]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/drivers/net/e1000/base/e1000_ich8lan.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / drivers / net / e1000 / base / e1000_ich8lan.c
1 /*******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ***************************************************************************/
33
34 /* 82562G 10/100 Network Connection
35 * 82562G-2 10/100 Network Connection
36 * 82562GT 10/100 Network Connection
37 * 82562GT-2 10/100 Network Connection
38 * 82562V 10/100 Network Connection
39 * 82562V-2 10/100 Network Connection
40 * 82566DC-2 Gigabit Network Connection
41 * 82566DC Gigabit Network Connection
42 * 82566DM-2 Gigabit Network Connection
43 * 82566DM Gigabit Network Connection
44 * 82566MC Gigabit Network Connection
45 * 82566MM Gigabit Network Connection
46 * 82567LM Gigabit Network Connection
47 * 82567LF Gigabit Network Connection
48 * 82567V Gigabit Network Connection
49 * 82567LM-2 Gigabit Network Connection
50 * 82567LF-2 Gigabit Network Connection
51 * 82567V-2 Gigabit Network Connection
52 * 82567LF-3 Gigabit Network Connection
53 * 82567LM-3 Gigabit Network Connection
54 * 82567LM-4 Gigabit Network Connection
55 * 82577LM Gigabit Network Connection
56 * 82577LC Gigabit Network Connection
57 * 82578DM Gigabit Network Connection
58 * 82578DC Gigabit Network Connection
59 * 82579LM Gigabit Network Connection
60 * 82579V Gigabit Network Connection
61 * Ethernet Connection I217-LM
62 * Ethernet Connection I217-V
63 * Ethernet Connection I218-V
64 * Ethernet Connection I218-LM
65 * Ethernet Connection (2) I218-LM
66 * Ethernet Connection (2) I218-V
67 * Ethernet Connection (3) I218-LM
68 * Ethernet Connection (3) I218-V
69 */
70
71 #include "e1000_api.h"
72
73 STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
74 STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 STATIC int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 STATIC int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 #ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
84 STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85 u8 *mc_addr_list,
86 u32 mc_addr_count);
87 #endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
88 STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
89 STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
90 STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
91 STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
92 bool active);
93 STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
94 bool active);
95 STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96 u16 words, u16 *data);
97 STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
98 u16 words, u16 *data);
99 STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
100 STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
102 u16 *data);
103 STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
104 STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
105 STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
106 STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
107 STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
108 STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
109 STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
110 STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
111 u16 *speed, u16 *duplex);
112 STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
113 STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
114 STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
115 STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
116 STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
117 STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
118 STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw);
119 STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw);
120 STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
121 STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
122 STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
123 STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
124 STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
125 u32 offset, u8 *data);
126 STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
127 u8 size, u16 *data);
128 STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
129 u32 offset, u16 *data);
130 STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
131 u32 offset, u8 byte);
132 STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
133 STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
134 STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
135 STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
136 STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
137 STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
138
139 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
140 /* Offset 04h HSFSTS */
141 union ich8_hws_flash_status {
142 struct ich8_hsfsts {
143 u16 flcdone:1; /* bit 0 Flash Cycle Done */
144 u16 flcerr:1; /* bit 1 Flash Cycle Error */
145 u16 dael:1; /* bit 2 Direct Access error Log */
146 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
147 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
148 u16 reserved1:2; /* bit 13:6 Reserved */
149 u16 reserved2:6; /* bit 13:6 Reserved */
150 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
151 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
152 } hsf_status;
153 u16 regval;
154 };
155
156 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
157 /* Offset 06h FLCTL */
158 union ich8_hws_flash_ctrl {
159 struct ich8_hsflctl {
160 u16 flcgo:1; /* 0 Flash Cycle Go */
161 u16 flcycle:2; /* 2:1 Flash Cycle */
162 u16 reserved:5; /* 7:3 Reserved */
163 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
164 u16 flockdn:6; /* 15:10 Reserved */
165 } hsf_ctrl;
166 u16 regval;
167 };
168
169 /* ICH Flash Region Access Permissions */
170 union ich8_hws_flash_regacc {
171 struct ich8_flracc {
172 u32 grra:8; /* 0:7 GbE region Read Access */
173 u32 grwa:8; /* 8:15 GbE region Write Access */
174 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
175 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
176 } hsf_flregacc;
177 u16 regval;
178 };
179
180 /**
181 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
182 * @hw: pointer to the HW structure
183 *
184 * Test access to the PHY registers by reading the PHY ID registers. If
185 * the PHY ID is already known (e.g. resume path) compare it with known ID,
186 * otherwise assume the read PHY ID is correct if it is valid.
187 *
188 * Assumes the sw/fw/hw semaphore is already acquired.
189 **/
190 STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
191 {
192 u16 phy_reg = 0;
193 u32 phy_id = 0;
194 s32 ret_val = 0;
195 u16 retry_count;
196 u32 mac_reg = 0;
197
198 for (retry_count = 0; retry_count < 2; retry_count++) {
199 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
200 if (ret_val || (phy_reg == 0xFFFF))
201 continue;
202 phy_id = (u32)(phy_reg << 16);
203
204 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
205 if (ret_val || (phy_reg == 0xFFFF)) {
206 phy_id = 0;
207 continue;
208 }
209 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
210 break;
211 }
212
213 if (hw->phy.id) {
214 if (hw->phy.id == phy_id)
215 goto out;
216 } else if (phy_id) {
217 hw->phy.id = phy_id;
218 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
219 goto out;
220 }
221
222 /* In case the PHY needs to be in mdio slow mode,
223 * set slow mode and try to get the PHY id again.
224 */
225 if (hw->mac.type < e1000_pch_lpt) {
226 hw->phy.ops.release(hw);
227 ret_val = e1000_set_mdio_slow_mode_hv(hw);
228 if (!ret_val)
229 ret_val = e1000_get_phy_id(hw);
230 hw->phy.ops.acquire(hw);
231 }
232
233 if (ret_val)
234 return false;
235 out:
236 if (hw->mac.type == e1000_pch_lpt) {
237 /* Only unforce SMBus if ME is not active */
238 if (!(E1000_READ_REG(hw, E1000_FWSM) &
239 E1000_ICH_FWSM_FW_VALID)) {
240 /* Unforce SMBus mode in PHY */
241 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
242 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
243 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
244
245 /* Unforce SMBus mode in MAC */
246 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
247 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
248 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
249 }
250 }
251
252 return true;
253 }
254
255 /**
256 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
257 * @hw: pointer to the HW structure
258 *
259 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
260 * used to reset the PHY to a quiescent state when necessary.
261 **/
262 STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
263 {
264 u32 mac_reg;
265
266 DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
267
268 /* Set Phy Config Counter to 50msec */
269 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
270 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
271 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
272 E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
273
274 /* Toggle LANPHYPC Value bit */
275 mac_reg = E1000_READ_REG(hw, E1000_CTRL);
276 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
277 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
278 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
279 E1000_WRITE_FLUSH(hw);
280 usec_delay(10);
281 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
282 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
283 E1000_WRITE_FLUSH(hw);
284
285 if (hw->mac.type < e1000_pch_lpt) {
286 msec_delay(50);
287 } else {
288 u16 count = 20;
289
290 do {
291 msec_delay(5);
292 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
293 E1000_CTRL_EXT_LPCD) && count--);
294
295 msec_delay(30);
296 }
297 }
298
299 /**
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
302 *
303 * Workarounds/flow necessary for PHY initialization during driver load
304 * and resume paths.
305 **/
306 STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
309 s32 ret_val;
310
311 DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
312
313 /* Gate automatic PHY configuration by hardware on managed and
314 * non-managed 82579 and newer adapters.
315 */
316 e1000_gate_hw_phy_config_ich8lan(hw, true);
317
318 #ifdef ULP_SUPPORT
319 /* It is not possible to be certain of the current state of ULP
320 * so forcibly disable it.
321 */
322 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
323
324 #endif /* ULP_SUPPORT */
325 ret_val = hw->phy.ops.acquire(hw);
326 if (ret_val) {
327 DEBUGOUT("Failed to initialize PHY flow\n");
328 goto out;
329 }
330
331 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
332 * inaccessible and resetting the PHY is not blocked, toggle the
333 * LANPHYPC Value bit to force the interconnect to PCIe mode.
334 */
335 switch (hw->mac.type) {
336 case e1000_pch_lpt:
337 if (e1000_phy_is_accessible_pchlan(hw))
338 break;
339
340 /* Before toggling LANPHYPC, see if PHY is accessible by
341 * forcing MAC to SMBus mode first.
342 */
343 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
344 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
345 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
346
347 /* Wait 50 milliseconds for MAC to finish any retries
348 * that it might be trying to perform from previous
349 * attempts to acknowledge any phy read requests.
350 */
351 msec_delay(50);
352
353 /* fall-through */
354 case e1000_pch2lan:
355 if (e1000_phy_is_accessible_pchlan(hw))
356 break;
357
358 /* fall-through */
359 case e1000_pchlan:
360 if ((hw->mac.type == e1000_pchlan) &&
361 (fwsm & E1000_ICH_FWSM_FW_VALID))
362 break;
363
364 if (hw->phy.ops.check_reset_block(hw)) {
365 DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
366 ret_val = -E1000_ERR_PHY;
367 break;
368 }
369
370 /* Toggle LANPHYPC Value bit */
371 e1000_toggle_lanphypc_pch_lpt(hw);
372 if (hw->mac.type >= e1000_pch_lpt) {
373 if (e1000_phy_is_accessible_pchlan(hw))
374 break;
375
376 /* Toggling LANPHYPC brings the PHY out of SMBus mode
377 * so ensure that the MAC is also out of SMBus mode
378 */
379 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
380 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
381 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
382
383 if (e1000_phy_is_accessible_pchlan(hw))
384 break;
385
386 ret_val = -E1000_ERR_PHY;
387 }
388 break;
389 default:
390 break;
391 }
392
393 hw->phy.ops.release(hw);
394 if (!ret_val) {
395
396 /* Check to see if able to reset PHY. Print error if not */
397 if (hw->phy.ops.check_reset_block(hw)) {
398 ERROR_REPORT("Reset blocked by ME\n");
399 goto out;
400 }
401
402 /* Reset the PHY before any access to it. Doing so, ensures
403 * that the PHY is in a known good state before we read/write
404 * PHY registers. The generic reset is sufficient here,
405 * because we haven't determined the PHY type yet.
406 */
407 ret_val = e1000_phy_hw_reset_generic(hw);
408 if (ret_val)
409 goto out;
410
411 /* On a successful reset, possibly need to wait for the PHY
412 * to quiesce to an accessible state before returning control
413 * to the calling function. If the PHY does not quiesce, then
414 * return E1000E_BLK_PHY_RESET, as this is the condition that
415 * the PHY is in.
416 */
417 ret_val = hw->phy.ops.check_reset_block(hw);
418 if (ret_val)
419 ERROR_REPORT("ME blocked access to PHY after reset\n");
420 }
421
422 out:
423 /* Ungate automatic PHY configuration on non-managed 82579 */
424 if ((hw->mac.type == e1000_pch2lan) &&
425 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
426 msec_delay(10);
427 e1000_gate_hw_phy_config_ich8lan(hw, false);
428 }
429
430 return ret_val;
431 }
432
433 /**
434 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
435 * @hw: pointer to the HW structure
436 *
437 * Initialize family-specific PHY parameters and function pointers.
438 **/
439 STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 {
441 struct e1000_phy_info *phy = &hw->phy;
442 s32 ret_val;
443
444 DEBUGFUNC("e1000_init_phy_params_pchlan");
445
446 phy->addr = 1;
447 phy->reset_delay_us = 100;
448
449 phy->ops.acquire = e1000_acquire_swflag_ich8lan;
450 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
451 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
452 phy->ops.set_page = e1000_set_page_igp;
453 phy->ops.read_reg = e1000_read_phy_reg_hv;
454 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
455 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
456 phy->ops.release = e1000_release_swflag_ich8lan;
457 phy->ops.reset = e1000_phy_hw_reset_ich8lan;
458 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
459 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
460 phy->ops.write_reg = e1000_write_phy_reg_hv;
461 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
462 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
463 phy->ops.power_up = e1000_power_up_phy_copper;
464 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
465 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
466
467 phy->id = e1000_phy_unknown;
468
469 ret_val = e1000_init_phy_workarounds_pchlan(hw);
470 if (ret_val)
471 return ret_val;
472
473 if (phy->id == e1000_phy_unknown)
474 switch (hw->mac.type) {
475 default:
476 ret_val = e1000_get_phy_id(hw);
477 if (ret_val)
478 return ret_val;
479 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
480 break;
481 /* fall-through */
482 case e1000_pch2lan:
483 case e1000_pch_lpt:
484 /* In case the PHY needs to be in mdio slow mode,
485 * set slow mode and try to get the PHY id again.
486 */
487 ret_val = e1000_set_mdio_slow_mode_hv(hw);
488 if (ret_val)
489 return ret_val;
490 ret_val = e1000_get_phy_id(hw);
491 if (ret_val)
492 return ret_val;
493 break;
494 }
495 phy->type = e1000_get_phy_type_from_id(phy->id);
496
497 switch (phy->type) {
498 case e1000_phy_82577:
499 case e1000_phy_82579:
500 case e1000_phy_i217:
501 phy->ops.check_polarity = e1000_check_polarity_82577;
502 phy->ops.force_speed_duplex =
503 e1000_phy_force_speed_duplex_82577;
504 phy->ops.get_cable_length = e1000_get_cable_length_82577;
505 phy->ops.get_info = e1000_get_phy_info_82577;
506 phy->ops.commit = e1000_phy_sw_reset_generic;
507 break;
508 case e1000_phy_82578:
509 phy->ops.check_polarity = e1000_check_polarity_m88;
510 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
511 phy->ops.get_cable_length = e1000_get_cable_length_m88;
512 phy->ops.get_info = e1000_get_phy_info_m88;
513 break;
514 default:
515 ret_val = -E1000_ERR_PHY;
516 break;
517 }
518
519 return ret_val;
520 }
521
522 /**
523 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
524 * @hw: pointer to the HW structure
525 *
526 * Initialize family-specific PHY parameters and function pointers.
527 **/
528 STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
529 {
530 struct e1000_phy_info *phy = &hw->phy;
531 s32 ret_val;
532 u16 i = 0;
533
534 DEBUGFUNC("e1000_init_phy_params_ich8lan");
535
536 phy->addr = 1;
537 phy->reset_delay_us = 100;
538
539 phy->ops.acquire = e1000_acquire_swflag_ich8lan;
540 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
541 phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
542 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
543 phy->ops.read_reg = e1000_read_phy_reg_igp;
544 phy->ops.release = e1000_release_swflag_ich8lan;
545 phy->ops.reset = e1000_phy_hw_reset_ich8lan;
546 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
547 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
548 phy->ops.write_reg = e1000_write_phy_reg_igp;
549 phy->ops.power_up = e1000_power_up_phy_copper;
550 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
551
552 /* We may need to do this twice - once for IGP and if that fails,
553 * we'll set BM func pointers and try again
554 */
555 ret_val = e1000_determine_phy_address(hw);
556 if (ret_val) {
557 phy->ops.write_reg = e1000_write_phy_reg_bm;
558 phy->ops.read_reg = e1000_read_phy_reg_bm;
559 ret_val = e1000_determine_phy_address(hw);
560 if (ret_val) {
561 DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
562 return ret_val;
563 }
564 }
565
566 phy->id = 0;
567 while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
568 (i++ < 100)) {
569 msec_delay(1);
570 ret_val = e1000_get_phy_id(hw);
571 if (ret_val)
572 return ret_val;
573 }
574
575 /* Verify phy id */
576 switch (phy->id) {
577 case IGP03E1000_E_PHY_ID:
578 phy->type = e1000_phy_igp_3;
579 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
580 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
581 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
582 phy->ops.get_info = e1000_get_phy_info_igp;
583 phy->ops.check_polarity = e1000_check_polarity_igp;
584 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
585 break;
586 case IFE_E_PHY_ID:
587 case IFE_PLUS_E_PHY_ID:
588 case IFE_C_E_PHY_ID:
589 phy->type = e1000_phy_ife;
590 phy->autoneg_mask = E1000_ALL_NOT_GIG;
591 phy->ops.get_info = e1000_get_phy_info_ife;
592 phy->ops.check_polarity = e1000_check_polarity_ife;
593 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
594 break;
595 case BME1000_E_PHY_ID:
596 phy->type = e1000_phy_bm;
597 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
598 phy->ops.read_reg = e1000_read_phy_reg_bm;
599 phy->ops.write_reg = e1000_write_phy_reg_bm;
600 phy->ops.commit = e1000_phy_sw_reset_generic;
601 phy->ops.get_info = e1000_get_phy_info_m88;
602 phy->ops.check_polarity = e1000_check_polarity_m88;
603 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
604 break;
605 default:
606 return -E1000_ERR_PHY;
607 break;
608 }
609
610 return E1000_SUCCESS;
611 }
612
613 /**
614 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
615 * @hw: pointer to the HW structure
616 *
617 * Initialize family-specific NVM parameters and function
618 * pointers.
619 **/
620 STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
621 {
622 struct e1000_nvm_info *nvm = &hw->nvm;
623 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
624 u32 gfpreg, sector_base_addr, sector_end_addr;
625 u16 i;
626
627 DEBUGFUNC("e1000_init_nvm_params_ich8lan");
628
629 /* Can't read flash registers if the register set isn't mapped. */
630 nvm->type = e1000_nvm_flash_sw;
631 if (!hw->flash_address) {
632 DEBUGOUT("ERROR: Flash registers not mapped\n");
633 return -E1000_ERR_CONFIG;
634 }
635
636 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
637
638 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
639 * Add 1 to sector_end_addr since this sector is included in
640 * the overall size.
641 */
642 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
643 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
644
645 /* flash_base_addr is byte-aligned */
646 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
647
648 /* find total size of the NVM, then cut in half since the total
649 * size represents two separate NVM banks.
650 */
651 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
652 << FLASH_SECTOR_ADDR_SHIFT);
653 nvm->flash_bank_size /= 2;
654 /* Adjust to word count */
655 nvm->flash_bank_size /= sizeof(u16);
656
657 nvm->word_size = E1000_SHADOW_RAM_WORDS;
658
659 /* Clear shadow ram */
660 for (i = 0; i < nvm->word_size; i++) {
661 dev_spec->shadow_ram[i].modified = false;
662 dev_spec->shadow_ram[i].value = 0xFFFF;
663 }
664
665 E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
666 E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
667
668 /* Function Pointers */
669 nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
670 nvm->ops.release = e1000_release_nvm_ich8lan;
671 nvm->ops.read = e1000_read_nvm_ich8lan;
672 nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
673 nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
674 nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
675 nvm->ops.write = e1000_write_nvm_ich8lan;
676
677 return E1000_SUCCESS;
678 }
679
680 /**
681 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
682 * @hw: pointer to the HW structure
683 *
684 * Initialize family-specific MAC parameters and function
685 * pointers.
686 **/
687 STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
688 {
689 struct e1000_mac_info *mac = &hw->mac;
690 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
691 u16 pci_cfg;
692 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
693
694 DEBUGFUNC("e1000_init_mac_params_ich8lan");
695
696 /* Set media type function pointer */
697 hw->phy.media_type = e1000_media_type_copper;
698
699 /* Set mta register count */
700 mac->mta_reg_count = 32;
701 /* Set rar entry count */
702 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
703 if (mac->type == e1000_ich8lan)
704 mac->rar_entry_count--;
705 /* Set if part includes ASF firmware */
706 mac->asf_firmware_present = true;
707 /* FWSM register */
708 mac->has_fwsm = true;
709 /* ARC subsystem not supported */
710 mac->arc_subsystem_valid = false;
711 /* Adaptive IFS supported */
712 mac->adaptive_ifs = true;
713
714 /* Function pointers */
715
716 /* bus type/speed/width */
717 mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
718 /* function id */
719 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
720 /* reset */
721 mac->ops.reset_hw = e1000_reset_hw_ich8lan;
722 /* hw initialization */
723 mac->ops.init_hw = e1000_init_hw_ich8lan;
724 /* link setup */
725 mac->ops.setup_link = e1000_setup_link_ich8lan;
726 /* physical interface setup */
727 mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
728 /* check for link */
729 mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
730 /* link info */
731 mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
732 /* multicast address update */
733 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
734 /* clear hardware counters */
735 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
736
737 /* LED and other operations */
738 switch (mac->type) {
739 case e1000_ich8lan:
740 case e1000_ich9lan:
741 case e1000_ich10lan:
742 /* check management mode */
743 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
744 /* ID LED init */
745 mac->ops.id_led_init = e1000_id_led_init_generic;
746 /* blink LED */
747 mac->ops.blink_led = e1000_blink_led_generic;
748 /* setup LED */
749 mac->ops.setup_led = e1000_setup_led_generic;
750 /* cleanup LED */
751 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
752 /* turn on/off LED */
753 mac->ops.led_on = e1000_led_on_ich8lan;
754 mac->ops.led_off = e1000_led_off_ich8lan;
755 break;
756 case e1000_pch2lan:
757 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
758 mac->ops.rar_set = e1000_rar_set_pch2lan;
759 /* fall-through */
760 case e1000_pch_lpt:
761 #ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
762 /* multicast address update for pch2 */
763 mac->ops.update_mc_addr_list =
764 e1000_update_mc_addr_list_pch2lan;
765 /* fall-through */
766 #endif
767 case e1000_pchlan:
768 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
769 /* save PCH revision_id */
770 e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
771 hw->revision_id = (u8)(pci_cfg &= 0x000F);
772 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
773 /* check management mode */
774 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
775 /* ID LED init */
776 mac->ops.id_led_init = e1000_id_led_init_pchlan;
777 /* setup LED */
778 mac->ops.setup_led = e1000_setup_led_pchlan;
779 /* cleanup LED */
780 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
781 /* turn on/off LED */
782 mac->ops.led_on = e1000_led_on_pchlan;
783 mac->ops.led_off = e1000_led_off_pchlan;
784 break;
785 default:
786 break;
787 }
788
789 if (mac->type == e1000_pch_lpt) {
790 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
791 mac->ops.rar_set = e1000_rar_set_pch_lpt;
792 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
793 }
794
795 /* Enable PCS Lock-loss workaround for ICH8 */
796 if (mac->type == e1000_ich8lan)
797 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
798
799 return E1000_SUCCESS;
800 }
801
802 /**
803 * __e1000_access_emi_reg_locked - Read/write EMI register
804 * @hw: pointer to the HW structure
805 * @addr: EMI address to program
806 * @data: pointer to value to read/write from/to the EMI address
807 * @read: boolean flag to indicate read or write
808 *
809 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
810 **/
811 STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
812 u16 *data, bool read)
813 {
814 s32 ret_val;
815
816 DEBUGFUNC("__e1000_access_emi_reg_locked");
817
818 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
819 if (ret_val)
820 return ret_val;
821
822 if (read)
823 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
824 data);
825 else
826 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
827 *data);
828
829 return ret_val;
830 }
831
832 /**
833 * e1000_read_emi_reg_locked - Read Extended Management Interface register
834 * @hw: pointer to the HW structure
835 * @addr: EMI address to program
836 * @data: value to be read from the EMI address
837 *
838 * Assumes the SW/FW/HW Semaphore is already acquired.
839 **/
840 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
841 {
842 DEBUGFUNC("e1000_read_emi_reg_locked");
843
844 return __e1000_access_emi_reg_locked(hw, addr, data, true);
845 }
846
847 /**
848 * e1000_write_emi_reg_locked - Write Extended Management Interface register
849 * @hw: pointer to the HW structure
850 * @addr: EMI address to program
851 * @data: value to be written to the EMI address
852 *
853 * Assumes the SW/FW/HW Semaphore is already acquired.
854 **/
855 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
856 {
857 DEBUGFUNC("e1000_read_emi_reg_locked");
858
859 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
860 }
861
862 /**
863 * e1000_set_eee_pchlan - Enable/disable EEE support
864 * @hw: pointer to the HW structure
865 *
866 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
867 * the link and the EEE capabilities of the link partner. The LPI Control
868 * register bits will remain set only if/when link is up.
869 *
870 * EEE LPI must not be asserted earlier than one second after link is up.
871 * On 82579, EEE LPI should not be enabled until such time otherwise there
872 * can be link issues with some switches. Other devices can have EEE LPI
873 * enabled immediately upon link up since they have a timer in hardware which
874 * prevents LPI from being asserted too early.
875 **/
876 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
877 {
878 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
879 s32 ret_val;
880 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
881
882 DEBUGFUNC("e1000_set_eee_pchlan");
883
884 switch (hw->phy.type) {
885 case e1000_phy_82579:
886 lpa = I82579_EEE_LP_ABILITY;
887 pcs_status = I82579_EEE_PCS_STATUS;
888 adv_addr = I82579_EEE_ADVERTISEMENT;
889 break;
890 case e1000_phy_i217:
891 lpa = I217_EEE_LP_ABILITY;
892 pcs_status = I217_EEE_PCS_STATUS;
893 adv_addr = I217_EEE_ADVERTISEMENT;
894 break;
895 default:
896 return E1000_SUCCESS;
897 }
898
899 ret_val = hw->phy.ops.acquire(hw);
900 if (ret_val)
901 return ret_val;
902
903 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
904 if (ret_val)
905 goto release;
906
907 /* Clear bits that enable EEE in various speeds */
908 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
909
910 /* Enable EEE if not disabled by user */
911 if (!dev_spec->eee_disable) {
912 /* Save off link partner's EEE ability */
913 ret_val = e1000_read_emi_reg_locked(hw, lpa,
914 &dev_spec->eee_lp_ability);
915 if (ret_val)
916 goto release;
917
918 /* Read EEE advertisement */
919 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
920 if (ret_val)
921 goto release;
922
923 /* Enable EEE only for speeds in which the link partner is
924 * EEE capable and for which we advertise EEE.
925 */
926 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
927 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
928
929 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
930 hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
931 if (data & NWAY_LPAR_100TX_FD_CAPS)
932 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
933 else
934 /* EEE is not supported in 100Half, so ignore
935 * partner's EEE in 100 ability if full-duplex
936 * is not advertised.
937 */
938 dev_spec->eee_lp_ability &=
939 ~I82579_EEE_100_SUPPORTED;
940 }
941 }
942
943 if (hw->phy.type == e1000_phy_82579) {
944 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
945 &data);
946 if (ret_val)
947 goto release;
948
949 data &= ~I82579_LPI_100_PLL_SHUT;
950 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
951 data);
952 }
953
954 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
955 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
956 if (ret_val)
957 goto release;
958
959 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
960 release:
961 hw->phy.ops.release(hw);
962
963 return ret_val;
964 }
965
966 /**
967 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
968 * @hw: pointer to the HW structure
969 * @link: link up bool flag
970 *
971 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
972 * preventing further DMA write requests. Workaround the issue by disabling
973 * the de-assertion of the clock request when in 1Gpbs mode.
974 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
975 * speeds in order to avoid Tx hangs.
976 **/
977 STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
978 {
979 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
980 u32 status = E1000_READ_REG(hw, E1000_STATUS);
981 s32 ret_val = E1000_SUCCESS;
982 u16 reg;
983
984 if (link && (status & E1000_STATUS_SPEED_1000)) {
985 ret_val = hw->phy.ops.acquire(hw);
986 if (ret_val)
987 return ret_val;
988
989 ret_val =
990 e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
991 &reg);
992 if (ret_val)
993 goto release;
994
995 ret_val =
996 e1000_write_kmrn_reg_locked(hw,
997 E1000_KMRNCTRLSTA_K1_CONFIG,
998 reg &
999 ~E1000_KMRNCTRLSTA_K1_ENABLE);
1000 if (ret_val)
1001 goto release;
1002
1003 usec_delay(10);
1004
1005 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1006 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1007
1008 ret_val =
1009 e1000_write_kmrn_reg_locked(hw,
1010 E1000_KMRNCTRLSTA_K1_CONFIG,
1011 reg);
1012 release:
1013 hw->phy.ops.release(hw);
1014 } else {
1015 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1016 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1017
1018 if (!link || ((status & E1000_STATUS_SPEED_100) &&
1019 (status & E1000_STATUS_FD)))
1020 goto update_fextnvm6;
1021
1022 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1023 if (ret_val)
1024 return ret_val;
1025
1026 /* Clear link status transmit timeout */
1027 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1028
1029 if (status & E1000_STATUS_SPEED_100) {
1030 /* Set inband Tx timeout to 5x10us for 100Half */
1031 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1032
1033 /* Do not extend the K1 entry latency for 100Half */
1034 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1035 } else {
1036 /* Set inband Tx timeout to 50x10us for 10Full/Half */
1037 reg |= 50 <<
1038 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1039
1040 /* Extend the K1 entry latency for 10 Mbps */
1041 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1042 }
1043
1044 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1045 if (ret_val)
1046 return ret_val;
1047
1048 update_fextnvm6:
1049 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1050 }
1051
1052 return ret_val;
1053 }
1054
1055 #ifdef ULP_SUPPORT
1056 /**
1057 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1058 * @hw: pointer to the HW structure
1059 * @to_sx: boolean indicating a system power state transition to Sx
1060 *
1061 * When link is down, configure ULP mode to significantly reduce the power
1062 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1063 * ME firmware to start the ULP configuration. If not on an ME enabled
1064 * system, configure the ULP mode by software.
1065 */
1066 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1067 {
1068 u32 mac_reg;
1069 s32 ret_val = E1000_SUCCESS;
1070 u16 phy_reg;
1071
1072 if ((hw->mac.type < e1000_pch_lpt) ||
1073 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1074 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1075 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1076 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1077 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1078 return 0;
1079
1080 if (!to_sx) {
1081 int i = 0;
1082 /* Poll up to 5 seconds for Cable Disconnected indication */
1083 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1084 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1085 /* Bail if link is re-acquired */
1086 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1087 return -E1000_ERR_PHY;
1088 if (i++ == 100)
1089 break;
1090
1091 msec_delay(50);
1092 }
1093 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1094 (E1000_READ_REG(hw, E1000_FEXT) &
1095 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1096 i * 50);
1097 if (!(E1000_READ_REG(hw, E1000_FEXT) &
1098 E1000_FEXT_PHY_CABLE_DISCONNECTED))
1099 return 0;
1100 }
1101
1102 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103 /* Request ME configure ULP mode in the PHY */
1104 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1105 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1107
1108 goto out;
1109 }
1110
1111 ret_val = hw->phy.ops.acquire(hw);
1112 if (ret_val)
1113 goto out;
1114
1115 /* During S0 Idle keep the phy in PCI-E mode */
1116 if (hw->dev_spec.ich8lan.smbus_disable)
1117 goto skip_smbus;
1118
1119 /* Force SMBus mode in PHY */
1120 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1121 if (ret_val)
1122 goto release;
1123 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1124 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1125
1126 /* Force SMBus mode in MAC */
1127 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1128 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1129 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1130
1131 skip_smbus:
1132 if (!to_sx) {
1133 /* Change the 'Link Status Change' interrupt to trigger
1134 * on 'Cable Status Change'
1135 */
1136 ret_val = e1000_read_kmrn_reg_locked(hw,
1137 E1000_KMRNCTRLSTA_OP_MODES,
1138 &phy_reg);
1139 if (ret_val)
1140 goto release;
1141 phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
1142 e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
1143 phy_reg);
1144 }
1145
1146 /* Set Inband ULP Exit, Reset to SMBus mode and
1147 * Disable SMBus Release on PERST# in PHY
1148 */
1149 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1150 if (ret_val)
1151 goto release;
1152 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1153 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1154 if (to_sx) {
1155 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1156 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1157 else
1158 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1159
1160 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1161 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1162 } else {
1163 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1164 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1165 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1166 }
1167 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1168
1169 /* Set Disable SMBus Release on PERST# in MAC */
1170 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1171 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1172 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1173
1174 /* Commit ULP changes in PHY by starting auto ULP configuration */
1175 phy_reg |= I218_ULP_CONFIG1_START;
1176 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1177
1178 if (!to_sx) {
1179 /* Disable Tx so that the MAC doesn't send any (buffered)
1180 * packets to the PHY.
1181 */
1182 mac_reg = E1000_READ_REG(hw, E1000_TCTL);
1183 mac_reg &= ~E1000_TCTL_EN;
1184 E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
1185 }
1186
1187 release:
1188 hw->phy.ops.release(hw);
1189 out:
1190 if (ret_val)
1191 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1192 else
1193 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1194
1195 return ret_val;
1196 }
1197
1198 /**
1199 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1200 * @hw: pointer to the HW structure
1201 * @force: boolean indicating whether or not to force disabling ULP
1202 *
1203 * Un-configure ULP mode when link is up, the system is transitioned from
1204 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1205 * system, poll for an indication from ME that ULP has been un-configured.
1206 * If not on an ME enabled system, un-configure the ULP mode by software.
1207 *
1208 * During nominal operation, this function is called when link is acquired
1209 * to disable ULP mode (force=false); otherwise, for example when unloading
1210 * the driver or during Sx->S0 transitions, this is called with force=true
1211 * to forcibly disable ULP.
1212
1213 * When the cable is plugged in while the device is in D0, a Cable Status
1214 * Change interrupt is generated which causes this function to be called
1215 * to partially disable ULP mode and restart autonegotiation. This function
1216 * is then called again due to the resulting Link Status Change interrupt
1217 * to finish cleaning up after the ULP flow.
1218 */
1219 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1220 {
1221 s32 ret_val = E1000_SUCCESS;
1222 u32 mac_reg;
1223 u16 phy_reg;
1224 int i = 0;
1225
1226 if ((hw->mac.type < e1000_pch_lpt) ||
1227 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1228 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1229 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1230 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1231 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1232 return 0;
1233
1234 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1235 if (force) {
1236 /* Request ME un-configure ULP mode in the PHY */
1237 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1238 mac_reg &= ~E1000_H2ME_ULP;
1239 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1240 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1241 }
1242
1243 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1244 while (E1000_READ_REG(hw, E1000_FWSM) &
1245 E1000_FWSM_ULP_CFG_DONE) {
1246 if (i++ == 10) {
1247 ret_val = -E1000_ERR_PHY;
1248 goto out;
1249 }
1250
1251 msec_delay(10);
1252 }
1253 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1254
1255 if (force) {
1256 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1257 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1258 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1259 } else {
1260 /* Clear H2ME.ULP after ME ULP configuration */
1261 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1262 mac_reg &= ~E1000_H2ME_ULP;
1263 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1264
1265 /* Restore link speed advertisements and restart
1266 * Auto-negotiation
1267 */
1268 if (hw->mac.autoneg) {
1269 ret_val = e1000_phy_setup_autoneg(hw);
1270 if (ret_val)
1271 goto out;
1272 } else {
1273 ret_val = e1000_setup_copper_link_generic(hw);
1274 if (ret_val)
1275 goto out;
1276 }
1277 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1278 }
1279
1280 goto out;
1281 }
1282
1283 ret_val = hw->phy.ops.acquire(hw);
1284 if (ret_val)
1285 goto out;
1286
1287 /* Revert the change to the 'Link Status Change'
1288 * interrupt to trigger on 'Cable Status Change'
1289 */
1290 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
1291 &phy_reg);
1292 if (ret_val)
1293 goto release;
1294 phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
1295 e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg);
1296
1297 if (force)
1298 /* Toggle LANPHYPC Value bit */
1299 e1000_toggle_lanphypc_pch_lpt(hw);
1300
1301 /* Unforce SMBus mode in PHY */
1302 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1303 if (ret_val) {
1304 /* The MAC might be in PCIe mode, so temporarily force to
1305 * SMBus mode in order to access the PHY.
1306 */
1307 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1308 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1309 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1310
1311 msec_delay(50);
1312
1313 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1314 &phy_reg);
1315 if (ret_val)
1316 goto release;
1317 }
1318 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1319 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1320
1321 /* Unforce SMBus mode in MAC */
1322 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1323 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1324 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1325
1326 /* When ULP mode was previously entered, K1 was disabled by the
1327 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1328 */
1329 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1330 if (ret_val)
1331 goto release;
1332 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1333 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1334
1335 /* Clear ULP enabled configuration */
1336 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1337 if (ret_val)
1338 goto release;
1339 /* CSC interrupt received due to ULP Indication */
1340 if ((phy_reg & I218_ULP_CONFIG1_IND) || force) {
1341 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1342 I218_ULP_CONFIG1_STICKY_ULP |
1343 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1344 I218_ULP_CONFIG1_WOL_HOST |
1345 I218_ULP_CONFIG1_INBAND_EXIT |
1346 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1347 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1348
1349 /* Commit ULP changes by starting auto ULP configuration */
1350 phy_reg |= I218_ULP_CONFIG1_START;
1351 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1352
1353 /* Clear Disable SMBus Release on PERST# in MAC */
1354 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1355 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1356 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1357
1358 if (!force) {
1359 hw->phy.ops.release(hw);
1360
1361 if (hw->mac.autoneg)
1362 e1000_phy_setup_autoneg(hw);
1363
1364 e1000_sw_lcd_config_ich8lan(hw);
1365
1366 e1000_oem_bits_config_ich8lan(hw, true);
1367
1368 /* Set ULP state to unknown and return non-zero to
1369 * indicate no link (yet) and re-enter on the next LSC
1370 * to finish disabling ULP flow.
1371 */
1372 hw->dev_spec.ich8lan.ulp_state =
1373 e1000_ulp_state_unknown;
1374
1375 return 1;
1376 }
1377 }
1378
1379 /* Re-enable Tx */
1380 mac_reg = E1000_READ_REG(hw, E1000_TCTL);
1381 mac_reg |= E1000_TCTL_EN;
1382 E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
1383
1384 release:
1385 hw->phy.ops.release(hw);
1386 if (force) {
1387 hw->phy.ops.reset(hw);
1388 msec_delay(50);
1389 }
1390 out:
1391 if (ret_val)
1392 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1393 else
1394 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1395
1396 return ret_val;
1397 }
1398
1399 #endif /* ULP_SUPPORT */
1400 /**
1401 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1402 * @hw: pointer to the HW structure
1403 *
1404 * Checks to see of the link status of the hardware has changed. If a
1405 * change in link status has been detected, then we read the PHY registers
1406 * to get the current speed/duplex if link exists.
1407 **/
1408 STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1409 {
1410 struct e1000_mac_info *mac = &hw->mac;
1411 s32 ret_val, tipg_reg = 0;
1412 u16 emi_addr, emi_val = 0;
1413 bool link = false;
1414 u16 phy_reg;
1415
1416 DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1417
1418 /* We only want to go out to the PHY registers to see if Auto-Neg
1419 * has completed and/or if our link status has changed. The
1420 * get_link_status flag is set upon receiving a Link Status
1421 * Change or Rx Sequence Error interrupt.
1422 */
1423 if (!mac->get_link_status)
1424 return E1000_SUCCESS;
1425
1426 if ((hw->mac.type < e1000_pch_lpt) ||
1427 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1428 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) {
1429 /* First we want to see if the MII Status Register reports
1430 * link. If so, then we want to get the current speed/duplex
1431 * of the PHY.
1432 */
1433 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1434 if (ret_val)
1435 return ret_val;
1436 } else {
1437 /* Check the MAC's STATUS register to determine link state
1438 * since the PHY could be inaccessible while in ULP mode.
1439 */
1440 link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
1441 if (link)
1442 ret_val = e1000_disable_ulp_lpt_lp(hw, false);
1443 else
1444 ret_val = e1000_enable_ulp_lpt_lp(hw, false);
1445 if (ret_val)
1446 return ret_val;
1447 }
1448
1449 if (hw->mac.type == e1000_pchlan) {
1450 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1451 if (ret_val)
1452 return ret_val;
1453 }
1454
1455 /* When connected at 10Mbps half-duplex, some parts are excessively
1456 * aggressive resulting in many collisions. To avoid this, increase
1457 * the IPG and reduce Rx latency in the PHY.
1458 */
1459 if (((hw->mac.type == e1000_pch2lan) ||
1460 (hw->mac.type == e1000_pch_lpt)) && link) {
1461 u16 speed, duplex;
1462
1463 e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1464 tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1465 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1466
1467 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1468 tipg_reg |= 0xFF;
1469 /* Reduce Rx latency in analog PHY */
1470 emi_val = 0;
1471 } else {
1472 /* Roll back the default values */
1473 tipg_reg |= 0x08;
1474 emi_val = 1;
1475 }
1476
1477 E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1478
1479 ret_val = hw->phy.ops.acquire(hw);
1480 if (ret_val)
1481 return ret_val;
1482
1483 if (hw->mac.type == e1000_pch2lan)
1484 emi_addr = I82579_RX_CONFIG;
1485 else
1486 emi_addr = I217_RX_CONFIG;
1487 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1488
1489 hw->phy.ops.release(hw);
1490
1491 if (ret_val)
1492 return ret_val;
1493 }
1494
1495 /* I217 Packet Loss issue:
1496 * ensure that FEXTNVM4 Beacon Duration is set correctly
1497 * on power up.
1498 * Set the Beacon Duration for I217 to 8 usec
1499 */
1500 if (hw->mac.type == e1000_pch_lpt) {
1501 u32 mac_reg;
1502
1503 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1504 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1505 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1506 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1507 }
1508
1509 /* Work-around I218 hang issue */
1510 if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1511 (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1512 (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1513 (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1514 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1515 if (ret_val)
1516 return ret_val;
1517 }
1518 /* Clear link partner's EEE ability */
1519 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1520
1521 /* Configure K0s minimum time */
1522 if (hw->mac.type == e1000_pch_lpt) {
1523 e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME);
1524 }
1525
1526 if (!link)
1527 return E1000_SUCCESS; /* No link detected */
1528
1529 mac->get_link_status = false;
1530
1531 switch (hw->mac.type) {
1532 case e1000_pch2lan:
1533 ret_val = e1000_k1_workaround_lv(hw);
1534 if (ret_val)
1535 return ret_val;
1536 /* fall-thru */
1537 case e1000_pchlan:
1538 if (hw->phy.type == e1000_phy_82578) {
1539 ret_val = e1000_link_stall_workaround_hv(hw);
1540 if (ret_val)
1541 return ret_val;
1542 }
1543
1544 /* Workaround for PCHx parts in half-duplex:
1545 * Set the number of preambles removed from the packet
1546 * when it is passed from the PHY to the MAC to prevent
1547 * the MAC from misinterpreting the packet type.
1548 */
1549 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1550 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1551
1552 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1553 E1000_STATUS_FD)
1554 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1555
1556 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1557 break;
1558 default:
1559 break;
1560 }
1561
1562 /* Check if there was DownShift, must be checked
1563 * immediately after link-up
1564 */
1565 e1000_check_downshift_generic(hw);
1566
1567 /* Enable/Disable EEE after link up */
1568 if (hw->phy.type > e1000_phy_82579) {
1569 ret_val = e1000_set_eee_pchlan(hw);
1570 if (ret_val)
1571 return ret_val;
1572 }
1573
1574 /* If we are forcing speed/duplex, then we simply return since
1575 * we have already determined whether we have link or not.
1576 */
1577 if (!mac->autoneg)
1578 return -E1000_ERR_CONFIG;
1579
1580 /* Auto-Neg is enabled. Auto Speed Detection takes care
1581 * of MAC speed/duplex configuration. So we only need to
1582 * configure Collision Distance in the MAC.
1583 */
1584 mac->ops.config_collision_dist(hw);
1585
1586 /* Configure Flow Control now that Auto-Neg has completed.
1587 * First, we need to restore the desired flow control
1588 * settings because we may have had to re-autoneg with a
1589 * different link partner.
1590 */
1591 ret_val = e1000_config_fc_after_link_up_generic(hw);
1592 if (ret_val)
1593 DEBUGOUT("Error configuring flow control\n");
1594
1595 return ret_val;
1596 }
1597
1598 /**
1599 * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1600 * @hw: pointer to the HW structure
1601 *
1602 * Initialize family-specific function pointers for PHY, MAC, and NVM.
1603 **/
1604 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1605 {
1606 DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1607
1608 hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1609 hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1610 switch (hw->mac.type) {
1611 case e1000_ich8lan:
1612 case e1000_ich9lan:
1613 case e1000_ich10lan:
1614 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1615 break;
1616 case e1000_pchlan:
1617 case e1000_pch2lan:
1618 case e1000_pch_lpt:
1619 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1620 break;
1621 default:
1622 break;
1623 }
1624 }
1625
1626 /**
1627 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1628 * @hw: pointer to the HW structure
1629 *
1630 * Acquires the mutex for performing NVM operations.
1631 **/
1632 STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1633 {
1634 DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1635
1636 E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1637
1638 return E1000_SUCCESS;
1639 }
1640
1641 /**
1642 * e1000_release_nvm_ich8lan - Release NVM mutex
1643 * @hw: pointer to the HW structure
1644 *
1645 * Releases the mutex used while performing NVM operations.
1646 **/
1647 STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1648 {
1649 DEBUGFUNC("e1000_release_nvm_ich8lan");
1650
1651 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1652
1653 return;
1654 }
1655
1656 /**
1657 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1658 * @hw: pointer to the HW structure
1659 *
1660 * Acquires the software control flag for performing PHY and select
1661 * MAC CSR accesses.
1662 **/
1663 STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1664 {
1665 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1666 s32 ret_val = E1000_SUCCESS;
1667
1668 DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1669
1670 E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1671
1672 while (timeout) {
1673 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1674 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1675 break;
1676
1677 msec_delay_irq(1);
1678 timeout--;
1679 }
1680
1681 if (!timeout) {
1682 DEBUGOUT("SW has already locked the resource.\n");
1683 ret_val = -E1000_ERR_CONFIG;
1684 goto out;
1685 }
1686
1687 timeout = SW_FLAG_TIMEOUT;
1688
1689 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1690 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1691
1692 while (timeout) {
1693 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1694 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1695 break;
1696
1697 msec_delay_irq(1);
1698 timeout--;
1699 }
1700
1701 if (!timeout) {
1702 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1703 E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1704 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1705 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1706 ret_val = -E1000_ERR_CONFIG;
1707 goto out;
1708 }
1709
1710 out:
1711 if (ret_val)
1712 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1713
1714 return ret_val;
1715 }
1716
1717 /**
1718 * e1000_release_swflag_ich8lan - Release software control flag
1719 * @hw: pointer to the HW structure
1720 *
1721 * Releases the software control flag for performing PHY and select
1722 * MAC CSR accesses.
1723 **/
1724 STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1725 {
1726 u32 extcnf_ctrl;
1727
1728 DEBUGFUNC("e1000_release_swflag_ich8lan");
1729
1730 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1731
1732 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1733 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1734 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1735 } else {
1736 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1737 }
1738
1739 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1740
1741 return;
1742 }
1743
1744 /**
1745 * e1000_check_mng_mode_ich8lan - Checks management mode
1746 * @hw: pointer to the HW structure
1747 *
1748 * This checks if the adapter has any manageability enabled.
1749 * This is a function pointer entry point only called by read/write
1750 * routines for the PHY and NVM parts.
1751 **/
1752 STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1753 {
1754 u32 fwsm;
1755
1756 DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1757
1758 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1759
1760 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1761 ((fwsm & E1000_FWSM_MODE_MASK) ==
1762 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1763 }
1764
1765 /**
1766 * e1000_check_mng_mode_pchlan - Checks management mode
1767 * @hw: pointer to the HW structure
1768 *
1769 * This checks if the adapter has iAMT enabled.
1770 * This is a function pointer entry point only called by read/write
1771 * routines for the PHY and NVM parts.
1772 **/
1773 STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1774 {
1775 u32 fwsm;
1776
1777 DEBUGFUNC("e1000_check_mng_mode_pchlan");
1778
1779 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1780
1781 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1782 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1783 }
1784
1785 /**
1786 * e1000_rar_set_pch2lan - Set receive address register
1787 * @hw: pointer to the HW structure
1788 * @addr: pointer to the receive address
1789 * @index: receive address array register
1790 *
1791 * Sets the receive address array register at index to the address passed
1792 * in by addr. For 82579, RAR[0] is the base address register that is to
1793 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1794 * Use SHRA[0-3] in place of those reserved for ME.
1795 **/
1796 STATIC int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1797 {
1798 u32 rar_low, rar_high;
1799
1800 DEBUGFUNC("e1000_rar_set_pch2lan");
1801
1802 /* HW expects these in little endian so we reverse the byte order
1803 * from network order (big endian) to little endian
1804 */
1805 rar_low = ((u32) addr[0] |
1806 ((u32) addr[1] << 8) |
1807 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1808
1809 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1810
1811 /* If MAC address zero, no need to set the AV bit */
1812 if (rar_low || rar_high)
1813 rar_high |= E1000_RAH_AV;
1814
1815 if (index == 0) {
1816 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1817 E1000_WRITE_FLUSH(hw);
1818 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1819 E1000_WRITE_FLUSH(hw);
1820 return E1000_SUCCESS;
1821 }
1822
1823 /* RAR[1-6] are owned by manageability. Skip those and program the
1824 * next address into the SHRA register array.
1825 */
1826 if (index < (u32) (hw->mac.rar_entry_count)) {
1827 s32 ret_val;
1828
1829 ret_val = e1000_acquire_swflag_ich8lan(hw);
1830 if (ret_val)
1831 goto out;
1832
1833 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1834 E1000_WRITE_FLUSH(hw);
1835 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1836 E1000_WRITE_FLUSH(hw);
1837
1838 e1000_release_swflag_ich8lan(hw);
1839
1840 /* verify the register updates */
1841 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1842 (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1843 return E1000_SUCCESS;
1844
1845 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1846 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1847 }
1848
1849 out:
1850 DEBUGOUT1("Failed to write receive address at index %d\n", index);
1851 return -E1000_ERR_CONFIG;
1852 }
1853
1854 /**
1855 * e1000_rar_set_pch_lpt - Set receive address registers
1856 * @hw: pointer to the HW structure
1857 * @addr: pointer to the receive address
1858 * @index: receive address array register
1859 *
1860 * Sets the receive address register array at index to the address passed
1861 * in by addr. For LPT, RAR[0] is the base address register that is to
1862 * contain the MAC address. SHRA[0-10] are the shared receive address
1863 * registers that are shared between the Host and manageability engine (ME).
1864 **/
1865 STATIC int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1866 {
1867 u32 rar_low, rar_high;
1868 u32 wlock_mac;
1869
1870 DEBUGFUNC("e1000_rar_set_pch_lpt");
1871
1872 /* HW expects these in little endian so we reverse the byte order
1873 * from network order (big endian) to little endian
1874 */
1875 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1876 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1877
1878 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1879
1880 /* If MAC address zero, no need to set the AV bit */
1881 if (rar_low || rar_high)
1882 rar_high |= E1000_RAH_AV;
1883
1884 if (index == 0) {
1885 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1886 E1000_WRITE_FLUSH(hw);
1887 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1888 E1000_WRITE_FLUSH(hw);
1889 return E1000_SUCCESS;
1890 }
1891
1892 /* The manageability engine (ME) can lock certain SHRAR registers that
1893 * it is using - those registers are unavailable for use.
1894 */
1895 if (index < hw->mac.rar_entry_count) {
1896 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1897 E1000_FWSM_WLOCK_MAC_MASK;
1898 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1899
1900 /* Check if all SHRAR registers are locked */
1901 if (wlock_mac == 1)
1902 goto out;
1903
1904 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1905 s32 ret_val;
1906
1907 ret_val = e1000_acquire_swflag_ich8lan(hw);
1908
1909 if (ret_val)
1910 goto out;
1911
1912 E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1913 rar_low);
1914 E1000_WRITE_FLUSH(hw);
1915 E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1916 rar_high);
1917 E1000_WRITE_FLUSH(hw);
1918
1919 e1000_release_swflag_ich8lan(hw);
1920
1921 /* verify the register updates */
1922 if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1923 (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1924 return E1000_SUCCESS;
1925 }
1926 }
1927
1928 out:
1929 DEBUGOUT1("Failed to write receive address at index %d\n", index);
1930 return -E1000_ERR_CONFIG;
1931 }
1932
1933 #ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT
1934 /**
1935 * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1936 * @hw: pointer to the HW structure
1937 * @mc_addr_list: array of multicast addresses to program
1938 * @mc_addr_count: number of multicast addresses to program
1939 *
1940 * Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1941 * The caller must have a packed mc_addr_list of multicast addresses.
1942 **/
1943 STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1944 u8 *mc_addr_list,
1945 u32 mc_addr_count)
1946 {
1947 u16 phy_reg = 0;
1948 int i;
1949 s32 ret_val;
1950
1951 DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1952
1953 e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1954
1955 ret_val = hw->phy.ops.acquire(hw);
1956 if (ret_val)
1957 return;
1958
1959 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1960 if (ret_val)
1961 goto release;
1962
1963 for (i = 0; i < hw->mac.mta_reg_count; i++) {
1964 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1965 (u16)(hw->mac.mta_shadow[i] &
1966 0xFFFF));
1967 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1968 (u16)((hw->mac.mta_shadow[i] >> 16) &
1969 0xFFFF));
1970 }
1971
1972 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1973
1974 release:
1975 hw->phy.ops.release(hw);
1976 }
1977
1978 #endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */
1979 /**
1980 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1981 * @hw: pointer to the HW structure
1982 *
1983 * Checks if firmware is blocking the reset of the PHY.
1984 * This is a function pointer entry point only called by
1985 * reset routines.
1986 **/
1987 STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1988 {
1989 u32 fwsm;
1990 bool blocked = false;
1991 int i = 0;
1992
1993 DEBUGFUNC("e1000_check_reset_block_ich8lan");
1994
1995 do {
1996 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1997 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
1998 blocked = true;
1999 msec_delay(10);
2000 continue;
2001 }
2002 blocked = false;
2003 } while (blocked && (i++ < 30));
2004 return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2005 }
2006
2007 /**
2008 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2009 * @hw: pointer to the HW structure
2010 *
2011 * Assumes semaphore already acquired.
2012 *
2013 **/
2014 STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2015 {
2016 u16 phy_data;
2017 u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2018 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2019 E1000_STRAP_SMT_FREQ_SHIFT;
2020 s32 ret_val;
2021
2022 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2023
2024 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2025 if (ret_val)
2026 return ret_val;
2027
2028 phy_data &= ~HV_SMB_ADDR_MASK;
2029 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2030 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2031
2032 if (hw->phy.type == e1000_phy_i217) {
2033 /* Restore SMBus frequency */
2034 if (freq--) {
2035 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2036 phy_data |= (freq & (1 << 0)) <<
2037 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2038 phy_data |= (freq & (1 << 1)) <<
2039 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2040 } else {
2041 DEBUGOUT("Unsupported SMB frequency in PHY\n");
2042 }
2043 }
2044
2045 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2046 }
2047
2048 /**
2049 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2050 * @hw: pointer to the HW structure
2051 *
2052 * SW should configure the LCD from the NVM extended configuration region
2053 * as a workaround for certain parts.
2054 **/
2055 STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2056 {
2057 struct e1000_phy_info *phy = &hw->phy;
2058 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2059 s32 ret_val = E1000_SUCCESS;
2060 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2061
2062 DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2063
2064 /* Initialize the PHY from the NVM on ICH platforms. This
2065 * is needed due to an issue where the NVM configuration is
2066 * not properly autoloaded after power transitions.
2067 * Therefore, after each PHY reset, we will load the
2068 * configuration data out of the NVM manually.
2069 */
2070 switch (hw->mac.type) {
2071 case e1000_ich8lan:
2072 if (phy->type != e1000_phy_igp_3)
2073 return ret_val;
2074
2075 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2076 (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2077 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2078 break;
2079 }
2080 /* Fall-thru */
2081 case e1000_pchlan:
2082 case e1000_pch2lan:
2083 case e1000_pch_lpt:
2084 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2085 break;
2086 default:
2087 return ret_val;
2088 }
2089
2090 ret_val = hw->phy.ops.acquire(hw);
2091 if (ret_val)
2092 return ret_val;
2093
2094 data = E1000_READ_REG(hw, E1000_FEXTNVM);
2095 if (!(data & sw_cfg_mask))
2096 goto release;
2097
2098 /* Make sure HW does not configure LCD from PHY
2099 * extended configuration before SW configuration
2100 */
2101 data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2102 if ((hw->mac.type < e1000_pch2lan) &&
2103 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2104 goto release;
2105
2106 cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2107 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2108 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2109 if (!cnf_size)
2110 goto release;
2111
2112 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2113 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2114
2115 if (((hw->mac.type == e1000_pchlan) &&
2116 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2117 (hw->mac.type > e1000_pchlan)) {
2118 /* HW configures the SMBus address and LEDs when the
2119 * OEM and LCD Write Enable bits are set in the NVM.
2120 * When both NVM bits are cleared, SW will configure
2121 * them instead.
2122 */
2123 ret_val = e1000_write_smbus_addr(hw);
2124 if (ret_val)
2125 goto release;
2126
2127 data = E1000_READ_REG(hw, E1000_LEDCTL);
2128 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2129 (u16)data);
2130 if (ret_val)
2131 goto release;
2132 }
2133
2134 /* Configure LCD from extended configuration region. */
2135
2136 /* cnf_base_addr is in DWORD */
2137 word_addr = (u16)(cnf_base_addr << 1);
2138
2139 for (i = 0; i < cnf_size; i++) {
2140 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2141 &reg_data);
2142 if (ret_val)
2143 goto release;
2144
2145 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2146 1, &reg_addr);
2147 if (ret_val)
2148 goto release;
2149
2150 /* Save off the PHY page for future writes. */
2151 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2152 phy_page = reg_data;
2153 continue;
2154 }
2155
2156 reg_addr &= PHY_REG_MASK;
2157 reg_addr |= phy_page;
2158
2159 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2160 reg_data);
2161 if (ret_val)
2162 goto release;
2163 }
2164
2165 release:
2166 hw->phy.ops.release(hw);
2167 return ret_val;
2168 }
2169
2170 /**
2171 * e1000_k1_gig_workaround_hv - K1 Si workaround
2172 * @hw: pointer to the HW structure
2173 * @link: link up bool flag
2174 *
2175 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2176 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2177 * If link is down, the function will restore the default K1 setting located
2178 * in the NVM.
2179 **/
2180 STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2181 {
2182 s32 ret_val = E1000_SUCCESS;
2183 u16 status_reg = 0;
2184 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2185
2186 DEBUGFUNC("e1000_k1_gig_workaround_hv");
2187
2188 if (hw->mac.type != e1000_pchlan)
2189 return E1000_SUCCESS;
2190
2191 /* Wrap the whole flow with the sw flag */
2192 ret_val = hw->phy.ops.acquire(hw);
2193 if (ret_val)
2194 return ret_val;
2195
2196 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2197 if (link) {
2198 if (hw->phy.type == e1000_phy_82578) {
2199 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2200 &status_reg);
2201 if (ret_val)
2202 goto release;
2203
2204 status_reg &= (BM_CS_STATUS_LINK_UP |
2205 BM_CS_STATUS_RESOLVED |
2206 BM_CS_STATUS_SPEED_MASK);
2207
2208 if (status_reg == (BM_CS_STATUS_LINK_UP |
2209 BM_CS_STATUS_RESOLVED |
2210 BM_CS_STATUS_SPEED_1000))
2211 k1_enable = false;
2212 }
2213
2214 if (hw->phy.type == e1000_phy_82577) {
2215 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2216 &status_reg);
2217 if (ret_val)
2218 goto release;
2219
2220 status_reg &= (HV_M_STATUS_LINK_UP |
2221 HV_M_STATUS_AUTONEG_COMPLETE |
2222 HV_M_STATUS_SPEED_MASK);
2223
2224 if (status_reg == (HV_M_STATUS_LINK_UP |
2225 HV_M_STATUS_AUTONEG_COMPLETE |
2226 HV_M_STATUS_SPEED_1000))
2227 k1_enable = false;
2228 }
2229
2230 /* Link stall fix for link up */
2231 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2232 0x0100);
2233 if (ret_val)
2234 goto release;
2235
2236 } else {
2237 /* Link stall fix for link down */
2238 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2239 0x4100);
2240 if (ret_val)
2241 goto release;
2242 }
2243
2244 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2245
2246 release:
2247 hw->phy.ops.release(hw);
2248
2249 return ret_val;
2250 }
2251
2252 /**
2253 * e1000_configure_k1_ich8lan - Configure K1 power state
2254 * @hw: pointer to the HW structure
2255 * @enable: K1 state to configure
2256 *
2257 * Configure the K1 power state based on the provided parameter.
2258 * Assumes semaphore already acquired.
2259 *
2260 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2261 **/
2262 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2263 {
2264 s32 ret_val;
2265 u32 ctrl_reg = 0;
2266 u32 ctrl_ext = 0;
2267 u32 reg = 0;
2268 u16 kmrn_reg = 0;
2269
2270 DEBUGFUNC("e1000_configure_k1_ich8lan");
2271
2272 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2273 &kmrn_reg);
2274 if (ret_val)
2275 return ret_val;
2276
2277 if (k1_enable)
2278 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2279 else
2280 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2281
2282 ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2283 kmrn_reg);
2284 if (ret_val)
2285 return ret_val;
2286
2287 usec_delay(20);
2288 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2289 ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2290
2291 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2292 reg |= E1000_CTRL_FRCSPD;
2293 E1000_WRITE_REG(hw, E1000_CTRL, reg);
2294
2295 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2296 E1000_WRITE_FLUSH(hw);
2297 usec_delay(20);
2298 E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2299 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2300 E1000_WRITE_FLUSH(hw);
2301 usec_delay(20);
2302
2303 return E1000_SUCCESS;
2304 }
2305
2306 /**
2307 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2308 * @hw: pointer to the HW structure
2309 * @d0_state: boolean if entering d0 or d3 device state
2310 *
2311 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2312 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2313 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2314 **/
2315 STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2316 {
2317 s32 ret_val = 0;
2318 u32 mac_reg;
2319 u16 oem_reg;
2320
2321 DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2322
2323 if (hw->mac.type < e1000_pchlan)
2324 return ret_val;
2325
2326 ret_val = hw->phy.ops.acquire(hw);
2327 if (ret_val)
2328 return ret_val;
2329
2330 if (hw->mac.type == e1000_pchlan) {
2331 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2332 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2333 goto release;
2334 }
2335
2336 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2337 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2338 goto release;
2339
2340 mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2341
2342 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2343 if (ret_val)
2344 goto release;
2345
2346 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2347
2348 if (d0_state) {
2349 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2350 oem_reg |= HV_OEM_BITS_GBE_DIS;
2351
2352 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2353 oem_reg |= HV_OEM_BITS_LPLU;
2354 } else {
2355 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2356 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2357 oem_reg |= HV_OEM_BITS_GBE_DIS;
2358
2359 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2360 E1000_PHY_CTRL_NOND0A_LPLU))
2361 oem_reg |= HV_OEM_BITS_LPLU;
2362 }
2363
2364 /* Set Restart auto-neg to activate the bits */
2365 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2366 !hw->phy.ops.check_reset_block(hw))
2367 oem_reg |= HV_OEM_BITS_RESTART_AN;
2368
2369 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2370
2371 release:
2372 hw->phy.ops.release(hw);
2373
2374 return ret_val;
2375 }
2376
2377
2378 /**
2379 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2380 * @hw: pointer to the HW structure
2381 **/
2382 STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2383 {
2384 s32 ret_val;
2385 u16 data;
2386
2387 DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2388
2389 ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2390 if (ret_val)
2391 return ret_val;
2392
2393 data |= HV_KMRN_MDIO_SLOW;
2394
2395 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2396
2397 return ret_val;
2398 }
2399
2400 /**
2401 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2402 * done after every PHY reset.
2403 **/
2404 STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2405 {
2406 s32 ret_val = E1000_SUCCESS;
2407 u16 phy_data;
2408
2409 DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2410
2411 if (hw->mac.type != e1000_pchlan)
2412 return E1000_SUCCESS;
2413
2414 /* Set MDIO slow mode before any other MDIO access */
2415 if (hw->phy.type == e1000_phy_82577) {
2416 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2417 if (ret_val)
2418 return ret_val;
2419 }
2420
2421 if (((hw->phy.type == e1000_phy_82577) &&
2422 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2423 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2424 /* Disable generation of early preamble */
2425 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2426 if (ret_val)
2427 return ret_val;
2428
2429 /* Preamble tuning for SSC */
2430 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2431 0xA204);
2432 if (ret_val)
2433 return ret_val;
2434 }
2435
2436 if (hw->phy.type == e1000_phy_82578) {
2437 /* Return registers to default by doing a soft reset then
2438 * writing 0x3140 to the control register.
2439 */
2440 if (hw->phy.revision < 2) {
2441 e1000_phy_sw_reset_generic(hw);
2442 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2443 0x3140);
2444 }
2445 }
2446
2447 /* Select page 0 */
2448 ret_val = hw->phy.ops.acquire(hw);
2449 if (ret_val)
2450 return ret_val;
2451
2452 hw->phy.addr = 1;
2453 ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2454 hw->phy.ops.release(hw);
2455 if (ret_val)
2456 return ret_val;
2457
2458 /* Configure the K1 Si workaround during phy reset assuming there is
2459 * link so that it disables K1 if link is in 1Gbps.
2460 */
2461 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2462 if (ret_val)
2463 return ret_val;
2464
2465 /* Workaround for link disconnects on a busy hub in half duplex */
2466 ret_val = hw->phy.ops.acquire(hw);
2467 if (ret_val)
2468 return ret_val;
2469 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2470 if (ret_val)
2471 goto release;
2472 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2473 phy_data & 0x00FF);
2474 if (ret_val)
2475 goto release;
2476
2477 /* set MSE higher to enable link to stay up when noise is high */
2478 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2479 release:
2480 hw->phy.ops.release(hw);
2481
2482 return ret_val;
2483 }
2484
2485 /**
2486 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2487 * @hw: pointer to the HW structure
2488 **/
2489 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2490 {
2491 u32 mac_reg;
2492 u16 i, phy_reg = 0;
2493 s32 ret_val;
2494
2495 DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2496
2497 ret_val = hw->phy.ops.acquire(hw);
2498 if (ret_val)
2499 return;
2500 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2501 if (ret_val)
2502 goto release;
2503
2504 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2505 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2506 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2507 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2508 (u16)(mac_reg & 0xFFFF));
2509 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2510 (u16)((mac_reg >> 16) & 0xFFFF));
2511
2512 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2513 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2514 (u16)(mac_reg & 0xFFFF));
2515 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2516 (u16)((mac_reg & E1000_RAH_AV)
2517 >> 16));
2518 }
2519
2520 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2521
2522 release:
2523 hw->phy.ops.release(hw);
2524 }
2525
2526 #ifndef CRC32_OS_SUPPORT
2527 STATIC u32 e1000_calc_rx_da_crc(u8 mac[])
2528 {
2529 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
2530 u32 i, j, mask, crc;
2531
2532 DEBUGFUNC("e1000_calc_rx_da_crc");
2533
2534 crc = 0xffffffff;
2535 for (i = 0; i < 6; i++) {
2536 crc = crc ^ mac[i];
2537 for (j = 8; j > 0; j--) {
2538 mask = (crc & 1) * (-1);
2539 crc = (crc >> 1) ^ (poly & mask);
2540 }
2541 }
2542 return ~crc;
2543 }
2544
2545 #endif /* CRC32_OS_SUPPORT */
2546 /**
2547 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2548 * with 82579 PHY
2549 * @hw: pointer to the HW structure
2550 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2551 **/
2552 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2553 {
2554 s32 ret_val = E1000_SUCCESS;
2555 u16 phy_reg, data;
2556 u32 mac_reg;
2557 u16 i;
2558
2559 DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2560
2561 if (hw->mac.type < e1000_pch2lan)
2562 return E1000_SUCCESS;
2563
2564 /* disable Rx path while enabling/disabling workaround */
2565 hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2566 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2567 phy_reg | (1 << 14));
2568 if (ret_val)
2569 return ret_val;
2570
2571 if (enable) {
2572 /* Write Rx addresses (rar_entry_count for RAL/H, and
2573 * SHRAL/H) and initial CRC values to the MAC
2574 */
2575 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2576 u8 mac_addr[ETH_ADDR_LEN] = {0};
2577 u32 addr_high, addr_low;
2578
2579 addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2580 if (!(addr_high & E1000_RAH_AV))
2581 continue;
2582 addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2583 mac_addr[0] = (addr_low & 0xFF);
2584 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2585 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2586 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2587 mac_addr[4] = (addr_high & 0xFF);
2588 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2589
2590 #ifndef CRC32_OS_SUPPORT
2591 E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2592 e1000_calc_rx_da_crc(mac_addr));
2593 #else /* CRC32_OS_SUPPORT */
2594 E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2595 E1000_CRC32(ETH_ADDR_LEN, mac_addr));
2596 #endif /* CRC32_OS_SUPPORT */
2597 }
2598
2599 /* Write Rx addresses to the PHY */
2600 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2601
2602 /* Enable jumbo frame workaround in the MAC */
2603 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2604 mac_reg &= ~(1 << 14);
2605 mac_reg |= (7 << 15);
2606 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2607
2608 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2609 mac_reg |= E1000_RCTL_SECRC;
2610 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2611
2612 ret_val = e1000_read_kmrn_reg_generic(hw,
2613 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2614 &data);
2615 if (ret_val)
2616 return ret_val;
2617 ret_val = e1000_write_kmrn_reg_generic(hw,
2618 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2619 data | (1 << 0));
2620 if (ret_val)
2621 return ret_val;
2622 ret_val = e1000_read_kmrn_reg_generic(hw,
2623 E1000_KMRNCTRLSTA_HD_CTRL,
2624 &data);
2625 if (ret_val)
2626 return ret_val;
2627 data &= ~(0xF << 8);
2628 data |= (0xB << 8);
2629 ret_val = e1000_write_kmrn_reg_generic(hw,
2630 E1000_KMRNCTRLSTA_HD_CTRL,
2631 data);
2632 if (ret_val)
2633 return ret_val;
2634
2635 /* Enable jumbo frame workaround in the PHY */
2636 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2637 data &= ~(0x7F << 5);
2638 data |= (0x37 << 5);
2639 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2640 if (ret_val)
2641 return ret_val;
2642 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2643 data &= ~(1 << 13);
2644 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2645 if (ret_val)
2646 return ret_val;
2647 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2648 data &= ~(0x3FF << 2);
2649 data |= (E1000_TX_PTR_GAP << 2);
2650 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2651 if (ret_val)
2652 return ret_val;
2653 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2654 if (ret_val)
2655 return ret_val;
2656 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2657 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2658 (1 << 10));
2659 if (ret_val)
2660 return ret_val;
2661 } else {
2662 /* Write MAC register values back to h/w defaults */
2663 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2664 mac_reg &= ~(0xF << 14);
2665 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2666
2667 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2668 mac_reg &= ~E1000_RCTL_SECRC;
2669 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2670
2671 ret_val = e1000_read_kmrn_reg_generic(hw,
2672 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2673 &data);
2674 if (ret_val)
2675 return ret_val;
2676 ret_val = e1000_write_kmrn_reg_generic(hw,
2677 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2678 data & ~(1 << 0));
2679 if (ret_val)
2680 return ret_val;
2681 ret_val = e1000_read_kmrn_reg_generic(hw,
2682 E1000_KMRNCTRLSTA_HD_CTRL,
2683 &data);
2684 if (ret_val)
2685 return ret_val;
2686 data &= ~(0xF << 8);
2687 data |= (0xB << 8);
2688 ret_val = e1000_write_kmrn_reg_generic(hw,
2689 E1000_KMRNCTRLSTA_HD_CTRL,
2690 data);
2691 if (ret_val)
2692 return ret_val;
2693
2694 /* Write PHY register values back to h/w defaults */
2695 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2696 data &= ~(0x7F << 5);
2697 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2698 if (ret_val)
2699 return ret_val;
2700 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2701 data |= (1 << 13);
2702 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2703 if (ret_val)
2704 return ret_val;
2705 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2706 data &= ~(0x3FF << 2);
2707 data |= (0x8 << 2);
2708 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2709 if (ret_val)
2710 return ret_val;
2711 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2712 if (ret_val)
2713 return ret_val;
2714 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2715 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2716 ~(1 << 10));
2717 if (ret_val)
2718 return ret_val;
2719 }
2720
2721 /* re-enable Rx path after enabling/disabling workaround */
2722 return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2723 ~(1 << 14));
2724 }
2725
2726 /**
2727 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2728 * done after every PHY reset.
2729 **/
2730 STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2731 {
2732 s32 ret_val = E1000_SUCCESS;
2733
2734 DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2735
2736 if (hw->mac.type != e1000_pch2lan)
2737 return E1000_SUCCESS;
2738
2739 /* Set MDIO slow mode before any other MDIO access */
2740 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2741 if (ret_val)
2742 return ret_val;
2743
2744 ret_val = hw->phy.ops.acquire(hw);
2745 if (ret_val)
2746 return ret_val;
2747 /* set MSE higher to enable link to stay up when noise is high */
2748 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2749 if (ret_val)
2750 goto release;
2751 /* drop link after 5 times MSE threshold was reached */
2752 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2753 release:
2754 hw->phy.ops.release(hw);
2755
2756 return ret_val;
2757 }
2758
2759 /**
2760 * e1000_k1_gig_workaround_lv - K1 Si workaround
2761 * @hw: pointer to the HW structure
2762 *
2763 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2764 * Disable K1 for 1000 and 100 speeds
2765 **/
2766 STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2767 {
2768 s32 ret_val = E1000_SUCCESS;
2769 u16 status_reg = 0;
2770
2771 DEBUGFUNC("e1000_k1_workaround_lv");
2772
2773 if (hw->mac.type != e1000_pch2lan)
2774 return E1000_SUCCESS;
2775
2776 /* Set K1 beacon duration based on 10Mbs speed */
2777 ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2778 if (ret_val)
2779 return ret_val;
2780
2781 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2782 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2783 if (status_reg &
2784 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2785 u16 pm_phy_reg;
2786
2787 /* LV 1G/100 Packet drop issue wa */
2788 ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2789 &pm_phy_reg);
2790 if (ret_val)
2791 return ret_val;
2792 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2793 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2794 pm_phy_reg);
2795 if (ret_val)
2796 return ret_val;
2797 } else {
2798 u32 mac_reg;
2799 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2800 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2801 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2802 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2803 }
2804 }
2805
2806 return ret_val;
2807 }
2808
2809 /**
2810 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2811 * @hw: pointer to the HW structure
2812 * @gate: boolean set to true to gate, false to ungate
2813 *
2814 * Gate/ungate the automatic PHY configuration via hardware; perform
2815 * the configuration via software instead.
2816 **/
2817 STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2818 {
2819 u32 extcnf_ctrl;
2820
2821 DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2822
2823 if (hw->mac.type < e1000_pch2lan)
2824 return;
2825
2826 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2827
2828 if (gate)
2829 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2830 else
2831 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2832
2833 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2834 }
2835
2836 /**
2837 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2838 * @hw: pointer to the HW structure
2839 *
2840 * Check the appropriate indication the MAC has finished configuring the
2841 * PHY after a software reset.
2842 **/
2843 STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2844 {
2845 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2846
2847 DEBUGFUNC("e1000_lan_init_done_ich8lan");
2848
2849 /* Wait for basic configuration completes before proceeding */
2850 do {
2851 data = E1000_READ_REG(hw, E1000_STATUS);
2852 data &= E1000_STATUS_LAN_INIT_DONE;
2853 usec_delay(100);
2854 } while ((!data) && --loop);
2855
2856 /* If basic configuration is incomplete before the above loop
2857 * count reaches 0, loading the configuration from NVM will
2858 * leave the PHY in a bad state possibly resulting in no link.
2859 */
2860 if (loop == 0)
2861 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2862
2863 /* Clear the Init Done bit for the next init event */
2864 data = E1000_READ_REG(hw, E1000_STATUS);
2865 data &= ~E1000_STATUS_LAN_INIT_DONE;
2866 E1000_WRITE_REG(hw, E1000_STATUS, data);
2867 }
2868
2869 /**
2870 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2871 * @hw: pointer to the HW structure
2872 **/
2873 STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2874 {
2875 s32 ret_val = E1000_SUCCESS;
2876 u16 reg;
2877
2878 DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2879
2880 if (hw->phy.ops.check_reset_block(hw))
2881 return E1000_SUCCESS;
2882
2883 /* Allow time for h/w to get to quiescent state after reset */
2884 msec_delay(10);
2885
2886 /* Perform any necessary post-reset workarounds */
2887 switch (hw->mac.type) {
2888 case e1000_pchlan:
2889 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2890 if (ret_val)
2891 return ret_val;
2892 break;
2893 case e1000_pch2lan:
2894 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2895 if (ret_val)
2896 return ret_val;
2897 break;
2898 default:
2899 break;
2900 }
2901
2902 /* Clear the host wakeup bit after lcd reset */
2903 if (hw->mac.type >= e1000_pchlan) {
2904 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2905 reg &= ~BM_WUC_HOST_WU_BIT;
2906 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2907 }
2908
2909 /* Configure the LCD with the extended configuration region in NVM */
2910 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2911 if (ret_val)
2912 return ret_val;
2913
2914 /* Configure the LCD with the OEM bits in NVM */
2915 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2916
2917 if (hw->mac.type == e1000_pch2lan) {
2918 /* Ungate automatic PHY configuration on non-managed 82579 */
2919 if (!(E1000_READ_REG(hw, E1000_FWSM) &
2920 E1000_ICH_FWSM_FW_VALID)) {
2921 msec_delay(10);
2922 e1000_gate_hw_phy_config_ich8lan(hw, false);
2923 }
2924
2925 /* Set EEE LPI Update Timer to 200usec */
2926 ret_val = hw->phy.ops.acquire(hw);
2927 if (ret_val)
2928 return ret_val;
2929 ret_val = e1000_write_emi_reg_locked(hw,
2930 I82579_LPI_UPDATE_TIMER,
2931 0x1387);
2932 hw->phy.ops.release(hw);
2933 }
2934
2935 return ret_val;
2936 }
2937
2938 /**
2939 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2940 * @hw: pointer to the HW structure
2941 *
2942 * Resets the PHY
2943 * This is a function pointer entry point called by drivers
2944 * or other shared routines.
2945 **/
2946 STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2947 {
2948 s32 ret_val = E1000_SUCCESS;
2949
2950 DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2951
2952 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2953 if ((hw->mac.type == e1000_pch2lan) &&
2954 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2955 e1000_gate_hw_phy_config_ich8lan(hw, true);
2956
2957 ret_val = e1000_phy_hw_reset_generic(hw);
2958 if (ret_val)
2959 return ret_val;
2960
2961 return e1000_post_phy_reset_ich8lan(hw);
2962 }
2963
2964 /**
2965 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2966 * @hw: pointer to the HW structure
2967 * @active: true to enable LPLU, false to disable
2968 *
2969 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2970 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2971 * the phy speed. This function will manually set the LPLU bit and restart
2972 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2973 * since it configures the same bit.
2974 **/
2975 STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2976 {
2977 s32 ret_val;
2978 u16 oem_reg;
2979
2980 DEBUGFUNC("e1000_set_lplu_state_pchlan");
2981 ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
2982 if (ret_val)
2983 return ret_val;
2984
2985 if (active)
2986 oem_reg |= HV_OEM_BITS_LPLU;
2987 else
2988 oem_reg &= ~HV_OEM_BITS_LPLU;
2989
2990 if (!hw->phy.ops.check_reset_block(hw))
2991 oem_reg |= HV_OEM_BITS_RESTART_AN;
2992
2993 return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
2994 }
2995
2996 /**
2997 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2998 * @hw: pointer to the HW structure
2999 * @active: true to enable LPLU, false to disable
3000 *
3001 * Sets the LPLU D0 state according to the active flag. When
3002 * activating LPLU this function also disables smart speed
3003 * and vice versa. LPLU will not be activated unless the
3004 * device autonegotiation advertisement meets standards of
3005 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3006 * This is a function pointer entry point only called by
3007 * PHY setup routines.
3008 **/
3009 STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3010 {
3011 struct e1000_phy_info *phy = &hw->phy;
3012 u32 phy_ctrl;
3013 s32 ret_val = E1000_SUCCESS;
3014 u16 data;
3015
3016 DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3017
3018 if (phy->type == e1000_phy_ife)
3019 return E1000_SUCCESS;
3020
3021 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3022
3023 if (active) {
3024 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3025 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3026
3027 if (phy->type != e1000_phy_igp_3)
3028 return E1000_SUCCESS;
3029
3030 /* Call gig speed drop workaround on LPLU before accessing
3031 * any PHY registers
3032 */
3033 if (hw->mac.type == e1000_ich8lan)
3034 e1000_gig_downshift_workaround_ich8lan(hw);
3035
3036 /* When LPLU is enabled, we should disable SmartSpeed */
3037 ret_val = phy->ops.read_reg(hw,
3038 IGP01E1000_PHY_PORT_CONFIG,
3039 &data);
3040 if (ret_val)
3041 return ret_val;
3042 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3043 ret_val = phy->ops.write_reg(hw,
3044 IGP01E1000_PHY_PORT_CONFIG,
3045 data);
3046 if (ret_val)
3047 return ret_val;
3048 } else {
3049 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3050 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3051
3052 if (phy->type != e1000_phy_igp_3)
3053 return E1000_SUCCESS;
3054
3055 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3056 * during Dx states where the power conservation is most
3057 * important. During driver activity we should enable
3058 * SmartSpeed, so performance is maintained.
3059 */
3060 if (phy->smart_speed == e1000_smart_speed_on) {
3061 ret_val = phy->ops.read_reg(hw,
3062 IGP01E1000_PHY_PORT_CONFIG,
3063 &data);
3064 if (ret_val)
3065 return ret_val;
3066
3067 data |= IGP01E1000_PSCFR_SMART_SPEED;
3068 ret_val = phy->ops.write_reg(hw,
3069 IGP01E1000_PHY_PORT_CONFIG,
3070 data);
3071 if (ret_val)
3072 return ret_val;
3073 } else if (phy->smart_speed == e1000_smart_speed_off) {
3074 ret_val = phy->ops.read_reg(hw,
3075 IGP01E1000_PHY_PORT_CONFIG,
3076 &data);
3077 if (ret_val)
3078 return ret_val;
3079
3080 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3081 ret_val = phy->ops.write_reg(hw,
3082 IGP01E1000_PHY_PORT_CONFIG,
3083 data);
3084 if (ret_val)
3085 return ret_val;
3086 }
3087 }
3088
3089 return E1000_SUCCESS;
3090 }
3091
3092 /**
3093 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3094 * @hw: pointer to the HW structure
3095 * @active: true to enable LPLU, false to disable
3096 *
3097 * Sets the LPLU D3 state according to the active flag. When
3098 * activating LPLU this function also disables smart speed
3099 * and vice versa. LPLU will not be activated unless the
3100 * device autonegotiation advertisement meets standards of
3101 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3102 * This is a function pointer entry point only called by
3103 * PHY setup routines.
3104 **/
3105 STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3106 {
3107 struct e1000_phy_info *phy = &hw->phy;
3108 u32 phy_ctrl;
3109 s32 ret_val = E1000_SUCCESS;
3110 u16 data;
3111
3112 DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3113
3114 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3115
3116 if (!active) {
3117 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3118 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3119
3120 if (phy->type != e1000_phy_igp_3)
3121 return E1000_SUCCESS;
3122
3123 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3124 * during Dx states where the power conservation is most
3125 * important. During driver activity we should enable
3126 * SmartSpeed, so performance is maintained.
3127 */
3128 if (phy->smart_speed == e1000_smart_speed_on) {
3129 ret_val = phy->ops.read_reg(hw,
3130 IGP01E1000_PHY_PORT_CONFIG,
3131 &data);
3132 if (ret_val)
3133 return ret_val;
3134
3135 data |= IGP01E1000_PSCFR_SMART_SPEED;
3136 ret_val = phy->ops.write_reg(hw,
3137 IGP01E1000_PHY_PORT_CONFIG,
3138 data);
3139 if (ret_val)
3140 return ret_val;
3141 } else if (phy->smart_speed == e1000_smart_speed_off) {
3142 ret_val = phy->ops.read_reg(hw,
3143 IGP01E1000_PHY_PORT_CONFIG,
3144 &data);
3145 if (ret_val)
3146 return ret_val;
3147
3148 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3149 ret_val = phy->ops.write_reg(hw,
3150 IGP01E1000_PHY_PORT_CONFIG,
3151 data);
3152 if (ret_val)
3153 return ret_val;
3154 }
3155 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3156 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3157 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3158 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3159 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3160
3161 if (phy->type != e1000_phy_igp_3)
3162 return E1000_SUCCESS;
3163
3164 /* Call gig speed drop workaround on LPLU before accessing
3165 * any PHY registers
3166 */
3167 if (hw->mac.type == e1000_ich8lan)
3168 e1000_gig_downshift_workaround_ich8lan(hw);
3169
3170 /* When LPLU is enabled, we should disable SmartSpeed */
3171 ret_val = phy->ops.read_reg(hw,
3172 IGP01E1000_PHY_PORT_CONFIG,
3173 &data);
3174 if (ret_val)
3175 return ret_val;
3176
3177 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3178 ret_val = phy->ops.write_reg(hw,
3179 IGP01E1000_PHY_PORT_CONFIG,
3180 data);
3181 }
3182
3183 return ret_val;
3184 }
3185
3186 /**
3187 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3188 * @hw: pointer to the HW structure
3189 * @bank: pointer to the variable that returns the active bank
3190 *
3191 * Reads signature byte from the NVM using the flash access registers.
3192 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3193 **/
3194 STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3195 {
3196 u32 eecd;
3197 struct e1000_nvm_info *nvm = &hw->nvm;
3198 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3199 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3200 u32 nvm_dword = 0;
3201 u8 sig_byte = 0;
3202 s32 ret_val;
3203
3204 DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3205
3206 switch (hw->mac.type) {
3207 case e1000_ich8lan:
3208 case e1000_ich9lan:
3209 eecd = E1000_READ_REG(hw, E1000_EECD);
3210 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3211 E1000_EECD_SEC1VAL_VALID_MASK) {
3212 if (eecd & E1000_EECD_SEC1VAL)
3213 *bank = 1;
3214 else
3215 *bank = 0;
3216
3217 return E1000_SUCCESS;
3218 }
3219 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3220 /* fall-thru */
3221 default:
3222 /* set bank to 0 in case flash read fails */
3223 *bank = 0;
3224
3225 /* Check bank 0 */
3226 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3227 &sig_byte);
3228 if (ret_val)
3229 return ret_val;
3230 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3231 E1000_ICH_NVM_SIG_VALUE) {
3232 *bank = 0;
3233 return E1000_SUCCESS;
3234 }
3235
3236 /* Check bank 1 */
3237 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3238 bank1_offset,
3239 &sig_byte);
3240 if (ret_val)
3241 return ret_val;
3242 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3243 E1000_ICH_NVM_SIG_VALUE) {
3244 *bank = 1;
3245 return E1000_SUCCESS;
3246 }
3247
3248 DEBUGOUT("ERROR: No valid NVM bank present\n");
3249 return -E1000_ERR_NVM;
3250 }
3251 }
3252
3253 /**
3254 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3255 * @hw: pointer to the HW structure
3256 * @offset: The offset (in bytes) of the word(s) to read.
3257 * @words: Size of data to read in words
3258 * @data: Pointer to the word(s) to read at offset.
3259 *
3260 * Reads a word(s) from the NVM using the flash access registers.
3261 **/
3262 STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3263 u16 *data)
3264 {
3265 struct e1000_nvm_info *nvm = &hw->nvm;
3266 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3267 u32 act_offset;
3268 s32 ret_val = E1000_SUCCESS;
3269 u32 bank = 0;
3270 u16 i, word;
3271
3272 DEBUGFUNC("e1000_read_nvm_ich8lan");
3273
3274 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3275 (words == 0)) {
3276 DEBUGOUT("nvm parameter(s) out of bounds\n");
3277 ret_val = -E1000_ERR_NVM;
3278 goto out;
3279 }
3280
3281 nvm->ops.acquire(hw);
3282
3283 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3284 if (ret_val != E1000_SUCCESS) {
3285 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3286 bank = 0;
3287 }
3288
3289 act_offset = (bank) ? nvm->flash_bank_size : 0;
3290 act_offset += offset;
3291
3292 ret_val = E1000_SUCCESS;
3293 for (i = 0; i < words; i++) {
3294 if (dev_spec->shadow_ram[offset+i].modified) {
3295 data[i] = dev_spec->shadow_ram[offset+i].value;
3296 } else {
3297 ret_val = e1000_read_flash_word_ich8lan(hw,
3298 act_offset + i,
3299 &word);
3300 if (ret_val)
3301 break;
3302 data[i] = word;
3303 }
3304 }
3305
3306 nvm->ops.release(hw);
3307
3308 out:
3309 if (ret_val)
3310 DEBUGOUT1("NVM read error: %d\n", ret_val);
3311
3312 return ret_val;
3313 }
3314
3315 /**
3316 * e1000_flash_cycle_init_ich8lan - Initialize flash
3317 * @hw: pointer to the HW structure
3318 *
3319 * This function does initial flash setup so that a new read/write/erase cycle
3320 * can be started.
3321 **/
3322 STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3323 {
3324 union ich8_hws_flash_status hsfsts;
3325 s32 ret_val = -E1000_ERR_NVM;
3326
3327 DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3328
3329 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3330
3331 /* Check if the flash descriptor is valid */
3332 if (!hsfsts.hsf_status.fldesvalid) {
3333 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n");
3334 return -E1000_ERR_NVM;
3335 }
3336
3337 /* Clear FCERR and DAEL in hw status by writing 1 */
3338 hsfsts.hsf_status.flcerr = 1;
3339 hsfsts.hsf_status.dael = 1;
3340 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3341
3342 /* Either we should have a hardware SPI cycle in progress
3343 * bit to check against, in order to start a new cycle or
3344 * FDONE bit should be changed in the hardware so that it
3345 * is 1 after hardware reset, which can then be used as an
3346 * indication whether a cycle is in progress or has been
3347 * completed.
3348 */
3349
3350 if (!hsfsts.hsf_status.flcinprog) {
3351 /* There is no cycle running at present,
3352 * so we can start a cycle.
3353 * Begin by setting Flash Cycle Done.
3354 */
3355 hsfsts.hsf_status.flcdone = 1;
3356 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3357 ret_val = E1000_SUCCESS;
3358 } else {
3359 s32 i;
3360
3361 /* Otherwise poll for sometime so the current
3362 * cycle has a chance to end before giving up.
3363 */
3364 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3365 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3366 ICH_FLASH_HSFSTS);
3367 if (!hsfsts.hsf_status.flcinprog) {
3368 ret_val = E1000_SUCCESS;
3369 break;
3370 }
3371 usec_delay(1);
3372 }
3373 if (ret_val == E1000_SUCCESS) {
3374 /* Successful in waiting for previous cycle to timeout,
3375 * now set the Flash Cycle Done.
3376 */
3377 hsfsts.hsf_status.flcdone = 1;
3378 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3379 hsfsts.regval);
3380 } else {
3381 DEBUGOUT("Flash controller busy, cannot get access\n");
3382 }
3383 }
3384
3385 return ret_val;
3386 }
3387
3388 /**
3389 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3390 * @hw: pointer to the HW structure
3391 * @timeout: maximum time to wait for completion
3392 *
3393 * This function starts a flash cycle and waits for its completion.
3394 **/
3395 STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3396 {
3397 union ich8_hws_flash_ctrl hsflctl;
3398 union ich8_hws_flash_status hsfsts;
3399 u32 i = 0;
3400
3401 DEBUGFUNC("e1000_flash_cycle_ich8lan");
3402
3403 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3404 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3405 hsflctl.hsf_ctrl.flcgo = 1;
3406
3407 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3408
3409 /* wait till FDONE bit is set to 1 */
3410 do {
3411 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3412 if (hsfsts.hsf_status.flcdone)
3413 break;
3414 usec_delay(1);
3415 } while (i++ < timeout);
3416
3417 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3418 return E1000_SUCCESS;
3419
3420 return -E1000_ERR_NVM;
3421 }
3422
3423 /**
3424 * e1000_read_flash_word_ich8lan - Read word from flash
3425 * @hw: pointer to the HW structure
3426 * @offset: offset to data location
3427 * @data: pointer to the location for storing the data
3428 *
3429 * Reads the flash word at offset into data. Offset is converted
3430 * to bytes before read.
3431 **/
3432 STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3433 u16 *data)
3434 {
3435 DEBUGFUNC("e1000_read_flash_word_ich8lan");
3436
3437 if (!data)
3438 return -E1000_ERR_NVM;
3439
3440 /* Must convert offset into bytes. */
3441 offset <<= 1;
3442
3443 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3444 }
3445
3446 /**
3447 * e1000_read_flash_byte_ich8lan - Read byte from flash
3448 * @hw: pointer to the HW structure
3449 * @offset: The offset of the byte to read.
3450 * @data: Pointer to a byte to store the value read.
3451 *
3452 * Reads a single byte from the NVM using the flash access registers.
3453 **/
3454 STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3455 u8 *data)
3456 {
3457 s32 ret_val;
3458 u16 word = 0;
3459
3460 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3461
3462 if (ret_val)
3463 return ret_val;
3464
3465 *data = (u8)word;
3466
3467 return E1000_SUCCESS;
3468 }
3469
3470 /**
3471 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3472 * @hw: pointer to the HW structure
3473 * @offset: The offset (in bytes) of the byte or word to read.
3474 * @size: Size of data to read, 1=byte 2=word
3475 * @data: Pointer to the word to store the value read.
3476 *
3477 * Reads a byte or word from the NVM using the flash access registers.
3478 **/
3479 STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3480 u8 size, u16 *data)
3481 {
3482 union ich8_hws_flash_status hsfsts;
3483 union ich8_hws_flash_ctrl hsflctl;
3484 u32 flash_linear_addr;
3485 u32 flash_data = 0;
3486 s32 ret_val = -E1000_ERR_NVM;
3487 u8 count = 0;
3488
3489 DEBUGFUNC("e1000_read_flash_data_ich8lan");
3490
3491 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3492 return -E1000_ERR_NVM;
3493 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3494 hw->nvm.flash_base_addr);
3495
3496 do {
3497 usec_delay(1);
3498 /* Steps */
3499 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3500 if (ret_val != E1000_SUCCESS)
3501 break;
3502 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3503
3504 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3505 hsflctl.hsf_ctrl.fldbcount = size - 1;
3506 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3507 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3508 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3509
3510 ret_val = e1000_flash_cycle_ich8lan(hw,
3511 ICH_FLASH_READ_COMMAND_TIMEOUT);
3512
3513 /* Check if FCERR is set to 1, if set to 1, clear it
3514 * and try the whole sequence a few more times, else
3515 * read in (shift in) the Flash Data0, the order is
3516 * least significant byte first msb to lsb
3517 */
3518 if (ret_val == E1000_SUCCESS) {
3519 flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3520 if (size == 1)
3521 *data = (u8)(flash_data & 0x000000FF);
3522 else if (size == 2)
3523 *data = (u16)(flash_data & 0x0000FFFF);
3524 break;
3525 } else {
3526 /* If we've gotten here, then things are probably
3527 * completely hosed, but if the error condition is
3528 * detected, it won't hurt to give it another try...
3529 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3530 */
3531 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3532 ICH_FLASH_HSFSTS);
3533 if (hsfsts.hsf_status.flcerr) {
3534 /* Repeat for some time before giving up. */
3535 continue;
3536 } else if (!hsfsts.hsf_status.flcdone) {
3537 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3538 break;
3539 }
3540 }
3541 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3542
3543 return ret_val;
3544 }
3545
3546
3547 /**
3548 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3549 * @hw: pointer to the HW structure
3550 * @offset: The offset (in bytes) of the word(s) to write.
3551 * @words: Size of data to write in words
3552 * @data: Pointer to the word(s) to write at offset.
3553 *
3554 * Writes a byte or word to the NVM using the flash access registers.
3555 **/
3556 STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3557 u16 *data)
3558 {
3559 struct e1000_nvm_info *nvm = &hw->nvm;
3560 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3561 u16 i;
3562
3563 DEBUGFUNC("e1000_write_nvm_ich8lan");
3564
3565 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3566 (words == 0)) {
3567 DEBUGOUT("nvm parameter(s) out of bounds\n");
3568 return -E1000_ERR_NVM;
3569 }
3570
3571 nvm->ops.acquire(hw);
3572
3573 for (i = 0; i < words; i++) {
3574 dev_spec->shadow_ram[offset+i].modified = true;
3575 dev_spec->shadow_ram[offset+i].value = data[i];
3576 }
3577
3578 nvm->ops.release(hw);
3579
3580 return E1000_SUCCESS;
3581 }
3582
3583 /**
3584 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3585 * @hw: pointer to the HW structure
3586 *
3587 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3588 * which writes the checksum to the shadow ram. The changes in the shadow
3589 * ram are then committed to the EEPROM by processing each bank at a time
3590 * checking for the modified bit and writing only the pending changes.
3591 * After a successful commit, the shadow ram is cleared and is ready for
3592 * future writes.
3593 **/
3594 STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3595 {
3596 struct e1000_nvm_info *nvm = &hw->nvm;
3597 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3598 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3599 s32 ret_val;
3600 u16 data = 0;
3601
3602 DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3603
3604 ret_val = e1000_update_nvm_checksum_generic(hw);
3605 if (ret_val)
3606 goto out;
3607
3608 if (nvm->type != e1000_nvm_flash_sw)
3609 goto out;
3610
3611 nvm->ops.acquire(hw);
3612
3613 /* We're writing to the opposite bank so if we're on bank 1,
3614 * write to bank 0 etc. We also need to erase the segment that
3615 * is going to be written
3616 */
3617 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3618 if (ret_val != E1000_SUCCESS) {
3619 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3620 bank = 0;
3621 }
3622
3623 if (bank == 0) {
3624 new_bank_offset = nvm->flash_bank_size;
3625 old_bank_offset = 0;
3626 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3627 if (ret_val)
3628 goto release;
3629 } else {
3630 old_bank_offset = nvm->flash_bank_size;
3631 new_bank_offset = 0;
3632 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3633 if (ret_val)
3634 goto release;
3635 }
3636 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3637 if (dev_spec->shadow_ram[i].modified) {
3638 data = dev_spec->shadow_ram[i].value;
3639 } else {
3640 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3641 old_bank_offset,
3642 &data);
3643 if (ret_val)
3644 break;
3645 }
3646 /* If the word is 0x13, then make sure the signature bits
3647 * (15:14) are 11b until the commit has completed.
3648 * This will allow us to write 10b which indicates the
3649 * signature is valid. We want to do this after the write
3650 * has completed so that we don't mark the segment valid
3651 * while the write is still in progress
3652 */
3653 if (i == E1000_ICH_NVM_SIG_WORD)
3654 data |= E1000_ICH_NVM_SIG_MASK;
3655
3656 /* Convert offset to bytes. */
3657 act_offset = (i + new_bank_offset) << 1;
3658
3659 usec_delay(100);
3660
3661 /* Write the bytes to the new bank. */
3662 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3663 act_offset,
3664 (u8)data);
3665 if (ret_val)
3666 break;
3667
3668 usec_delay(100);
3669 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3670 act_offset + 1,
3671 (u8)(data >> 8));
3672 if (ret_val)
3673 break;
3674 }
3675
3676 /* Don't bother writing the segment valid bits if sector
3677 * programming failed.
3678 */
3679 if (ret_val) {
3680 DEBUGOUT("Flash commit failed.\n");
3681 goto release;
3682 }
3683
3684 /* Finally validate the new segment by setting bit 15:14
3685 * to 10b in word 0x13 , this can be done without an
3686 * erase as well since these bits are 11 to start with
3687 * and we need to change bit 14 to 0b
3688 */
3689 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3690 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3691 if (ret_val)
3692 goto release;
3693
3694 data &= 0xBFFF;
3695 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3696 (u8)(data >> 8));
3697 if (ret_val)
3698 goto release;
3699
3700 /* And invalidate the previously valid segment by setting
3701 * its signature word (0x13) high_byte to 0b. This can be
3702 * done without an erase because flash erase sets all bits
3703 * to 1's. We can write 1's to 0's without an erase
3704 */
3705 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3706
3707 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3708
3709 if (ret_val)
3710 goto release;
3711
3712 /* Great! Everything worked, we can now clear the cached entries. */
3713 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3714 dev_spec->shadow_ram[i].modified = false;
3715 dev_spec->shadow_ram[i].value = 0xFFFF;
3716 }
3717
3718 release:
3719 nvm->ops.release(hw);
3720
3721 /* Reload the EEPROM, or else modifications will not appear
3722 * until after the next adapter reset.
3723 */
3724 if (!ret_val) {
3725 nvm->ops.reload(hw);
3726 msec_delay(10);
3727 }
3728
3729 out:
3730 if (ret_val)
3731 DEBUGOUT1("NVM update error: %d\n", ret_val);
3732
3733 return ret_val;
3734 }
3735
3736 /**
3737 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3738 * @hw: pointer to the HW structure
3739 *
3740 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3741 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
3742 * calculated, in which case we need to calculate the checksum and set bit 6.
3743 **/
3744 STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3745 {
3746 s32 ret_val;
3747 u16 data;
3748 u16 word;
3749 u16 valid_csum_mask;
3750
3751 DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3752
3753 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
3754 * the checksum needs to be fixed. This bit is an indication that
3755 * the NVM was prepared by OEM software and did not calculate
3756 * the checksum...a likely scenario.
3757 */
3758 switch (hw->mac.type) {
3759 case e1000_pch_lpt:
3760 word = NVM_COMPAT;
3761 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3762 break;
3763 default:
3764 word = NVM_FUTURE_INIT_WORD1;
3765 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3766 break;
3767 }
3768
3769 ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3770 if (ret_val)
3771 return ret_val;
3772
3773 if (!(data & valid_csum_mask)) {
3774 data |= valid_csum_mask;
3775 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3776 if (ret_val)
3777 return ret_val;
3778 ret_val = hw->nvm.ops.update(hw);
3779 if (ret_val)
3780 return ret_val;
3781 }
3782
3783 return e1000_validate_nvm_checksum_generic(hw);
3784 }
3785
3786 /**
3787 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3788 * @hw: pointer to the HW structure
3789 * @offset: The offset (in bytes) of the byte/word to read.
3790 * @size: Size of data to read, 1=byte 2=word
3791 * @data: The byte(s) to write to the NVM.
3792 *
3793 * Writes one/two bytes to the NVM using the flash access registers.
3794 **/
3795 STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3796 u8 size, u16 data)
3797 {
3798 union ich8_hws_flash_status hsfsts;
3799 union ich8_hws_flash_ctrl hsflctl;
3800 u32 flash_linear_addr;
3801 u32 flash_data = 0;
3802 s32 ret_val;
3803 u8 count = 0;
3804
3805 DEBUGFUNC("e1000_write_ich8_data");
3806
3807 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3808 return -E1000_ERR_NVM;
3809
3810 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3811 hw->nvm.flash_base_addr);
3812
3813 do {
3814 usec_delay(1);
3815 /* Steps */
3816 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3817 if (ret_val != E1000_SUCCESS)
3818 break;
3819 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3820
3821 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3822 hsflctl.hsf_ctrl.fldbcount = size - 1;
3823 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3824 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3825
3826 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3827
3828 if (size == 1)
3829 flash_data = (u32)data & 0x00FF;
3830 else
3831 flash_data = (u32)data;
3832
3833 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3834
3835 /* check if FCERR is set to 1 , if set to 1, clear it
3836 * and try the whole sequence a few more times else done
3837 */
3838 ret_val =
3839 e1000_flash_cycle_ich8lan(hw,
3840 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3841 if (ret_val == E1000_SUCCESS)
3842 break;
3843
3844 /* If we're here, then things are most likely
3845 * completely hosed, but if the error condition
3846 * is detected, it won't hurt to give it another
3847 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3848 */
3849 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3850 if (hsfsts.hsf_status.flcerr)
3851 /* Repeat for some time before giving up. */
3852 continue;
3853 if (!hsfsts.hsf_status.flcdone) {
3854 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3855 break;
3856 }
3857 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3858
3859 return ret_val;
3860 }
3861
3862
3863 /**
3864 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3865 * @hw: pointer to the HW structure
3866 * @offset: The index of the byte to read.
3867 * @data: The byte to write to the NVM.
3868 *
3869 * Writes a single byte to the NVM using the flash access registers.
3870 **/
3871 STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3872 u8 data)
3873 {
3874 u16 word = (u16)data;
3875
3876 DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3877
3878 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3879 }
3880
3881
3882
3883 /**
3884 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3885 * @hw: pointer to the HW structure
3886 * @offset: The offset of the byte to write.
3887 * @byte: The byte to write to the NVM.
3888 *
3889 * Writes a single byte to the NVM using the flash access registers.
3890 * Goes through a retry algorithm before giving up.
3891 **/
3892 STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3893 u32 offset, u8 byte)
3894 {
3895 s32 ret_val;
3896 u16 program_retries;
3897
3898 DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3899
3900 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3901 if (!ret_val)
3902 return ret_val;
3903
3904 for (program_retries = 0; program_retries < 100; program_retries++) {
3905 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3906 usec_delay(100);
3907 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3908 if (ret_val == E1000_SUCCESS)
3909 break;
3910 }
3911 if (program_retries == 100)
3912 return -E1000_ERR_NVM;
3913
3914 return E1000_SUCCESS;
3915 }
3916
3917 /**
3918 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3919 * @hw: pointer to the HW structure
3920 * @bank: 0 for first bank, 1 for second bank, etc.
3921 *
3922 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3923 * bank N is 4096 * N + flash_reg_addr.
3924 **/
3925 STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3926 {
3927 struct e1000_nvm_info *nvm = &hw->nvm;
3928 union ich8_hws_flash_status hsfsts;
3929 union ich8_hws_flash_ctrl hsflctl;
3930 u32 flash_linear_addr;
3931 /* bank size is in 16bit words - adjust to bytes */
3932 u32 flash_bank_size = nvm->flash_bank_size * 2;
3933 s32 ret_val;
3934 s32 count = 0;
3935 s32 j, iteration, sector_size;
3936
3937 DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3938
3939 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3940
3941 /* Determine HW Sector size: Read BERASE bits of hw flash status
3942 * register
3943 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3944 * consecutive sectors. The start index for the nth Hw sector
3945 * can be calculated as = bank * 4096 + n * 256
3946 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3947 * The start index for the nth Hw sector can be calculated
3948 * as = bank * 4096
3949 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3950 * (ich9 only, otherwise error condition)
3951 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3952 */
3953 switch (hsfsts.hsf_status.berasesz) {
3954 case 0:
3955 /* Hw sector size 256 */
3956 sector_size = ICH_FLASH_SEG_SIZE_256;
3957 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3958 break;
3959 case 1:
3960 sector_size = ICH_FLASH_SEG_SIZE_4K;
3961 iteration = 1;
3962 break;
3963 case 2:
3964 sector_size = ICH_FLASH_SEG_SIZE_8K;
3965 iteration = 1;
3966 break;
3967 case 3:
3968 sector_size = ICH_FLASH_SEG_SIZE_64K;
3969 iteration = 1;
3970 break;
3971 default:
3972 return -E1000_ERR_NVM;
3973 }
3974
3975 /* Start with the base address, then add the sector offset. */
3976 flash_linear_addr = hw->nvm.flash_base_addr;
3977 flash_linear_addr += (bank) ? flash_bank_size : 0;
3978
3979 for (j = 0; j < iteration; j++) {
3980 do {
3981 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3982
3983 /* Steps */
3984 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3985 if (ret_val)
3986 return ret_val;
3987
3988 /* Write a value 11 (block Erase) in Flash
3989 * Cycle field in hw flash control
3990 */
3991 hsflctl.regval =
3992 E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3993
3994 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3995 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
3996 hsflctl.regval);
3997
3998 /* Write the last 24 bits of an index within the
3999 * block into Flash Linear address field in Flash
4000 * Address.
4001 */
4002 flash_linear_addr += (j * sector_size);
4003 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4004 flash_linear_addr);
4005
4006 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4007 if (ret_val == E1000_SUCCESS)
4008 break;
4009
4010 /* Check if FCERR is set to 1. If 1,
4011 * clear it and try the whole sequence
4012 * a few more times else Done
4013 */
4014 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4015 ICH_FLASH_HSFSTS);
4016 if (hsfsts.hsf_status.flcerr)
4017 /* repeat for some time before giving up */
4018 continue;
4019 else if (!hsfsts.hsf_status.flcdone)
4020 return ret_val;
4021 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4022 }
4023
4024 return E1000_SUCCESS;
4025 }
4026
4027 /**
4028 * e1000_valid_led_default_ich8lan - Set the default LED settings
4029 * @hw: pointer to the HW structure
4030 * @data: Pointer to the LED settings
4031 *
4032 * Reads the LED default settings from the NVM to data. If the NVM LED
4033 * settings is all 0's or F's, set the LED default to a valid LED default
4034 * setting.
4035 **/
4036 STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4037 {
4038 s32 ret_val;
4039
4040 DEBUGFUNC("e1000_valid_led_default_ich8lan");
4041
4042 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4043 if (ret_val) {
4044 DEBUGOUT("NVM Read Error\n");
4045 return ret_val;
4046 }
4047
4048 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4049 *data = ID_LED_DEFAULT_ICH8LAN;
4050
4051 return E1000_SUCCESS;
4052 }
4053
4054 /**
4055 * e1000_id_led_init_pchlan - store LED configurations
4056 * @hw: pointer to the HW structure
4057 *
4058 * PCH does not control LEDs via the LEDCTL register, rather it uses
4059 * the PHY LED configuration register.
4060 *
4061 * PCH also does not have an "always on" or "always off" mode which
4062 * complicates the ID feature. Instead of using the "on" mode to indicate
4063 * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4064 * use "link_up" mode. The LEDs will still ID on request if there is no
4065 * link based on logic in e1000_led_[on|off]_pchlan().
4066 **/
4067 STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4068 {
4069 struct e1000_mac_info *mac = &hw->mac;
4070 s32 ret_val;
4071 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4072 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4073 u16 data, i, temp, shift;
4074
4075 DEBUGFUNC("e1000_id_led_init_pchlan");
4076
4077 /* Get default ID LED modes */
4078 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4079 if (ret_val)
4080 return ret_val;
4081
4082 mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4083 mac->ledctl_mode1 = mac->ledctl_default;
4084 mac->ledctl_mode2 = mac->ledctl_default;
4085
4086 for (i = 0; i < 4; i++) {
4087 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4088 shift = (i * 5);
4089 switch (temp) {
4090 case ID_LED_ON1_DEF2:
4091 case ID_LED_ON1_ON2:
4092 case ID_LED_ON1_OFF2:
4093 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4094 mac->ledctl_mode1 |= (ledctl_on << shift);
4095 break;
4096 case ID_LED_OFF1_DEF2:
4097 case ID_LED_OFF1_ON2:
4098 case ID_LED_OFF1_OFF2:
4099 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4100 mac->ledctl_mode1 |= (ledctl_off << shift);
4101 break;
4102 default:
4103 /* Do nothing */
4104 break;
4105 }
4106 switch (temp) {
4107 case ID_LED_DEF1_ON2:
4108 case ID_LED_ON1_ON2:
4109 case ID_LED_OFF1_ON2:
4110 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4111 mac->ledctl_mode2 |= (ledctl_on << shift);
4112 break;
4113 case ID_LED_DEF1_OFF2:
4114 case ID_LED_ON1_OFF2:
4115 case ID_LED_OFF1_OFF2:
4116 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4117 mac->ledctl_mode2 |= (ledctl_off << shift);
4118 break;
4119 default:
4120 /* Do nothing */
4121 break;
4122 }
4123 }
4124
4125 return E1000_SUCCESS;
4126 }
4127
4128 /**
4129 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4130 * @hw: pointer to the HW structure
4131 *
4132 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4133 * register, so the the bus width is hard coded.
4134 **/
4135 STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4136 {
4137 struct e1000_bus_info *bus = &hw->bus;
4138 s32 ret_val;
4139
4140 DEBUGFUNC("e1000_get_bus_info_ich8lan");
4141
4142 ret_val = e1000_get_bus_info_pcie_generic(hw);
4143
4144 /* ICH devices are "PCI Express"-ish. They have
4145 * a configuration space, but do not contain
4146 * PCI Express Capability registers, so bus width
4147 * must be hardcoded.
4148 */
4149 if (bus->width == e1000_bus_width_unknown)
4150 bus->width = e1000_bus_width_pcie_x1;
4151
4152 return ret_val;
4153 }
4154
4155 /**
4156 * e1000_reset_hw_ich8lan - Reset the hardware
4157 * @hw: pointer to the HW structure
4158 *
4159 * Does a full reset of the hardware which includes a reset of the PHY and
4160 * MAC.
4161 **/
4162 STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4163 {
4164 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4165 u16 kum_cfg;
4166 u32 ctrl, reg;
4167 s32 ret_val;
4168
4169 DEBUGFUNC("e1000_reset_hw_ich8lan");
4170
4171 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4172 * on the last TLP read/write transaction when MAC is reset.
4173 */
4174 ret_val = e1000_disable_pcie_master_generic(hw);
4175 if (ret_val)
4176 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4177
4178 DEBUGOUT("Masking off all interrupts\n");
4179 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4180
4181 /* Disable the Transmit and Receive units. Then delay to allow
4182 * any pending transactions to complete before we hit the MAC
4183 * with the global reset.
4184 */
4185 E1000_WRITE_REG(hw, E1000_RCTL, 0);
4186 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4187 E1000_WRITE_FLUSH(hw);
4188
4189 msec_delay(10);
4190
4191 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4192 if (hw->mac.type == e1000_ich8lan) {
4193 /* Set Tx and Rx buffer allocation to 8k apiece. */
4194 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4195 /* Set Packet Buffer Size to 16k. */
4196 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4197 }
4198
4199 if (hw->mac.type == e1000_pchlan) {
4200 /* Save the NVM K1 bit setting*/
4201 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4202 if (ret_val)
4203 return ret_val;
4204
4205 if (kum_cfg & E1000_NVM_K1_ENABLE)
4206 dev_spec->nvm_k1_enabled = true;
4207 else
4208 dev_spec->nvm_k1_enabled = false;
4209 }
4210
4211 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4212
4213 if (!hw->phy.ops.check_reset_block(hw)) {
4214 /* Full-chip reset requires MAC and PHY reset at the same
4215 * time to make sure the interface between MAC and the
4216 * external PHY is reset.
4217 */
4218 ctrl |= E1000_CTRL_PHY_RST;
4219
4220 /* Gate automatic PHY configuration by hardware on
4221 * non-managed 82579
4222 */
4223 if ((hw->mac.type == e1000_pch2lan) &&
4224 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4225 e1000_gate_hw_phy_config_ich8lan(hw, true);
4226 }
4227 ret_val = e1000_acquire_swflag_ich8lan(hw);
4228 DEBUGOUT("Issuing a global reset to ich8lan\n");
4229 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4230 /* cannot issue a flush here because it hangs the hardware */
4231 msec_delay(20);
4232
4233 /* Set Phy Config Counter to 50msec */
4234 if (hw->mac.type == e1000_pch2lan) {
4235 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4236 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4237 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4238 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4239 }
4240
4241 if (!ret_val)
4242 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4243
4244 if (ctrl & E1000_CTRL_PHY_RST) {
4245 ret_val = hw->phy.ops.get_cfg_done(hw);
4246 if (ret_val)
4247 return ret_val;
4248
4249 ret_val = e1000_post_phy_reset_ich8lan(hw);
4250 if (ret_val)
4251 return ret_val;
4252 }
4253
4254 /* For PCH, this write will make sure that any noise
4255 * will be detected as a CRC error and be dropped rather than show up
4256 * as a bad packet to the DMA engine.
4257 */
4258 if (hw->mac.type == e1000_pchlan)
4259 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4260
4261 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4262 E1000_READ_REG(hw, E1000_ICR);
4263
4264 reg = E1000_READ_REG(hw, E1000_KABGTXD);
4265 reg |= E1000_KABGTXD_BGSQLBIAS;
4266 E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4267
4268 return E1000_SUCCESS;
4269 }
4270
4271 /**
4272 * e1000_init_hw_ich8lan - Initialize the hardware
4273 * @hw: pointer to the HW structure
4274 *
4275 * Prepares the hardware for transmit and receive by doing the following:
4276 * - initialize hardware bits
4277 * - initialize LED identification
4278 * - setup receive address registers
4279 * - setup flow control
4280 * - setup transmit descriptors
4281 * - clear statistics
4282 **/
4283 STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4284 {
4285 struct e1000_mac_info *mac = &hw->mac;
4286 u32 ctrl_ext, txdctl, snoop;
4287 s32 ret_val;
4288 u16 i;
4289
4290 DEBUGFUNC("e1000_init_hw_ich8lan");
4291
4292 e1000_initialize_hw_bits_ich8lan(hw);
4293
4294 /* Initialize identification LED */
4295 ret_val = mac->ops.id_led_init(hw);
4296 /* An error is not fatal and we should not stop init due to this */
4297 if (ret_val)
4298 DEBUGOUT("Error initializing identification LED\n");
4299
4300 /* Setup the receive address. */
4301 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4302
4303 /* Zero out the Multicast HASH table */
4304 DEBUGOUT("Zeroing the MTA\n");
4305 for (i = 0; i < mac->mta_reg_count; i++)
4306 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4307
4308 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4309 * the ME. Disable wakeup by clearing the host wakeup bit.
4310 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4311 */
4312 if (hw->phy.type == e1000_phy_82578) {
4313 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4314 i &= ~BM_WUC_HOST_WU_BIT;
4315 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4316 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4317 if (ret_val)
4318 return ret_val;
4319 }
4320
4321 /* Setup link and flow control */
4322 ret_val = mac->ops.setup_link(hw);
4323
4324 /* Set the transmit descriptor write-back policy for both queues */
4325 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4326 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4327 E1000_TXDCTL_FULL_TX_DESC_WB);
4328 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4329 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4330 E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4331 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4332 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4333 E1000_TXDCTL_FULL_TX_DESC_WB);
4334 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4335 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4336 E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4337
4338 /* ICH8 has opposite polarity of no_snoop bits.
4339 * By default, we should use snoop behavior.
4340 */
4341 if (mac->type == e1000_ich8lan)
4342 snoop = PCIE_ICH8_SNOOP_ALL;
4343 else
4344 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4345 e1000_set_pcie_no_snoop_generic(hw, snoop);
4346
4347 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4348 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4349 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4350
4351 /* Clear all of the statistics registers (clear on read). It is
4352 * important that we do this after we have tried to establish link
4353 * because the symbol error count will increment wildly if there
4354 * is no link.
4355 */
4356 e1000_clear_hw_cntrs_ich8lan(hw);
4357
4358 return ret_val;
4359 }
4360
4361 /**
4362 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4363 * @hw: pointer to the HW structure
4364 *
4365 * Sets/Clears required hardware bits necessary for correctly setting up the
4366 * hardware for transmit and receive.
4367 **/
4368 STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4369 {
4370 u32 reg;
4371
4372 DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4373
4374 /* Extended Device Control */
4375 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4376 reg |= (1 << 22);
4377 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4378 if (hw->mac.type >= e1000_pchlan)
4379 reg |= E1000_CTRL_EXT_PHYPDEN;
4380 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4381
4382 /* Transmit Descriptor Control 0 */
4383 reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4384 reg |= (1 << 22);
4385 E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4386
4387 /* Transmit Descriptor Control 1 */
4388 reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4389 reg |= (1 << 22);
4390 E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4391
4392 /* Transmit Arbitration Control 0 */
4393 reg = E1000_READ_REG(hw, E1000_TARC(0));
4394 if (hw->mac.type == e1000_ich8lan)
4395 reg |= (1 << 28) | (1 << 29);
4396 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4397 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4398
4399 /* Transmit Arbitration Control 1 */
4400 reg = E1000_READ_REG(hw, E1000_TARC(1));
4401 if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4402 reg &= ~(1 << 28);
4403 else
4404 reg |= (1 << 28);
4405 reg |= (1 << 24) | (1 << 26) | (1 << 30);
4406 E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4407
4408 /* Device Status */
4409 if (hw->mac.type == e1000_ich8lan) {
4410 reg = E1000_READ_REG(hw, E1000_STATUS);
4411 reg &= ~(1 << 31);
4412 E1000_WRITE_REG(hw, E1000_STATUS, reg);
4413 }
4414
4415 /* work-around descriptor data corruption issue during nfs v2 udp
4416 * traffic, just disable the nfs filtering capability
4417 */
4418 reg = E1000_READ_REG(hw, E1000_RFCTL);
4419 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4420
4421 /* Disable IPv6 extension header parsing because some malformed
4422 * IPv6 headers can hang the Rx.
4423 */
4424 if (hw->mac.type == e1000_ich8lan)
4425 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4426 E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4427
4428 /* Enable ECC on Lynxpoint */
4429 if (hw->mac.type == e1000_pch_lpt) {
4430 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4431 reg |= E1000_PBECCSTS_ECC_ENABLE;
4432 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4433
4434 reg = E1000_READ_REG(hw, E1000_CTRL);
4435 reg |= E1000_CTRL_MEHE;
4436 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4437 }
4438
4439 return;
4440 }
4441
4442 /**
4443 * e1000_setup_link_ich8lan - Setup flow control and link settings
4444 * @hw: pointer to the HW structure
4445 *
4446 * Determines which flow control settings to use, then configures flow
4447 * control. Calls the appropriate media-specific link configuration
4448 * function. Assuming the adapter has a valid link partner, a valid link
4449 * should be established. Assumes the hardware has previously been reset
4450 * and the transmitter and receiver are not enabled.
4451 **/
4452 STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4453 {
4454 s32 ret_val;
4455
4456 DEBUGFUNC("e1000_setup_link_ich8lan");
4457
4458 if (hw->phy.ops.check_reset_block(hw))
4459 return E1000_SUCCESS;
4460
4461 /* ICH parts do not have a word in the NVM to determine
4462 * the default flow control setting, so we explicitly
4463 * set it to full.
4464 */
4465 if (hw->fc.requested_mode == e1000_fc_default)
4466 hw->fc.requested_mode = e1000_fc_full;
4467
4468 /* Save off the requested flow control mode for use later. Depending
4469 * on the link partner's capabilities, we may or may not use this mode.
4470 */
4471 hw->fc.current_mode = hw->fc.requested_mode;
4472
4473 DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4474 hw->fc.current_mode);
4475
4476 /* Continue to configure the copper link. */
4477 ret_val = hw->mac.ops.setup_physical_interface(hw);
4478 if (ret_val)
4479 return ret_val;
4480
4481 E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4482 if ((hw->phy.type == e1000_phy_82578) ||
4483 (hw->phy.type == e1000_phy_82579) ||
4484 (hw->phy.type == e1000_phy_i217) ||
4485 (hw->phy.type == e1000_phy_82577)) {
4486 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4487
4488 ret_val = hw->phy.ops.write_reg(hw,
4489 PHY_REG(BM_PORT_CTRL_PAGE, 27),
4490 hw->fc.pause_time);
4491 if (ret_val)
4492 return ret_val;
4493 }
4494
4495 return e1000_set_fc_watermarks_generic(hw);
4496 }
4497
4498 /**
4499 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4500 * @hw: pointer to the HW structure
4501 *
4502 * Configures the kumeran interface to the PHY to wait the appropriate time
4503 * when polling the PHY, then call the generic setup_copper_link to finish
4504 * configuring the copper link.
4505 **/
4506 STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4507 {
4508 u32 ctrl;
4509 s32 ret_val;
4510 u16 reg_data;
4511
4512 DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4513
4514 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4515 ctrl |= E1000_CTRL_SLU;
4516 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4517 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4518
4519 /* Set the mac to wait the maximum time between each iteration
4520 * and increase the max iterations when polling the phy;
4521 * this fixes erroneous timeouts at 10Mbps.
4522 */
4523 ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4524 0xFFFF);
4525 if (ret_val)
4526 return ret_val;
4527 ret_val = e1000_read_kmrn_reg_generic(hw,
4528 E1000_KMRNCTRLSTA_INBAND_PARAM,
4529 &reg_data);
4530 if (ret_val)
4531 return ret_val;
4532 reg_data |= 0x3F;
4533 ret_val = e1000_write_kmrn_reg_generic(hw,
4534 E1000_KMRNCTRLSTA_INBAND_PARAM,
4535 reg_data);
4536 if (ret_val)
4537 return ret_val;
4538
4539 switch (hw->phy.type) {
4540 case e1000_phy_igp_3:
4541 ret_val = e1000_copper_link_setup_igp(hw);
4542 if (ret_val)
4543 return ret_val;
4544 break;
4545 case e1000_phy_bm:
4546 case e1000_phy_82578:
4547 ret_val = e1000_copper_link_setup_m88(hw);
4548 if (ret_val)
4549 return ret_val;
4550 break;
4551 case e1000_phy_82577:
4552 case e1000_phy_82579:
4553 ret_val = e1000_copper_link_setup_82577(hw);
4554 if (ret_val)
4555 return ret_val;
4556 break;
4557 case e1000_phy_ife:
4558 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4559 &reg_data);
4560 if (ret_val)
4561 return ret_val;
4562
4563 reg_data &= ~IFE_PMC_AUTO_MDIX;
4564
4565 switch (hw->phy.mdix) {
4566 case 1:
4567 reg_data &= ~IFE_PMC_FORCE_MDIX;
4568 break;
4569 case 2:
4570 reg_data |= IFE_PMC_FORCE_MDIX;
4571 break;
4572 case 0:
4573 default:
4574 reg_data |= IFE_PMC_AUTO_MDIX;
4575 break;
4576 }
4577 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4578 reg_data);
4579 if (ret_val)
4580 return ret_val;
4581 break;
4582 default:
4583 break;
4584 }
4585
4586 return e1000_setup_copper_link_generic(hw);
4587 }
4588
4589 /**
4590 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4591 * @hw: pointer to the HW structure
4592 *
4593 * Calls the PHY specific link setup function and then calls the
4594 * generic setup_copper_link to finish configuring the link for
4595 * Lynxpoint PCH devices
4596 **/
4597 STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4598 {
4599 u32 ctrl;
4600 s32 ret_val;
4601
4602 DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4603
4604 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4605 ctrl |= E1000_CTRL_SLU;
4606 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4607 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4608
4609 ret_val = e1000_copper_link_setup_82577(hw);
4610 if (ret_val)
4611 return ret_val;
4612
4613 return e1000_setup_copper_link_generic(hw);
4614 }
4615
4616 /**
4617 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4618 * @hw: pointer to the HW structure
4619 * @speed: pointer to store current link speed
4620 * @duplex: pointer to store the current link duplex
4621 *
4622 * Calls the generic get_speed_and_duplex to retrieve the current link
4623 * information and then calls the Kumeran lock loss workaround for links at
4624 * gigabit speeds.
4625 **/
4626 STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4627 u16 *duplex)
4628 {
4629 s32 ret_val;
4630
4631 DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4632
4633 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4634 if (ret_val)
4635 return ret_val;
4636
4637 if ((hw->mac.type == e1000_ich8lan) &&
4638 (hw->phy.type == e1000_phy_igp_3) &&
4639 (*speed == SPEED_1000)) {
4640 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4641 }
4642
4643 return ret_val;
4644 }
4645
4646 /**
4647 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4648 * @hw: pointer to the HW structure
4649 *
4650 * Work-around for 82566 Kumeran PCS lock loss:
4651 * On link status change (i.e. PCI reset, speed change) and link is up and
4652 * speed is gigabit-
4653 * 0) if workaround is optionally disabled do nothing
4654 * 1) wait 1ms for Kumeran link to come up
4655 * 2) check Kumeran Diagnostic register PCS lock loss bit
4656 * 3) if not set the link is locked (all is good), otherwise...
4657 * 4) reset the PHY
4658 * 5) repeat up to 10 times
4659 * Note: this is only called for IGP3 copper when speed is 1gb.
4660 **/
4661 STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4662 {
4663 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4664 u32 phy_ctrl;
4665 s32 ret_val;
4666 u16 i, data;
4667 bool link;
4668
4669 DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4670
4671 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4672 return E1000_SUCCESS;
4673
4674 /* Make sure link is up before proceeding. If not just return.
4675 * Attempting this while link is negotiating fouled up link
4676 * stability
4677 */
4678 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4679 if (!link)
4680 return E1000_SUCCESS;
4681
4682 for (i = 0; i < 10; i++) {
4683 /* read once to clear */
4684 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4685 if (ret_val)
4686 return ret_val;
4687 /* and again to get new status */
4688 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4689 if (ret_val)
4690 return ret_val;
4691
4692 /* check for PCS lock */
4693 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4694 return E1000_SUCCESS;
4695
4696 /* Issue PHY reset */
4697 hw->phy.ops.reset(hw);
4698 msec_delay_irq(5);
4699 }
4700 /* Disable GigE link negotiation */
4701 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4702 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4703 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4704 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4705
4706 /* Call gig speed drop workaround on Gig disable before accessing
4707 * any PHY registers
4708 */
4709 e1000_gig_downshift_workaround_ich8lan(hw);
4710
4711 /* unable to acquire PCS lock */
4712 return -E1000_ERR_PHY;
4713 }
4714
4715 /**
4716 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4717 * @hw: pointer to the HW structure
4718 * @state: boolean value used to set the current Kumeran workaround state
4719 *
4720 * If ICH8, set the current Kumeran workaround state (enabled - true
4721 * /disabled - false).
4722 **/
4723 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4724 bool state)
4725 {
4726 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4727
4728 DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4729
4730 if (hw->mac.type != e1000_ich8lan) {
4731 DEBUGOUT("Workaround applies to ICH8 only.\n");
4732 return;
4733 }
4734
4735 dev_spec->kmrn_lock_loss_workaround_enabled = state;
4736
4737 return;
4738 }
4739
4740 /**
4741 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4742 * @hw: pointer to the HW structure
4743 *
4744 * Workaround for 82566 power-down on D3 entry:
4745 * 1) disable gigabit link
4746 * 2) write VR power-down enable
4747 * 3) read it back
4748 * Continue if successful, else issue LCD reset and repeat
4749 **/
4750 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4751 {
4752 u32 reg;
4753 u16 data;
4754 u8 retry = 0;
4755
4756 DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4757
4758 if (hw->phy.type != e1000_phy_igp_3)
4759 return;
4760
4761 /* Try the workaround twice (if needed) */
4762 do {
4763 /* Disable link */
4764 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4765 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4766 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4767 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4768
4769 /* Call gig speed drop workaround on Gig disable before
4770 * accessing any PHY registers
4771 */
4772 if (hw->mac.type == e1000_ich8lan)
4773 e1000_gig_downshift_workaround_ich8lan(hw);
4774
4775 /* Write VR power-down enable */
4776 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4777 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4778 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4779 data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4780
4781 /* Read it back and test */
4782 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4783 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4784 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4785 break;
4786
4787 /* Issue PHY reset and repeat at most one more time */
4788 reg = E1000_READ_REG(hw, E1000_CTRL);
4789 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4790 retry++;
4791 } while (retry);
4792 }
4793
4794 /**
4795 * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4796 * @hw: pointer to the HW structure
4797 *
4798 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4799 * LPLU, Gig disable, MDIC PHY reset):
4800 * 1) Set Kumeran Near-end loopback
4801 * 2) Clear Kumeran Near-end loopback
4802 * Should only be called for ICH8[m] devices with any 1G Phy.
4803 **/
4804 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4805 {
4806 s32 ret_val;
4807 u16 reg_data;
4808
4809 DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4810
4811 if ((hw->mac.type != e1000_ich8lan) ||
4812 (hw->phy.type == e1000_phy_ife))
4813 return;
4814
4815 ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4816 &reg_data);
4817 if (ret_val)
4818 return;
4819 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4820 ret_val = e1000_write_kmrn_reg_generic(hw,
4821 E1000_KMRNCTRLSTA_DIAG_OFFSET,
4822 reg_data);
4823 if (ret_val)
4824 return;
4825 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4826 e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4827 reg_data);
4828 }
4829
4830 /**
4831 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4832 * @hw: pointer to the HW structure
4833 *
4834 * During S0 to Sx transition, it is possible the link remains at gig
4835 * instead of negotiating to a lower speed. Before going to Sx, set
4836 * 'Gig Disable' to force link speed negotiation to a lower speed based on
4837 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
4838 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4839 * needs to be written.
4840 * Parts that support (and are linked to a partner which support) EEE in
4841 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4842 * than 10Mbps w/o EEE.
4843 **/
4844 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4845 {
4846 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4847 u32 phy_ctrl;
4848 s32 ret_val;
4849
4850 DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4851
4852 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4853 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4854
4855 if (hw->phy.type == e1000_phy_i217) {
4856 u16 phy_reg, device_id = hw->device_id;
4857
4858 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4859 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4860 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4861 (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4862 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4863
4864 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4865 fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4866 }
4867
4868 ret_val = hw->phy.ops.acquire(hw);
4869 if (ret_val)
4870 goto out;
4871
4872 if (!dev_spec->eee_disable) {
4873 u16 eee_advert;
4874
4875 ret_val =
4876 e1000_read_emi_reg_locked(hw,
4877 I217_EEE_ADVERTISEMENT,
4878 &eee_advert);
4879 if (ret_val)
4880 goto release;
4881
4882 /* Disable LPLU if both link partners support 100BaseT
4883 * EEE and 100Full is advertised on both ends of the
4884 * link, and enable Auto Enable LPI since there will
4885 * be no driver to enable LPI while in Sx.
4886 */
4887 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4888 (dev_spec->eee_lp_ability &
4889 I82579_EEE_100_SUPPORTED) &&
4890 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4891 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4892 E1000_PHY_CTRL_NOND0A_LPLU);
4893
4894 /* Set Auto Enable LPI after link up */
4895 hw->phy.ops.read_reg_locked(hw,
4896 I217_LPI_GPIO_CTRL,
4897 &phy_reg);
4898 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4899 hw->phy.ops.write_reg_locked(hw,
4900 I217_LPI_GPIO_CTRL,
4901 phy_reg);
4902 }
4903 }
4904
4905 /* For i217 Intel Rapid Start Technology support,
4906 * when the system is going into Sx and no manageability engine
4907 * is present, the driver must configure proxy to reset only on
4908 * power good. LPI (Low Power Idle) state must also reset only
4909 * on power good, as well as the MTA (Multicast table array).
4910 * The SMBus release must also be disabled on LCD reset.
4911 */
4912 if (!(E1000_READ_REG(hw, E1000_FWSM) &
4913 E1000_ICH_FWSM_FW_VALID)) {
4914 /* Enable proxy to reset only on power good. */
4915 hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4916 &phy_reg);
4917 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4918 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4919 phy_reg);
4920
4921 /* Set bit enable LPI (EEE) to reset only on
4922 * power good.
4923 */
4924 hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4925 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4926 hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4927
4928 /* Disable the SMB release on LCD reset. */
4929 hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4930 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4931 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4932 }
4933
4934 /* Enable MTA to reset for Intel Rapid Start Technology
4935 * Support
4936 */
4937 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4938 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4939 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4940
4941 release:
4942 hw->phy.ops.release(hw);
4943 }
4944 out:
4945 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4946
4947 if (hw->mac.type == e1000_ich8lan)
4948 e1000_gig_downshift_workaround_ich8lan(hw);
4949
4950 if (hw->mac.type >= e1000_pchlan) {
4951 e1000_oem_bits_config_ich8lan(hw, false);
4952
4953 /* Reset PHY to activate OEM bits on 82577/8 */
4954 if (hw->mac.type == e1000_pchlan)
4955 e1000_phy_hw_reset_generic(hw);
4956
4957 ret_val = hw->phy.ops.acquire(hw);
4958 if (ret_val)
4959 return;
4960 e1000_write_smbus_addr(hw);
4961 hw->phy.ops.release(hw);
4962 }
4963
4964 return;
4965 }
4966
4967 /**
4968 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4969 * @hw: pointer to the HW structure
4970 *
4971 * During Sx to S0 transitions on non-managed devices or managed devices
4972 * on which PHY resets are not blocked, if the PHY registers cannot be
4973 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
4974 * the PHY.
4975 * On i217, setup Intel Rapid Start Technology.
4976 **/
4977 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4978 {
4979 s32 ret_val;
4980
4981 DEBUGFUNC("e1000_resume_workarounds_pchlan");
4982 if (hw->mac.type < e1000_pch2lan)
4983 return E1000_SUCCESS;
4984
4985 ret_val = e1000_init_phy_workarounds_pchlan(hw);
4986 if (ret_val) {
4987 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
4988 return ret_val;
4989 }
4990
4991 /* For i217 Intel Rapid Start Technology support when the system
4992 * is transitioning from Sx and no manageability engine is present
4993 * configure SMBus to restore on reset, disable proxy, and enable
4994 * the reset on MTA (Multicast table array).
4995 */
4996 if (hw->phy.type == e1000_phy_i217) {
4997 u16 phy_reg;
4998
4999 ret_val = hw->phy.ops.acquire(hw);
5000 if (ret_val) {
5001 DEBUGOUT("Failed to setup iRST\n");
5002 return ret_val;
5003 }
5004
5005 /* Clear Auto Enable LPI after link up */
5006 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5007 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5008 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5009
5010 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5011 E1000_ICH_FWSM_FW_VALID)) {
5012 /* Restore clear on SMB if no manageability engine
5013 * is present
5014 */
5015 ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5016 &phy_reg);
5017 if (ret_val)
5018 goto release;
5019 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5020 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5021
5022 /* Disable Proxy */
5023 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5024 }
5025 /* Enable reset on MTA */
5026 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5027 &phy_reg);
5028 if (ret_val)
5029 goto release;
5030 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5031 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5032 release:
5033 if (ret_val)
5034 DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5035 hw->phy.ops.release(hw);
5036 return ret_val;
5037 }
5038 return E1000_SUCCESS;
5039 }
5040
5041 /**
5042 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5043 * @hw: pointer to the HW structure
5044 *
5045 * Return the LED back to the default configuration.
5046 **/
5047 STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5048 {
5049 DEBUGFUNC("e1000_cleanup_led_ich8lan");
5050
5051 if (hw->phy.type == e1000_phy_ife)
5052 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5053 0);
5054
5055 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5056 return E1000_SUCCESS;
5057 }
5058
5059 /**
5060 * e1000_led_on_ich8lan - Turn LEDs on
5061 * @hw: pointer to the HW structure
5062 *
5063 * Turn on the LEDs.
5064 **/
5065 STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5066 {
5067 DEBUGFUNC("e1000_led_on_ich8lan");
5068
5069 if (hw->phy.type == e1000_phy_ife)
5070 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5071 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5072
5073 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5074 return E1000_SUCCESS;
5075 }
5076
5077 /**
5078 * e1000_led_off_ich8lan - Turn LEDs off
5079 * @hw: pointer to the HW structure
5080 *
5081 * Turn off the LEDs.
5082 **/
5083 STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5084 {
5085 DEBUGFUNC("e1000_led_off_ich8lan");
5086
5087 if (hw->phy.type == e1000_phy_ife)
5088 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5089 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5090
5091 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5092 return E1000_SUCCESS;
5093 }
5094
5095 /**
5096 * e1000_setup_led_pchlan - Configures SW controllable LED
5097 * @hw: pointer to the HW structure
5098 *
5099 * This prepares the SW controllable LED for use.
5100 **/
5101 STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5102 {
5103 DEBUGFUNC("e1000_setup_led_pchlan");
5104
5105 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5106 (u16)hw->mac.ledctl_mode1);
5107 }
5108
5109 /**
5110 * e1000_cleanup_led_pchlan - Restore the default LED operation
5111 * @hw: pointer to the HW structure
5112 *
5113 * Return the LED back to the default configuration.
5114 **/
5115 STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5116 {
5117 DEBUGFUNC("e1000_cleanup_led_pchlan");
5118
5119 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5120 (u16)hw->mac.ledctl_default);
5121 }
5122
5123 /**
5124 * e1000_led_on_pchlan - Turn LEDs on
5125 * @hw: pointer to the HW structure
5126 *
5127 * Turn on the LEDs.
5128 **/
5129 STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5130 {
5131 u16 data = (u16)hw->mac.ledctl_mode2;
5132 u32 i, led;
5133
5134 DEBUGFUNC("e1000_led_on_pchlan");
5135
5136 /* If no link, then turn LED on by setting the invert bit
5137 * for each LED that's mode is "link_up" in ledctl_mode2.
5138 */
5139 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5140 for (i = 0; i < 3; i++) {
5141 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5142 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5143 E1000_LEDCTL_MODE_LINK_UP)
5144 continue;
5145 if (led & E1000_PHY_LED0_IVRT)
5146 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5147 else
5148 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5149 }
5150 }
5151
5152 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5153 }
5154
5155 /**
5156 * e1000_led_off_pchlan - Turn LEDs off
5157 * @hw: pointer to the HW structure
5158 *
5159 * Turn off the LEDs.
5160 **/
5161 STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5162 {
5163 u16 data = (u16)hw->mac.ledctl_mode1;
5164 u32 i, led;
5165
5166 DEBUGFUNC("e1000_led_off_pchlan");
5167
5168 /* If no link, then turn LED off by clearing the invert bit
5169 * for each LED that's mode is "link_up" in ledctl_mode1.
5170 */
5171 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5172 for (i = 0; i < 3; i++) {
5173 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5174 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5175 E1000_LEDCTL_MODE_LINK_UP)
5176 continue;
5177 if (led & E1000_PHY_LED0_IVRT)
5178 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5179 else
5180 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5181 }
5182 }
5183
5184 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5185 }
5186
5187 /**
5188 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5189 * @hw: pointer to the HW structure
5190 *
5191 * Read appropriate register for the config done bit for completion status
5192 * and configure the PHY through s/w for EEPROM-less parts.
5193 *
5194 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5195 * config done bit, so only an error is logged and continues. If we were
5196 * to return with error, EEPROM-less silicon would not be able to be reset
5197 * or change link.
5198 **/
5199 STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5200 {
5201 s32 ret_val = E1000_SUCCESS;
5202 u32 bank = 0;
5203 u32 status;
5204
5205 DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5206
5207 e1000_get_cfg_done_generic(hw);
5208
5209 /* Wait for indication from h/w that it has completed basic config */
5210 if (hw->mac.type >= e1000_ich10lan) {
5211 e1000_lan_init_done_ich8lan(hw);
5212 } else {
5213 ret_val = e1000_get_auto_rd_done_generic(hw);
5214 if (ret_val) {
5215 /* When auto config read does not complete, do not
5216 * return with an error. This can happen in situations
5217 * where there is no eeprom and prevents getting link.
5218 */
5219 DEBUGOUT("Auto Read Done did not complete\n");
5220 ret_val = E1000_SUCCESS;
5221 }
5222 }
5223
5224 /* Clear PHY Reset Asserted bit */
5225 status = E1000_READ_REG(hw, E1000_STATUS);
5226 if (status & E1000_STATUS_PHYRA)
5227 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5228 else
5229 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5230
5231 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5232 if (hw->mac.type <= e1000_ich9lan) {
5233 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5234 (hw->phy.type == e1000_phy_igp_3)) {
5235 e1000_phy_init_script_igp3(hw);
5236 }
5237 } else {
5238 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5239 /* Maybe we should do a basic PHY config */
5240 DEBUGOUT("EEPROM not present\n");
5241 ret_val = -E1000_ERR_CONFIG;
5242 }
5243 }
5244
5245 return ret_val;
5246 }
5247
5248 /**
5249 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5250 * @hw: pointer to the HW structure
5251 *
5252 * In the case of a PHY power down to save power, or to turn off link during a
5253 * driver unload, or wake on lan is not enabled, remove the link.
5254 **/
5255 STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5256 {
5257 /* If the management interface is not enabled, then power down */
5258 if (!(hw->mac.ops.check_mng_mode(hw) ||
5259 hw->phy.ops.check_reset_block(hw)))
5260 e1000_power_down_phy_copper(hw);
5261
5262 return;
5263 }
5264
5265 /**
5266 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5267 * @hw: pointer to the HW structure
5268 *
5269 * Clears hardware counters specific to the silicon family and calls
5270 * clear_hw_cntrs_generic to clear all general purpose counters.
5271 **/
5272 STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5273 {
5274 u16 phy_data;
5275 s32 ret_val;
5276
5277 DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5278
5279 e1000_clear_hw_cntrs_base_generic(hw);
5280
5281 E1000_READ_REG(hw, E1000_ALGNERRC);
5282 E1000_READ_REG(hw, E1000_RXERRC);
5283 E1000_READ_REG(hw, E1000_TNCRS);
5284 E1000_READ_REG(hw, E1000_CEXTERR);
5285 E1000_READ_REG(hw, E1000_TSCTC);
5286 E1000_READ_REG(hw, E1000_TSCTFC);
5287
5288 E1000_READ_REG(hw, E1000_MGTPRC);
5289 E1000_READ_REG(hw, E1000_MGTPDC);
5290 E1000_READ_REG(hw, E1000_MGTPTC);
5291
5292 E1000_READ_REG(hw, E1000_IAC);
5293 E1000_READ_REG(hw, E1000_ICRXOC);
5294
5295 /* Clear PHY statistics registers */
5296 if ((hw->phy.type == e1000_phy_82578) ||
5297 (hw->phy.type == e1000_phy_82579) ||
5298 (hw->phy.type == e1000_phy_i217) ||
5299 (hw->phy.type == e1000_phy_82577)) {
5300 ret_val = hw->phy.ops.acquire(hw);
5301 if (ret_val)
5302 return;
5303 ret_val = hw->phy.ops.set_page(hw,
5304 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5305 if (ret_val)
5306 goto release;
5307 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5308 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5309 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5310 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5311 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5312 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5313 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5314 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5315 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5316 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5317 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5318 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5319 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5320 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5321 release:
5322 hw->phy.ops.release(hw);
5323 }
5324 }
5325
5326 /**
5327 * e1000_configure_k0s_lpt - Configure K0s power state
5328 * @hw: pointer to the HW structure
5329 * @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3.
5330 * 0 corresponds to 128ns, each value over 0 doubles the duration.
5331 * @min_time: Minimum Tx idle period allowed - valid values are 0 to 4.
5332 * 0 corresponds to 128ns, each value over 0 doubles the duration.
5333 *
5334 * Configure the K1 power state based on the provided parameter.
5335 * Assumes semaphore already acquired.
5336 *
5337 * Success returns 0, Failure returns:
5338 * -E1000_ERR_PHY (-2) in case of access error
5339 * -E1000_ERR_PARAM (-4) in case of parameters error
5340 **/
5341 s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time)
5342 {
5343 s32 ret_val;
5344 u16 kmrn_reg = 0;
5345
5346 DEBUGFUNC("e1000_configure_k0s_lpt");
5347
5348 if (entry_latency > 3 || min_time > 4)
5349 return -E1000_ERR_PARAM;
5350
5351 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
5352 &kmrn_reg);
5353 if (ret_val)
5354 return ret_val;
5355
5356 /* for now don't touch the latency */
5357 kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK);
5358 kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT));
5359
5360 ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
5361 kmrn_reg);
5362 if (ret_val)
5363 return ret_val;
5364
5365 return E1000_SUCCESS;
5366 }