]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/drivers/net/i40e/i40e_rxtx.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / drivers / net / i40e / i40e_rxtx.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <stdarg.h>
40 #include <unistd.h>
41 #include <inttypes.h>
42 #include <sys/queue.h>
43
44 #include <rte_string_fns.h>
45 #include <rte_memzone.h>
46 #include <rte_mbuf.h>
47 #include <rte_malloc.h>
48 #include <rte_ether.h>
49 #include <rte_ethdev.h>
50 #include <rte_tcp.h>
51 #include <rte_sctp.h>
52 #include <rte_udp.h>
53
54 #include "i40e_logs.h"
55 #include "base/i40e_prototype.h"
56 #include "base/i40e_type.h"
57 #include "i40e_ethdev.h"
58 #include "i40e_rxtx.h"
59
60 #define DEFAULT_TX_RS_THRESH 32
61 #define DEFAULT_TX_FREE_THRESH 32
62 #define I40E_MAX_PKT_TYPE 256
63
64 #define I40E_TX_MAX_BURST 32
65
66 #define I40E_DMA_MEM_ALIGN 4096
67
68 /* Base address of the HW descriptor ring should be 128B aligned. */
69 #define I40E_RING_BASE_ALIGN 128
70
71 #define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
72 ETH_TXQ_FLAGS_NOOFFLOADS)
73
74 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
75
76 #define I40E_TX_CKSUM_OFFLOAD_MASK ( \
77 PKT_TX_IP_CKSUM | \
78 PKT_TX_L4_MASK | \
79 PKT_TX_TCP_SEG | \
80 PKT_TX_OUTER_IP_CKSUM)
81
82 static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
83 struct rte_mbuf **tx_pkts,
84 uint16_t nb_pkts);
85
86 static inline void
87 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
88 {
89 if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
90 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
91 mb->ol_flags |= PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED;
92 mb->vlan_tci =
93 rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
94 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
95 rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
96 } else {
97 mb->vlan_tci = 0;
98 }
99 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
100 if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
101 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
102 mb->ol_flags |= PKT_RX_QINQ_STRIPPED;
103 mb->vlan_tci_outer = mb->vlan_tci;
104 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
105 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
106 rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
107 rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
108 } else {
109 mb->vlan_tci_outer = 0;
110 }
111 #endif
112 PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
113 mb->vlan_tci, mb->vlan_tci_outer);
114 }
115
116 /* Translate the rx descriptor status to pkt flags */
117 static inline uint64_t
118 i40e_rxd_status_to_pkt_flags(uint64_t qword)
119 {
120 uint64_t flags;
121
122 /* Check if RSS_HASH */
123 flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
124 I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
125 I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
126
127 /* Check if FDIR Match */
128 flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
129 PKT_RX_FDIR : 0);
130
131 return flags;
132 }
133
134 static inline uint64_t
135 i40e_rxd_error_to_pkt_flags(uint64_t qword)
136 {
137 uint64_t flags = 0;
138 uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
139
140 #define I40E_RX_ERR_BITS 0x3f
141 if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
142 return flags;
143 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
144 flags |= PKT_RX_IP_CKSUM_BAD;
145 else
146 flags |= PKT_RX_IP_CKSUM_GOOD;
147
148 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
149 flags |= PKT_RX_L4_CKSUM_BAD;
150 else
151 flags |= PKT_RX_L4_CKSUM_GOOD;
152
153 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
154 flags |= PKT_RX_EIP_CKSUM_BAD;
155
156 return flags;
157 }
158
159 /* Function to check and set the ieee1588 timesync index and get the
160 * appropriate flags.
161 */
162 #ifdef RTE_LIBRTE_IEEE1588
163 static inline uint64_t
164 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
165 {
166 uint64_t pkt_flags = 0;
167 uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
168 | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
169 >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
170
171 if ((mb->packet_type & RTE_PTYPE_L2_MASK)
172 == RTE_PTYPE_L2_ETHER_TIMESYNC)
173 pkt_flags = PKT_RX_IEEE1588_PTP;
174 if (tsyn & 0x04) {
175 pkt_flags |= PKT_RX_IEEE1588_TMST;
176 mb->timesync = tsyn & 0x03;
177 }
178
179 return pkt_flags;
180 }
181 #endif
182
183 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK 0x03
184 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID 0x01
185 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX 0x02
186 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK 0x03
187 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX 0x01
188
189 static inline uint64_t
190 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
191 {
192 uint64_t flags = 0;
193 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
194 uint16_t flexbh, flexbl;
195
196 flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
197 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
198 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
199 flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
200 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
201 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
202
203
204 if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
205 mb->hash.fdir.hi =
206 rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
207 flags |= PKT_RX_FDIR_ID;
208 } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
209 mb->hash.fdir.hi =
210 rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
211 flags |= PKT_RX_FDIR_FLX;
212 }
213 if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
214 mb->hash.fdir.lo =
215 rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
216 flags |= PKT_RX_FDIR_FLX;
217 }
218 #else
219 mb->hash.fdir.hi =
220 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
221 flags |= PKT_RX_FDIR_ID;
222 #endif
223 return flags;
224 }
225
226 static inline void
227 i40e_parse_tunneling_params(uint64_t ol_flags,
228 union i40e_tx_offload tx_offload,
229 uint32_t *cd_tunneling)
230 {
231 /* EIPT: External (outer) IP header type */
232 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
233 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
234 else if (ol_flags & PKT_TX_OUTER_IPV4)
235 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
236 else if (ol_flags & PKT_TX_OUTER_IPV6)
237 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
238
239 /* EIPLEN: External (outer) IP header length, in DWords */
240 *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
241 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
242
243 /* L4TUNT: L4 Tunneling Type */
244 switch (ol_flags & PKT_TX_TUNNEL_MASK) {
245 case PKT_TX_TUNNEL_IPIP:
246 /* for non UDP / GRE tunneling, set to 00b */
247 break;
248 case PKT_TX_TUNNEL_VXLAN:
249 case PKT_TX_TUNNEL_GENEVE:
250 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
251 break;
252 case PKT_TX_TUNNEL_GRE:
253 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
254 break;
255 default:
256 PMD_TX_LOG(ERR, "Tunnel type not supported\n");
257 return;
258 }
259
260 /* L4TUNLEN: L4 Tunneling Length, in Words
261 *
262 * We depend on app to set rte_mbuf.l2_len correctly.
263 * For IP in GRE it should be set to the length of the GRE
264 * header;
265 * for MAC in GRE or MAC in UDP it should be set to the length
266 * of the GRE or UDP headers plus the inner MAC up to including
267 * its last Ethertype.
268 */
269 *cd_tunneling |= (tx_offload.l2_len >> 1) <<
270 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
271 }
272
273 static inline void
274 i40e_txd_enable_checksum(uint64_t ol_flags,
275 uint32_t *td_cmd,
276 uint32_t *td_offset,
277 union i40e_tx_offload tx_offload)
278 {
279 /* Set MACLEN */
280 if (ol_flags & PKT_TX_TUNNEL_MASK)
281 *td_offset |= (tx_offload.outer_l2_len >> 1)
282 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
283 else
284 *td_offset |= (tx_offload.l2_len >> 1)
285 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
286
287 /* Enable L3 checksum offloads */
288 if (ol_flags & PKT_TX_IP_CKSUM) {
289 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
290 *td_offset |= (tx_offload.l3_len >> 2)
291 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
292 } else if (ol_flags & PKT_TX_IPV4) {
293 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
294 *td_offset |= (tx_offload.l3_len >> 2)
295 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
296 } else if (ol_flags & PKT_TX_IPV6) {
297 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
298 *td_offset |= (tx_offload.l3_len >> 2)
299 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
300 }
301
302 if (ol_flags & PKT_TX_TCP_SEG) {
303 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
304 *td_offset |= (tx_offload.l4_len >> 2)
305 << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
306 return;
307 }
308
309 /* Enable L4 checksum offloads */
310 switch (ol_flags & PKT_TX_L4_MASK) {
311 case PKT_TX_TCP_CKSUM:
312 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
313 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
314 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
315 break;
316 case PKT_TX_SCTP_CKSUM:
317 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
318 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
319 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
320 break;
321 case PKT_TX_UDP_CKSUM:
322 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
323 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
324 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
325 break;
326 default:
327 break;
328 }
329 }
330
331 /* Construct the tx flags */
332 static inline uint64_t
333 i40e_build_ctob(uint32_t td_cmd,
334 uint32_t td_offset,
335 unsigned int size,
336 uint32_t td_tag)
337 {
338 return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
339 ((uint64_t)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
340 ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
341 ((uint64_t)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
342 ((uint64_t)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
343 }
344
345 static inline int
346 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
347 {
348 struct i40e_tx_entry *sw_ring = txq->sw_ring;
349 volatile struct i40e_tx_desc *txd = txq->tx_ring;
350 uint16_t last_desc_cleaned = txq->last_desc_cleaned;
351 uint16_t nb_tx_desc = txq->nb_tx_desc;
352 uint16_t desc_to_clean_to;
353 uint16_t nb_tx_to_clean;
354
355 desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
356 if (desc_to_clean_to >= nb_tx_desc)
357 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
358
359 desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
360 if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
361 rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
362 rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
363 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
364 "(port=%d queue=%d)", desc_to_clean_to,
365 txq->port_id, txq->queue_id);
366 return -1;
367 }
368
369 if (last_desc_cleaned > desc_to_clean_to)
370 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
371 desc_to_clean_to);
372 else
373 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
374 last_desc_cleaned);
375
376 txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
377
378 txq->last_desc_cleaned = desc_to_clean_to;
379 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
380
381 return 0;
382 }
383
384 static inline int
385 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
386 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
387 #else
388 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
389 #endif
390 {
391 int ret = 0;
392
393 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
394 if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
395 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
396 "rxq->rx_free_thresh=%d, "
397 "RTE_PMD_I40E_RX_MAX_BURST=%d",
398 rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
399 ret = -EINVAL;
400 } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
401 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
402 "rxq->rx_free_thresh=%d, "
403 "rxq->nb_rx_desc=%d",
404 rxq->rx_free_thresh, rxq->nb_rx_desc);
405 ret = -EINVAL;
406 } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
407 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
408 "rxq->nb_rx_desc=%d, "
409 "rxq->rx_free_thresh=%d",
410 rxq->nb_rx_desc, rxq->rx_free_thresh);
411 ret = -EINVAL;
412 } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
413 RTE_PMD_I40E_RX_MAX_BURST))) {
414 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
415 "rxq->nb_rx_desc=%d, "
416 "I40E_MAX_RING_DESC=%d, "
417 "RTE_PMD_I40E_RX_MAX_BURST=%d",
418 rxq->nb_rx_desc, I40E_MAX_RING_DESC,
419 RTE_PMD_I40E_RX_MAX_BURST);
420 ret = -EINVAL;
421 }
422 #else
423 ret = -EINVAL;
424 #endif
425
426 return ret;
427 }
428
429 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
430 #define I40E_LOOK_AHEAD 8
431 #if (I40E_LOOK_AHEAD != 8)
432 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
433 #endif
434 static inline int
435 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
436 {
437 volatile union i40e_rx_desc *rxdp;
438 struct i40e_rx_entry *rxep;
439 struct rte_mbuf *mb;
440 uint16_t pkt_len;
441 uint64_t qword1;
442 uint32_t rx_status;
443 int32_t s[I40E_LOOK_AHEAD], nb_dd;
444 int32_t i, j, nb_rx = 0;
445 uint64_t pkt_flags;
446
447 rxdp = &rxq->rx_ring[rxq->rx_tail];
448 rxep = &rxq->sw_ring[rxq->rx_tail];
449
450 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
451 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
452 I40E_RXD_QW1_STATUS_SHIFT;
453
454 /* Make sure there is at least 1 packet to receive */
455 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
456 return 0;
457
458 /**
459 * Scan LOOK_AHEAD descriptors at a time to determine which
460 * descriptors reference packets that are ready to be received.
461 */
462 for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
463 rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
464 /* Read desc statuses backwards to avoid race condition */
465 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
466 qword1 = rte_le_to_cpu_64(\
467 rxdp[j].wb.qword1.status_error_len);
468 s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
469 I40E_RXD_QW1_STATUS_SHIFT;
470 }
471
472 rte_smp_rmb();
473
474 /* Compute how many status bits were set */
475 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
476 nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
477
478 nb_rx += nb_dd;
479
480 /* Translate descriptor info to mbuf parameters */
481 for (j = 0; j < nb_dd; j++) {
482 mb = rxep[j].mbuf;
483 qword1 = rte_le_to_cpu_64(\
484 rxdp[j].wb.qword1.status_error_len);
485 pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
486 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
487 mb->data_len = pkt_len;
488 mb->pkt_len = pkt_len;
489 mb->ol_flags = 0;
490 i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
491 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
492 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
493 mb->packet_type =
494 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
495 I40E_RXD_QW1_PTYPE_MASK) >>
496 I40E_RXD_QW1_PTYPE_SHIFT));
497 if (pkt_flags & PKT_RX_RSS_HASH)
498 mb->hash.rss = rte_le_to_cpu_32(\
499 rxdp[j].wb.qword0.hi_dword.rss);
500 if (pkt_flags & PKT_RX_FDIR)
501 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
502
503 #ifdef RTE_LIBRTE_IEEE1588
504 pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
505 #endif
506 mb->ol_flags |= pkt_flags;
507
508 }
509
510 for (j = 0; j < I40E_LOOK_AHEAD; j++)
511 rxq->rx_stage[i + j] = rxep[j].mbuf;
512
513 if (nb_dd != I40E_LOOK_AHEAD)
514 break;
515 }
516
517 /* Clear software ring entries */
518 for (i = 0; i < nb_rx; i++)
519 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
520
521 return nb_rx;
522 }
523
524 static inline uint16_t
525 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
526 struct rte_mbuf **rx_pkts,
527 uint16_t nb_pkts)
528 {
529 uint16_t i;
530 struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
531
532 nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
533
534 for (i = 0; i < nb_pkts; i++)
535 rx_pkts[i] = stage[i];
536
537 rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
538 rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
539
540 return nb_pkts;
541 }
542
543 static inline int
544 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
545 {
546 volatile union i40e_rx_desc *rxdp;
547 struct i40e_rx_entry *rxep;
548 struct rte_mbuf *mb;
549 uint16_t alloc_idx, i;
550 uint64_t dma_addr;
551 int diag;
552
553 /* Allocate buffers in bulk */
554 alloc_idx = (uint16_t)(rxq->rx_free_trigger -
555 (rxq->rx_free_thresh - 1));
556 rxep = &(rxq->sw_ring[alloc_idx]);
557 diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
558 rxq->rx_free_thresh);
559 if (unlikely(diag != 0)) {
560 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
561 return -ENOMEM;
562 }
563
564 rxdp = &rxq->rx_ring[alloc_idx];
565 for (i = 0; i < rxq->rx_free_thresh; i++) {
566 if (likely(i < (rxq->rx_free_thresh - 1)))
567 /* Prefetch next mbuf */
568 rte_prefetch0(rxep[i + 1].mbuf);
569
570 mb = rxep[i].mbuf;
571 rte_mbuf_refcnt_set(mb, 1);
572 mb->next = NULL;
573 mb->data_off = RTE_PKTMBUF_HEADROOM;
574 mb->nb_segs = 1;
575 mb->port = rxq->port_id;
576 dma_addr = rte_cpu_to_le_64(\
577 rte_mbuf_data_dma_addr_default(mb));
578 rxdp[i].read.hdr_addr = 0;
579 rxdp[i].read.pkt_addr = dma_addr;
580 }
581
582 /* Update rx tail regsiter */
583 rte_wmb();
584 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
585
586 rxq->rx_free_trigger =
587 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
588 if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
589 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
590
591 return 0;
592 }
593
594 static inline uint16_t
595 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
596 {
597 struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
598 uint16_t nb_rx = 0;
599
600 if (!nb_pkts)
601 return 0;
602
603 if (rxq->rx_nb_avail)
604 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
605
606 nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
607 rxq->rx_next_avail = 0;
608 rxq->rx_nb_avail = nb_rx;
609 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
610
611 if (rxq->rx_tail > rxq->rx_free_trigger) {
612 if (i40e_rx_alloc_bufs(rxq) != 0) {
613 uint16_t i, j;
614
615 PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
616 "port_id=%u, queue_id=%u",
617 rxq->port_id, rxq->queue_id);
618 rxq->rx_nb_avail = 0;
619 rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
620 for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
621 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
622
623 return 0;
624 }
625 }
626
627 if (rxq->rx_tail >= rxq->nb_rx_desc)
628 rxq->rx_tail = 0;
629
630 if (rxq->rx_nb_avail)
631 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
632
633 return 0;
634 }
635
636 static uint16_t
637 i40e_recv_pkts_bulk_alloc(void *rx_queue,
638 struct rte_mbuf **rx_pkts,
639 uint16_t nb_pkts)
640 {
641 uint16_t nb_rx = 0, n, count;
642
643 if (unlikely(nb_pkts == 0))
644 return 0;
645
646 if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
647 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
648
649 while (nb_pkts) {
650 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
651 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
652 nb_rx = (uint16_t)(nb_rx + count);
653 nb_pkts = (uint16_t)(nb_pkts - count);
654 if (count < n)
655 break;
656 }
657
658 return nb_rx;
659 }
660 #else
661 static uint16_t
662 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
663 struct rte_mbuf __rte_unused **rx_pkts,
664 uint16_t __rte_unused nb_pkts)
665 {
666 return 0;
667 }
668 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
669
670 uint16_t
671 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
672 {
673 struct i40e_rx_queue *rxq;
674 volatile union i40e_rx_desc *rx_ring;
675 volatile union i40e_rx_desc *rxdp;
676 union i40e_rx_desc rxd;
677 struct i40e_rx_entry *sw_ring;
678 struct i40e_rx_entry *rxe;
679 struct rte_mbuf *rxm;
680 struct rte_mbuf *nmb;
681 uint16_t nb_rx;
682 uint32_t rx_status;
683 uint64_t qword1;
684 uint16_t rx_packet_len;
685 uint16_t rx_id, nb_hold;
686 uint64_t dma_addr;
687 uint64_t pkt_flags;
688
689 nb_rx = 0;
690 nb_hold = 0;
691 rxq = rx_queue;
692 rx_id = rxq->rx_tail;
693 rx_ring = rxq->rx_ring;
694 sw_ring = rxq->sw_ring;
695
696 while (nb_rx < nb_pkts) {
697 rxdp = &rx_ring[rx_id];
698 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
699 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
700 >> I40E_RXD_QW1_STATUS_SHIFT;
701
702 /* Check the DD bit first */
703 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
704 break;
705
706 nmb = rte_mbuf_raw_alloc(rxq->mp);
707 if (unlikely(!nmb))
708 break;
709 rxd = *rxdp;
710
711 nb_hold++;
712 rxe = &sw_ring[rx_id];
713 rx_id++;
714 if (unlikely(rx_id == rxq->nb_rx_desc))
715 rx_id = 0;
716
717 /* Prefetch next mbuf */
718 rte_prefetch0(sw_ring[rx_id].mbuf);
719
720 /**
721 * When next RX descriptor is on a cache line boundary,
722 * prefetch the next 4 RX descriptors and next 8 pointers
723 * to mbufs.
724 */
725 if ((rx_id & 0x3) == 0) {
726 rte_prefetch0(&rx_ring[rx_id]);
727 rte_prefetch0(&sw_ring[rx_id]);
728 }
729 rxm = rxe->mbuf;
730 rxe->mbuf = nmb;
731 dma_addr =
732 rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
733 rxdp->read.hdr_addr = 0;
734 rxdp->read.pkt_addr = dma_addr;
735
736 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
737 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
738
739 rxm->data_off = RTE_PKTMBUF_HEADROOM;
740 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
741 rxm->nb_segs = 1;
742 rxm->next = NULL;
743 rxm->pkt_len = rx_packet_len;
744 rxm->data_len = rx_packet_len;
745 rxm->port = rxq->port_id;
746 rxm->ol_flags = 0;
747 i40e_rxd_to_vlan_tci(rxm, &rxd);
748 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
749 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
750 rxm->packet_type =
751 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
752 I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
753 if (pkt_flags & PKT_RX_RSS_HASH)
754 rxm->hash.rss =
755 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
756 if (pkt_flags & PKT_RX_FDIR)
757 pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
758
759 #ifdef RTE_LIBRTE_IEEE1588
760 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
761 #endif
762 rxm->ol_flags |= pkt_flags;
763
764 rx_pkts[nb_rx++] = rxm;
765 }
766 rxq->rx_tail = rx_id;
767
768 /**
769 * If the number of free RX descriptors is greater than the RX free
770 * threshold of the queue, advance the receive tail register of queue.
771 * Update that register with the value of the last processed RX
772 * descriptor minus 1.
773 */
774 nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
775 if (nb_hold > rxq->rx_free_thresh) {
776 rx_id = (uint16_t) ((rx_id == 0) ?
777 (rxq->nb_rx_desc - 1) : (rx_id - 1));
778 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
779 nb_hold = 0;
780 }
781 rxq->nb_rx_hold = nb_hold;
782
783 return nb_rx;
784 }
785
786 uint16_t
787 i40e_recv_scattered_pkts(void *rx_queue,
788 struct rte_mbuf **rx_pkts,
789 uint16_t nb_pkts)
790 {
791 struct i40e_rx_queue *rxq = rx_queue;
792 volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
793 volatile union i40e_rx_desc *rxdp;
794 union i40e_rx_desc rxd;
795 struct i40e_rx_entry *sw_ring = rxq->sw_ring;
796 struct i40e_rx_entry *rxe;
797 struct rte_mbuf *first_seg = rxq->pkt_first_seg;
798 struct rte_mbuf *last_seg = rxq->pkt_last_seg;
799 struct rte_mbuf *nmb, *rxm;
800 uint16_t rx_id = rxq->rx_tail;
801 uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
802 uint32_t rx_status;
803 uint64_t qword1;
804 uint64_t dma_addr;
805 uint64_t pkt_flags;
806
807 while (nb_rx < nb_pkts) {
808 rxdp = &rx_ring[rx_id];
809 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
810 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
811 I40E_RXD_QW1_STATUS_SHIFT;
812
813 /* Check the DD bit */
814 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
815 break;
816
817 nmb = rte_mbuf_raw_alloc(rxq->mp);
818 if (unlikely(!nmb))
819 break;
820 rxd = *rxdp;
821 nb_hold++;
822 rxe = &sw_ring[rx_id];
823 rx_id++;
824 if (rx_id == rxq->nb_rx_desc)
825 rx_id = 0;
826
827 /* Prefetch next mbuf */
828 rte_prefetch0(sw_ring[rx_id].mbuf);
829
830 /**
831 * When next RX descriptor is on a cache line boundary,
832 * prefetch the next 4 RX descriptors and next 8 pointers
833 * to mbufs.
834 */
835 if ((rx_id & 0x3) == 0) {
836 rte_prefetch0(&rx_ring[rx_id]);
837 rte_prefetch0(&sw_ring[rx_id]);
838 }
839
840 rxm = rxe->mbuf;
841 rxe->mbuf = nmb;
842 dma_addr =
843 rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
844
845 /* Set data buffer address and data length of the mbuf */
846 rxdp->read.hdr_addr = 0;
847 rxdp->read.pkt_addr = dma_addr;
848 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
849 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
850 rxm->data_len = rx_packet_len;
851 rxm->data_off = RTE_PKTMBUF_HEADROOM;
852
853 /**
854 * If this is the first buffer of the received packet, set the
855 * pointer to the first mbuf of the packet and initialize its
856 * context. Otherwise, update the total length and the number
857 * of segments of the current scattered packet, and update the
858 * pointer to the last mbuf of the current packet.
859 */
860 if (!first_seg) {
861 first_seg = rxm;
862 first_seg->nb_segs = 1;
863 first_seg->pkt_len = rx_packet_len;
864 } else {
865 first_seg->pkt_len =
866 (uint16_t)(first_seg->pkt_len +
867 rx_packet_len);
868 first_seg->nb_segs++;
869 last_seg->next = rxm;
870 }
871
872 /**
873 * If this is not the last buffer of the received packet,
874 * update the pointer to the last mbuf of the current scattered
875 * packet and continue to parse the RX ring.
876 */
877 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
878 last_seg = rxm;
879 continue;
880 }
881
882 /**
883 * This is the last buffer of the received packet. If the CRC
884 * is not stripped by the hardware:
885 * - Subtract the CRC length from the total packet length.
886 * - If the last buffer only contains the whole CRC or a part
887 * of it, free the mbuf associated to the last buffer. If part
888 * of the CRC is also contained in the previous mbuf, subtract
889 * the length of that CRC part from the data length of the
890 * previous mbuf.
891 */
892 rxm->next = NULL;
893 if (unlikely(rxq->crc_len > 0)) {
894 first_seg->pkt_len -= ETHER_CRC_LEN;
895 if (rx_packet_len <= ETHER_CRC_LEN) {
896 rte_pktmbuf_free_seg(rxm);
897 first_seg->nb_segs--;
898 last_seg->data_len =
899 (uint16_t)(last_seg->data_len -
900 (ETHER_CRC_LEN - rx_packet_len));
901 last_seg->next = NULL;
902 } else
903 rxm->data_len = (uint16_t)(rx_packet_len -
904 ETHER_CRC_LEN);
905 }
906
907 first_seg->port = rxq->port_id;
908 first_seg->ol_flags = 0;
909 i40e_rxd_to_vlan_tci(first_seg, &rxd);
910 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
911 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
912 first_seg->packet_type =
913 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
914 I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
915 if (pkt_flags & PKT_RX_RSS_HASH)
916 first_seg->hash.rss =
917 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
918 if (pkt_flags & PKT_RX_FDIR)
919 pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
920
921 #ifdef RTE_LIBRTE_IEEE1588
922 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
923 #endif
924 first_seg->ol_flags |= pkt_flags;
925
926 /* Prefetch data of first segment, if configured to do so. */
927 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
928 first_seg->data_off));
929 rx_pkts[nb_rx++] = first_seg;
930 first_seg = NULL;
931 }
932
933 /* Record index of the next RX descriptor to probe. */
934 rxq->rx_tail = rx_id;
935 rxq->pkt_first_seg = first_seg;
936 rxq->pkt_last_seg = last_seg;
937
938 /**
939 * If the number of free RX descriptors is greater than the RX free
940 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
941 * register. Update the RDT with the value of the last processed RX
942 * descriptor minus 1, to guarantee that the RDT register is never
943 * equal to the RDH register, which creates a "full" ring situtation
944 * from the hardware point of view.
945 */
946 nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
947 if (nb_hold > rxq->rx_free_thresh) {
948 rx_id = (uint16_t)(rx_id == 0 ?
949 (rxq->nb_rx_desc - 1) : (rx_id - 1));
950 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
951 nb_hold = 0;
952 }
953 rxq->nb_rx_hold = nb_hold;
954
955 return nb_rx;
956 }
957
958 /* Check if the context descriptor is needed for TX offloading */
959 static inline uint16_t
960 i40e_calc_context_desc(uint64_t flags)
961 {
962 static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
963 PKT_TX_TCP_SEG |
964 PKT_TX_QINQ_PKT |
965 PKT_TX_TUNNEL_MASK;
966
967 #ifdef RTE_LIBRTE_IEEE1588
968 mask |= PKT_TX_IEEE1588_TMST;
969 #endif
970
971 return (flags & mask) ? 1 : 0;
972 }
973
974 /* set i40e TSO context descriptor */
975 static inline uint64_t
976 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
977 {
978 uint64_t ctx_desc = 0;
979 uint32_t cd_cmd, hdr_len, cd_tso_len;
980
981 if (!tx_offload.l4_len) {
982 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
983 return ctx_desc;
984 }
985
986 /**
987 * in case of non tunneling packet, the outer_l2_len and
988 * outer_l3_len must be 0.
989 */
990 hdr_len = tx_offload.outer_l2_len +
991 tx_offload.outer_l3_len +
992 tx_offload.l2_len +
993 tx_offload.l3_len +
994 tx_offload.l4_len;
995
996 cd_cmd = I40E_TX_CTX_DESC_TSO;
997 cd_tso_len = mbuf->pkt_len - hdr_len;
998 ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
999 ((uint64_t)cd_tso_len <<
1000 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1001 ((uint64_t)mbuf->tso_segsz <<
1002 I40E_TXD_CTX_QW1_MSS_SHIFT);
1003
1004 return ctx_desc;
1005 }
1006
1007 uint16_t
1008 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1009 {
1010 struct i40e_tx_queue *txq;
1011 struct i40e_tx_entry *sw_ring;
1012 struct i40e_tx_entry *txe, *txn;
1013 volatile struct i40e_tx_desc *txd;
1014 volatile struct i40e_tx_desc *txr;
1015 struct rte_mbuf *tx_pkt;
1016 struct rte_mbuf *m_seg;
1017 uint32_t cd_tunneling_params;
1018 uint16_t tx_id;
1019 uint16_t nb_tx;
1020 uint32_t td_cmd;
1021 uint32_t td_offset;
1022 uint32_t tx_flags;
1023 uint32_t td_tag;
1024 uint64_t ol_flags;
1025 uint16_t nb_used;
1026 uint16_t nb_ctx;
1027 uint16_t tx_last;
1028 uint16_t slen;
1029 uint64_t buf_dma_addr;
1030 union i40e_tx_offload tx_offload = {0};
1031
1032 txq = tx_queue;
1033 sw_ring = txq->sw_ring;
1034 txr = txq->tx_ring;
1035 tx_id = txq->tx_tail;
1036 txe = &sw_ring[tx_id];
1037
1038 /* Check if the descriptor ring needs to be cleaned. */
1039 if (txq->nb_tx_free < txq->tx_free_thresh)
1040 i40e_xmit_cleanup(txq);
1041
1042 for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1043 td_cmd = 0;
1044 td_tag = 0;
1045 td_offset = 0;
1046 tx_flags = 0;
1047
1048 tx_pkt = *tx_pkts++;
1049 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1050
1051 ol_flags = tx_pkt->ol_flags;
1052 tx_offload.l2_len = tx_pkt->l2_len;
1053 tx_offload.l3_len = tx_pkt->l3_len;
1054 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1055 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1056 tx_offload.l4_len = tx_pkt->l4_len;
1057 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1058
1059 /* Calculate the number of context descriptors needed. */
1060 nb_ctx = i40e_calc_context_desc(ol_flags);
1061
1062 /**
1063 * The number of descriptors that must be allocated for
1064 * a packet equals to the number of the segments of that
1065 * packet plus 1 context descriptor if needed.
1066 */
1067 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1068 tx_last = (uint16_t)(tx_id + nb_used - 1);
1069
1070 /* Circular ring */
1071 if (tx_last >= txq->nb_tx_desc)
1072 tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1073
1074 if (nb_used > txq->nb_tx_free) {
1075 if (i40e_xmit_cleanup(txq) != 0) {
1076 if (nb_tx == 0)
1077 return 0;
1078 goto end_of_tx;
1079 }
1080 if (unlikely(nb_used > txq->tx_rs_thresh)) {
1081 while (nb_used > txq->nb_tx_free) {
1082 if (i40e_xmit_cleanup(txq) != 0) {
1083 if (nb_tx == 0)
1084 return 0;
1085 goto end_of_tx;
1086 }
1087 }
1088 }
1089 }
1090
1091 /* Descriptor based VLAN insertion */
1092 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1093 tx_flags |= tx_pkt->vlan_tci <<
1094 I40E_TX_FLAG_L2TAG1_SHIFT;
1095 tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
1096 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1097 td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
1098 I40E_TX_FLAG_L2TAG1_SHIFT;
1099 }
1100
1101 /* Always enable CRC offload insertion */
1102 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1103
1104 /* Fill in tunneling parameters if necessary */
1105 cd_tunneling_params = 0;
1106 if (ol_flags & PKT_TX_TUNNEL_MASK)
1107 i40e_parse_tunneling_params(ol_flags, tx_offload,
1108 &cd_tunneling_params);
1109 /* Enable checksum offloading */
1110 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1111 i40e_txd_enable_checksum(ol_flags, &td_cmd,
1112 &td_offset, tx_offload);
1113
1114 if (nb_ctx) {
1115 /* Setup TX context descriptor if required */
1116 volatile struct i40e_tx_context_desc *ctx_txd =
1117 (volatile struct i40e_tx_context_desc *)\
1118 &txr[tx_id];
1119 uint16_t cd_l2tag2 = 0;
1120 uint64_t cd_type_cmd_tso_mss =
1121 I40E_TX_DESC_DTYPE_CONTEXT;
1122
1123 txn = &sw_ring[txe->next_id];
1124 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1125 if (txe->mbuf != NULL) {
1126 rte_pktmbuf_free_seg(txe->mbuf);
1127 txe->mbuf = NULL;
1128 }
1129
1130 /* TSO enabled means no timestamp */
1131 if (ol_flags & PKT_TX_TCP_SEG)
1132 cd_type_cmd_tso_mss |=
1133 i40e_set_tso_ctx(tx_pkt, tx_offload);
1134 else {
1135 #ifdef RTE_LIBRTE_IEEE1588
1136 if (ol_flags & PKT_TX_IEEE1588_TMST)
1137 cd_type_cmd_tso_mss |=
1138 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1139 I40E_TXD_CTX_QW1_CMD_SHIFT);
1140 #endif
1141 }
1142
1143 ctx_txd->tunneling_params =
1144 rte_cpu_to_le_32(cd_tunneling_params);
1145 if (ol_flags & PKT_TX_QINQ_PKT) {
1146 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1147 cd_type_cmd_tso_mss |=
1148 ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1149 I40E_TXD_CTX_QW1_CMD_SHIFT);
1150 }
1151 ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1152 ctx_txd->type_cmd_tso_mss =
1153 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1154
1155 PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1156 "tunneling_params: %#x;\n"
1157 "l2tag2: %#hx;\n"
1158 "rsvd: %#hx;\n"
1159 "type_cmd_tso_mss: %#"PRIx64";\n",
1160 tx_pkt, tx_id,
1161 ctx_txd->tunneling_params,
1162 ctx_txd->l2tag2,
1163 ctx_txd->rsvd,
1164 ctx_txd->type_cmd_tso_mss);
1165
1166 txe->last_id = tx_last;
1167 tx_id = txe->next_id;
1168 txe = txn;
1169 }
1170
1171 m_seg = tx_pkt;
1172 do {
1173 txd = &txr[tx_id];
1174 txn = &sw_ring[txe->next_id];
1175
1176 if (txe->mbuf)
1177 rte_pktmbuf_free_seg(txe->mbuf);
1178 txe->mbuf = m_seg;
1179
1180 /* Setup TX Descriptor */
1181 slen = m_seg->data_len;
1182 buf_dma_addr = rte_mbuf_data_dma_addr(m_seg);
1183
1184 PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1185 "buf_dma_addr: %#"PRIx64";\n"
1186 "td_cmd: %#x;\n"
1187 "td_offset: %#x;\n"
1188 "td_len: %u;\n"
1189 "td_tag: %#x;\n",
1190 tx_pkt, tx_id, buf_dma_addr,
1191 td_cmd, td_offset, slen, td_tag);
1192
1193 txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1194 txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1195 td_offset, slen, td_tag);
1196 txe->last_id = tx_last;
1197 tx_id = txe->next_id;
1198 txe = txn;
1199 m_seg = m_seg->next;
1200 } while (m_seg != NULL);
1201
1202 /* The last packet data descriptor needs End Of Packet (EOP) */
1203 td_cmd |= I40E_TX_DESC_CMD_EOP;
1204 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1205 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1206
1207 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1208 PMD_TX_FREE_LOG(DEBUG,
1209 "Setting RS bit on TXD id="
1210 "%4u (port=%d queue=%d)",
1211 tx_last, txq->port_id, txq->queue_id);
1212
1213 td_cmd |= I40E_TX_DESC_CMD_RS;
1214
1215 /* Update txq RS bit counters */
1216 txq->nb_tx_used = 0;
1217 }
1218
1219 txd->cmd_type_offset_bsz |=
1220 rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1221 I40E_TXD_QW1_CMD_SHIFT);
1222 }
1223
1224 end_of_tx:
1225 rte_wmb();
1226
1227 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1228 (unsigned) txq->port_id, (unsigned) txq->queue_id,
1229 (unsigned) tx_id, (unsigned) nb_tx);
1230
1231 I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
1232 txq->tx_tail = tx_id;
1233
1234 return nb_tx;
1235 }
1236
1237 static inline int __attribute__((always_inline))
1238 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1239 {
1240 struct i40e_tx_entry *txep;
1241 uint16_t i;
1242
1243 if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1244 rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1245 rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1246 return 0;
1247
1248 txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1249
1250 for (i = 0; i < txq->tx_rs_thresh; i++)
1251 rte_prefetch0((txep + i)->mbuf);
1252
1253 if (txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT) {
1254 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1255 rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1256 txep->mbuf = NULL;
1257 }
1258 } else {
1259 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1260 rte_pktmbuf_free_seg(txep->mbuf);
1261 txep->mbuf = NULL;
1262 }
1263 }
1264
1265 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1266 txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1267 if (txq->tx_next_dd >= txq->nb_tx_desc)
1268 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1269
1270 return txq->tx_rs_thresh;
1271 }
1272
1273 /* Populate 4 descriptors with data from 4 mbufs */
1274 static inline void
1275 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1276 {
1277 uint64_t dma_addr;
1278 uint32_t i;
1279
1280 for (i = 0; i < 4; i++, txdp++, pkts++) {
1281 dma_addr = rte_mbuf_data_dma_addr(*pkts);
1282 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1283 txdp->cmd_type_offset_bsz =
1284 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1285 (*pkts)->data_len, 0);
1286 }
1287 }
1288
1289 /* Populate 1 descriptor with data from 1 mbuf */
1290 static inline void
1291 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1292 {
1293 uint64_t dma_addr;
1294
1295 dma_addr = rte_mbuf_data_dma_addr(*pkts);
1296 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1297 txdp->cmd_type_offset_bsz =
1298 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1299 (*pkts)->data_len, 0);
1300 }
1301
1302 /* Fill hardware descriptor ring with mbuf data */
1303 static inline void
1304 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1305 struct rte_mbuf **pkts,
1306 uint16_t nb_pkts)
1307 {
1308 volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1309 struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1310 const int N_PER_LOOP = 4;
1311 const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1312 int mainpart, leftover;
1313 int i, j;
1314
1315 mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1316 leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
1317 for (i = 0; i < mainpart; i += N_PER_LOOP) {
1318 for (j = 0; j < N_PER_LOOP; ++j) {
1319 (txep + i + j)->mbuf = *(pkts + i + j);
1320 }
1321 tx4(txdp + i, pkts + i);
1322 }
1323 if (unlikely(leftover > 0)) {
1324 for (i = 0; i < leftover; ++i) {
1325 (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1326 tx1(txdp + mainpart + i, pkts + mainpart + i);
1327 }
1328 }
1329 }
1330
1331 static inline uint16_t
1332 tx_xmit_pkts(struct i40e_tx_queue *txq,
1333 struct rte_mbuf **tx_pkts,
1334 uint16_t nb_pkts)
1335 {
1336 volatile struct i40e_tx_desc *txr = txq->tx_ring;
1337 uint16_t n = 0;
1338
1339 /**
1340 * Begin scanning the H/W ring for done descriptors when the number
1341 * of available descriptors drops below tx_free_thresh. For each done
1342 * descriptor, free the associated buffer.
1343 */
1344 if (txq->nb_tx_free < txq->tx_free_thresh)
1345 i40e_tx_free_bufs(txq);
1346
1347 /* Use available descriptor only */
1348 nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1349 if (unlikely(!nb_pkts))
1350 return 0;
1351
1352 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1353 if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1354 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1355 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1356 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1357 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1358 I40E_TXD_QW1_CMD_SHIFT);
1359 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1360 txq->tx_tail = 0;
1361 }
1362
1363 /* Fill hardware descriptor ring with mbuf data */
1364 i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1365 txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1366
1367 /* Determin if RS bit needs to be set */
1368 if (txq->tx_tail > txq->tx_next_rs) {
1369 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1370 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1371 I40E_TXD_QW1_CMD_SHIFT);
1372 txq->tx_next_rs =
1373 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1374 if (txq->tx_next_rs >= txq->nb_tx_desc)
1375 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1376 }
1377
1378 if (txq->tx_tail >= txq->nb_tx_desc)
1379 txq->tx_tail = 0;
1380
1381 /* Update the tx tail register */
1382 rte_wmb();
1383 I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1384
1385 return nb_pkts;
1386 }
1387
1388 static uint16_t
1389 i40e_xmit_pkts_simple(void *tx_queue,
1390 struct rte_mbuf **tx_pkts,
1391 uint16_t nb_pkts)
1392 {
1393 uint16_t nb_tx = 0;
1394
1395 if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1396 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1397 tx_pkts, nb_pkts);
1398
1399 while (nb_pkts) {
1400 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1401 I40E_TX_MAX_BURST);
1402
1403 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1404 &tx_pkts[nb_tx], num);
1405 nb_tx = (uint16_t)(nb_tx + ret);
1406 nb_pkts = (uint16_t)(nb_pkts - ret);
1407 if (ret < num)
1408 break;
1409 }
1410
1411 return nb_tx;
1412 }
1413
1414 /*
1415 * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1416 * application used, which assume having sequential ones. But from driver's
1417 * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1418 * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1419 * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1420 * use queue_idx from 0 to 95 to access queues, while real queue would be
1421 * different. This function will do a queue mapping to find VSI the queue
1422 * belongs to.
1423 */
1424 static struct i40e_vsi*
1425 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1426 {
1427 /* the queue in MAIN VSI range */
1428 if (queue_idx < pf->main_vsi->nb_qps)
1429 return pf->main_vsi;
1430
1431 queue_idx -= pf->main_vsi->nb_qps;
1432
1433 /* queue_idx is greater than VMDQ VSIs range */
1434 if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1435 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1436 return NULL;
1437 }
1438
1439 return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1440 }
1441
1442 static uint16_t
1443 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1444 {
1445 /* the queue in MAIN VSI range */
1446 if (queue_idx < pf->main_vsi->nb_qps)
1447 return queue_idx;
1448
1449 /* It's VMDQ queues */
1450 queue_idx -= pf->main_vsi->nb_qps;
1451
1452 if (pf->nb_cfg_vmdq_vsi)
1453 return queue_idx % pf->vmdq_nb_qps;
1454 else {
1455 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1456 return (uint16_t)(-1);
1457 }
1458 }
1459
1460 int
1461 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1462 {
1463 struct i40e_rx_queue *rxq;
1464 int err = -1;
1465 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1466
1467 PMD_INIT_FUNC_TRACE();
1468
1469 if (rx_queue_id < dev->data->nb_rx_queues) {
1470 rxq = dev->data->rx_queues[rx_queue_id];
1471
1472 err = i40e_alloc_rx_queue_mbufs(rxq);
1473 if (err) {
1474 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1475 return err;
1476 }
1477
1478 rte_wmb();
1479
1480 /* Init the RX tail regieter. */
1481 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1482
1483 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1484
1485 if (err) {
1486 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1487 rx_queue_id);
1488
1489 i40e_rx_queue_release_mbufs(rxq);
1490 i40e_reset_rx_queue(rxq);
1491 } else
1492 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1493 }
1494
1495 return err;
1496 }
1497
1498 int
1499 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1500 {
1501 struct i40e_rx_queue *rxq;
1502 int err;
1503 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1504
1505 if (rx_queue_id < dev->data->nb_rx_queues) {
1506 rxq = dev->data->rx_queues[rx_queue_id];
1507
1508 /*
1509 * rx_queue_id is queue id aplication refers to, while
1510 * rxq->reg_idx is the real queue index.
1511 */
1512 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1513
1514 if (err) {
1515 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1516 rx_queue_id);
1517 return err;
1518 }
1519 i40e_rx_queue_release_mbufs(rxq);
1520 i40e_reset_rx_queue(rxq);
1521 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1522 }
1523
1524 return 0;
1525 }
1526
1527 int
1528 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1529 {
1530 int err = -1;
1531 struct i40e_tx_queue *txq;
1532 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1533
1534 PMD_INIT_FUNC_TRACE();
1535
1536 if (tx_queue_id < dev->data->nb_tx_queues) {
1537 txq = dev->data->tx_queues[tx_queue_id];
1538
1539 /*
1540 * tx_queue_id is queue id aplication refers to, while
1541 * rxq->reg_idx is the real queue index.
1542 */
1543 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1544 if (err)
1545 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1546 tx_queue_id);
1547 else
1548 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1549 }
1550
1551 return err;
1552 }
1553
1554 int
1555 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1556 {
1557 struct i40e_tx_queue *txq;
1558 int err;
1559 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1560
1561 if (tx_queue_id < dev->data->nb_tx_queues) {
1562 txq = dev->data->tx_queues[tx_queue_id];
1563
1564 /*
1565 * tx_queue_id is queue id aplication refers to, while
1566 * txq->reg_idx is the real queue index.
1567 */
1568 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1569
1570 if (err) {
1571 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1572 tx_queue_id);
1573 return err;
1574 }
1575
1576 i40e_tx_queue_release_mbufs(txq);
1577 i40e_reset_tx_queue(txq);
1578 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1579 }
1580
1581 return 0;
1582 }
1583
1584 const uint32_t *
1585 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1586 {
1587 static const uint32_t ptypes[] = {
1588 /* refers to i40e_rxd_pkt_type_mapping() */
1589 RTE_PTYPE_L2_ETHER,
1590 RTE_PTYPE_L2_ETHER_TIMESYNC,
1591 RTE_PTYPE_L2_ETHER_LLDP,
1592 RTE_PTYPE_L2_ETHER_ARP,
1593 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1594 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1595 RTE_PTYPE_L4_FRAG,
1596 RTE_PTYPE_L4_ICMP,
1597 RTE_PTYPE_L4_NONFRAG,
1598 RTE_PTYPE_L4_SCTP,
1599 RTE_PTYPE_L4_TCP,
1600 RTE_PTYPE_L4_UDP,
1601 RTE_PTYPE_TUNNEL_GRENAT,
1602 RTE_PTYPE_TUNNEL_IP,
1603 RTE_PTYPE_INNER_L2_ETHER,
1604 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1605 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1606 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1607 RTE_PTYPE_INNER_L4_FRAG,
1608 RTE_PTYPE_INNER_L4_ICMP,
1609 RTE_PTYPE_INNER_L4_NONFRAG,
1610 RTE_PTYPE_INNER_L4_SCTP,
1611 RTE_PTYPE_INNER_L4_TCP,
1612 RTE_PTYPE_INNER_L4_UDP,
1613 RTE_PTYPE_UNKNOWN
1614 };
1615
1616 if (dev->rx_pkt_burst == i40e_recv_pkts ||
1617 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1618 dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1619 #endif
1620 dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1621 dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1622 dev->rx_pkt_burst == i40e_recv_pkts_vec)
1623 return ptypes;
1624 return NULL;
1625 }
1626
1627 int
1628 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1629 uint16_t queue_idx,
1630 uint16_t nb_desc,
1631 unsigned int socket_id,
1632 const struct rte_eth_rxconf *rx_conf,
1633 struct rte_mempool *mp)
1634 {
1635 struct i40e_vsi *vsi;
1636 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1637 struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1638 struct i40e_adapter *ad =
1639 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1640 struct i40e_rx_queue *rxq;
1641 const struct rte_memzone *rz;
1642 uint32_t ring_size;
1643 uint16_t len, i;
1644 uint16_t base, bsf, tc_mapping;
1645 int use_def_burst_func = 1;
1646
1647 if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1648 struct i40e_vf *vf =
1649 I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1650 vsi = &vf->vsi;
1651 } else
1652 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1653
1654 if (vsi == NULL) {
1655 PMD_DRV_LOG(ERR, "VSI not available or queue "
1656 "index exceeds the maximum");
1657 return I40E_ERR_PARAM;
1658 }
1659 if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1660 (nb_desc > I40E_MAX_RING_DESC) ||
1661 (nb_desc < I40E_MIN_RING_DESC)) {
1662 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1663 "invalid", nb_desc);
1664 return I40E_ERR_PARAM;
1665 }
1666
1667 /* Free memory if needed */
1668 if (dev->data->rx_queues[queue_idx]) {
1669 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1670 dev->data->rx_queues[queue_idx] = NULL;
1671 }
1672
1673 /* Allocate the rx queue data structure */
1674 rxq = rte_zmalloc_socket("i40e rx queue",
1675 sizeof(struct i40e_rx_queue),
1676 RTE_CACHE_LINE_SIZE,
1677 socket_id);
1678 if (!rxq) {
1679 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1680 "rx queue data structure");
1681 return -ENOMEM;
1682 }
1683 rxq->mp = mp;
1684 rxq->nb_rx_desc = nb_desc;
1685 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1686 rxq->queue_id = queue_idx;
1687 if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
1688 rxq->reg_idx = queue_idx;
1689 else /* PF device */
1690 rxq->reg_idx = vsi->base_queue +
1691 i40e_get_queue_offset_by_qindex(pf, queue_idx);
1692
1693 rxq->port_id = dev->data->port_id;
1694 rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
1695 0 : ETHER_CRC_LEN);
1696 rxq->drop_en = rx_conf->rx_drop_en;
1697 rxq->vsi = vsi;
1698 rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1699
1700 /* Allocate the maximun number of RX ring hardware descriptor. */
1701 ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
1702 ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
1703 rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1704 ring_size, I40E_RING_BASE_ALIGN, socket_id);
1705 if (!rz) {
1706 i40e_dev_rx_queue_release(rxq);
1707 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1708 return -ENOMEM;
1709 }
1710
1711 /* Zero all the descriptors in the ring. */
1712 memset(rz->addr, 0, ring_size);
1713
1714 rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1715 rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1716
1717 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1718 len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1719 #else
1720 len = nb_desc;
1721 #endif
1722
1723 /* Allocate the software ring. */
1724 rxq->sw_ring =
1725 rte_zmalloc_socket("i40e rx sw ring",
1726 sizeof(struct i40e_rx_entry) * len,
1727 RTE_CACHE_LINE_SIZE,
1728 socket_id);
1729 if (!rxq->sw_ring) {
1730 i40e_dev_rx_queue_release(rxq);
1731 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1732 return -ENOMEM;
1733 }
1734
1735 i40e_reset_rx_queue(rxq);
1736 rxq->q_set = TRUE;
1737 dev->data->rx_queues[queue_idx] = rxq;
1738
1739 use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
1740
1741 if (!use_def_burst_func) {
1742 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1743 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1744 "satisfied. Rx Burst Bulk Alloc function will be "
1745 "used on port=%d, queue=%d.",
1746 rxq->port_id, rxq->queue_id);
1747 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1748 } else {
1749 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1750 "not satisfied, Scattered Rx is requested, "
1751 "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1752 "not enabled on port=%d, queue=%d.",
1753 rxq->port_id, rxq->queue_id);
1754 ad->rx_bulk_alloc_allowed = false;
1755 }
1756
1757 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1758 if (!(vsi->enabled_tc & (1 << i)))
1759 continue;
1760 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
1761 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
1762 I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
1763 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
1764 I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
1765
1766 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
1767 rxq->dcb_tc = i;
1768 }
1769
1770 return 0;
1771 }
1772
1773 void
1774 i40e_dev_rx_queue_release(void *rxq)
1775 {
1776 struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1777
1778 if (!q) {
1779 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1780 return;
1781 }
1782
1783 i40e_rx_queue_release_mbufs(q);
1784 rte_free(q->sw_ring);
1785 rte_free(q);
1786 }
1787
1788 uint32_t
1789 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1790 {
1791 #define I40E_RXQ_SCAN_INTERVAL 4
1792 volatile union i40e_rx_desc *rxdp;
1793 struct i40e_rx_queue *rxq;
1794 uint16_t desc = 0;
1795
1796 if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
1797 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
1798 return 0;
1799 }
1800
1801 rxq = dev->data->rx_queues[rx_queue_id];
1802 rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1803 while ((desc < rxq->nb_rx_desc) &&
1804 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1805 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1806 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1807 /**
1808 * Check the DD bit of a rx descriptor of each 4 in a group,
1809 * to avoid checking too frequently and downgrading performance
1810 * too much.
1811 */
1812 desc += I40E_RXQ_SCAN_INTERVAL;
1813 rxdp += I40E_RXQ_SCAN_INTERVAL;
1814 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1815 rxdp = &(rxq->rx_ring[rxq->rx_tail +
1816 desc - rxq->nb_rx_desc]);
1817 }
1818
1819 return desc;
1820 }
1821
1822 int
1823 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
1824 {
1825 volatile union i40e_rx_desc *rxdp;
1826 struct i40e_rx_queue *rxq = rx_queue;
1827 uint16_t desc;
1828 int ret;
1829
1830 if (unlikely(offset >= rxq->nb_rx_desc)) {
1831 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
1832 return 0;
1833 }
1834
1835 desc = rxq->rx_tail + offset;
1836 if (desc >= rxq->nb_rx_desc)
1837 desc -= rxq->nb_rx_desc;
1838
1839 rxdp = &(rxq->rx_ring[desc]);
1840
1841 ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1842 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1843 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
1844
1845 return ret;
1846 }
1847
1848 int
1849 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
1850 uint16_t queue_idx,
1851 uint16_t nb_desc,
1852 unsigned int socket_id,
1853 const struct rte_eth_txconf *tx_conf)
1854 {
1855 struct i40e_vsi *vsi;
1856 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1857 struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1858 struct i40e_tx_queue *txq;
1859 const struct rte_memzone *tz;
1860 uint32_t ring_size;
1861 uint16_t tx_rs_thresh, tx_free_thresh;
1862 uint16_t i, base, bsf, tc_mapping;
1863
1864 if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1865 struct i40e_vf *vf =
1866 I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1867 vsi = &vf->vsi;
1868 } else
1869 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1870
1871 if (vsi == NULL) {
1872 PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
1873 "exceeds the maximum", queue_idx);
1874 return I40E_ERR_PARAM;
1875 }
1876
1877 if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1878 (nb_desc > I40E_MAX_RING_DESC) ||
1879 (nb_desc < I40E_MIN_RING_DESC)) {
1880 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
1881 "invalid", nb_desc);
1882 return I40E_ERR_PARAM;
1883 }
1884
1885 /**
1886 * The following two parameters control the setting of the RS bit on
1887 * transmit descriptors. TX descriptors will have their RS bit set
1888 * after txq->tx_rs_thresh descriptors have been used. The TX
1889 * descriptor ring will be cleaned after txq->tx_free_thresh
1890 * descriptors are used or if the number of descriptors required to
1891 * transmit a packet is greater than the number of free TX descriptors.
1892 *
1893 * The following constraints must be satisfied:
1894 * - tx_rs_thresh must be greater than 0.
1895 * - tx_rs_thresh must be less than the size of the ring minus 2.
1896 * - tx_rs_thresh must be less than or equal to tx_free_thresh.
1897 * - tx_rs_thresh must be a divisor of the ring size.
1898 * - tx_free_thresh must be greater than 0.
1899 * - tx_free_thresh must be less than the size of the ring minus 3.
1900 *
1901 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1902 * race condition, hence the maximum threshold constraints. When set
1903 * to zero use default values.
1904 */
1905 tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
1906 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
1907 tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
1908 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
1909 if (tx_rs_thresh >= (nb_desc - 2)) {
1910 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1911 "number of TX descriptors minus 2. "
1912 "(tx_rs_thresh=%u port=%d queue=%d)",
1913 (unsigned int)tx_rs_thresh,
1914 (int)dev->data->port_id,
1915 (int)queue_idx);
1916 return I40E_ERR_PARAM;
1917 }
1918 if (tx_free_thresh >= (nb_desc - 3)) {
1919 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1920 "tx_free_thresh must be less than the "
1921 "number of TX descriptors minus 3. "
1922 "(tx_free_thresh=%u port=%d queue=%d)",
1923 (unsigned int)tx_free_thresh,
1924 (int)dev->data->port_id,
1925 (int)queue_idx);
1926 return I40E_ERR_PARAM;
1927 }
1928 if (tx_rs_thresh > tx_free_thresh) {
1929 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1930 "equal to tx_free_thresh. (tx_free_thresh=%u"
1931 " tx_rs_thresh=%u port=%d queue=%d)",
1932 (unsigned int)tx_free_thresh,
1933 (unsigned int)tx_rs_thresh,
1934 (int)dev->data->port_id,
1935 (int)queue_idx);
1936 return I40E_ERR_PARAM;
1937 }
1938 if ((nb_desc % tx_rs_thresh) != 0) {
1939 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1940 "number of TX descriptors. (tx_rs_thresh=%u"
1941 " port=%d queue=%d)",
1942 (unsigned int)tx_rs_thresh,
1943 (int)dev->data->port_id,
1944 (int)queue_idx);
1945 return I40E_ERR_PARAM;
1946 }
1947 if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
1948 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1949 "tx_rs_thresh is greater than 1. "
1950 "(tx_rs_thresh=%u port=%d queue=%d)",
1951 (unsigned int)tx_rs_thresh,
1952 (int)dev->data->port_id,
1953 (int)queue_idx);
1954 return I40E_ERR_PARAM;
1955 }
1956
1957 /* Free memory if needed. */
1958 if (dev->data->tx_queues[queue_idx]) {
1959 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
1960 dev->data->tx_queues[queue_idx] = NULL;
1961 }
1962
1963 /* Allocate the TX queue data structure. */
1964 txq = rte_zmalloc_socket("i40e tx queue",
1965 sizeof(struct i40e_tx_queue),
1966 RTE_CACHE_LINE_SIZE,
1967 socket_id);
1968 if (!txq) {
1969 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1970 "tx queue structure");
1971 return -ENOMEM;
1972 }
1973
1974 /* Allocate TX hardware ring descriptors. */
1975 ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
1976 ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
1977 tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1978 ring_size, I40E_RING_BASE_ALIGN, socket_id);
1979 if (!tz) {
1980 i40e_dev_tx_queue_release(txq);
1981 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
1982 return -ENOMEM;
1983 }
1984
1985 txq->nb_tx_desc = nb_desc;
1986 txq->tx_rs_thresh = tx_rs_thresh;
1987 txq->tx_free_thresh = tx_free_thresh;
1988 txq->pthresh = tx_conf->tx_thresh.pthresh;
1989 txq->hthresh = tx_conf->tx_thresh.hthresh;
1990 txq->wthresh = tx_conf->tx_thresh.wthresh;
1991 txq->queue_id = queue_idx;
1992 if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
1993 txq->reg_idx = queue_idx;
1994 else /* PF device */
1995 txq->reg_idx = vsi->base_queue +
1996 i40e_get_queue_offset_by_qindex(pf, queue_idx);
1997
1998 txq->port_id = dev->data->port_id;
1999 txq->txq_flags = tx_conf->txq_flags;
2000 txq->vsi = vsi;
2001 txq->tx_deferred_start = tx_conf->tx_deferred_start;
2002
2003 txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2004 txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2005
2006 /* Allocate software ring */
2007 txq->sw_ring =
2008 rte_zmalloc_socket("i40e tx sw ring",
2009 sizeof(struct i40e_tx_entry) * nb_desc,
2010 RTE_CACHE_LINE_SIZE,
2011 socket_id);
2012 if (!txq->sw_ring) {
2013 i40e_dev_tx_queue_release(txq);
2014 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2015 return -ENOMEM;
2016 }
2017
2018 i40e_reset_tx_queue(txq);
2019 txq->q_set = TRUE;
2020 dev->data->tx_queues[queue_idx] = txq;
2021
2022 /* Use a simple TX queue without offloads or multi segs if possible */
2023 i40e_set_tx_function_flag(dev, txq);
2024
2025 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2026 if (!(vsi->enabled_tc & (1 << i)))
2027 continue;
2028 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2029 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2030 I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2031 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2032 I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2033
2034 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2035 txq->dcb_tc = i;
2036 }
2037
2038 return 0;
2039 }
2040
2041 void
2042 i40e_dev_tx_queue_release(void *txq)
2043 {
2044 struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2045
2046 if (!q) {
2047 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2048 return;
2049 }
2050
2051 i40e_tx_queue_release_mbufs(q);
2052 rte_free(q->sw_ring);
2053 rte_free(q);
2054 }
2055
2056 const struct rte_memzone *
2057 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2058 {
2059 const struct rte_memzone *mz;
2060
2061 mz = rte_memzone_lookup(name);
2062 if (mz)
2063 return mz;
2064
2065 if (rte_xen_dom0_supported())
2066 mz = rte_memzone_reserve_bounded(name, len,
2067 socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M);
2068 else
2069 mz = rte_memzone_reserve_aligned(name, len,
2070 socket_id, 0, I40E_RING_BASE_ALIGN);
2071 return mz;
2072 }
2073
2074 void
2075 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2076 {
2077 uint16_t i;
2078
2079 /* SSE Vector driver has a different way of releasing mbufs. */
2080 if (rxq->rx_using_sse) {
2081 i40e_rx_queue_release_mbufs_vec(rxq);
2082 return;
2083 }
2084
2085 if (!rxq->sw_ring) {
2086 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2087 return;
2088 }
2089
2090 for (i = 0; i < rxq->nb_rx_desc; i++) {
2091 if (rxq->sw_ring[i].mbuf) {
2092 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2093 rxq->sw_ring[i].mbuf = NULL;
2094 }
2095 }
2096 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2097 if (rxq->rx_nb_avail == 0)
2098 return;
2099 for (i = 0; i < rxq->rx_nb_avail; i++) {
2100 struct rte_mbuf *mbuf;
2101
2102 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2103 rte_pktmbuf_free_seg(mbuf);
2104 }
2105 rxq->rx_nb_avail = 0;
2106 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2107 }
2108
2109 void
2110 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2111 {
2112 unsigned i;
2113 uint16_t len;
2114
2115 if (!rxq) {
2116 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2117 return;
2118 }
2119
2120 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2121 if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2122 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2123 else
2124 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2125 len = rxq->nb_rx_desc;
2126
2127 for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2128 ((volatile char *)rxq->rx_ring)[i] = 0;
2129
2130 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2131 memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2132 for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2133 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2134
2135 rxq->rx_nb_avail = 0;
2136 rxq->rx_next_avail = 0;
2137 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2138 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2139 rxq->rx_tail = 0;
2140 rxq->nb_rx_hold = 0;
2141 rxq->pkt_first_seg = NULL;
2142 rxq->pkt_last_seg = NULL;
2143
2144 rxq->rxrearm_start = 0;
2145 rxq->rxrearm_nb = 0;
2146 }
2147
2148 void
2149 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2150 {
2151 uint16_t i;
2152
2153 if (!txq || !txq->sw_ring) {
2154 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2155 return;
2156 }
2157
2158 for (i = 0; i < txq->nb_tx_desc; i++) {
2159 if (txq->sw_ring[i].mbuf) {
2160 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2161 txq->sw_ring[i].mbuf = NULL;
2162 }
2163 }
2164 }
2165
2166 void
2167 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2168 {
2169 struct i40e_tx_entry *txe;
2170 uint16_t i, prev, size;
2171
2172 if (!txq) {
2173 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2174 return;
2175 }
2176
2177 txe = txq->sw_ring;
2178 size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2179 for (i = 0; i < size; i++)
2180 ((volatile char *)txq->tx_ring)[i] = 0;
2181
2182 prev = (uint16_t)(txq->nb_tx_desc - 1);
2183 for (i = 0; i < txq->nb_tx_desc; i++) {
2184 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2185
2186 txd->cmd_type_offset_bsz =
2187 rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2188 txe[i].mbuf = NULL;
2189 txe[i].last_id = i;
2190 txe[prev].next_id = i;
2191 prev = i;
2192 }
2193
2194 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2195 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2196
2197 txq->tx_tail = 0;
2198 txq->nb_tx_used = 0;
2199
2200 txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2201 txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2202 }
2203
2204 /* Init the TX queue in hardware */
2205 int
2206 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2207 {
2208 enum i40e_status_code err = I40E_SUCCESS;
2209 struct i40e_vsi *vsi = txq->vsi;
2210 struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2211 uint16_t pf_q = txq->reg_idx;
2212 struct i40e_hmc_obj_txq tx_ctx;
2213 uint32_t qtx_ctl;
2214
2215 /* clear the context structure first */
2216 memset(&tx_ctx, 0, sizeof(tx_ctx));
2217 tx_ctx.new_context = 1;
2218 tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2219 tx_ctx.qlen = txq->nb_tx_desc;
2220
2221 #ifdef RTE_LIBRTE_IEEE1588
2222 tx_ctx.timesync_ena = 1;
2223 #endif
2224 tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2225 if (vsi->type == I40E_VSI_FDIR)
2226 tx_ctx.fd_ena = TRUE;
2227
2228 err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2229 if (err != I40E_SUCCESS) {
2230 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2231 return err;
2232 }
2233
2234 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2235 if (err != I40E_SUCCESS) {
2236 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2237 return err;
2238 }
2239
2240 /* Now associate this queue with this PCI function */
2241 qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2242 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2243 I40E_QTX_CTL_PF_INDX_MASK);
2244 I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2245 I40E_WRITE_FLUSH(hw);
2246
2247 txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2248
2249 return err;
2250 }
2251
2252 int
2253 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2254 {
2255 struct i40e_rx_entry *rxe = rxq->sw_ring;
2256 uint64_t dma_addr;
2257 uint16_t i;
2258
2259 for (i = 0; i < rxq->nb_rx_desc; i++) {
2260 volatile union i40e_rx_desc *rxd;
2261 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2262
2263 if (unlikely(!mbuf)) {
2264 PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2265 return -ENOMEM;
2266 }
2267
2268 rte_mbuf_refcnt_set(mbuf, 1);
2269 mbuf->next = NULL;
2270 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2271 mbuf->nb_segs = 1;
2272 mbuf->port = rxq->port_id;
2273
2274 dma_addr =
2275 rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf));
2276
2277 rxd = &rxq->rx_ring[i];
2278 rxd->read.pkt_addr = dma_addr;
2279 rxd->read.hdr_addr = 0;
2280 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2281 rxd->read.rsvd1 = 0;
2282 rxd->read.rsvd2 = 0;
2283 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2284
2285 rxe[i].mbuf = mbuf;
2286 }
2287
2288 return 0;
2289 }
2290
2291 /*
2292 * Calculate the buffer length, and check the jumbo frame
2293 * and maximum packet length.
2294 */
2295 static int
2296 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2297 {
2298 struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2299 struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2300 struct rte_eth_dev_data *data = pf->dev_data;
2301 uint16_t buf_size, len;
2302
2303 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2304 RTE_PKTMBUF_HEADROOM);
2305
2306 switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2307 I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2308 case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2309 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2310 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2311 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2312 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2313 rxq->hs_mode = i40e_header_split_enabled;
2314 break;
2315 case I40E_FLAG_HEADER_SPLIT_DISABLED:
2316 default:
2317 rxq->rx_hdr_len = 0;
2318 rxq->rx_buf_len = RTE_ALIGN(buf_size,
2319 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2320 rxq->hs_mode = i40e_header_split_none;
2321 break;
2322 }
2323
2324 len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2325 rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2326 if (data->dev_conf.rxmode.jumbo_frame == 1) {
2327 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2328 rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2329 PMD_DRV_LOG(ERR, "maximum packet length must "
2330 "be larger than %u and smaller than %u,"
2331 "as jumbo frame is enabled",
2332 (uint32_t)ETHER_MAX_LEN,
2333 (uint32_t)I40E_FRAME_SIZE_MAX);
2334 return I40E_ERR_CONFIG;
2335 }
2336 } else {
2337 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2338 rxq->max_pkt_len > ETHER_MAX_LEN) {
2339 PMD_DRV_LOG(ERR, "maximum packet length must be "
2340 "larger than %u and smaller than %u, "
2341 "as jumbo frame is disabled",
2342 (uint32_t)ETHER_MIN_LEN,
2343 (uint32_t)ETHER_MAX_LEN);
2344 return I40E_ERR_CONFIG;
2345 }
2346 }
2347
2348 return 0;
2349 }
2350
2351 /* Init the RX queue in hardware */
2352 int
2353 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2354 {
2355 int err = I40E_SUCCESS;
2356 struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2357 struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2358 uint16_t pf_q = rxq->reg_idx;
2359 uint16_t buf_size;
2360 struct i40e_hmc_obj_rxq rx_ctx;
2361
2362 err = i40e_rx_queue_config(rxq);
2363 if (err < 0) {
2364 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2365 return err;
2366 }
2367
2368 /* Clear the context structure first */
2369 memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2370 rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2371 rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2372
2373 rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2374 rx_ctx.qlen = rxq->nb_rx_desc;
2375 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2376 rx_ctx.dsize = 1;
2377 #endif
2378 rx_ctx.dtype = rxq->hs_mode;
2379 if (rxq->hs_mode)
2380 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2381 else
2382 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2383 rx_ctx.rxmax = rxq->max_pkt_len;
2384 rx_ctx.tphrdesc_ena = 1;
2385 rx_ctx.tphwdesc_ena = 1;
2386 rx_ctx.tphdata_ena = 1;
2387 rx_ctx.tphhead_ena = 1;
2388 rx_ctx.lrxqthresh = 2;
2389 rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2390 rx_ctx.l2tsel = 1;
2391 /* showiv indicates if inner VLAN is stripped inside of tunnel
2392 * packet. When set it to 1, vlan information is stripped from
2393 * the inner header, but the hardware does not put it in the
2394 * descriptor. So set it zero by default.
2395 */
2396 rx_ctx.showiv = 0;
2397 rx_ctx.prefena = 1;
2398
2399 err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2400 if (err != I40E_SUCCESS) {
2401 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2402 return err;
2403 }
2404 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2405 if (err != I40E_SUCCESS) {
2406 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2407 return err;
2408 }
2409
2410 rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2411
2412 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2413 RTE_PKTMBUF_HEADROOM);
2414
2415 /* Check if scattered RX needs to be used. */
2416 if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2417 dev_data->scattered_rx = 1;
2418 }
2419
2420 /* Init the RX tail regieter. */
2421 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2422
2423 return 0;
2424 }
2425
2426 void
2427 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2428 {
2429 uint16_t i;
2430
2431 PMD_INIT_FUNC_TRACE();
2432
2433 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2434 if (!dev->data->tx_queues[i])
2435 continue;
2436 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2437 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2438 }
2439
2440 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2441 if (!dev->data->rx_queues[i])
2442 continue;
2443 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2444 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2445 }
2446 }
2447
2448 void
2449 i40e_dev_free_queues(struct rte_eth_dev *dev)
2450 {
2451 uint16_t i;
2452
2453 PMD_INIT_FUNC_TRACE();
2454
2455 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2456 if (!dev->data->rx_queues[i])
2457 continue;
2458 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2459 dev->data->rx_queues[i] = NULL;
2460 }
2461 dev->data->nb_rx_queues = 0;
2462
2463 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2464 if (!dev->data->tx_queues[i])
2465 continue;
2466 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2467 dev->data->tx_queues[i] = NULL;
2468 }
2469 dev->data->nb_tx_queues = 0;
2470 }
2471
2472 #define I40E_FDIR_NUM_TX_DESC I40E_MIN_RING_DESC
2473 #define I40E_FDIR_NUM_RX_DESC I40E_MIN_RING_DESC
2474
2475 enum i40e_status_code
2476 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2477 {
2478 struct i40e_tx_queue *txq;
2479 const struct rte_memzone *tz = NULL;
2480 uint32_t ring_size;
2481 struct rte_eth_dev *dev;
2482
2483 if (!pf) {
2484 PMD_DRV_LOG(ERR, "PF is not available");
2485 return I40E_ERR_BAD_PTR;
2486 }
2487
2488 dev = pf->adapter->eth_dev;
2489
2490 /* Allocate the TX queue data structure. */
2491 txq = rte_zmalloc_socket("i40e fdir tx queue",
2492 sizeof(struct i40e_tx_queue),
2493 RTE_CACHE_LINE_SIZE,
2494 SOCKET_ID_ANY);
2495 if (!txq) {
2496 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2497 "tx queue structure.");
2498 return I40E_ERR_NO_MEMORY;
2499 }
2500
2501 /* Allocate TX hardware ring descriptors. */
2502 ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2503 ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2504
2505 tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2506 I40E_FDIR_QUEUE_ID, ring_size,
2507 I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2508 if (!tz) {
2509 i40e_dev_tx_queue_release(txq);
2510 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2511 return I40E_ERR_NO_MEMORY;
2512 }
2513
2514 txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2515 txq->queue_id = I40E_FDIR_QUEUE_ID;
2516 txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2517 txq->vsi = pf->fdir.fdir_vsi;
2518
2519 txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2520 txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2521 /*
2522 * don't need to allocate software ring and reset for the fdir
2523 * program queue just set the queue has been configured.
2524 */
2525 txq->q_set = TRUE;
2526 pf->fdir.txq = txq;
2527
2528 return I40E_SUCCESS;
2529 }
2530
2531 enum i40e_status_code
2532 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2533 {
2534 struct i40e_rx_queue *rxq;
2535 const struct rte_memzone *rz = NULL;
2536 uint32_t ring_size;
2537 struct rte_eth_dev *dev;
2538
2539 if (!pf) {
2540 PMD_DRV_LOG(ERR, "PF is not available");
2541 return I40E_ERR_BAD_PTR;
2542 }
2543
2544 dev = pf->adapter->eth_dev;
2545
2546 /* Allocate the RX queue data structure. */
2547 rxq = rte_zmalloc_socket("i40e fdir rx queue",
2548 sizeof(struct i40e_rx_queue),
2549 RTE_CACHE_LINE_SIZE,
2550 SOCKET_ID_ANY);
2551 if (!rxq) {
2552 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2553 "rx queue structure.");
2554 return I40E_ERR_NO_MEMORY;
2555 }
2556
2557 /* Allocate RX hardware ring descriptors. */
2558 ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2559 ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2560
2561 rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2562 I40E_FDIR_QUEUE_ID, ring_size,
2563 I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2564 if (!rz) {
2565 i40e_dev_rx_queue_release(rxq);
2566 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2567 return I40E_ERR_NO_MEMORY;
2568 }
2569
2570 rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2571 rxq->queue_id = I40E_FDIR_QUEUE_ID;
2572 rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2573 rxq->vsi = pf->fdir.fdir_vsi;
2574
2575 rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
2576 rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2577
2578 /*
2579 * Don't need to allocate software ring and reset for the fdir
2580 * rx queue, just set the queue has been configured.
2581 */
2582 rxq->q_set = TRUE;
2583 pf->fdir.rxq = rxq;
2584
2585 return I40E_SUCCESS;
2586 }
2587
2588 void
2589 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2590 struct rte_eth_rxq_info *qinfo)
2591 {
2592 struct i40e_rx_queue *rxq;
2593
2594 rxq = dev->data->rx_queues[queue_id];
2595
2596 qinfo->mp = rxq->mp;
2597 qinfo->scattered_rx = dev->data->scattered_rx;
2598 qinfo->nb_desc = rxq->nb_rx_desc;
2599
2600 qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2601 qinfo->conf.rx_drop_en = rxq->drop_en;
2602 qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2603 }
2604
2605 void
2606 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2607 struct rte_eth_txq_info *qinfo)
2608 {
2609 struct i40e_tx_queue *txq;
2610
2611 txq = dev->data->tx_queues[queue_id];
2612
2613 qinfo->nb_desc = txq->nb_tx_desc;
2614
2615 qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2616 qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2617 qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2618
2619 qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2620 qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2621 qinfo->conf.txq_flags = txq->txq_flags;
2622 qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2623 }
2624
2625 void __attribute__((cold))
2626 i40e_set_rx_function(struct rte_eth_dev *dev)
2627 {
2628 struct i40e_adapter *ad =
2629 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2630 uint16_t rx_using_sse, i;
2631 /* In order to allow Vector Rx there are a few configuration
2632 * conditions to be met and Rx Bulk Allocation should be allowed.
2633 */
2634 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2635 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
2636 !ad->rx_bulk_alloc_allowed) {
2637 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
2638 " Vector Rx preconditions",
2639 dev->data->port_id);
2640
2641 ad->rx_vec_allowed = false;
2642 }
2643 if (ad->rx_vec_allowed) {
2644 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2645 struct i40e_rx_queue *rxq =
2646 dev->data->rx_queues[i];
2647
2648 if (rxq && i40e_rxq_vec_setup(rxq)) {
2649 ad->rx_vec_allowed = false;
2650 break;
2651 }
2652 }
2653 }
2654 }
2655
2656 if (dev->data->scattered_rx) {
2657 /* Set the non-LRO scattered callback: there are Vector and
2658 * single allocation versions.
2659 */
2660 if (ad->rx_vec_allowed) {
2661 PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
2662 "callback (port=%d).",
2663 dev->data->port_id);
2664
2665 dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
2666 } else {
2667 PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
2668 "allocation callback (port=%d).",
2669 dev->data->port_id);
2670 dev->rx_pkt_burst = i40e_recv_scattered_pkts;
2671 }
2672 /* If parameters allow we are going to choose between the following
2673 * callbacks:
2674 * - Vector
2675 * - Bulk Allocation
2676 * - Single buffer allocation (the simplest one)
2677 */
2678 } else if (ad->rx_vec_allowed) {
2679 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
2680 "burst size no less than %d (port=%d).",
2681 RTE_I40E_DESCS_PER_LOOP,
2682 dev->data->port_id);
2683
2684 dev->rx_pkt_burst = i40e_recv_pkts_vec;
2685 } else if (ad->rx_bulk_alloc_allowed) {
2686 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2687 "satisfied. Rx Burst Bulk Alloc function "
2688 "will be used on port=%d.",
2689 dev->data->port_id);
2690
2691 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
2692 } else {
2693 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
2694 "satisfied, or Scattered Rx is requested "
2695 "(port=%d).",
2696 dev->data->port_id);
2697
2698 dev->rx_pkt_burst = i40e_recv_pkts;
2699 }
2700
2701 /* Propagate information about RX function choice through all queues. */
2702 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2703 rx_using_sse =
2704 (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
2705 dev->rx_pkt_burst == i40e_recv_pkts_vec);
2706
2707 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2708 struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
2709
2710 if (rxq)
2711 rxq->rx_using_sse = rx_using_sse;
2712 }
2713 }
2714 }
2715
2716 void __attribute__((cold))
2717 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
2718 {
2719 struct i40e_adapter *ad =
2720 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2721
2722 /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2723 if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS)
2724 && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) {
2725 if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) {
2726 PMD_INIT_LOG(DEBUG, "Vector tx"
2727 " can be enabled on this txq.");
2728
2729 } else {
2730 ad->tx_vec_allowed = false;
2731 }
2732 } else {
2733 ad->tx_simple_allowed = false;
2734 }
2735 }
2736
2737 void __attribute__((cold))
2738 i40e_set_tx_function(struct rte_eth_dev *dev)
2739 {
2740 struct i40e_adapter *ad =
2741 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2742 int i;
2743
2744 if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2745 if (ad->tx_vec_allowed) {
2746 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2747 struct i40e_tx_queue *txq =
2748 dev->data->tx_queues[i];
2749
2750 if (txq && i40e_txq_vec_setup(txq)) {
2751 ad->tx_vec_allowed = false;
2752 break;
2753 }
2754 }
2755 }
2756 }
2757
2758 if (ad->tx_simple_allowed) {
2759 if (ad->tx_vec_allowed) {
2760 PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
2761 dev->tx_pkt_burst = i40e_xmit_pkts_vec;
2762 } else {
2763 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
2764 dev->tx_pkt_burst = i40e_xmit_pkts_simple;
2765 }
2766 } else {
2767 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
2768 dev->tx_pkt_burst = i40e_xmit_pkts;
2769 }
2770 }
2771
2772 /* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
2773 int __attribute__((weak))
2774 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
2775 {
2776 return -1;
2777 }
2778
2779 uint16_t __attribute__((weak))
2780 i40e_recv_pkts_vec(
2781 void __rte_unused *rx_queue,
2782 struct rte_mbuf __rte_unused **rx_pkts,
2783 uint16_t __rte_unused nb_pkts)
2784 {
2785 return 0;
2786 }
2787
2788 uint16_t __attribute__((weak))
2789 i40e_recv_scattered_pkts_vec(
2790 void __rte_unused *rx_queue,
2791 struct rte_mbuf __rte_unused **rx_pkts,
2792 uint16_t __rte_unused nb_pkts)
2793 {
2794 return 0;
2795 }
2796
2797 int __attribute__((weak))
2798 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
2799 {
2800 return -1;
2801 }
2802
2803 int __attribute__((weak))
2804 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
2805 {
2806 return -1;
2807 }
2808
2809 void __attribute__((weak))
2810 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
2811 {
2812 return;
2813 }
2814
2815 uint16_t __attribute__((weak))
2816 i40e_xmit_pkts_vec(void __rte_unused *tx_queue,
2817 struct rte_mbuf __rte_unused **tx_pkts,
2818 uint16_t __rte_unused nb_pkts)
2819 {
2820 return 0;
2821 }