type == e1000_media_type_copper)
236 ? e1000_get_speed_and_duplex_copper_generic
237 : e1000_get_speed_and_duplex_fiber_serdes_generic;
238 /* multicast address update */
239 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
240 /* writing VFTA */
241 mac->ops.write_vfta = e1000_write_vfta_82543;
242 /* clearing VFTA */
243 mac->ops.clear_vfta = e1000_clear_vfta_generic;
244 /* turn on/off LED */
245 mac->ops.led_on = e1000_led_on_82543;
246 mac->ops.led_off = e1000_led_off_82543;
247 /* clear hardware counters */
248 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
249
250 /* Set tbi compatibility */
251 if ((hw->mac.type != e1000_82543) ||
252 (hw->phy.media_type == e1000_media_type_fiber))
253 e1000_set_tbi_compatibility_82543(hw, false);
254
255 return E1000_SUCCESS;
256 }
257
258 /**
259 * e1000_init_function_pointers_82543 - Init func ptrs.
260 * @hw: pointer to the HW structure
261 *
262 * Called to initialize all function pointers and parameters.
263 **/
264 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
265 {
266 DEBUGFUNC("e1000_init_function_pointers_82543");
267
268 hw->mac.ops.init_params = e1000_init_mac_params_82543;
269 hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
270 hw->phy.ops.init_params = e1000_init_phy_params_82543;
271 }
272
273 /**
274 * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
275 * @hw: pointer to the HW structure
276 *
277 * Returns the current status of 10-bit Interface (TBI) compatibility
278 * (enabled/disabled).
279 **/
280 STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
281 {
282 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
283 bool state = false;
284
285 DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
286
287 if (hw->mac.type != e1000_82543) {
288 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
289 goto out;
290 }
291
292 state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
293
294 out:
295 return state;
296 }
297
298 /**
299 * e1000_set_tbi_compatibility_82543 - Set TBI compatibility
300 * @hw: pointer to the HW structure
301 * @state: enable/disable TBI compatibility
302 *
303 * Enables or disabled 10-bit Interface (TBI) compatibility.
304 **/
305 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
306 {
307 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
308
309 DEBUGFUNC("e1000_set_tbi_compatibility_82543");
310
311 if (hw->mac.type != e1000_82543) {
312 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
313 goto out;
314 }
315
316 if (state)
317 dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
318 else
319 dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
320
321 out:
322 return;
323 }
324
325 /**
326 * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
327 * @hw: pointer to the HW structure
328 *
329 * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
330 * (enabled/disabled).
331 **/
332 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
333 {
334 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
335 bool state = false;
336
337 DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
338
339 if (hw->mac.type != e1000_82543) {
340 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
341 goto out;
342 }
343
344 state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
345
346 out:
347 return state;
348 }
349
350 /**
351 * e1000_set_tbi_sbp_82543 - Set TBI SBP
352 * @hw: pointer to the HW structure
353 * @state: enable/disable TBI store bad packet
354 *
355 * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
356 **/
357 STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
358 {
359 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
360
361 DEBUGFUNC("e1000_set_tbi_sbp_82543");
362
363 if (state && e1000_tbi_compatibility_enabled_82543(hw))
364 dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
365 else
366 dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
367
368 return;
369 }
370
371 /**
372 * e1000_init_phy_disabled_82543 - Returns init PHY status
373 * @hw: pointer to the HW structure
374 *
375 * Returns the current status of whether PHY initialization is disabled.
376 * True if PHY initialization is disabled else false.
377 **/
378 STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
379 {
380 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
381 bool ret_val;
382
383 DEBUGFUNC("e1000_init_phy_disabled_82543");
384
385 if (hw->mac.type != e1000_82543) {
386 ret_val = false;
387 goto out;
388 }
389
390 ret_val = dev_spec->init_phy_disabled;
391
392 out:
393 return ret_val;
394 }
395
396 /**
397 * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
398 * @hw: pointer to the HW structure
399 * @stats: Struct containing statistic register values
400 * @frame_len: The length of the frame in question
401 * @mac_addr: The Ethernet destination address of the frame in question
402 * @max_frame_size: The maximum frame size
403 *
404 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
405 **/
406 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
407 struct e1000_hw_stats *stats, u32 frame_len,
408 u8 *mac_addr, u32 max_frame_size)
409 {
410 if (!(e1000_tbi_sbp_enabled_82543(hw)))
411 goto out;
412
413 /* First adjust the frame length. */
414 frame_len--;
415 /*
416 * We need to adjust the statistics counters, since the hardware
417 * counters overcount this packet as a CRC error and undercount
418 * the packet as a good packet
419 */
420 /* This packet should not be counted as a CRC error. */
421 stats->crcerrs--;
422 /* This packet does count as a Good Packet Received. */
423 stats->gprc++;
424
425 /* Adjust the Good Octets received counters */
426 stats->gorc += frame_len;
427
428 /*
429 * Is this a broadcast or multicast? Check broadcast first,
430 * since the test for a multicast frame will test positive on
431 * a broadcast frame.
432 */
433 if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
434 /* Broadcast packet */
435 stats->bprc++;
436 else if (*mac_addr & 0x01)
437 /* Multicast packet */
438 stats->mprc++;
439
440 /*
441 * In this case, the hardware has over counted the number of
442 * oversize frames.
443 */
444 if ((frame_len == max_frame_size) && (stats->roc > 0))
445 stats->roc--;
446
447 /*
448 * Adjust the bin counters when the extra byte put the frame in the
449 * wrong bin. Remember that the frame_len was adjusted above.
450 */
451 if (frame_len == 64) {
452 stats->prc64++;
453 stats->prc127--;
454 } else if (frame_len == 127) {
455 stats->prc127++;
456 stats->prc255--;
457 } else if (frame_len == 255) {
458 stats->prc255++;
459 stats->prc511--;
460 } else if (frame_len == 511) {
461 stats->prc511++;
462 stats->prc1023--;
463 } else if (frame_len == 1023) {
464 stats->prc1023++;
465 stats->prc1522--;
466 } else if (frame_len == 1522) {
467 stats->prc1522++;
468 }
469
470 out:
471 return;
472 }
473
474 /**
475 * e1000_read_phy_reg_82543 - Read PHY register
476 * @hw: pointer to the HW structure
477 * @offset: register offset to be read
478 * @data: pointer to the read data
479 *
480 * Reads the PHY at offset and stores the information read to data.
481 **/
482 STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
483 {
484 u32 mdic;
485 s32 ret_val = E1000_SUCCESS;
486
487 DEBUGFUNC("e1000_read_phy_reg_82543");
488
489 if (offset > MAX_PHY_REG_ADDRESS) {
490 DEBUGOUT1("PHY Address %d is out of range\n", offset);
491 ret_val = -E1000_ERR_PARAM;
492 goto out;
493 }
494
495 /*
496 * We must first send a preamble through the MDIO pin to signal the
497 * beginning of an MII instruction. This is done by sending 32
498 * consecutive "1" bits.
499 */
500 e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
501
502 /*
503 * Now combine the next few fields that are required for a read
504 * operation. We use this method instead of calling the
505 * e1000_shift_out_mdi_bits routine five different times. The format
506 * of an MII read instruction consists of a shift out of 14 bits and
507 * is defined as follows:
508 * <Preamble><SOF><Op Code><Phy Addr><Offset>
509 * followed by a shift in of 18 bits. This first two bits shifted in
510 * are TurnAround bits used to avoid contention on the MDIO pin when a
511 * READ operation is performed. These two bits are thrown away
512 * followed by a shift in of 16 bits which contains the desired data.
513 */
514 mdic = (offset | (hw->phy.addr << 5) |
515 (PHY_OP_READ << 10) | (PHY_SOF << 12));
516
517 e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
518
519 /*
520 * Now that we've shifted out the read command to the MII, we need to
521 * "shift in" the 16-bit value (18 total bits) of the requested PHY
522 * register address.
523 */
524 *data = e1000_shift_in_mdi_bits_82543(hw);
525
526 out:
527 return ret_val;
528 }
529
530 /**
531 * e1000_write_phy_reg_82543 - Write PHY register
532 * @hw: pointer to the HW structure
533 * @offset: register offset to be written
534 * @data: pointer to the data to be written at offset
535 *
536 * Writes data to the PHY at offset.
537 **/
538 STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
539 {
540 u32 mdic;
541 s32 ret_val = E1000_SUCCESS;
542
543 DEBUGFUNC("e1000_write_phy_reg_82543");
544
545 if (offset > MAX_PHY_REG_ADDRESS) {
546 DEBUGOUT1("PHY Address %d is out of range\n", offset);
547 ret_val = -E1000_ERR_PARAM;
548 goto out;
549 }
550
551 /*
552 * We'll need to use the SW defined pins to shift the write command
553 * out to the PHY. We first send a preamble to the PHY to signal the
554 * beginning of the MII instruction. This is done by sending 32
555 * consecutive "1" bits.
556 */
557 e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
558
559 /*
560 * Now combine the remaining required fields that will indicate a
561 * write operation. We use this method instead of calling the
562 * e1000_shift_out_mdi_bits routine for each field in the command. The
563 * format of a MII write instruction is as follows:
564 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
565 */
566 mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
567 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
568 mdic <<= 16;
569 mdic |= (u32)data;
570
571 e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
572
573 out:
574 return ret_val;
575 }
576
577 /**
578 * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
579 * @hw: pointer to the HW structure
580 * @ctrl: pointer to the control register
581 *
582 * Raise the management data input clock by setting the MDC bit in the control
583 * register.
584 **/
585 STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
586 {
587 /*
588 * Raise the clock input to the Management Data Clock (by setting the
589 * MDC bit), and then delay a sufficient amount of time.
590 */
591 E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
592 E1000_WRITE_FLUSH(hw);
593 usec_delay(10);
594 }
595
596 /**
597 * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
598 * @hw: pointer to the HW structure
599 * @ctrl: pointer to the control register
600 *
601 * Lower the management data input clock by clearing the MDC bit in the
602 * control register.
603 **/
604 STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
605 {
606 /*
607 * Lower the clock input to the Management Data Clock (by clearing the
608 * MDC bit), and then delay a sufficient amount of time.
609 */
610 E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
611 E1000_WRITE_FLUSH(hw);
612 usec_delay(10);
613 }
614
615 /**
616 * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
617 * @hw: pointer to the HW structure
618 * @data: data to send to the PHY
619 * @count: number of bits to shift out
620 *
621 * We need to shift 'count' bits out to the PHY. So, the value in the
622 * "data" parameter will be shifted out to the PHY one bit at a time.
623 * In order to do this, "data" must be broken down into bits.
624 **/
625 STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
626 u16 count)
627 {
628 u32 ctrl, mask;
629
630 /*
631 * We need to shift "count" number of bits out to the PHY. So, the
632 * value in the "data" parameter will be shifted out to the PHY one
633 * bit at a time. In order to do this, "data" must be broken down
634 * into bits.
635 */
636 mask = 0x01;
637 mask <<= (count - 1);
638
639 ctrl = E1000_READ_REG(hw, E1000_CTRL);
640
641 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
642 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
643
644 while (mask) {
645 /*
646 * A "1" is shifted out to the PHY by setting the MDIO bit to
647 * "1" and then raising and lowering the Management Data Clock.
648 * A "0" is shifted out to the PHY by setting the MDIO bit to
649 * "0" and then raising and lowering the clock.
650 */
651 if (data & mask)
652 ctrl |= E1000_CTRL_MDIO;
653 else
654 ctrl &= ~E1000_CTRL_MDIO;
655
656 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
657 E1000_WRITE_FLUSH(hw);
658
659 usec_delay(10);
660
661 e1000_raise_mdi_clk_82543(hw, &ctrl);
662 e1000_lower_mdi_clk_82543(hw, &ctrl);
663
664 mask >>= 1;
665 }
666 }
667
668 /**
669 * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
670 * @hw: pointer to the HW structure
671 *
672 * In order to read a register from the PHY, we need to shift 18 bits
673 * in from the PHY. Bits are "shifted in" by raising the clock input to
674 * the PHY (setting the MDC bit), and then reading the value of the data out
675 * MDIO bit.
676 **/
677 STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
678 {
679 u32 ctrl;
680 u16 data = 0;
681 u8 i;
682
683 /*
684 * In order to read a register from the PHY, we need to shift in a
685 * total of 18 bits from the PHY. The first two bit (turnaround)
686 * times are used to avoid contention on the MDIO pin when a read
687 * operation is performed. These two bits are ignored by us and
688 * thrown away. Bits are "shifted in" by raising the input to the
689 * Management Data Clock (setting the MDC bit) and then reading the
690 * value of the MDIO bit.
691 */
692 ctrl = E1000_READ_REG(hw, E1000_CTRL);
693
694 /*
695 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
696 * input.
697 */
698 ctrl &= ~E1000_CTRL_MDIO_DIR;
699 ctrl &= ~E1000_CTRL_MDIO;
700
701 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
702 E1000_WRITE_FLUSH(hw);
703
704 /*
705 * Raise and lower the clock before reading in the data. This accounts
706 * for the turnaround bits. The first clock occurred when we clocked
707 * out the last bit of the Register Address.
708 */
709 e1000_raise_mdi_clk_82543(hw, &ctrl);
710 e1000_lower_mdi_clk_82543(hw, &ctrl);
711
712 for (data = 0, i = 0; i < 16; i++) {
713 data <<= 1;
714 e1000_raise_mdi_clk_82543(hw, &ctrl);
715 ctrl = E1000_READ_REG(hw, E1000_CTRL);
716 /* Check to see if we shifted in a "1". */
717 if (ctrl & E1000_CTRL_MDIO)
718 data |= 1;
719 e1000_lower_mdi_clk_82543(hw, &ctrl);
720 }
721
722 e1000_raise_mdi_clk_82543(hw, &ctrl);
723 e1000_lower_mdi_clk_82543(hw, &ctrl);
724
725 return data;
726 }
727
728 /**
729 * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
730 * @hw: pointer to the HW structure
731 *
732 * Calls the function to force speed and duplex for the m88 PHY, and
733 * if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
734 * then call the function for polarity reversal workaround.
735 **/
736 STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
737 {
738 s32 ret_val;
739
740 DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
741
742 ret_val = e1000_phy_force_speed_duplex_m88(hw);
743 if (ret_val)
744 goto out;
745
746 if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
747 E1000_ALL_10_SPEED))
748 ret_val = e1000_polarity_reversal_workaround_82543(hw);
749
750 out:
751 return ret_val;
752 }
753
754 /**
755 * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
756 * @hw: pointer to the HW structure
757 *
758 * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
759 * inadvertently. To workaround the issue, we disable the transmitter on
760 * the PHY until we have established the link partner's link parameters.
761 **/
762 STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
763 {
764 s32 ret_val = E1000_SUCCESS;
765 u16 mii_status_reg;
766 u16 i;
767 bool link;
768
769 if (!(hw->phy.ops.write_reg))
770 goto out;
771
772 /* Polarity reversal workaround for forced 10F/10H links. */
773
774 /* Disable the transmitter on the PHY */
775
776 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
777 if (ret_val)
778 goto out;
779 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
780 if (ret_val)
781 goto out;
782
783 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
784 if (ret_val)
785 goto out;
786
787 /*
788 * This loop will early-out if the NO link condition has been met.
789 * In other words, DO NOT use e1000_phy_has_link_generic() here.
790 */
791 for (i = PHY_FORCE_TIME; i > 0; i--) {
792 /*
793 * Read the MII Status Register and wait for Link Status bit
794 * to be clear.
795 */
796
797 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
798 if (ret_val)
799 goto out;
800
801 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
802 if (ret_val)
803 goto out;
804
805 if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
806 break;
807 msec_delay_irq(100);
808 }
809
810 /* Recommended delay time after link has been lost */
811 msec_delay_irq(1000);
812
813 /* Now we will re-enable the transmitter on the PHY */
814
815 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
816 if (ret_val)
817 goto out;
818 msec_delay_irq(50);
819 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
820 if (ret_val)
821 goto out;
822 msec_delay_irq(50);
823 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
824 if (ret_val)
825 goto out;
826 msec_delay_irq(50);
827 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
828 if (ret_val)
829 goto out;
830
831 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
832 if (ret_val)
833 goto out;
834
835 /*
836 * Read the MII Status Register and wait for Link Status bit
837 * to be set.
838 */
839 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
840 if (ret_val)
841 goto out;
842
843 out:
844 return ret_val;
845 }
846
847 /**
848 * e1000_phy_hw_reset_82543 - PHY hardware reset
849 * @hw: pointer to the HW structure
850 *
851 * Sets the PHY_RESET_DIR bit in the extended device control register
852 * to put the PHY into a reset and waits for completion. Once the reset
853 * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
854 * of reset.
855 **/
856 STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
857 {
858 u32 ctrl_ext;
859 s32 ret_val;
860
861 DEBUGFUNC("e1000_phy_hw_reset_82543");
862
863 /*
864 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
865 * bit to put the PHY into reset...
866 */
867 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
868 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
869 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
870 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
871 E1000_WRITE_FLUSH(hw);
872
873 msec_delay(10);
874
875 /* ...then take it out of reset. */
876 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
877 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
878 E1000_WRITE_FLUSH(hw);
879
880 usec_delay(150);
881
882 if (!(hw->phy.ops.get_cfg_done))
883 return E1000_SUCCESS;
884
885 ret_val = hw->phy.ops.get_cfg_done(hw);
886
887 return ret_val;
888 }
889
890 /**
891 * e1000_reset_hw_82543 - Reset hardware
892 * @hw: pointer to the HW structure
893 *
894 * This resets the hardware into a known state.
895 **/
896 STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw)
897 {
898 u32 ctrl;
899 s32 ret_val = E1000_SUCCESS;
900
901 DEBUGFUNC("e1000_reset_hw_82543");
902
903 DEBUGOUT("Masking off all interrupts\n");
904 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
905
906 E1000_WRITE_REG(hw, E1000_RCTL, 0);
907 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
908 E1000_WRITE_FLUSH(hw);
909
910 e1000_set_tbi_sbp_82543(hw, false);
911
912 /*
913 * Delay to allow any outstanding PCI transactions to complete before
914 * resetting the device
915 */
916 msec_delay(10);
917
918 ctrl = E1000_READ_REG(hw, E1000_CTRL);
919
920 DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
921 if (hw->mac.type == e1000_82543) {
922 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
923 } else {
924 /*
925 * The 82544 can't ACK the 64-bit write when issuing the
926 * reset, so use IO-mapping as a workaround.
927 */
928 E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
929 }
930
931 /*
932 * After MAC reset, force reload of NVM to restore power-on
933 * settings to device.
934 */
935 hw->nvm.ops.reload(hw);
936 msec_delay(2);
937
938 /* Masking off and clearing any pending interrupts */
939 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
940 E1000_READ_REG(hw, E1000_ICR);
941
942 return ret_val;
943 }
944
945 /**
946 * e1000_init_hw_82543 - Initialize hardware
947 * @hw: pointer to the HW structure
948 *
949 * This inits the hardware readying it for operation.
950 **/
951 STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw)
952 {
953 struct e1000_mac_info *mac = &hw->mac;
954 struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
955 u32 ctrl;
956 s32 ret_val;
957 u16 i;
958
959 DEBUGFUNC("e1000_init_hw_82543");
960
961 /* Disabling VLAN filtering */
962 E1000_WRITE_REG(hw, E1000_VET, 0);
963 mac->ops.clear_vfta(hw);
964
965 /* Setup the receive address. */
966 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
967
968 /* Zero out the Multicast HASH table */
969 DEBUGOUT("Zeroing the MTA\n");
970 for (i = 0; i < mac->mta_reg_count; i++) {
971 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
972 E1000_WRITE_FLUSH(hw);
973 }
974
975 /*
976 * Set the PCI priority bit correctly in the CTRL register. This
977 * determines if the adapter gives priority to receives, or if it
978 * gives equal priority to transmits and receives.
979 */
980 if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
981 ctrl = E1000_READ_REG(hw, E1000_CTRL);
982 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
983 }
984
985 e1000_pcix_mmrbc_workaround_generic(hw);
986
987 /* Setup link and flow control */
988 ret_val = mac->ops.setup_link(hw);
989
990 /*
991 * Clear all of the statistics registers (clear on read). It is
992 * important that we do this after we have tried to establish link
993 * because the symbol error count will increment wildly if there
994 * is no link.
995 */
996 e1000_clear_hw_cntrs_82543(hw);
997
998 return ret_val;
999 }
1000
1001 /**
1002 * e1000_setup_link_82543 - Setup flow control and link settings
1003 * @hw: pointer to the HW structure
1004 *
1005 * Read the EEPROM to determine the initial polarity value and write the
1006 * extended device control register with the information before calling
1007 * the generic setup link function, which does the following:
1008 * Determines which flow control settings to use, then configures flow
1009 * control. Calls the appropriate media-specific link configuration
1010 * function. Assuming the adapter has a valid link partner, a valid link
1011 * should be established. Assumes the hardware has previously been reset
1012 * and the transmitter and receiver are not enabled.
1013 **/
1014 STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw)
1015 {
1016 u32 ctrl_ext;
1017 s32 ret_val;
1018 u16 data;
1019
1020 DEBUGFUNC("e1000_setup_link_82543");
1021
1022 /*
1023 * Take the 4 bits from NVM word 0xF that determine the initial
1024 * polarity value for the SW controlled pins, and setup the
1025 * Extended Device Control reg with that info.
1026 * This is needed because one of the SW controlled pins is used for
1027 * signal detection. So this should be done before phy setup.
1028 */
1029 if (hw->mac.type == e1000_82543) {
1030 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1031 if (ret_val) {
1032 DEBUGOUT("NVM Read Error\n");
1033 ret_val = -E1000_ERR_NVM;
1034 goto out;
1035 }
1036 ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1037 NVM_SWDPIO_EXT_SHIFT);
1038 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1039 }
1040
1041 ret_val = e1000_setup_link_generic(hw);
1042
1043 out:
1044 return ret_val;
1045 }
1046
1047 /**
1048 * e1000_setup_copper_link_82543 - Configure copper link settings
1049 * @hw: pointer to the HW structure
1050 *
1051 * Configures the link for auto-neg or forced speed and duplex. Then we check
1052 * for link, once link is established calls to configure collision distance
1053 * and flow control are called.
1054 **/
1055 STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1056 {
1057 u32 ctrl;
1058 s32 ret_val;
1059 bool link;
1060
1061 DEBUGFUNC("e1000_setup_copper_link_82543");
1062
1063 ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1064 /*
1065 * With 82543, we need to force speed and duplex on the MAC
1066 * equal to what the PHY speed and duplex configuration is.
1067 * In addition, we need to perform a hardware reset on the
1068 * PHY to take it out of reset.
1069 */
1070 if (hw->mac.type == e1000_82543) {
1071 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1072 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1073 ret_val = hw->phy.ops.reset(hw);
1074 if (ret_val)
1075 goto out;
1076 } else {
1077 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1078 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1079 }
1080
1081 /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1082 ret_val = e1000_copper_link_setup_m88(hw);
1083 if (ret_val)
1084 goto out;
1085
1086 if (hw->mac.autoneg) {
1087 /*
1088 * Setup autoneg and flow control advertisement and perform
1089 * autonegotiation.
1090 */
1091 ret_val = e1000_copper_link_autoneg(hw);
1092 if (ret_val)
1093 goto out;
1094 } else {
1095 /*
1096 * PHY will be set to 10H, 10F, 100H or 100F
1097 * depending on user settings.
1098 */
1099 DEBUGOUT("Forcing Speed and Duplex\n");
1100 ret_val = e1000_phy_force_speed_duplex_82543(hw);
1101 if (ret_val) {
1102 DEBUGOUT("Error Forcing Speed and Duplex\n");
1103 goto out;
1104 }
1105 }
1106
1107 /*
1108 * Check link status. Wait up to 100 microseconds for link to become
1109 * valid.
1110 */
1111 ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1112 &link);
1113 if (ret_val)
1114 goto out;
1115
1116
1117 if (link) {
1118 DEBUGOUT("Valid link established!!!\n");
1119 /* Config the MAC and PHY after link is up */
1120 if (hw->mac.type == e1000_82544) {
1121 hw->mac.ops.config_collision_dist(hw);
1122 } else {
1123 ret_val = e1000_config_mac_to_phy_82543(hw);
1124 if (ret_val)
1125 goto out;
1126 }
1127 ret_val = e1000_config_fc_after_link_up_generic(hw);
1128 } else {
1129 DEBUGOUT("Unable to establish link!!!\n");
1130 }
1131
1132 out:
1133 return ret_val;
1134 }
1135
1136 /**
1137 * e1000_setup_fiber_link_82543 - Setup link for fiber
1138 * @hw: pointer to the HW structure
1139 *
1140 * Configures collision distance and flow control for fiber links. Upon
1141 * successful setup, poll for link.
1142 **/
1143 STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1144 {
1145 u32 ctrl;
1146 s32 ret_val;
1147
1148 DEBUGFUNC("e1000_setup_fiber_link_82543");
1149
1150 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1151
1152 /* Take the link out of reset */
1153 ctrl &= ~E1000_CTRL_LRST;
1154
1155 hw->mac.ops.config_collision_dist(hw);
1156
1157 ret_val = e1000_commit_fc_settings_generic(hw);
1158 if (ret_val)
1159 goto out;
1160
1161 DEBUGOUT("Auto-negotiation enabled\n");
1162
1163 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1164 E1000_WRITE_FLUSH(hw);
1165 msec_delay(1);
1166
1167 /*
1168 * For these adapters, the SW definable pin 1 is cleared when the
1169 * optics detect a signal. If we have a signal, then poll for a
1170 * "Link-Up" indication.
1171 */
1172 if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
1173 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1174 else
1175 DEBUGOUT("No signal detected\n");
1176
1177 out:
1178 return ret_val;
1179 }
1180
1181 /**
1182 * e1000_check_for_copper_link_82543 - Check for link (Copper)
1183 * @hw: pointer to the HW structure
1184 *
1185 * Checks the phy for link, if link exists, do the following:
1186 * - check for downshift
1187 * - do polarity workaround (if necessary)
1188 * - configure collision distance
1189 * - configure flow control after link up
1190 * - configure tbi compatibility
1191 **/
1192 STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1193 {
1194 struct e1000_mac_info *mac = &hw->mac;
1195 u32 icr, rctl;
1196 s32 ret_val;
1197 u16 speed, duplex;
1198 bool link;
1199
1200 DEBUGFUNC("e1000_check_for_copper_link_82543");
1201
1202 if (!mac->get_link_status) {
1203 ret_val = E1000_SUCCESS;
1204 goto out;
1205 }
1206
1207 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1208 if (ret_val)
1209 goto out;
1210
1211 if (!link)
1212 goto out; /* No link detected */
1213
1214 mac->get_link_status = false;
1215
1216 e1000_check_downshift_generic(hw);
1217
1218 /*
1219 * If we are forcing speed/duplex, then we can return since
1220 * we have already determined whether we have link or not.
1221 */
1222 if (!mac->autoneg) {
1223 /*
1224 * If speed and duplex are forced to 10H or 10F, then we will
1225 * implement the polarity reversal workaround. We disable
1226 * interrupts first, and upon returning, place the devices
1227 * interrupt state to its previous value except for the link
1228 * status change interrupt which will happened due to the
1229 * execution of this workaround.
1230 */
1231 if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1232 E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1233 ret_val = e1000_polarity_reversal_workaround_82543(hw);
1234 icr = E1000_READ_REG(hw, E1000_ICR);
1235 E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1236 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1237 }
1238
1239 ret_val = -E1000_ERR_CONFIG;
1240 goto out;
1241 }
1242
1243 /*
1244 * We have a M88E1000 PHY and Auto-Neg is enabled. If we
1245 * have Si on board that is 82544 or newer, Auto
1246 * Speed Detection takes care of MAC speed/duplex
1247 * configuration. So we only need to configure Collision
1248 * Distance in the MAC. Otherwise, we need to force
1249 * speed/duplex on the MAC to the current PHY speed/duplex
1250 * settings.
1251 */
1252 if (mac->type == e1000_82544)
1253 hw->mac.ops.config_collision_dist(hw);
1254 else {
1255 ret_val = e1000_config_mac_to_phy_82543(hw);
1256 if (ret_val) {
1257 DEBUGOUT("Error configuring MAC to PHY settings\n");
1258 goto out;
1259 }
1260 }
1261
1262 /*
1263 * Configure Flow Control now that Auto-Neg has completed.
1264 * First, we need to restore the desired flow control
1265 * settings because we may have had to re-autoneg with a
1266 * different link partner.
1267 */
1268 ret_val = e1000_config_fc_after_link_up_generic(hw);
1269 if (ret_val)
1270 DEBUGOUT("Error configuring flow control\n");
1271
1272 /*
1273 * At this point we know that we are on copper and we have
1274 * auto-negotiated link. These are conditions for checking the link
1275 * partner capability register. We use the link speed to determine if
1276 * TBI compatibility needs to be turned on or off. If the link is not
1277 * at gigabit speed, then TBI compatibility is not needed. If we are
1278 * at gigabit speed, we turn on TBI compatibility.
1279 */
1280 if (e1000_tbi_compatibility_enabled_82543(hw)) {
1281 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1282 if (ret_val) {
1283 DEBUGOUT("Error getting link speed and duplex\n");
1284 return ret_val;
1285 }
1286 if (speed != SPEED_1000) {
1287 /*
1288 * If link speed is not set to gigabit speed,
1289 * we do not need to enable TBI compatibility.
1290 */
1291 if (e1000_tbi_sbp_enabled_82543(hw)) {
1292 /*
1293 * If we previously were in the mode,
1294 * turn it off.
1295 */
1296 e1000_set_tbi_sbp_82543(hw, false);
1297 rctl = E1000_READ_REG(hw, E1000_RCTL);
1298 rctl &= ~E1000_RCTL_SBP;
1299 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1300 }
1301 } else {
1302 /*
1303 * If TBI compatibility is was previously off,
1304 * turn it on. For compatibility with a TBI link
1305 * partner, we will store bad packets. Some
1306 * frames have an additional byte on the end and
1307 * will look like CRC errors to to the hardware.
1308 */
1309 if (!e1000_tbi_sbp_enabled_82543(hw)) {
1310 e1000_set_tbi_sbp_82543(hw, true);
1311 rctl = E1000_READ_REG(hw, E1000_RCTL);
1312 rctl |= E1000_RCTL_SBP;
1313 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1314 }
1315 }
1316 }
1317 out:
1318 return ret_val;
1319 }
1320
1321 /**
1322 * e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1323 * @hw: pointer to the HW structure
1324 *
1325 * Checks for link up on the hardware. If link is not up and we have
1326 * a signal, then we need to force link up.
1327 **/
1328 STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1329 {
1330 struct e1000_mac_info *mac = &hw->mac;
1331 u32 rxcw, ctrl, status;
1332 s32 ret_val = E1000_SUCCESS;
1333
1334 DEBUGFUNC("e1000_check_for_fiber_link_82543");
1335
1336 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1337 status = E1000_READ_REG(hw, E1000_STATUS);
1338 rxcw = E1000_READ_REG(hw, E1000_RXCW);
1339
1340 /*
1341 * If we don't have link (auto-negotiation failed or link partner
1342 * cannot auto-negotiate), the cable is plugged in (we have signal),
1343 * and our link partner is not trying to auto-negotiate with us (we
1344 * are receiving idles or data), we need to force link up. We also
1345 * need to give auto-negotiation time to complete, in case the cable
1346 * was just plugged in. The autoneg_failed flag does this.
1347 */
1348 /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1349 if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1350 (!(status & E1000_STATUS_LU)) &&
1351 (!(rxcw & E1000_RXCW_C))) {
1352 if (!mac->autoneg_failed) {
1353 mac->autoneg_failed = true;
1354 ret_val = 0;
1355 goto out;
1356 }
1357 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1358
1359 /* Disable auto-negotiation in the TXCW register */
1360 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1361
1362 /* Force link-up and also force full-duplex. */
1363 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1364 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1365 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1366
1367 /* Configure Flow Control after forcing link up. */
1368 ret_val = e1000_config_fc_after_link_up_generic(hw);
1369 if (ret_val) {
1370 DEBUGOUT("Error configuring flow control\n");
1371 goto out;
1372 }
1373 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1374 /*
1375 * If we are forcing link and we are receiving /C/ ordered
1376 * sets, re-enable auto-negotiation in the TXCW register
1377 * and disable forced link in the Device Control register
1378 * in an attempt to auto-negotiate with our link partner.
1379 */
1380 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1381 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1382 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1383
1384 mac->serdes_has_link = true;
1385 }
1386
1387 out:
1388 return ret_val;
1389 }
1390
1391 /**
1392 * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1393 * @hw: pointer to the HW structure
1394 *
1395 * For the 82543 silicon, we need to set the MAC to match the settings
1396 * of the PHY, even if the PHY is auto-negotiating.
1397 **/
1398 STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1399 {
1400 u32 ctrl;
1401 s32 ret_val = E1000_SUCCESS;
1402 u16 phy_data;
1403
1404 DEBUGFUNC("e1000_config_mac_to_phy_82543");
1405
1406 if (!(hw->phy.ops.read_reg))
1407 goto out;
1408
1409 /* Set the bits to force speed and duplex */
1410 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1411 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1412 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1413
1414 /*
1415 * Set up duplex in the Device Control and Transmit Control
1416 * registers depending on negotiated values.
1417 */
1418 ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1419 if (ret_val)
1420 goto out;
1421
1422 ctrl &= ~E1000_CTRL_FD;
1423 if (phy_data & M88E1000_PSSR_DPLX)
1424 ctrl |= E1000_CTRL_FD;
1425
1426 hw->mac.ops.config_collision_dist(hw);
1427
1428 /*
1429 * Set up speed in the Device Control register depending on
1430 * negotiated values.
1431 */
1432 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1433 ctrl |= E1000_CTRL_SPD_1000;
1434 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1435 ctrl |= E1000_CTRL_SPD_100;
1436
1437 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1438
1439 out:
1440 return ret_val;
1441 }
1442
1443 /**
1444 * e1000_write_vfta_82543 - Write value to VLAN filter table
1445 * @hw: pointer to the HW structure
1446 * @offset: the 32-bit offset in which to write the value to.
1447 * @value: the 32-bit value to write at location offset.
1448 *
1449 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
1450 * table.
1451 **/
1452 STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1453 {
1454 u32 temp;
1455
1456 DEBUGFUNC("e1000_write_vfta_82543");
1457
1458 if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1459 temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1460 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1461 E1000_WRITE_FLUSH(hw);
1462 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1463 E1000_WRITE_FLUSH(hw);
1464 } else {
1465 e1000_write_vfta_generic(hw, offset, value);
1466 }
1467 }
1468
1469 /**
1470 * e1000_led_on_82543 - Turn on SW controllable LED
1471 * @hw: pointer to the HW structure
1472 *
1473 * Turns the SW defined LED on.
1474 **/
1475 STATIC s32 e1000_led_on_82543(struct e1000_hw *hw)
1476 {
1477 u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1478
1479 DEBUGFUNC("e1000_led_on_82543");
1480
1481 if (hw->mac.type == e1000_82544 &&
1482 hw->phy.media_type == e1000_media_type_copper) {
1483 /* Clear SW-definable Pin 0 to turn on the LED */
1484 ctrl &= ~E1000_CTRL_SWDPIN0;
1485 ctrl |= E1000_CTRL_SWDPIO0;
1486 } else {
1487 /* Fiber 82544 and all 82543 use this method */
1488 ctrl |= E1000_CTRL_SWDPIN0;
1489 ctrl |= E1000_CTRL_SWDPIO0;
1490 }
1491 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1492
1493 return E1000_SUCCESS;
1494 }
1495
1496 /**
1497 * e1000_led_off_82543 - Turn off SW controllable LED
1498 * @hw: pointer to the HW structure
1499 *
1500 * Turns the SW defined LED off.
1501 **/
1502 STATIC s32 e1000_led_off_82543(struct e1000_hw *hw)
1503 {
1504 u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1505
1506 DEBUGFUNC("e1000_led_off_82543");
1507
1508 if (hw->mac.type == e1000_82544 &&
1509 hw->phy.media_type == e1000_media_type_copper) {
1510 /* Set SW-definable Pin 0 to turn off the LED */
1511 ctrl |= E1000_CTRL_SWDPIN0;
1512 ctrl |= E1000_CTRL_SWDPIO0;
1513 } else {
1514 ctrl &= ~E1000_CTRL_SWDPIN0;
1515 ctrl |= E1000_CTRL_SWDPIO0;
1516 }
1517 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1518
1519 return E1000_SUCCESS;
1520 }
1521
1522 /**
1523 * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1524 * @hw: pointer to the HW structure
1525 *
1526 * Clears the hardware counters by reading the counter registers.
1527 **/
1528 STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1529 {
1530 DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1531
1532 e1000_clear_hw_cntrs_base_generic(hw);
1533
1534 E1000_READ_REG(hw, E1000_PRC64);
1535 E1000_READ_REG(hw, E1000_PRC127);
1536 E1000_READ_REG(hw, E1000_PRC255);
1537 E1000_READ_REG(hw, E1000_PRC511);
1538 E1000_READ_REG(hw, E1000_PRC1023);
1539 E1000_READ_REG(hw, E1000_PRC1522);
1540 E1000_READ_REG(hw, E1000_PTC64);
1541 E1000_READ_REG(hw, E1000_PTC127);
1542 E1000_READ_REG(hw, E1000_PTC255);
1543 E1000_READ_REG(hw, E1000_PTC511);
1544 E1000_READ_REG(hw, E1000_PTC1023);
1545 E1000_READ_REG(hw, E1000_PTC1522);
1546
1547 E1000_READ_REG(hw, E1000_ALGNERRC);
1548 E1000_READ_REG(hw, E1000_RXERRC);
1549 E1000_READ_REG(hw, E1000_TNCRS);
1550 E1000_READ_REG(hw, E1000_CEXTERR);
1551 E1000_READ_REG(hw, E1000_TSCTC);
1552 E1000_READ_REG(hw, E1000_TSCTFC);
1553 }