]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/drivers/net/qede/base/ecore_dev.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / drivers / net / qede / base / ecore_dev.c
1 /*
2 * Copyright (c) 2016 QLogic Corporation.
3 * All rights reserved.
4 * www.qlogic.com
5 *
6 * See LICENSE.qede_pmd for copyright and licensing details.
7 */
8
9 #include "bcm_osal.h"
10 #include "reg_addr.h"
11 #include "ecore_gtt_reg_addr.h"
12 #include "ecore.h"
13 #include "ecore_chain.h"
14 #include "ecore_status.h"
15 #include "ecore_hw.h"
16 #include "ecore_rt_defs.h"
17 #include "ecore_init_ops.h"
18 #include "ecore_int.h"
19 #include "ecore_cxt.h"
20 #include "ecore_spq.h"
21 #include "ecore_init_fw_funcs.h"
22 #include "ecore_sp_commands.h"
23 #include "ecore_dev_api.h"
24 #include "ecore_sriov.h"
25 #include "ecore_vf.h"
26 #include "ecore_mcp.h"
27 #include "ecore_hw_defs.h"
28 #include "mcp_public.h"
29 #include "ecore_iro.h"
30 #include "nvm_cfg.h"
31 #include "ecore_dev_api.h"
32 #include "ecore_dcbx.h"
33
34 /* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
35 * registers involved are not split and thus configuration is a race where
36 * some of the PFs configuration might be lost.
37 * Eventually, this needs to move into a MFW-covered HW-lock as arbitration
38 * mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
39 * there's more than a single compiled ecore component in system].
40 */
41 static osal_spinlock_t qm_lock;
42 static bool qm_lock_init;
43
44 /* Configurable */
45 #define ECORE_MIN_DPIS (4) /* The minimal num of DPIs required to
46 * load the driver. The number was
47 * arbitrarily set.
48 */
49
50 /* Derived */
51 #define ECORE_MIN_PWM_REGION ((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
52
53 enum BAR_ID {
54 BAR_ID_0, /* used for GRC */
55 BAR_ID_1 /* Used for doorbells */
56 };
57
58 static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
59 {
60 u32 bar_reg = (bar_id == BAR_ID_0 ?
61 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
62 u32 val;
63
64 if (IS_VF(p_hwfn->p_dev)) {
65 /* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
66 * read from actual register, but we're currently not using
67 * it for actual doorbelling.
68 */
69 return 1 << 17;
70 }
71
72 val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
73
74 /* The above registers were updated in the past only in CMT mode. Since
75 * they were found to be useful MFW started updating them from 8.7.7.0.
76 * In older MFW versions they are set to 0 which means disabled.
77 */
78 if (!val) {
79 if (p_hwfn->p_dev->num_hwfns > 1) {
80 DP_NOTICE(p_hwfn, false,
81 "BAR size not configured. Assuming BAR size");
82 DP_NOTICE(p_hwfn, false,
83 "of 256kB for GRC and 512kB for DB\n");
84 return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
85 } else {
86 DP_NOTICE(p_hwfn, false,
87 "BAR size not configured. Assuming BAR size");
88 DP_NOTICE(p_hwfn, false,
89 "of 512kB for GRC and 512kB for DB\n");
90 return 512 * 1024;
91 }
92 }
93
94 return 1 << (val + 15);
95 }
96
97 void ecore_init_dp(struct ecore_dev *p_dev,
98 u32 dp_module, u8 dp_level, void *dp_ctx)
99 {
100 u32 i;
101
102 p_dev->dp_level = dp_level;
103 p_dev->dp_module = dp_module;
104 p_dev->dp_ctx = dp_ctx;
105 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
106 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
107
108 p_hwfn->dp_level = dp_level;
109 p_hwfn->dp_module = dp_module;
110 p_hwfn->dp_ctx = dp_ctx;
111 }
112 }
113
114 void ecore_init_struct(struct ecore_dev *p_dev)
115 {
116 u8 i;
117
118 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
119 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
120
121 p_hwfn->p_dev = p_dev;
122 p_hwfn->my_id = i;
123 p_hwfn->b_active = false;
124
125 OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
126 OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
127 }
128
129 /* hwfn 0 is always active */
130 p_dev->hwfns[0].b_active = true;
131
132 /* set the default cache alignment to 128 (may be overridden later) */
133 p_dev->cache_shift = 7;
134 }
135
136 static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
137 {
138 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
139
140 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
141 qm_info->qm_pq_params = OSAL_NULL;
142 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
143 qm_info->qm_vport_params = OSAL_NULL;
144 OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
145 qm_info->qm_port_params = OSAL_NULL;
146 OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
147 qm_info->wfq_data = OSAL_NULL;
148 }
149
150 void ecore_resc_free(struct ecore_dev *p_dev)
151 {
152 int i;
153
154 if (IS_VF(p_dev))
155 return;
156
157 OSAL_FREE(p_dev, p_dev->fw_data);
158 p_dev->fw_data = OSAL_NULL;
159
160 OSAL_FREE(p_dev, p_dev->reset_stats);
161
162 for_each_hwfn(p_dev, i) {
163 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
164
165 OSAL_FREE(p_dev, p_hwfn->p_tx_cids);
166 p_hwfn->p_tx_cids = OSAL_NULL;
167 OSAL_FREE(p_dev, p_hwfn->p_rx_cids);
168 p_hwfn->p_rx_cids = OSAL_NULL;
169 }
170
171 for_each_hwfn(p_dev, i) {
172 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
173
174 ecore_cxt_mngr_free(p_hwfn);
175 ecore_qm_info_free(p_hwfn);
176 ecore_spq_free(p_hwfn);
177 ecore_eq_free(p_hwfn, p_hwfn->p_eq);
178 ecore_consq_free(p_hwfn, p_hwfn->p_consq);
179 ecore_int_free(p_hwfn);
180 #ifdef CONFIG_ECORE_LL2
181 ecore_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
182 #endif
183 ecore_iov_free(p_hwfn);
184 ecore_dmae_info_free(p_hwfn);
185 ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
186 /* @@@TBD Flush work-queue ? */
187 }
188 }
189
190 static enum _ecore_status_t ecore_init_qm_info(struct ecore_hwfn *p_hwfn,
191 bool b_sleepable)
192 {
193 u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue;
194 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
195 struct init_qm_port_params *p_qm_port;
196 bool init_rdma_offload_pq = false;
197 bool init_pure_ack_pq = false;
198 bool init_ooo_pq = false;
199 u16 num_pqs, protocol_pqs;
200 u16 num_pf_rls = 0;
201 u16 num_vfs = 0;
202 u32 pf_rl;
203 u8 pf_wfq;
204
205 /* @TMP - saving the existing min/max bw config before resetting the
206 * qm_info to restore them.
207 */
208 pf_rl = qm_info->pf_rl;
209 pf_wfq = qm_info->pf_wfq;
210
211 #ifdef CONFIG_ECORE_SRIOV
212 if (p_hwfn->p_dev->p_iov_info)
213 num_vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
214 #endif
215 OSAL_MEM_ZERO(qm_info, sizeof(*qm_info));
216
217 #ifndef ASIC_ONLY
218 /* @TMP - Don't allocate QM queues for VFs on emulation */
219 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
220 DP_NOTICE(p_hwfn, false,
221 "Emulation - skip configuring QM queues for VFs\n");
222 num_vfs = 0;
223 }
224 #endif
225
226 /* ethernet PFs require a pq per tc. Even if only a subset of the TCs
227 * active, we want physical queues allocated for all of them, since we
228 * don't have a good recycle flow. Non ethernet PFs require only a
229 * single physical queue.
230 */
231 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
232 p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
233 p_hwfn->hw_info.personality == ECORE_PCI_ETH)
234 protocol_pqs = p_hwfn->hw_info.num_hw_tc;
235 else
236 protocol_pqs = 1;
237
238 num_pqs = protocol_pqs + num_vfs + 1; /* The '1' is for pure-LB */
239 num_vports = (u8)RESC_NUM(p_hwfn, ECORE_VPORT);
240
241 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
242 num_pqs++; /* for RoCE queue */
243 init_rdma_offload_pq = true;
244 if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) {
245 /* Due to FW assumption that rl==vport, we limit the
246 * number of rate limiters by the minimum between its
247 * allocated number and the allocated number of vports.
248 * Another limitation is the number of supported qps
249 * with rate limiters in FW.
250 */
251 num_pf_rls =
252 (u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
253 RESC_NUM(p_hwfn, ECORE_VPORT));
254
255 /* we subtract num_vfs because each one requires a rate
256 * limiter, and one default rate limiter.
257 */
258 if (num_pf_rls < num_vfs + 1) {
259 DP_ERR(p_hwfn, "No RL for DCQCN");
260 DP_ERR(p_hwfn, "[num_pf_rls %d num_vfs %d]\n",
261 num_pf_rls, num_vfs);
262 return ECORE_INVAL;
263 }
264 num_pf_rls -= num_vfs + 1;
265 }
266
267 num_pqs += num_pf_rls;
268 qm_info->num_pf_rls = (u8)num_pf_rls;
269 }
270
271 if (p_hwfn->hw_info.personality == ECORE_PCI_IWARP) {
272 num_pqs += 3; /* for iwarp queue / pure-ack / ooo */
273 init_rdma_offload_pq = true;
274 init_pure_ack_pq = true;
275 init_ooo_pq = true;
276 }
277
278 if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
279 num_pqs += 2; /* for iSCSI pure-ACK / OOO queue */
280 init_pure_ack_pq = true;
281 init_ooo_pq = true;
282 }
283
284 /* Sanity checking that setup requires legal number of resources */
285 if (num_pqs > RESC_NUM(p_hwfn, ECORE_PQ)) {
286 DP_ERR(p_hwfn,
287 "Need too many Physical queues - 0x%04x avail %04x",
288 num_pqs, RESC_NUM(p_hwfn, ECORE_PQ));
289 return ECORE_INVAL;
290 }
291
292 /* PQs will be arranged as follows: First per-TC PQ, then pure-LB queue,
293 * then special queues (iSCSI pure-ACK / RoCE), then per-VF PQ.
294 */
295 qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev,
296 b_sleepable ? GFP_KERNEL :
297 GFP_ATOMIC,
298 sizeof(struct init_qm_pq_params) *
299 num_pqs);
300 if (!qm_info->qm_pq_params)
301 goto alloc_err;
302
303 qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev,
304 b_sleepable ? GFP_KERNEL :
305 GFP_ATOMIC,
306 sizeof(struct
307 init_qm_vport_params) *
308 num_vports);
309 if (!qm_info->qm_vport_params)
310 goto alloc_err;
311
312 qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev,
313 b_sleepable ? GFP_KERNEL :
314 GFP_ATOMIC,
315 sizeof(struct init_qm_port_params)
316 * MAX_NUM_PORTS);
317 if (!qm_info->qm_port_params)
318 goto alloc_err;
319
320 qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev,
321 b_sleepable ? GFP_KERNEL :
322 GFP_ATOMIC,
323 sizeof(struct ecore_wfq_data) *
324 num_vports);
325
326 if (!qm_info->wfq_data)
327 goto alloc_err;
328
329 vport_id = (u8)RESC_START(p_hwfn, ECORE_VPORT);
330
331 /* First init rate limited queues ( Due to RoCE assumption of
332 * qpid=rlid )
333 */
334 for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
335 qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
336 qm_info->qm_pq_params[curr_queue].tc_id =
337 p_hwfn->hw_info.offload_tc;
338 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
339 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
340 };
341
342 /* Protocol PQs */
343 for (i = 0; i < protocol_pqs; i++) {
344 struct init_qm_pq_params *params =
345 &qm_info->qm_pq_params[curr_queue++];
346
347 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
348 p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
349 p_hwfn->hw_info.personality == ECORE_PCI_ETH) {
350 params->vport_id = vport_id;
351 params->tc_id = i;
352 /* Note: this assumes that if we had a configuration
353 * with N tcs and subsequently another configuration
354 * With Fewer TCs, the in flight traffic (in QM queues,
355 * in FW, from driver to FW) will still trickle out and
356 * not get "stuck" in the QM. This is determined by the
357 * NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ. Unused TCs are
358 * supposed to be cleared in this map, allowing traffic
359 * to flush out. If this is not the case, we would need
360 * to set the TC of unused queues to 0, and reconfigure
361 * QM every time num of TCs changes. Unused queues in
362 * this context would mean those intended for TCs where
363 * tc_id > hw_info.num_active_tcs.
364 */
365 params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
366 } else {
367 params->vport_id = vport_id;
368 params->tc_id = p_hwfn->hw_info.offload_tc;
369 params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
370 }
371 }
372
373 /* Then init pure-LB PQ */
374 qm_info->pure_lb_pq = curr_queue;
375 qm_info->qm_pq_params[curr_queue].vport_id =
376 (u8)RESC_START(p_hwfn, ECORE_VPORT);
377 qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
378 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
379 curr_queue++;
380
381 qm_info->offload_pq = 0; /* Already initialized for iSCSI/FCoE */
382 if (init_rdma_offload_pq) {
383 qm_info->offload_pq = curr_queue;
384 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
385 qm_info->qm_pq_params[curr_queue].tc_id =
386 p_hwfn->hw_info.offload_tc;
387 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
388 curr_queue++;
389 }
390
391 if (init_pure_ack_pq) {
392 qm_info->pure_ack_pq = curr_queue;
393 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
394 qm_info->qm_pq_params[curr_queue].tc_id =
395 p_hwfn->hw_info.offload_tc;
396 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
397 curr_queue++;
398 }
399
400 if (init_ooo_pq) {
401 qm_info->ooo_pq = curr_queue;
402 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
403 qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
404 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
405 curr_queue++;
406 }
407
408 /* Then init per-VF PQs */
409 vf_offset = curr_queue;
410 for (i = 0; i < num_vfs; i++) {
411 /* First vport is used by the PF */
412 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
413 /* @@@TBD VF Multi-cos */
414 qm_info->qm_pq_params[curr_queue].tc_id = 0;
415 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
416 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
417 curr_queue++;
418 };
419
420 qm_info->vf_queues_offset = vf_offset;
421 qm_info->num_pqs = num_pqs;
422 qm_info->num_vports = num_vports;
423
424 /* Initialize qm port parameters */
425 num_ports = p_hwfn->p_dev->num_ports_in_engines;
426 for (i = 0; i < num_ports; i++) {
427 p_qm_port = &qm_info->qm_port_params[i];
428 p_qm_port->active = 1;
429 /* @@@TMP - was NUM_OF_PHYS_TCS; Changed until dcbx will
430 * be in place
431 */
432 if (num_ports == 4)
433 p_qm_port->active_phys_tcs = 0xf;
434 else
435 p_qm_port->active_phys_tcs = 0x9f;
436 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
437 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
438 }
439
440 if (ECORE_IS_AH(p_hwfn->p_dev) && (num_ports == 4))
441 qm_info->max_phys_tcs_per_port = NUM_PHYS_TCS_4PORT_K2;
442 else
443 qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
444
445 qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
446
447 qm_info->num_vf_pqs = num_vfs;
448 qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
449
450 for (i = 0; i < qm_info->num_vports; i++)
451 qm_info->qm_vport_params[i].vport_wfq = 1;
452
453 qm_info->vport_rl_en = 1;
454 qm_info->vport_wfq_en = 1;
455 qm_info->pf_rl = pf_rl;
456 qm_info->pf_wfq = pf_wfq;
457
458 return ECORE_SUCCESS;
459
460 alloc_err:
461 DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
462 ecore_qm_info_free(p_hwfn);
463 return ECORE_NOMEM;
464 }
465
466 /* This function reconfigures the QM pf on the fly.
467 * For this purpose we:
468 * 1. reconfigure the QM database
469 * 2. set new values to runtime arrat
470 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
471 * 4. activate init tool in QM_PF stage
472 * 5. send an sdm_qm_cmd through rbc interface to release the QM
473 */
474 enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
475 struct ecore_ptt *p_ptt)
476 {
477 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
478 bool b_rc;
479 enum _ecore_status_t rc;
480
481 /* qm_info is allocated in ecore_init_qm_info() which is already called
482 * from ecore_resc_alloc() or previous call of ecore_qm_reconf().
483 * The allocated size may change each init, so we free it before next
484 * allocation.
485 */
486 ecore_qm_info_free(p_hwfn);
487
488 /* initialize ecore's qm data structure */
489 rc = ecore_init_qm_info(p_hwfn, false);
490 if (rc != ECORE_SUCCESS)
491 return rc;
492
493 /* stop PF's qm queues */
494 OSAL_SPIN_LOCK(&qm_lock);
495 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
496 qm_info->start_pq, qm_info->num_pqs);
497 OSAL_SPIN_UNLOCK(&qm_lock);
498 if (!b_rc)
499 return ECORE_INVAL;
500
501 /* clear the QM_PF runtime phase leftovers from previous init */
502 ecore_init_clear_rt_data(p_hwfn);
503
504 /* prepare QM portion of runtime array */
505 ecore_qm_init_pf(p_hwfn);
506
507 /* activate init tool on runtime array */
508 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
509 p_hwfn->hw_info.hw_mode);
510 if (rc != ECORE_SUCCESS)
511 return rc;
512
513 /* start PF's qm queues */
514 OSAL_SPIN_LOCK(&qm_lock);
515 b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
516 qm_info->start_pq, qm_info->num_pqs);
517 OSAL_SPIN_UNLOCK(&qm_lock);
518 if (!b_rc)
519 return ECORE_INVAL;
520
521 return ECORE_SUCCESS;
522 }
523
524 enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
525 {
526 struct ecore_consq *p_consq;
527 struct ecore_eq *p_eq;
528 #ifdef CONFIG_ECORE_LL2
529 struct ecore_ll2_info *p_ll2_info;
530 #endif
531 enum _ecore_status_t rc = ECORE_SUCCESS;
532 int i;
533
534 if (IS_VF(p_dev))
535 return rc;
536
537 p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
538 sizeof(*p_dev->fw_data));
539 if (!p_dev->fw_data)
540 return ECORE_NOMEM;
541
542 /* Allocate Memory for the Queue->CID mapping */
543 for_each_hwfn(p_dev, i) {
544 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
545
546 /* @@@TMP - resc management, change to actual required size */
547 int tx_size = sizeof(struct ecore_hw_cid_data) *
548 RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
549 int rx_size = sizeof(struct ecore_hw_cid_data) *
550 RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
551
552 p_hwfn->p_tx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
553 tx_size);
554 if (!p_hwfn->p_tx_cids) {
555 DP_NOTICE(p_hwfn, true,
556 "Failed to allocate memory for Tx Cids\n");
557 goto alloc_no_mem;
558 }
559
560 p_hwfn->p_rx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
561 rx_size);
562 if (!p_hwfn->p_rx_cids) {
563 DP_NOTICE(p_hwfn, true,
564 "Failed to allocate memory for Rx Cids\n");
565 goto alloc_no_mem;
566 }
567 }
568
569 for_each_hwfn(p_dev, i) {
570 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
571 u32 n_eqes, num_cons;
572
573 /* First allocate the context manager structure */
574 rc = ecore_cxt_mngr_alloc(p_hwfn);
575 if (rc)
576 goto alloc_err;
577
578 /* Set the HW cid/tid numbers (in the contest manager)
579 * Must be done prior to any further computations.
580 */
581 rc = ecore_cxt_set_pf_params(p_hwfn);
582 if (rc)
583 goto alloc_err;
584
585 /* Prepare and process QM requirements */
586 rc = ecore_init_qm_info(p_hwfn, true);
587 if (rc)
588 goto alloc_err;
589
590 /* Compute the ILT client partition */
591 rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
592 if (rc)
593 goto alloc_err;
594
595 /* CID map / ILT shadow table / T2
596 * The talbes sizes are determined by the computations above
597 */
598 rc = ecore_cxt_tables_alloc(p_hwfn);
599 if (rc)
600 goto alloc_err;
601
602 /* SPQ, must follow ILT because initializes SPQ context */
603 rc = ecore_spq_alloc(p_hwfn);
604 if (rc)
605 goto alloc_err;
606
607 /* SP status block allocation */
608 p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
609 RESERVED_PTT_DPC);
610
611 rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
612 if (rc)
613 goto alloc_err;
614
615 rc = ecore_iov_alloc(p_hwfn);
616 if (rc)
617 goto alloc_err;
618
619 /* EQ */
620 n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
621 if ((p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) ||
622 (p_hwfn->hw_info.personality == ECORE_PCI_IWARP)) {
623 /* Calculate the EQ size
624 * ---------------------
625 * Each ICID may generate up to one event at a time i.e.
626 * the event must be handled/cleared before a new one
627 * can be generated. We calculate the sum of events per
628 * protocol and create an EQ deep enough to handle the
629 * worst case:
630 * - Core - according to SPQ.
631 * - RoCE - per QP there are a couple of ICIDs, one
632 * responder and one requester, each can
633 * generate an EQE => n_eqes_qp = 2 * n_qp.
634 * Each CQ can generate an EQE. There are 2 CQs
635 * per QP => n_eqes_cq = 2 * n_qp.
636 * Hence the RoCE total is 4 * n_qp or
637 * 2 * num_cons.
638 * - ENet - There can be up to two events per VF. One
639 * for VF-PF channel and another for VF FLR
640 * initial cleanup. The number of VFs is
641 * bounded by MAX_NUM_VFS_BB, and is much
642 * smaller than RoCE's so we avoid exact
643 * calculation.
644 */
645 if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
646 num_cons =
647 ecore_cxt_get_proto_cid_count(
648 p_hwfn,
649 PROTOCOLID_ROCE,
650 0);
651 num_cons *= 2;
652 } else {
653 num_cons = ecore_cxt_get_proto_cid_count(
654 p_hwfn,
655 PROTOCOLID_IWARP,
656 0);
657 }
658 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
659 } else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
660 num_cons =
661 ecore_cxt_get_proto_cid_count(p_hwfn,
662 PROTOCOLID_ISCSI, 0);
663 n_eqes += 2 * num_cons;
664 }
665
666 if (n_eqes > 0xFFFF) {
667 DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
668 "The maximum of a u16 chain is 0x%x\n",
669 n_eqes, 0xFFFF);
670 goto alloc_err;
671 }
672
673 p_eq = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
674 if (!p_eq)
675 goto alloc_no_mem;
676 p_hwfn->p_eq = p_eq;
677
678 p_consq = ecore_consq_alloc(p_hwfn);
679 if (!p_consq)
680 goto alloc_no_mem;
681 p_hwfn->p_consq = p_consq;
682
683 #ifdef CONFIG_ECORE_LL2
684 if (p_hwfn->using_ll2) {
685 p_ll2_info = ecore_ll2_alloc(p_hwfn);
686 if (!p_ll2_info)
687 goto alloc_no_mem;
688 p_hwfn->p_ll2_info = p_ll2_info;
689 }
690 #endif
691
692 /* DMA info initialization */
693 rc = ecore_dmae_info_alloc(p_hwfn);
694 if (rc) {
695 DP_NOTICE(p_hwfn, true,
696 "Failed to allocate memory for dmae_info structure\n");
697 goto alloc_err;
698 }
699
700 /* DCBX initialization */
701 rc = ecore_dcbx_info_alloc(p_hwfn);
702 if (rc) {
703 DP_NOTICE(p_hwfn, true,
704 "Failed to allocate memory for dcbx structure\n");
705 goto alloc_err;
706 }
707 }
708
709 p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
710 sizeof(struct ecore_eth_stats));
711 if (!p_dev->reset_stats) {
712 DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
713 goto alloc_no_mem;
714 }
715
716 return ECORE_SUCCESS;
717
718 alloc_no_mem:
719 rc = ECORE_NOMEM;
720 alloc_err:
721 ecore_resc_free(p_dev);
722 return rc;
723 }
724
725 void ecore_resc_setup(struct ecore_dev *p_dev)
726 {
727 int i;
728
729 if (IS_VF(p_dev))
730 return;
731
732 for_each_hwfn(p_dev, i) {
733 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
734
735 ecore_cxt_mngr_setup(p_hwfn);
736 ecore_spq_setup(p_hwfn);
737 ecore_eq_setup(p_hwfn, p_hwfn->p_eq);
738 ecore_consq_setup(p_hwfn, p_hwfn->p_consq);
739
740 /* Read shadow of current MFW mailbox */
741 ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
742 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
743 p_hwfn->mcp_info->mfw_mb_cur,
744 p_hwfn->mcp_info->mfw_mb_length);
745
746 ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
747
748 ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
749 #ifdef CONFIG_ECORE_LL2
750 if (p_hwfn->using_ll2)
751 ecore_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
752 #endif
753 }
754 }
755
756 #define FINAL_CLEANUP_POLL_CNT (100)
757 #define FINAL_CLEANUP_POLL_TIME (10)
758 enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
759 struct ecore_ptt *p_ptt,
760 u16 id, bool is_vf)
761 {
762 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
763 enum _ecore_status_t rc = ECORE_TIMEOUT;
764
765 #ifndef ASIC_ONLY
766 if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
767 CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
768 DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
769 return ECORE_SUCCESS;
770 }
771 #endif
772
773 addr = GTT_BAR0_MAP_REG_USDM_RAM +
774 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
775
776 if (is_vf)
777 id += 0x10;
778
779 command |= X_FINAL_CLEANUP_AGG_INT <<
780 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
781 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
782 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
783 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
784
785 /* Make sure notification is not set before initiating final cleanup */
786
787 if (REG_RD(p_hwfn, addr)) {
788 DP_NOTICE(p_hwfn, false,
789 "Unexpected; Found final cleanup notification");
790 DP_NOTICE(p_hwfn, false,
791 " before initiating final cleanup\n");
792 REG_WR(p_hwfn, addr, 0);
793 }
794
795 DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
796 "Sending final cleanup for PFVF[%d] [Command %08x\n]",
797 id, OSAL_CPU_TO_LE32(command));
798
799 ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN,
800 OSAL_CPU_TO_LE32(command));
801
802 /* Poll until completion */
803 while (!REG_RD(p_hwfn, addr) && count--)
804 OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
805
806 if (REG_RD(p_hwfn, addr))
807 rc = ECORE_SUCCESS;
808 else
809 DP_NOTICE(p_hwfn, true,
810 "Failed to receive FW final cleanup notification\n");
811
812 /* Cleanup afterwards */
813 REG_WR(p_hwfn, addr, 0);
814
815 return rc;
816 }
817
818 static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
819 {
820 int hw_mode = 0;
821
822 if (ECORE_IS_BB_A0(p_hwfn->p_dev)) {
823 hw_mode |= 1 << MODE_BB_A0;
824 } else if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
825 hw_mode |= 1 << MODE_BB_B0;
826 } else if (ECORE_IS_AH(p_hwfn->p_dev)) {
827 hw_mode |= 1 << MODE_K2;
828 } else {
829 DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
830 p_hwfn->p_dev->type);
831 return ECORE_INVAL;
832 }
833
834 /* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
835 switch (p_hwfn->p_dev->num_ports_in_engines) {
836 case 1:
837 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
838 break;
839 case 2:
840 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
841 break;
842 case 4:
843 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
844 break;
845 default:
846 DP_NOTICE(p_hwfn, true,
847 "num_ports_in_engine = %d not supported\n",
848 p_hwfn->p_dev->num_ports_in_engines);
849 return ECORE_INVAL;
850 }
851
852 switch (p_hwfn->p_dev->mf_mode) {
853 case ECORE_MF_DEFAULT:
854 case ECORE_MF_NPAR:
855 hw_mode |= 1 << MODE_MF_SI;
856 break;
857 case ECORE_MF_OVLAN:
858 hw_mode |= 1 << MODE_MF_SD;
859 break;
860 default:
861 DP_NOTICE(p_hwfn, true,
862 "Unsupported MF mode, init as DEFAULT\n");
863 hw_mode |= 1 << MODE_MF_SI;
864 }
865
866 #ifndef ASIC_ONLY
867 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
868 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
869 hw_mode |= 1 << MODE_FPGA;
870 } else {
871 if (p_hwfn->p_dev->b_is_emul_full)
872 hw_mode |= 1 << MODE_EMUL_FULL;
873 else
874 hw_mode |= 1 << MODE_EMUL_REDUCED;
875 }
876 } else
877 #endif
878 hw_mode |= 1 << MODE_ASIC;
879
880 #ifndef REAL_ASIC_ONLY
881 if (ENABLE_EAGLE_ENG1_WORKAROUND(p_hwfn))
882 hw_mode |= 1 << MODE_EAGLE_ENG1_WORKAROUND;
883 #endif
884
885 if (p_hwfn->p_dev->num_hwfns > 1)
886 hw_mode |= 1 << MODE_100G;
887
888 p_hwfn->hw_info.hw_mode = hw_mode;
889
890 DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
891 "Configuring function for hw_mode: 0x%08x\n",
892 p_hwfn->hw_info.hw_mode);
893
894 return ECORE_SUCCESS;
895 }
896
897 #ifndef ASIC_ONLY
898 /* MFW-replacement initializations for non-ASIC */
899 static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
900 struct ecore_ptt *p_ptt)
901 {
902 u32 pl_hv = 1;
903 int i;
904
905 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
906 pl_hv |= 0x600;
907
908 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
909
910 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
911 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2, 0x3ffffff);
912
913 /* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
914 /* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
915 if (!CHIP_REV_IS_EMUL(p_hwfn->p_dev) || !ECORE_IS_AH(p_hwfn->p_dev))
916 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0, 4);
917
918 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
919 /* 2 for 4-port, 1 for 2-port, 0 for 1-port */
920 ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
921 (p_hwfn->p_dev->num_ports_in_engines >> 1));
922
923 ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
924 p_hwfn->p_dev->num_ports_in_engines == 4 ? 0 : 3);
925 }
926
927 /* Poll on RBC */
928 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
929 for (i = 0; i < 100; i++) {
930 OSAL_UDELAY(50);
931 if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
932 break;
933 }
934 if (i == 100)
935 DP_NOTICE(p_hwfn, true,
936 "RBC done failed to complete in PSWRQ2\n");
937
938 return ECORE_SUCCESS;
939 }
940 #endif
941
942 /* Init run time data for all PFs and their VFs on an engine.
943 * TBD - for VFs - Once we have parent PF info for each VF in
944 * shmem available as CAU requires knowledge of parent PF for each VF.
945 */
946 static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
947 {
948 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
949 int i, sb_id;
950
951 for_each_hwfn(p_dev, i) {
952 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
953 struct ecore_igu_info *p_igu_info;
954 struct ecore_igu_block *p_block;
955 struct cau_sb_entry sb_entry;
956
957 p_igu_info = p_hwfn->hw_info.p_igu_info;
958
959 for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
960 sb_id++) {
961 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
962
963 if (!p_block->is_pf)
964 continue;
965
966 ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
967 p_block->function_id, 0, 0);
968 STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
969 }
970 }
971 }
972
973 static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
974 struct ecore_ptt *p_ptt,
975 int hw_mode)
976 {
977 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
978 struct ecore_dev *p_dev = p_hwfn->p_dev;
979 u8 vf_id, max_num_vfs;
980 u16 num_pfs, pf_id;
981 u32 concrete_fid;
982 enum _ecore_status_t rc = ECORE_SUCCESS;
983
984 ecore_init_cau_rt_data(p_dev);
985
986 /* Program GTT windows */
987 ecore_gtt_init(p_hwfn);
988
989 #ifndef ASIC_ONLY
990 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
991 rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
992 if (rc != ECORE_SUCCESS)
993 return rc;
994 }
995 #endif
996
997 if (p_hwfn->mcp_info) {
998 if (p_hwfn->mcp_info->func_info.bandwidth_max)
999 qm_info->pf_rl_en = 1;
1000 if (p_hwfn->mcp_info->func_info.bandwidth_min)
1001 qm_info->pf_wfq_en = 1;
1002 }
1003
1004 ecore_qm_common_rt_init(p_hwfn,
1005 p_hwfn->p_dev->num_ports_in_engines,
1006 qm_info->max_phys_tcs_per_port,
1007 qm_info->pf_rl_en, qm_info->pf_wfq_en,
1008 qm_info->vport_rl_en, qm_info->vport_wfq_en,
1009 qm_info->qm_port_params);
1010
1011 ecore_cxt_hw_init_common(p_hwfn);
1012
1013 /* Close gate from NIG to BRB/Storm; By default they are open, but
1014 * we close them to prevent NIG from passing data to reset blocks.
1015 * Should have been done in the ENGINE phase, but init-tool lacks
1016 * proper port-pretend capabilities.
1017 */
1018 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1019 ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1020 ecore_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
1021 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
1022 ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
1023 ecore_port_unpretend(p_hwfn, p_ptt);
1024
1025 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1026 if (rc != ECORE_SUCCESS)
1027 return rc;
1028
1029 /* @@TBD MichalK - should add VALIDATE_VFID to init tool...
1030 * need to decide with which value, maybe runtime
1031 */
1032 ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1033 ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1034
1035 if (ECORE_IS_BB(p_hwfn->p_dev)) {
1036 /* Workaround clears ROCE search for all functions to prevent
1037 * involving non initialized function in processing ROCE packet.
1038 */
1039 num_pfs = NUM_OF_ENG_PFS(p_hwfn->p_dev);
1040 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1041 ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
1042 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1043 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1044 }
1045 /* pretend to original PF */
1046 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1047 }
1048
1049 /* Workaround for avoiding CCFC execution error when getting packets
1050 * with CRC errors, and allowing instead the invoking of the FW error
1051 * handler.
1052 * This is not done inside the init tool since it currently can't
1053 * perform a pretending to VFs.
1054 */
1055 max_num_vfs = ECORE_IS_AH(p_hwfn->p_dev) ? MAX_NUM_VFS_K2
1056 : MAX_NUM_VFS_BB;
1057 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1058 concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
1059 ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
1060 ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1061 ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1062 ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1063 ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1064 }
1065 /* pretend to original PF */
1066 ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1067
1068 return rc;
1069 }
1070
1071 #ifndef ASIC_ONLY
1072 #define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
1073 #define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
1074
1075 #define PMEG_IF_BYTE_COUNT 8
1076
1077 static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
1078 struct ecore_ptt *p_ptt,
1079 u32 addr, u64 data, u8 reg_type, u8 port)
1080 {
1081 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
1082 "CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
1083 ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) |
1084 (8 << PMEG_IF_BYTE_COUNT),
1085 (reg_type << 25) | (addr << 8) | port,
1086 (u32)((data >> 32) & 0xffffffff),
1087 (u32)(data & 0xffffffff));
1088
1089 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0,
1090 (ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) &
1091 0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
1092 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB_B0,
1093 (reg_type << 25) | (addr << 8) | port);
1094 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1095 data & 0xffffffff);
1096 ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
1097 (data >> 32) & 0xffffffff);
1098 }
1099
1100 #define XLPORT_MODE_REG (0x20a)
1101 #define XLPORT_MAC_CONTROL (0x210)
1102 #define XLPORT_FLOW_CONTROL_CONFIG (0x207)
1103 #define XLPORT_ENABLE_REG (0x20b)
1104
1105 #define XLMAC_CTRL (0x600)
1106 #define XLMAC_MODE (0x601)
1107 #define XLMAC_RX_MAX_SIZE (0x608)
1108 #define XLMAC_TX_CTRL (0x604)
1109 #define XLMAC_PAUSE_CTRL (0x60d)
1110 #define XLMAC_PFC_CTRL (0x60e)
1111
1112 static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn,
1113 struct ecore_ptt *p_ptt)
1114 {
1115 u8 port = p_hwfn->port_id;
1116 u32 mac_base = NWM_REG_MAC0 + (port << 2) * NWM_REG_MAC0_SIZE;
1117
1118 ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2),
1119 (1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_SHIFT) |
1120 (port << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_SHIFT)
1121 | (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_SHIFT));
1122
1123 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE,
1124 1 << ETH_MAC_REG_XIF_MODE_XGMII_SHIFT);
1125
1126 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH,
1127 9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_SHIFT);
1128
1129 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH,
1130 0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_SHIFT);
1131
1132 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS,
1133 8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_SHIFT);
1134
1135 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS,
1136 (0xA << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_SHIFT) |
1137 (8 << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_SHIFT));
1138
1139 ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG, 0xa853);
1140 }
1141
1142 static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
1143 struct ecore_ptt *p_ptt)
1144 {
1145 u8 loopback = 0, port = p_hwfn->port_id * 2;
1146
1147 DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
1148
1149 if (ECORE_IS_AH(p_hwfn->p_dev)) {
1150 ecore_emul_link_init_ah(p_hwfn, p_ptt);
1151 return;
1152 }
1153
1154 /* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
1155 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
1156 port);
1157 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
1158 /* XLMAC: SOFT RESET */
1159 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
1160 /* XLMAC: Port Speed >= 10Gbps */
1161 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
1162 /* XLMAC: Max Size */
1163 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
1164 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
1165 0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
1166 0, port);
1167 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
1168 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
1169 0x30ffffc000ULL, 0, port);
1170 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
1171 port); /* XLMAC: TX_EN, RX_EN */
1172 /* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
1173 ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
1174 0x1003 | (loopback << 2), 0, port);
1175 /* Enabled Parallel PFC interface */
1176 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
1177
1178 /* XLPORT port enable */
1179 ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
1180 }
1181
1182 static void ecore_link_init(struct ecore_hwfn *p_hwfn,
1183 struct ecore_ptt *p_ptt, u8 port)
1184 {
1185 int port_offset = port ? 0x800 : 0;
1186 u32 xmac_rxctrl = 0;
1187
1188 /* Reset of XMAC */
1189 /* FIXME: move to common start */
1190 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1191 MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
1192 OSAL_MSLEEP(1);
1193 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1194 MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
1195
1196 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE, 1);
1197
1198 /* Set the number of ports on the Warp Core to 10G */
1199 ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE, 3);
1200
1201 /* Soft reset of XMAC */
1202 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
1203 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1204 OSAL_MSLEEP(1);
1205 ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
1206 MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
1207
1208 /* FIXME: move to common end */
1209 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
1210 ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE + port_offset, 0x20);
1211
1212 /* Set Max packet size: initialize XMAC block register for port 0 */
1213 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE + port_offset, 0x2710);
1214
1215 /* CRC append for Tx packets: init XMAC block register for port 1 */
1216 ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO + port_offset, 0xC800);
1217
1218 /* Enable TX and RX: initialize XMAC block register for port 1 */
1219 ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL + port_offset,
1220 XMAC_REG_CTRL_TX_EN | XMAC_REG_CTRL_RX_EN);
1221 xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset);
1222 xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE;
1223 ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset, xmac_rxctrl);
1224 }
1225 #endif
1226
1227 static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
1228 struct ecore_ptt *p_ptt,
1229 int hw_mode)
1230 {
1231 enum _ecore_status_t rc = ECORE_SUCCESS;
1232
1233 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
1234 hw_mode);
1235 if (rc != ECORE_SUCCESS)
1236 return rc;
1237 #ifndef ASIC_ONLY
1238 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
1239 return ECORE_SUCCESS;
1240
1241 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
1242 if (ECORE_IS_AH(p_hwfn->p_dev))
1243 return ECORE_SUCCESS;
1244 ecore_link_init(p_hwfn, p_ptt, p_hwfn->port_id);
1245 } else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
1246 if (p_hwfn->p_dev->num_hwfns > 1) {
1247 /* Activate OPTE in CMT */
1248 u32 val;
1249
1250 val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
1251 val |= 0x10;
1252 ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
1253 ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
1254 ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
1255 ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
1256 ecore_wr(p_hwfn, p_ptt,
1257 NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
1258 ecore_wr(p_hwfn, p_ptt,
1259 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
1260 ecore_wr(p_hwfn, p_ptt,
1261 NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
1262 0x55555555);
1263 }
1264
1265 ecore_emul_link_init(p_hwfn, p_ptt);
1266 } else {
1267 DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
1268 }
1269 #endif
1270
1271 return rc;
1272 }
1273
1274 static enum _ecore_status_t
1275 ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
1276 struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1277 {
1278 u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
1279 u32 dpi_bit_shift, dpi_count;
1280 u32 min_dpis;
1281
1282 /* Calculate DPI size
1283 * ------------------
1284 * The PWM region contains Doorbell Pages. The first is reserverd for
1285 * the kernel for, e.g, L2. The others are free to be used by non-
1286 * trusted applications, typically from user space. Each page, called a
1287 * doorbell page is sectioned into windows that allow doorbells to be
1288 * issued in parallel by the kernel/application. The size of such a
1289 * window (a.k.a. WID) is 1kB.
1290 * Summary:
1291 * 1kB WID x N WIDS = DPI page size
1292 * DPI page size x N DPIs = PWM region size
1293 * Notes:
1294 * The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
1295 * in order to ensure that two applications won't share the same page.
1296 * It also must contain at least one WID per CPU to allow parallelism.
1297 * It also must be a power of 2, since it is stored as a bit shift.
1298 *
1299 * The DPI page size is stored in a register as 'dpi_bit_shift' so that
1300 * 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
1301 * containing 4 WIDs.
1302 */
1303 dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
1304 dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
1305 dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
1306 dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
1307 dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
1308
1309 dpi_count = pwm_region_size / dpi_page_size;
1310
1311 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1312 min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
1313
1314 /* Update hwfn */
1315 p_hwfn->dpi_size = dpi_page_size;
1316 p_hwfn->dpi_count = dpi_count;
1317
1318 /* Update registers */
1319 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1320
1321 if (dpi_count < min_dpis)
1322 return ECORE_NORESOURCES;
1323
1324 return ECORE_SUCCESS;
1325 }
1326
1327 enum ECORE_ROCE_EDPM_MODE {
1328 ECORE_ROCE_EDPM_MODE_ENABLE = 0,
1329 ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
1330 ECORE_ROCE_EDPM_MODE_DISABLE = 2,
1331 };
1332
1333 static enum _ecore_status_t
1334 ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
1335 struct ecore_ptt *p_ptt)
1336 {
1337 u32 pwm_regsize, norm_regsize;
1338 u32 non_pwm_conn, min_addr_reg1;
1339 u32 db_bar_size, n_cpus;
1340 u32 roce_edpm_mode;
1341 u32 pf_dems_shift;
1342 int rc = ECORE_SUCCESS;
1343 u8 cond;
1344
1345 db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
1346 if (p_hwfn->p_dev->num_hwfns > 1)
1347 db_bar_size /= 2;
1348
1349 /* Calculate doorbell regions
1350 * -----------------------------------
1351 * The doorbell BAR is made of two regions. The first is called normal
1352 * region and the second is called PWM region. In the normal region
1353 * each ICID has its own set of addresses so that writing to that
1354 * specific address identifies the ICID. In the Process Window Mode
1355 * region the ICID is given in the data written to the doorbell. The
1356 * above per PF register denotes the offset in the doorbell BAR in which
1357 * the PWM region begins.
1358 * The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
1359 * non-PWM connection. The calculation below computes the total non-PWM
1360 * connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
1361 * in units of 4,096 bytes.
1362 */
1363 non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1364 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1365 OSAL_NULL) +
1366 ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
1367 norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
1368 min_addr_reg1 = norm_regsize / 4096;
1369 pwm_regsize = db_bar_size - norm_regsize;
1370
1371 /* Check that the normal and PWM sizes are valid */
1372 if (db_bar_size < norm_regsize) {
1373 DP_ERR(p_hwfn->p_dev,
1374 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1375 db_bar_size, norm_regsize);
1376 return ECORE_NORESOURCES;
1377 }
1378 if (pwm_regsize < ECORE_MIN_PWM_REGION) {
1379 DP_ERR(p_hwfn->p_dev,
1380 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1381 pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
1382 norm_regsize);
1383 return ECORE_NORESOURCES;
1384 }
1385
1386 /* Calculate number of DPIs */
1387 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1388 if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
1389 ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
1390 /* Either EDPM is mandatory, or we are attempting to allocate a
1391 * WID per CPU.
1392 */
1393 n_cpus = OSAL_NUM_ACTIVE_CPU();
1394 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1395 }
1396
1397 cond = ((rc) && (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
1398 (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
1399 if (cond || p_hwfn->dcbx_no_edpm) {
1400 /* Either EDPM is disabled from user configuration, or it is
1401 * disabled via DCBx, or it is not mandatory and we failed to
1402 * allocated a WID per CPU.
1403 */
1404 n_cpus = 1;
1405 rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1406
1407 /* If we entered this flow due to DCBX then the DPM register is
1408 * already configured.
1409 */
1410 }
1411
1412 DP_INFO(p_hwfn,
1413 "doorbell bar: normal_region_size=%d, pwm_region_size=%d",
1414 norm_regsize, pwm_regsize);
1415 DP_INFO(p_hwfn,
1416 " dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
1417 p_hwfn->dpi_size, p_hwfn->dpi_count,
1418 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
1419 "disabled" : "enabled");
1420
1421 /* Check return codes from above calls */
1422 if (rc) {
1423 DP_ERR(p_hwfn,
1424 "Failed to allocate enough DPIs\n");
1425 return ECORE_NORESOURCES;
1426 }
1427
1428 /* Update hwfn */
1429 p_hwfn->dpi_start_offset = norm_regsize;
1430
1431 /* Update registers */
1432 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1433 pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
1434 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1435 ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1436
1437 return ECORE_SUCCESS;
1438 }
1439
1440 static enum _ecore_status_t
1441 ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
1442 struct ecore_ptt *p_ptt,
1443 struct ecore_tunn_start_params *p_tunn,
1444 int hw_mode,
1445 bool b_hw_start,
1446 enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
1447 {
1448 u8 rel_pf_id = p_hwfn->rel_pf_id;
1449 u32 prs_reg;
1450 enum _ecore_status_t rc = ECORE_SUCCESS;
1451 u16 ctrl;
1452 int pos;
1453
1454 if (p_hwfn->mcp_info) {
1455 struct ecore_mcp_function_info *p_info;
1456
1457 p_info = &p_hwfn->mcp_info->func_info;
1458 if (p_info->bandwidth_min)
1459 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1460
1461 /* Update rate limit once we'll actually have a link */
1462 p_hwfn->qm_info.pf_rl = 100000;
1463 }
1464 ecore_cxt_hw_init_pf(p_hwfn);
1465
1466 ecore_int_igu_init_rt(p_hwfn);
1467
1468 /* Set VLAN in NIG if needed */
1469 if (hw_mode & (1 << MODE_MF_SD)) {
1470 DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1471 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1472 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1473 p_hwfn->hw_info.ovlan);
1474 }
1475
1476 /* Enable classification by MAC if needed */
1477 if (hw_mode & (1 << MODE_MF_SI)) {
1478 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
1479 "Configuring TAGMAC_CLS_TYPE\n");
1480 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1481 1);
1482 }
1483
1484 /* Protocl Configuration - @@@TBD - should we set 0 otherwise? */
1485 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1486 (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
1487 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1488 (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
1489 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1490
1491 /* perform debug configuration when chip is out of reset */
1492 OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
1493
1494 /* Cleanup chip from previous driver if such remains exist */
1495 rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1496 if (rc != ECORE_SUCCESS) {
1497 ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
1498 return rc;
1499 }
1500
1501 /* PF Init sequence */
1502 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1503 if (rc)
1504 return rc;
1505
1506 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1507 rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1508 if (rc)
1509 return rc;
1510
1511 /* Pure runtime initializations - directly to the HW */
1512 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1513
1514 /* PCI relaxed ordering causes a decrease in the performance on some
1515 * systems. Till a root cause is found, disable this attribute in the
1516 * PCI config space.
1517 */
1518 /* Not in use @DPDK
1519 * pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
1520 * if (!pos) {
1521 * DP_NOTICE(p_hwfn, true,
1522 * "Failed to find the PCIe Cap\n");
1523 * return ECORE_IO;
1524 * }
1525 * OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
1526 * ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
1527 * OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
1528 */
1529
1530 rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1531 if (rc)
1532 return rc;
1533 if (b_hw_start) {
1534 /* enable interrupts */
1535 ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
1536
1537 /* send function start command */
1538 rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
1539 allow_npar_tx_switch);
1540 if (rc) {
1541 DP_NOTICE(p_hwfn, true,
1542 "Function start ramrod failed\n");
1543 } else {
1544 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1545 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1546 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1547
1548 if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
1549 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
1550 (1 << 2));
1551 ecore_wr(p_hwfn, p_ptt,
1552 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1553 0x100);
1554 }
1555 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1556 "PRS_REG_SEARCH registers after start PFn\n");
1557 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
1558 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1559 "PRS_REG_SEARCH_TCP: %x\n", prs_reg);
1560 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
1561 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1562 "PRS_REG_SEARCH_UDP: %x\n", prs_reg);
1563 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
1564 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1565 "PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
1566 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
1567 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1568 "PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
1569 prs_reg = ecore_rd(p_hwfn, p_ptt,
1570 PRS_REG_SEARCH_TCP_FIRST_FRAG);
1571 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1572 "PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
1573 prs_reg);
1574 prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
1575 DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
1576 "PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
1577 }
1578 }
1579 return rc;
1580 }
1581
1582 static enum _ecore_status_t
1583 ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
1584 struct ecore_ptt *p_ptt, u8 enable)
1585 {
1586 u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1587
1588 /* Change PF in PXP */
1589 ecore_wr(p_hwfn, p_ptt,
1590 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1591
1592 /* wait until value is set - try for 1 second every 50us */
1593 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1594 val = ecore_rd(p_hwfn, p_ptt,
1595 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1596 if (val == set_val)
1597 break;
1598
1599 OSAL_UDELAY(50);
1600 }
1601
1602 if (val != set_val) {
1603 DP_NOTICE(p_hwfn, true,
1604 "PFID_ENABLE_MASTER wasn't changed after a second\n");
1605 return ECORE_UNKNOWN_ERROR;
1606 }
1607
1608 return ECORE_SUCCESS;
1609 }
1610
1611 static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
1612 struct ecore_ptt *p_main_ptt)
1613 {
1614 /* Read shadow of current MFW mailbox */
1615 ecore_mcp_read_mb(p_hwfn, p_main_ptt);
1616 OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
1617 p_hwfn->mcp_info->mfw_mb_cur,
1618 p_hwfn->mcp_info->mfw_mb_length);
1619 }
1620
1621 enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
1622 struct ecore_hw_init_params *p_params)
1623 {
1624 enum _ecore_status_t rc, mfw_rc;
1625 u32 load_code, param;
1626 int i, j;
1627
1628 if (p_params->int_mode == ECORE_INT_MODE_MSI && p_dev->num_hwfns > 1) {
1629 DP_NOTICE(p_dev, false,
1630 "MSI mode is not supported for CMT devices\n");
1631 return ECORE_INVAL;
1632 }
1633
1634 if (IS_PF(p_dev)) {
1635 rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
1636 if (rc != ECORE_SUCCESS)
1637 return rc;
1638 }
1639
1640 for_each_hwfn(p_dev, i) {
1641 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1642
1643 if (IS_VF(p_dev)) {
1644 p_hwfn->b_int_enabled = 1;
1645 continue;
1646 }
1647
1648 /* Enable DMAE in PXP */
1649 rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1650 if (rc != ECORE_SUCCESS)
1651 return rc;
1652
1653 rc = ecore_calc_hw_mode(p_hwfn);
1654 if (rc != ECORE_SUCCESS)
1655 return rc;
1656
1657 /* @@@TBD need to add here:
1658 * Check for fan failure
1659 * Prev_unload
1660 */
1661 rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
1662 if (rc) {
1663 DP_NOTICE(p_hwfn, true,
1664 "Failed sending LOAD_REQ command\n");
1665 return rc;
1666 }
1667
1668 /* CQ75580:
1669 * When coming back from hiberbate state, the registers from
1670 * which shadow is read initially are not initialized. It turns
1671 * out that these registers get initialized during the call to
1672 * ecore_mcp_load_req request. So we need to reread them here
1673 * to get the proper shadow register value.
1674 * Note: This is a workaround for the missinginig MFW
1675 * initialization. It may be removed once the implementation
1676 * is done.
1677 */
1678 ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1679
1680 DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
1681 "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1682 rc, load_code);
1683
1684 /* Only relevant for recovery:
1685 * Clear the indication after the LOAD_REQ command is responded
1686 * by the MFW.
1687 */
1688 p_dev->recov_in_prog = false;
1689
1690 p_hwfn->first_on_engine = (load_code ==
1691 FW_MSG_CODE_DRV_LOAD_ENGINE);
1692
1693 if (!qm_lock_init) {
1694 OSAL_SPIN_LOCK_INIT(&qm_lock);
1695 qm_lock_init = true;
1696 }
1697
1698 switch (load_code) {
1699 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1700 rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1701 p_hwfn->hw_info.hw_mode);
1702 if (rc)
1703 break;
1704 /* Fall into */
1705 case FW_MSG_CODE_DRV_LOAD_PORT:
1706 rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1707 p_hwfn->hw_info.hw_mode);
1708 if (rc)
1709 break;
1710
1711 #ifndef REAL_ASIC_ONLY
1712 if (ENABLE_EAGLE_ENG1_WORKAROUND(p_hwfn)) {
1713 struct init_nig_pri_tc_map_req tc_map;
1714
1715 OSAL_MEM_ZERO(&tc_map, sizeof(tc_map));
1716
1717 /* remove this once flow control is
1718 * implemented
1719 */
1720 for (j = 0; j < NUM_OF_VLAN_PRIORITIES; j++) {
1721 tc_map.pri[j].tc_id = 0;
1722 tc_map.pri[j].valid = 1;
1723 }
1724 ecore_init_nig_pri_tc_map(p_hwfn,
1725 p_hwfn->p_main_ptt,
1726 &tc_map);
1727 }
1728 #endif
1729 /* Fall into */
1730 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1731 rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1732 p_params->p_tunn,
1733 p_hwfn->hw_info.hw_mode,
1734 p_params->b_hw_start,
1735 p_params->int_mode,
1736 p_params->allow_npar_tx_switch);
1737 break;
1738 default:
1739 rc = ECORE_NOTIMPL;
1740 break;
1741 }
1742
1743 if (rc != ECORE_SUCCESS)
1744 DP_NOTICE(p_hwfn, true,
1745 "init phase failed for loadcode 0x%x (rc %d)\n",
1746 load_code, rc);
1747
1748 /* ACK mfw regardless of success or failure of initialization */
1749 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1750 DRV_MSG_CODE_LOAD_DONE,
1751 0, &load_code, &param);
1752 if (rc != ECORE_SUCCESS)
1753 return rc;
1754 if (mfw_rc != ECORE_SUCCESS) {
1755 DP_NOTICE(p_hwfn, true,
1756 "Failed sending LOAD_DONE command\n");
1757 return mfw_rc;
1758 }
1759
1760 ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt);
1761 ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
1762 p_params->epoch);
1763
1764 /* send DCBX attention request command */
1765 DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
1766 "sending phony dcbx set command to trigger DCBx attention handling\n");
1767 mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1768 DRV_MSG_CODE_SET_DCBX,
1769 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1770 &load_code, &param);
1771 if (mfw_rc != ECORE_SUCCESS) {
1772 DP_NOTICE(p_hwfn, true,
1773 "Failed to send DCBX attention request\n");
1774 return mfw_rc;
1775 }
1776
1777 p_hwfn->hw_init_done = true;
1778 }
1779
1780 return ECORE_SUCCESS;
1781 }
1782
1783 #define ECORE_HW_STOP_RETRY_LIMIT (10)
1784 static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
1785 struct ecore_hwfn *p_hwfn,
1786 struct ecore_ptt *p_ptt)
1787 {
1788 int i;
1789
1790 /* close timers */
1791 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1792 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1793 for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
1794 i++) {
1795 if ((!ecore_rd(p_hwfn, p_ptt,
1796 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1797 (!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1798 break;
1799
1800 /* Dependent on number of connection/tasks, possibly
1801 * 1ms sleep is required between polls
1802 */
1803 OSAL_MSLEEP(1);
1804 }
1805 if (i == ECORE_HW_STOP_RETRY_LIMIT)
1806 DP_NOTICE(p_hwfn, true,
1807 "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1808 (u8)ecore_rd(p_hwfn, p_ptt,
1809 TM_REG_PF_SCAN_ACTIVE_CONN),
1810 (u8)ecore_rd(p_hwfn, p_ptt,
1811 TM_REG_PF_SCAN_ACTIVE_TASK));
1812 }
1813
1814 void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
1815 {
1816 int j;
1817
1818 for_each_hwfn(p_dev, j) {
1819 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1820 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1821
1822 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1823 }
1824 }
1825
1826 enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
1827 {
1828 enum _ecore_status_t rc = ECORE_SUCCESS, t_rc;
1829 int j;
1830
1831 for_each_hwfn(p_dev, j) {
1832 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1833 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1834
1835 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
1836
1837 if (IS_VF(p_dev)) {
1838 ecore_vf_pf_int_cleanup(p_hwfn);
1839 continue;
1840 }
1841
1842 /* mark the hw as uninitialized... */
1843 p_hwfn->hw_init_done = false;
1844
1845 rc = ecore_sp_pf_stop(p_hwfn);
1846 if (rc)
1847 DP_NOTICE(p_hwfn, true,
1848 "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1849
1850 /* perform debug action after PF stop was sent */
1851 OSAL_AFTER_PF_STOP((void *)p_hwfn->p_dev, p_hwfn->my_id);
1852
1853 /* close NIG to BRB gate */
1854 ecore_wr(p_hwfn, p_ptt,
1855 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1856
1857 /* close parser */
1858 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1859 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1860 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1861 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1862 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1863
1864 /* @@@TBD - clean transmission queues (5.b) */
1865 /* @@@TBD - clean BTB (5.c) */
1866
1867 ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
1868
1869 /* @@@TBD - verify DMAE requests are done (8) */
1870
1871 /* Disable Attention Generation */
1872 ecore_int_igu_disable_int(p_hwfn, p_ptt);
1873 ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1874 ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1875 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1876 /* Need to wait 1ms to guarantee SBs are cleared */
1877 OSAL_MSLEEP(1);
1878 }
1879
1880 if (IS_PF(p_dev)) {
1881 /* Disable DMAE in PXP - in CMT, this should only be done for
1882 * first hw-function, and only after all transactions have
1883 * stopped for all active hw-functions.
1884 */
1885 t_rc = ecore_change_pci_hwfn(&p_dev->hwfns[0],
1886 p_dev->hwfns[0].p_main_ptt, false);
1887 if (t_rc != ECORE_SUCCESS)
1888 rc = t_rc;
1889 }
1890
1891 return rc;
1892 }
1893
1894 void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
1895 {
1896 int j;
1897
1898 for_each_hwfn(p_dev, j) {
1899 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
1900 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1901
1902 if (IS_VF(p_dev)) {
1903 ecore_vf_pf_int_cleanup(p_hwfn);
1904 continue;
1905 }
1906
1907 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
1908 "Shutting down the fastpath\n");
1909
1910 ecore_wr(p_hwfn, p_ptt,
1911 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1912
1913 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1914 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1915 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1916 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1917 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1918
1919 /* @@@TBD - clean transmission queues (5.b) */
1920 /* @@@TBD - clean BTB (5.c) */
1921
1922 /* @@@TBD - verify DMAE requests are done (8) */
1923
1924 ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1925 /* Need to wait 1ms to guarantee SBs are cleared */
1926 OSAL_MSLEEP(1);
1927 }
1928 }
1929
1930 void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
1931 {
1932 struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
1933
1934 if (IS_VF(p_hwfn->p_dev))
1935 return;
1936
1937 /* If roce info is allocated it means roce is initialized and should
1938 * be enabled in searcher.
1939 */
1940 if (p_hwfn->p_rdma_info) {
1941 if (p_hwfn->b_rdma_enabled_in_prs)
1942 ecore_wr(p_hwfn, p_ptt,
1943 p_hwfn->rdma_prs_search_reg, 0x1);
1944 ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
1945 }
1946
1947 /* Re-open incoming traffic */
1948 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
1949 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1950 }
1951
1952 static enum _ecore_status_t ecore_reg_assert(struct ecore_hwfn *p_hwfn,
1953 struct ecore_ptt *p_ptt, u32 reg,
1954 bool expected)
1955 {
1956 u32 assert_val = ecore_rd(p_hwfn, p_ptt, reg);
1957
1958 if (assert_val != expected) {
1959 DP_NOTICE(p_hwfn, true, "Value at address 0x%08x != 0x%08x\n",
1960 reg, expected);
1961 return ECORE_UNKNOWN_ERROR;
1962 }
1963
1964 return 0;
1965 }
1966
1967 enum _ecore_status_t ecore_hw_reset(struct ecore_dev *p_dev)
1968 {
1969 enum _ecore_status_t rc = ECORE_SUCCESS;
1970 u32 unload_resp, unload_param;
1971 int i;
1972
1973 for_each_hwfn(p_dev, i) {
1974 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
1975
1976 if (IS_VF(p_dev)) {
1977 rc = ecore_vf_pf_reset(p_hwfn);
1978 if (rc)
1979 return rc;
1980 continue;
1981 }
1982
1983 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Resetting hw/fw\n");
1984
1985 /* Check for incorrect states */
1986 if (!p_dev->recov_in_prog) {
1987 ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1988 QM_REG_USG_CNT_PF_TX, 0);
1989 ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1990 QM_REG_USG_CNT_PF_OTHER, 0);
1991 /* @@@TBD - assert on incorrect xCFC values (10.b) */
1992 }
1993
1994 /* Disable PF in HW blocks */
1995 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1996 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1997
1998 if (p_dev->recov_in_prog) {
1999 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2000 "Recovery is in progress -> skip sending unload_req/done\n");
2001 break;
2002 }
2003
2004 /* Send unload command to MCP */
2005 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2006 DRV_MSG_CODE_UNLOAD_REQ,
2007 DRV_MB_PARAM_UNLOAD_WOL_MCP,
2008 &unload_resp, &unload_param);
2009 if (rc != ECORE_SUCCESS) {
2010 DP_NOTICE(p_hwfn, true,
2011 "ecore_hw_reset: UNLOAD_REQ failed\n");
2012 /* @@TBD - what to do? for now, assume ENG. */
2013 unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
2014 }
2015
2016 rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2017 DRV_MSG_CODE_UNLOAD_DONE,
2018 0, &unload_resp, &unload_param);
2019 if (rc != ECORE_SUCCESS) {
2020 DP_NOTICE(p_hwfn,
2021 true, "ecore_hw_reset: UNLOAD_DONE failed\n");
2022 /* @@@TBD - Should it really ASSERT here ? */
2023 return rc;
2024 }
2025 }
2026
2027 return rc;
2028 }
2029
2030 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2031 static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
2032 {
2033 ecore_ptt_pool_free(p_hwfn);
2034 OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
2035 }
2036
2037 /* Setup bar access */
2038 static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
2039 {
2040 /* clear indirect access */
2041 if (ECORE_IS_AH(p_hwfn->p_dev)) {
2042 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2043 PGLUE_B_REG_PGL_ADDR_E8_F0, 0);
2044 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2045 PGLUE_B_REG_PGL_ADDR_EC_F0, 0);
2046 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2047 PGLUE_B_REG_PGL_ADDR_F0_F0, 0);
2048 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2049 PGLUE_B_REG_PGL_ADDR_F4_F0, 0);
2050 } else {
2051 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2052 PGLUE_B_REG_PGL_ADDR_88_F0, 0);
2053 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2054 PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
2055 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2056 PGLUE_B_REG_PGL_ADDR_90_F0, 0);
2057 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2058 PGLUE_B_REG_PGL_ADDR_94_F0, 0);
2059 }
2060
2061 /* Clean Previous errors if such exist */
2062 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2063 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
2064
2065 /* enable internal target-read */
2066 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2067 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2068 }
2069
2070 static void get_function_id(struct ecore_hwfn *p_hwfn)
2071 {
2072 /* ME Register */
2073 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
2074 PXP_PF_ME_OPAQUE_ADDR);
2075
2076 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2077
2078 /* Bits 16-19 from the ME registers are the pf_num */
2079 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2080 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2081 PXP_CONCRETE_FID_PFID);
2082 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2083 PXP_CONCRETE_FID_PORT);
2084
2085 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2086 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2087 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2088 }
2089
2090 static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
2091 {
2092 u32 *feat_num = p_hwfn->hw_info.feat_num;
2093 int num_features = 1;
2094
2095 /* L2 Queues require each: 1 status block. 1 L2 queue */
2096 feat_num[ECORE_PF_L2_QUE] =
2097 OSAL_MIN_T(u32,
2098 RESC_NUM(p_hwfn, ECORE_SB) / num_features,
2099 RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
2100
2101 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2102 "#PF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d num_features=%d\n",
2103 feat_num[ECORE_PF_L2_QUE],
2104 feat_num[ECORE_RDMA_CNQ],
2105 RESC_NUM(p_hwfn, ECORE_SB), num_features);
2106 }
2107
2108 static enum resource_id_enum
2109 ecore_hw_get_mfw_res_id(enum ecore_resources res_id)
2110 {
2111 enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2112
2113 switch (res_id) {
2114 case ECORE_SB:
2115 mfw_res_id = RESOURCE_NUM_SB_E;
2116 break;
2117 case ECORE_L2_QUEUE:
2118 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2119 break;
2120 case ECORE_VPORT:
2121 mfw_res_id = RESOURCE_NUM_VPORT_E;
2122 break;
2123 case ECORE_RSS_ENG:
2124 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2125 break;
2126 case ECORE_PQ:
2127 mfw_res_id = RESOURCE_NUM_PQ_E;
2128 break;
2129 case ECORE_RL:
2130 mfw_res_id = RESOURCE_NUM_RL_E;
2131 break;
2132 case ECORE_MAC:
2133 case ECORE_VLAN:
2134 /* Each VFC resource can accommodate both a MAC and a VLAN */
2135 mfw_res_id = RESOURCE_VFC_FILTER_E;
2136 break;
2137 case ECORE_ILT:
2138 mfw_res_id = RESOURCE_ILT_E;
2139 break;
2140 case ECORE_LL2_QUEUE:
2141 mfw_res_id = RESOURCE_LL2_QUEUE_E;
2142 break;
2143 case ECORE_RDMA_CNQ_RAM:
2144 case ECORE_CMDQS_CQS:
2145 /* CNQ/CMDQS are the same resource */
2146 mfw_res_id = RESOURCE_CQS_E;
2147 break;
2148 case ECORE_RDMA_STATS_QUEUE:
2149 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2150 break;
2151 default:
2152 break;
2153 }
2154
2155 return mfw_res_id;
2156 }
2157
2158 static u32 ecore_hw_get_dflt_resc_num(struct ecore_hwfn *p_hwfn,
2159 enum ecore_resources res_id)
2160 {
2161 u8 num_funcs = p_hwfn->num_funcs_on_engine;
2162 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2163 struct ecore_sb_cnt_info sb_cnt_info;
2164 u32 dflt_resc_num = 0;
2165
2166 switch (res_id) {
2167 case ECORE_SB:
2168 OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
2169 ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
2170 dflt_resc_num = sb_cnt_info.sb_cnt;
2171 break;
2172 case ECORE_L2_QUEUE:
2173 dflt_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2174 MAX_NUM_L2_QUEUES_BB) / num_funcs;
2175 break;
2176 case ECORE_VPORT:
2177 dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2178 MAX_NUM_VPORTS_BB) / num_funcs;
2179 break;
2180 case ECORE_RSS_ENG:
2181 dflt_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2182 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2183 break;
2184 case ECORE_PQ:
2185 dflt_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2186 MAX_QM_TX_QUEUES_BB) / num_funcs;
2187 break;
2188 case ECORE_RL:
2189 dflt_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2190 break;
2191 case ECORE_MAC:
2192 case ECORE_VLAN:
2193 /* Each VFC resource can accommodate both a MAC and a VLAN */
2194 dflt_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2195 break;
2196 case ECORE_ILT:
2197 dflt_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2198 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2199 break;
2200 case ECORE_LL2_QUEUE:
2201 dflt_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2202 break;
2203 case ECORE_RDMA_CNQ_RAM:
2204 case ECORE_CMDQS_CQS:
2205 /* CNQ/CMDQS are the same resource */
2206 /* @DPDK */
2207 dflt_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
2208 break;
2209 case ECORE_RDMA_STATS_QUEUE:
2210 /* @DPDK */
2211 dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2212 MAX_NUM_VPORTS_BB) / num_funcs;
2213 break;
2214 default:
2215 break;
2216 }
2217
2218 return dflt_resc_num;
2219 }
2220
2221 static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
2222 enum ecore_resources res_id,
2223 bool drv_resc_alloc)
2224 {
2225 u32 dflt_resc_num = 0, dflt_resc_start = 0, mcp_resp, mcp_param;
2226 u32 *p_resc_num, *p_resc_start;
2227 struct resource_info resc_info;
2228 enum _ecore_status_t rc;
2229
2230 p_resc_num = &RESC_NUM(p_hwfn, res_id);
2231 p_resc_start = &RESC_START(p_hwfn, res_id);
2232
2233 dflt_resc_num = ecore_hw_get_dflt_resc_num(p_hwfn, res_id);
2234 if (!dflt_resc_num) {
2235 DP_ERR(p_hwfn, "Failed to get default amount for resource %d\n",
2236 res_id);
2237 return ECORE_INVAL;
2238 }
2239 dflt_resc_start = dflt_resc_num * p_hwfn->enabled_func_idx;
2240
2241 #ifndef ASIC_ONLY
2242 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2243 *p_resc_num = dflt_resc_num;
2244 *p_resc_start = dflt_resc_start;
2245 goto out;
2246 }
2247 #endif
2248
2249 OSAL_MEM_ZERO(&resc_info, sizeof(resc_info));
2250 resc_info.res_id = ecore_hw_get_mfw_res_id(res_id);
2251 if (resc_info.res_id == RESOURCE_NUM_INVALID) {
2252 DP_ERR(p_hwfn,
2253 "Failed to match resource %d with MFW resources\n",
2254 res_id);
2255 return ECORE_INVAL;
2256 }
2257
2258 rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, &resc_info,
2259 &mcp_resp, &mcp_param);
2260 if (rc != ECORE_SUCCESS) {
2261 DP_NOTICE(p_hwfn, true,
2262 "MFW resp failure for a resc alloc req [res_id %d]\n",
2263 res_id);
2264 return rc;
2265 }
2266
2267 /* Default driver values are applied in the following cases:
2268 * - The resource allocation MB command is not supported by the MFW
2269 * - There is an internal error in the MFW while processing the request
2270 * - The resource ID is unknown to the MFW
2271 */
2272 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK &&
2273 mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_DEPRECATED) {
2274 /* @DPDK */
2275 DP_INFO(p_hwfn,
2276 "No allocation info for resc %d [mcp_resp 0x%x].",
2277 res_id, mcp_resp);
2278 DP_INFO(p_hwfn,
2279 "Applying default values [num %d, start %d].\n",
2280 dflt_resc_num, dflt_resc_start);
2281
2282 *p_resc_num = dflt_resc_num;
2283 *p_resc_start = dflt_resc_start;
2284 goto out;
2285 }
2286
2287 /* TBD - remove this when revising the handling of the SB resource */
2288 if (res_id == ECORE_SB) {
2289 /* Excluding the slowpath SB */
2290 resc_info.size -= 1;
2291 resc_info.offset -= p_hwfn->enabled_func_idx;
2292 }
2293
2294 *p_resc_num = resc_info.size;
2295 *p_resc_start = resc_info.offset;
2296
2297 if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
2298 DP_NOTICE(p_hwfn, false,
2299 "Resource %d: MFW allocation [num %d, start %d]",
2300 res_id, *p_resc_num, *p_resc_start);
2301 DP_NOTICE(p_hwfn, false,
2302 "differs from default values [num %d, start %d]%s\n",
2303 dflt_resc_num,
2304 dflt_resc_start,
2305 drv_resc_alloc ? " - applying default values" : "");
2306 if (drv_resc_alloc) {
2307 *p_resc_num = dflt_resc_num;
2308 *p_resc_start = dflt_resc_start;
2309 }
2310 }
2311 out:
2312 return ECORE_SUCCESS;
2313 }
2314
2315 static const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
2316 {
2317 switch (res_id) {
2318 case ECORE_SB:
2319 return "SB";
2320 case ECORE_L2_QUEUE:
2321 return "L2_QUEUE";
2322 case ECORE_VPORT:
2323 return "VPORT";
2324 case ECORE_RSS_ENG:
2325 return "RSS_ENG";
2326 case ECORE_PQ:
2327 return "PQ";
2328 case ECORE_RL:
2329 return "RL";
2330 case ECORE_MAC:
2331 return "MAC";
2332 case ECORE_VLAN:
2333 return "VLAN";
2334 case ECORE_RDMA_CNQ_RAM:
2335 return "RDMA_CNQ_RAM";
2336 case ECORE_ILT:
2337 return "ILT";
2338 case ECORE_LL2_QUEUE:
2339 return "LL2_QUEUE";
2340 case ECORE_CMDQS_CQS:
2341 return "CMDQS_CQS";
2342 case ECORE_RDMA_STATS_QUEUE:
2343 return "RDMA_STATS_QUEUE";
2344 default:
2345 return "UNKNOWN_RESOURCE";
2346 }
2347 }
2348
2349 static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
2350 bool drv_resc_alloc)
2351 {
2352 bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
2353 enum _ecore_status_t rc;
2354 u8 res_id;
2355 #ifndef ASIC_ONLY
2356 u32 *resc_start = p_hwfn->hw_info.resc_start;
2357 u32 *resc_num = p_hwfn->hw_info.resc_num;
2358 /* For AH, an equal share of the ILT lines between the maximal number of
2359 * PFs is not enough for RoCE. This would be solved by the future
2360 * resource allocation scheme, but isn't currently present for
2361 * FPGA/emulation. For now we keep a number that is sufficient for RoCE
2362 * to work - the BB number of ILT lines divided by its max PFs number.
2363 */
2364 u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
2365 #endif
2366
2367 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
2368 rc = ecore_hw_set_resc_info(p_hwfn, res_id, drv_resc_alloc);
2369 if (rc != ECORE_SUCCESS)
2370 return rc;
2371 }
2372
2373 #ifndef ASIC_ONLY
2374 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
2375 /* Reduced build contains less PQs */
2376 if (!(p_hwfn->p_dev->b_is_emul_full)) {
2377 resc_num[ECORE_PQ] = 32;
2378 resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
2379 p_hwfn->enabled_func_idx;
2380 }
2381
2382 /* For AH emulation, since we have a possible maximal number of
2383 * 16 enabled PFs, in case there are not enough ILT lines -
2384 * allocate only first PF as RoCE and have all the other ETH
2385 * only with less ILT lines.
2386 */
2387 if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
2388 resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
2389 resc_num[ECORE_ILT],
2390 roce_min_ilt_lines);
2391 }
2392
2393 /* Correct the common ILT calculation if PF0 has more */
2394 if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
2395 p_hwfn->p_dev->b_is_emul_full &&
2396 p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
2397 resc_start[ECORE_ILT] += roce_min_ilt_lines -
2398 resc_num[ECORE_ILT];
2399 #endif
2400
2401 /* Sanity for ILT */
2402 if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2403 (!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2404 DP_NOTICE(p_hwfn, true,
2405 "Can't assign ILT pages [%08x,...,%08x]\n",
2406 RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
2407 ECORE_ILT) -
2408 1);
2409 return ECORE_INVAL;
2410 }
2411
2412 ecore_hw_set_feat(p_hwfn);
2413
2414 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2415 "The numbers for each resource are:\n");
2416 for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
2417 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
2418 ecore_hw_get_resc_name(res_id),
2419 RESC_NUM(p_hwfn, res_id),
2420 RESC_START(p_hwfn, res_id));
2421
2422 return ECORE_SUCCESS;
2423 }
2424
2425 static enum _ecore_status_t ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
2426 struct ecore_ptt *p_ptt)
2427 {
2428 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
2429 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2430 struct ecore_mcp_link_params *link;
2431
2432 /* Read global nvm_cfg address */
2433 nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2434
2435 /* Verify MCP has initialized it */
2436 if (!nvm_cfg_addr) {
2437 DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
2438 return ECORE_INVAL;
2439 }
2440
2441 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
2442
2443 nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2444
2445 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2446 OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
2447 core_cfg);
2448
2449 core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
2450
2451 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
2452 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
2453 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
2454 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
2455 break;
2456 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
2457 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
2458 break;
2459 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
2460 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
2461 break;
2462 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
2463 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
2464 break;
2465 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
2466 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
2467 break;
2468 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
2469 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
2470 break;
2471 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
2472 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
2473 break;
2474 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
2475 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
2476 break;
2477 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
2478 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
2479 break;
2480 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
2481 p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
2482 break;
2483 default:
2484 DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
2485 core_cfg);
2486 break;
2487 }
2488
2489 /* Read default link configuration */
2490 link = &p_hwfn->mcp_info->link_input;
2491 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2492 OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2493 link_temp = ecore_rd(p_hwfn, p_ptt,
2494 port_cfg_addr +
2495 OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
2496 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2497 link->speed.advertised_speeds = link_temp;
2498
2499 link_temp = link->speed.advertised_speeds;
2500 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2501
2502 link_temp = ecore_rd(p_hwfn, p_ptt,
2503 port_cfg_addr +
2504 OFFSETOF(struct nvm_cfg1_port, link_settings));
2505 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2506 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2507 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2508 link->speed.autoneg = true;
2509 break;
2510 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2511 link->speed.forced_speed = 1000;
2512 break;
2513 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2514 link->speed.forced_speed = 10000;
2515 break;
2516 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2517 link->speed.forced_speed = 25000;
2518 break;
2519 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2520 link->speed.forced_speed = 40000;
2521 break;
2522 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2523 link->speed.forced_speed = 50000;
2524 break;
2525 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2526 link->speed.forced_speed = 100000;
2527 break;
2528 default:
2529 DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
2530 }
2531
2532 p_hwfn->mcp_info->link_capabilities.default_speed =
2533 link->speed.forced_speed;
2534 p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
2535 link->speed.autoneg;
2536
2537 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2538 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2539 link->pause.autoneg = !!(link_temp &
2540 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2541 link->pause.forced_rx = !!(link_temp &
2542 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2543 link->pause.forced_tx = !!(link_temp &
2544 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2545 link->loopback_mode = 0;
2546
2547 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
2548 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2549 link->speed.forced_speed, link->speed.advertised_speeds,
2550 link->speed.autoneg, link->pause.autoneg);
2551
2552 /* Read Multi-function information from shmem */
2553 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2554 OFFSETOF(struct nvm_cfg1, glob) +
2555 OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
2556
2557 generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
2558
2559 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2560 NVM_CFG1_GLOB_MF_MODE_OFFSET;
2561
2562 switch (mf_mode) {
2563 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2564 p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
2565 break;
2566 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2567 p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
2568 break;
2569 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2570 p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
2571 break;
2572 }
2573 DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2574 p_hwfn->p_dev->mf_mode);
2575
2576 /* Read Multi-function information from shmem */
2577 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2578 OFFSETOF(struct nvm_cfg1, glob) +
2579 OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
2580
2581 device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
2582 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2583 OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
2584 &p_hwfn->hw_info.device_capabilities);
2585 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2586 OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
2587 &p_hwfn->hw_info.device_capabilities);
2588 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2589 OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
2590 &p_hwfn->hw_info.device_capabilities);
2591 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2592 OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
2593 &p_hwfn->hw_info.device_capabilities);
2594 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
2595 OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
2596 &p_hwfn->hw_info.device_capabilities);
2597
2598 return ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2599 }
2600
2601 static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
2602 struct ecore_ptt *p_ptt)
2603 {
2604 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2605 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2606 struct ecore_dev *p_dev = p_hwfn->p_dev;
2607
2608 num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2609
2610 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2611 * in the other bits are selected.
2612 * Bits 1-15 are for functions 1-15, respectively, and their value is
2613 * '0' only for enabled functions (function 0 always exists and
2614 * enabled).
2615 * In case of CMT in BB, only the "even" functions are enabled, and thus
2616 * the number of functions for both hwfns is learnt from the same bits.
2617 */
2618 reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
2619
2620 if (reg_function_hide & 0x1) {
2621 if (ECORE_IS_BB(p_dev)) {
2622 if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
2623 num_funcs = 0;
2624 eng_mask = 0xaaaa;
2625 } else {
2626 num_funcs = 1;
2627 eng_mask = 0x5554;
2628 }
2629 } else {
2630 num_funcs = 1;
2631 eng_mask = 0xfffe;
2632 }
2633
2634 /* Get the number of the enabled functions on the engine */
2635 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2636 while (tmp) {
2637 if (tmp & 0x1)
2638 num_funcs++;
2639 tmp >>= 0x1;
2640 }
2641
2642 /* Get the PF index within the enabled functions */
2643 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2644 tmp = reg_function_hide & eng_mask & low_pfs_mask;
2645 while (tmp) {
2646 if (tmp & 0x1)
2647 enabled_func_idx--;
2648 tmp >>= 0x1;
2649 }
2650 }
2651
2652 p_hwfn->num_funcs_on_engine = num_funcs;
2653 p_hwfn->enabled_func_idx = enabled_func_idx;
2654
2655 #ifndef ASIC_ONLY
2656 if (CHIP_REV_IS_FPGA(p_dev)) {
2657 DP_NOTICE(p_hwfn, false,
2658 "FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
2659 p_hwfn->num_funcs_on_engine = 4;
2660 }
2661 #endif
2662
2663 DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
2664 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2665 p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
2666 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2667 }
2668
2669 static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
2670 struct ecore_ptt *p_ptt)
2671 {
2672 u32 port_mode;
2673
2674 #ifndef ASIC_ONLY
2675 /* Read the port mode */
2676 if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
2677 port_mode = 4;
2678 else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
2679 (p_hwfn->p_dev->num_hwfns > 1))
2680 /* In CMT on emulation, assume 1 port */
2681 port_mode = 1;
2682 else
2683 #endif
2684 port_mode = ecore_rd(p_hwfn, p_ptt,
2685 CNIG_REG_NW_PORT_MODE_BB_B0);
2686
2687 if (port_mode < 3) {
2688 p_hwfn->p_dev->num_ports_in_engines = 1;
2689 } else if (port_mode <= 5) {
2690 p_hwfn->p_dev->num_ports_in_engines = 2;
2691 } else {
2692 DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
2693 p_hwfn->p_dev->num_ports_in_engines);
2694
2695 /* Default num_ports_in_engines to something */
2696 p_hwfn->p_dev->num_ports_in_engines = 1;
2697 }
2698 }
2699
2700 static void ecore_hw_info_port_num_ah(struct ecore_hwfn *p_hwfn,
2701 struct ecore_ptt *p_ptt)
2702 {
2703 u32 port;
2704 int i;
2705
2706 p_hwfn->p_dev->num_ports_in_engines = 0;
2707
2708 #ifndef ASIC_ONLY
2709 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
2710 port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
2711 switch ((port & 0xf000) >> 12) {
2712 case 1:
2713 p_hwfn->p_dev->num_ports_in_engines = 1;
2714 break;
2715 case 3:
2716 p_hwfn->p_dev->num_ports_in_engines = 2;
2717 break;
2718 case 0xf:
2719 p_hwfn->p_dev->num_ports_in_engines = 4;
2720 break;
2721 default:
2722 DP_NOTICE(p_hwfn, false,
2723 "Unknown port mode in ECO_RESERVED %08x\n",
2724 port);
2725 }
2726 } else
2727 #endif
2728 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2729 port = ecore_rd(p_hwfn, p_ptt,
2730 CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
2731 if (port & 1)
2732 p_hwfn->p_dev->num_ports_in_engines++;
2733 }
2734 }
2735
2736 static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
2737 struct ecore_ptt *p_ptt)
2738 {
2739 if (ECORE_IS_BB(p_hwfn->p_dev))
2740 ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
2741 else
2742 ecore_hw_info_port_num_ah(p_hwfn, p_ptt);
2743 }
2744
2745 static enum _ecore_status_t
2746 ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
2747 enum ecore_pci_personality personality, bool drv_resc_alloc)
2748 {
2749 enum _ecore_status_t rc;
2750
2751 /* Since all information is common, only first hwfns should do this */
2752 if (IS_LEAD_HWFN(p_hwfn)) {
2753 rc = ecore_iov_hw_info(p_hwfn);
2754 if (rc)
2755 return rc;
2756 }
2757
2758 /* TODO In get_hw_info, amoungst others:
2759 * Get MCP FW revision and determine according to it the supported
2760 * featrues (e.g. DCB)
2761 * Get boot mode
2762 * ecore_get_pcie_width_speed, WOL capability.
2763 * Number of global CQ-s (for storage
2764 */
2765 ecore_hw_info_port_num(p_hwfn, p_ptt);
2766
2767 #ifndef ASIC_ONLY
2768 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
2769 #endif
2770 ecore_hw_get_nvm_info(p_hwfn, p_ptt);
2771
2772 rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
2773 if (rc)
2774 return rc;
2775
2776 #ifndef ASIC_ONLY
2777 if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
2778 #endif
2779 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
2780 p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
2781 #ifndef ASIC_ONLY
2782 } else {
2783 static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
2784
2785 OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
2786 p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
2787 }
2788 #endif
2789
2790 if (ecore_mcp_is_init(p_hwfn)) {
2791 if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
2792 p_hwfn->hw_info.ovlan =
2793 p_hwfn->mcp_info->func_info.ovlan;
2794
2795 ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
2796 }
2797
2798 if (personality != ECORE_PCI_DEFAULT)
2799 p_hwfn->hw_info.personality = personality;
2800 else if (ecore_mcp_is_init(p_hwfn))
2801 p_hwfn->hw_info.personality =
2802 p_hwfn->mcp_info->func_info.protocol;
2803
2804 #ifndef ASIC_ONLY
2805 /* To overcome ILT lack for emulation, until at least until we'll have
2806 * a definite answer from system about it, allow only PF0 to be RoCE.
2807 */
2808 if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
2809 if (!p_hwfn->rel_pf_id)
2810 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2811 else
2812 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2813 }
2814 #endif
2815
2816 /* although in BB some constellations may support more than 4 tcs,
2817 * that can result in performance penalty in some cases. 4
2818 * represents a good tradeoff between performance and flexibility.
2819 */
2820 p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
2821
2822 /* start out with a single active tc. This can be increased either
2823 * by dcbx negotiation or by upper layer driver
2824 */
2825 p_hwfn->hw_info.num_active_tc = 1;
2826
2827 ecore_get_num_funcs(p_hwfn, p_ptt);
2828
2829 /* In case of forcing the driver's default resource allocation, calling
2830 * ecore_hw_get_resc() should come after initializing the personality
2831 * and after getting the number of functions, since the calculation of
2832 * the resources/features depends on them.
2833 * This order is not harmful if not forcing.
2834 */
2835 return ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
2836 }
2837
2838 #define ECORE_DEV_ID_MASK 0xff00
2839 #define ECORE_DEV_ID_MASK_BB 0x1600
2840 #define ECORE_DEV_ID_MASK_AH 0x8000
2841
2842 static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
2843 {
2844 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
2845 u32 tmp;
2846
2847 /* Read Vendor Id / Device Id */
2848 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
2849 &p_dev->vendor_id);
2850 OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
2851 &p_dev->device_id);
2852
2853 /* Determine type */
2854 if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
2855 p_dev->type = ECORE_DEV_TYPE_AH;
2856 else
2857 p_dev->type = ECORE_DEV_TYPE_BB;
2858
2859 p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2860 MISCS_REG_CHIP_NUM);
2861 p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2862 MISCS_REG_CHIP_REV);
2863
2864 MASK_FIELD(CHIP_REV, p_dev->chip_rev);
2865
2866 /* Learn number of HW-functions */
2867 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2868 MISCS_REG_CMT_ENABLED_FOR_PAIR);
2869
2870 if (tmp & (1 << p_hwfn->rel_pf_id)) {
2871 DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
2872 p_dev->num_hwfns = 2;
2873 } else {
2874 p_dev->num_hwfns = 1;
2875 }
2876
2877 #ifndef ASIC_ONLY
2878 if (CHIP_REV_IS_EMUL(p_dev)) {
2879 /* For some reason we have problems with this register
2880 * in B0 emulation; Simply assume no CMT
2881 */
2882 DP_NOTICE(p_dev->hwfns, false,
2883 "device on emul - assume no CMT\n");
2884 p_dev->num_hwfns = 1;
2885 }
2886 #endif
2887
2888 p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2889 MISCS_REG_CHIP_TEST_REG) >> 4;
2890 MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
2891 p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2892 MISCS_REG_CHIP_METAL);
2893 MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
2894 DP_INFO(p_dev->hwfns,
2895 "Chip details - %s%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2896 ECORE_IS_BB(p_dev) ? "BB" : "AH",
2897 CHIP_REV_IS_A0(p_dev) ? 0 : 1,
2898 p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
2899 p_dev->chip_metal);
2900
2901 if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
2902 DP_NOTICE(p_dev->hwfns, false,
2903 "The chip type/rev (BB A0) is not supported!\n");
2904 return ECORE_ABORTED;
2905 }
2906 #ifndef ASIC_ONLY
2907 if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
2908 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
2909 MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
2910
2911 if (CHIP_REV_IS_EMUL(p_dev)) {
2912 tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
2913 MISCS_REG_ECO_RESERVED);
2914 if (tmp & (1 << 29)) {
2915 DP_NOTICE(p_hwfn, false,
2916 "Emulation: Running on a FULL build\n");
2917 p_dev->b_is_emul_full = true;
2918 } else {
2919 DP_NOTICE(p_hwfn, false,
2920 "Emulation: Running on a REDUCED build\n");
2921 }
2922 }
2923 #endif
2924
2925 return ECORE_SUCCESS;
2926 }
2927
2928 #ifndef LINUX_REMOVE
2929 void ecore_prepare_hibernate(struct ecore_dev *p_dev)
2930 {
2931 int j;
2932
2933 if (IS_VF(p_dev))
2934 return;
2935
2936 for_each_hwfn(p_dev, j) {
2937 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
2938
2939 DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
2940 "Mark hw/fw uninitialized\n");
2941
2942 p_hwfn->hw_init_done = false;
2943 p_hwfn->first_on_engine = false;
2944
2945 ecore_ptt_invalidate(p_hwfn);
2946 }
2947 }
2948 #endif
2949
2950 static enum _ecore_status_t
2951 ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn, void OSAL_IOMEM *p_regview,
2952 void OSAL_IOMEM *p_doorbells,
2953 struct ecore_hw_prepare_params *p_params)
2954 {
2955 struct ecore_dev *p_dev = p_hwfn->p_dev;
2956 enum _ecore_status_t rc = ECORE_SUCCESS;
2957
2958 /* Split PCI bars evenly between hwfns */
2959 p_hwfn->regview = p_regview;
2960 p_hwfn->doorbells = p_doorbells;
2961
2962 if (IS_VF(p_dev))
2963 return ecore_vf_hw_prepare(p_hwfn);
2964
2965 /* Validate that chip access is feasible */
2966 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
2967 DP_ERR(p_hwfn,
2968 "Reading the ME register returns all Fs; Preventing further chip access\n");
2969 return ECORE_INVAL;
2970 }
2971
2972 get_function_id(p_hwfn);
2973
2974 /* Allocate PTT pool */
2975 rc = ecore_ptt_pool_alloc(p_hwfn);
2976 if (rc) {
2977 DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
2978 goto err0;
2979 }
2980
2981 /* Allocate the main PTT */
2982 p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
2983
2984 /* First hwfn learns basic information, e.g., number of hwfns */
2985 if (!p_hwfn->my_id) {
2986 rc = ecore_get_dev_info(p_dev);
2987 if (rc != ECORE_SUCCESS)
2988 goto err1;
2989 }
2990
2991 ecore_hw_hwfn_prepare(p_hwfn);
2992
2993 /* Initialize MCP structure */
2994 rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
2995 if (rc) {
2996 DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
2997 goto err1;
2998 }
2999
3000 if (p_hwfn == ECORE_LEADING_HWFN(p_dev) && !p_dev->recov_in_prog) {
3001 rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3002 if (rc != ECORE_SUCCESS)
3003 DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
3004 }
3005
3006 /* Read the device configuration information from the HW and SHMEM */
3007 rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
3008 p_params->personality, p_params->drv_resc_alloc);
3009 if (rc) {
3010 DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
3011 goto err2;
3012 }
3013
3014 /* Allocate the init RT array and initialize the init-ops engine */
3015 rc = ecore_init_alloc(p_hwfn);
3016 if (rc) {
3017 DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
3018 goto err2;
3019 }
3020 #ifndef ASIC_ONLY
3021 if (CHIP_REV_IS_FPGA(p_dev)) {
3022 DP_NOTICE(p_hwfn, false,
3023 "FPGA: workaround; Prevent DMAE parities\n");
3024 ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK, 7);
3025
3026 DP_NOTICE(p_hwfn, false,
3027 "FPGA: workaround: Set VF bar0 size\n");
3028 ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
3029 PGLUE_B_REG_VF_BAR0_SIZE, 4);
3030 }
3031 #endif
3032
3033 return rc;
3034 err2:
3035 if (IS_LEAD_HWFN(p_hwfn))
3036 ecore_iov_free_hw_info(p_dev);
3037 ecore_mcp_free(p_hwfn);
3038 err1:
3039 ecore_hw_hwfn_free(p_hwfn);
3040 err0:
3041 return rc;
3042 }
3043
3044 enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
3045 struct ecore_hw_prepare_params *p_params)
3046 {
3047 struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
3048 enum _ecore_status_t rc;
3049
3050 p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
3051
3052 /* Store the precompiled init data ptrs */
3053 if (IS_PF(p_dev))
3054 ecore_init_iro_array(p_dev);
3055
3056 /* Initialize the first hwfn - will learn number of hwfns */
3057 rc = ecore_hw_prepare_single(p_hwfn,
3058 p_dev->regview,
3059 p_dev->doorbells, p_params);
3060 if (rc != ECORE_SUCCESS)
3061 return rc;
3062
3063 p_params->personality = p_hwfn->hw_info.personality;
3064
3065 /* initilalize 2nd hwfn if necessary */
3066 if (p_dev->num_hwfns > 1) {
3067 void OSAL_IOMEM *p_regview, *p_doorbell;
3068 u8 OSAL_IOMEM *addr;
3069
3070 /* adjust bar offset for second engine */
3071 addr = (u8 OSAL_IOMEM *)p_dev->regview +
3072 ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
3073 p_regview = (void OSAL_IOMEM *)addr;
3074
3075 addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
3076 ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
3077 p_doorbell = (void OSAL_IOMEM *)addr;
3078
3079 /* prepare second hw function */
3080 rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
3081 p_doorbell, p_params);
3082
3083 /* in case of error, need to free the previously
3084 * initiliazed hwfn 0.
3085 */
3086 if (rc != ECORE_SUCCESS) {
3087 if (IS_PF(p_dev)) {
3088 ecore_init_free(p_hwfn);
3089 ecore_mcp_free(p_hwfn);
3090 ecore_hw_hwfn_free(p_hwfn);
3091 } else {
3092 DP_NOTICE(p_dev, true,
3093 "What do we need to free when VF hwfn1 init fails\n");
3094 }
3095 return rc;
3096 }
3097 }
3098
3099 return ECORE_SUCCESS;
3100 }
3101
3102 void ecore_hw_remove(struct ecore_dev *p_dev)
3103 {
3104 int i;
3105
3106 for_each_hwfn(p_dev, i) {
3107 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
3108
3109 if (IS_VF(p_dev)) {
3110 ecore_vf_pf_release(p_hwfn);
3111 continue;
3112 }
3113
3114 ecore_init_free(p_hwfn);
3115 ecore_hw_hwfn_free(p_hwfn);
3116 ecore_mcp_free(p_hwfn);
3117
3118 OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
3119 }
3120
3121 ecore_iov_free_hw_info(p_dev);
3122 }
3123
3124 static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
3125 struct ecore_chain *p_chain)
3126 {
3127 void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
3128 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3129 struct ecore_chain_next *p_next;
3130 u32 size, i;
3131
3132 if (!p_virt)
3133 return;
3134
3135 size = p_chain->elem_size * p_chain->usable_per_page;
3136
3137 for (i = 0; i < p_chain->page_cnt; i++) {
3138 if (!p_virt)
3139 break;
3140
3141 p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
3142 p_virt_next = p_next->next_virt;
3143 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3144
3145 OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
3146 ECORE_CHAIN_PAGE_SIZE);
3147
3148 p_virt = p_virt_next;
3149 p_phys = p_phys_next;
3150 }
3151 }
3152
3153 static void ecore_chain_free_single(struct ecore_dev *p_dev,
3154 struct ecore_chain *p_chain)
3155 {
3156 if (!p_chain->p_virt_addr)
3157 return;
3158
3159 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
3160 p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
3161 }
3162
3163 static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
3164 struct ecore_chain *p_chain)
3165 {
3166 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3167 u8 *p_pbl_virt = (u8 *)p_chain->pbl.p_virt_table;
3168 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3169
3170 if (!pp_virt_addr_tbl)
3171 return;
3172
3173 if (!p_chain->pbl.p_virt_table)
3174 goto out;
3175
3176 for (i = 0; i < page_cnt; i++) {
3177 if (!pp_virt_addr_tbl[i])
3178 break;
3179
3180 OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
3181 *(dma_addr_t *)p_pbl_virt,
3182 ECORE_CHAIN_PAGE_SIZE);
3183
3184 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3185 }
3186
3187 pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3188 OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl.p_virt_table,
3189 p_chain->pbl.p_phys_table, pbl_size);
3190 out:
3191 OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
3192 }
3193
3194 void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3195 {
3196 switch (p_chain->mode) {
3197 case ECORE_CHAIN_MODE_NEXT_PTR:
3198 ecore_chain_free_next_ptr(p_dev, p_chain);
3199 break;
3200 case ECORE_CHAIN_MODE_SINGLE:
3201 ecore_chain_free_single(p_dev, p_chain);
3202 break;
3203 case ECORE_CHAIN_MODE_PBL:
3204 ecore_chain_free_pbl(p_dev, p_chain);
3205 break;
3206 }
3207 }
3208
3209 static enum _ecore_status_t
3210 ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
3211 enum ecore_chain_cnt_type cnt_type,
3212 osal_size_t elem_size, u32 page_cnt)
3213 {
3214 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3215
3216 /* The actual chain size can be larger than the maximal possible value
3217 * after rounding up the requested elements number to pages, and after
3218 * taking into acount the unusuable elements (next-ptr elements).
3219 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3220 * size/capacity fields are of a u32 type.
3221 */
3222 if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
3223 chain_size > ((u32)ECORE_U16_MAX + 1)) ||
3224 (cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
3225 chain_size > ECORE_U32_MAX)) {
3226 DP_NOTICE(p_dev, true,
3227 "The actual chain size (0x%lx) is larger than the maximal possible value\n",
3228 (unsigned long)chain_size);
3229 return ECORE_INVAL;
3230 }
3231
3232 return ECORE_SUCCESS;
3233 }
3234
3235 static enum _ecore_status_t
3236 ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3237 {
3238 void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
3239 dma_addr_t p_phys = 0;
3240 u32 i;
3241
3242 for (i = 0; i < p_chain->page_cnt; i++) {
3243 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3244 ECORE_CHAIN_PAGE_SIZE);
3245 if (!p_virt) {
3246 DP_NOTICE(p_dev, true,
3247 "Failed to allocate chain memory\n");
3248 return ECORE_NOMEM;
3249 }
3250
3251 if (i == 0) {
3252 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3253 ecore_chain_reset(p_chain);
3254 } else {
3255 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3256 p_virt, p_phys);
3257 }
3258
3259 p_virt_prev = p_virt;
3260 }
3261 /* Last page's next element should point to the beginning of the
3262 * chain.
3263 */
3264 ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3265 p_chain->p_virt_addr,
3266 p_chain->p_phys_addr);
3267
3268 return ECORE_SUCCESS;
3269 }
3270
3271 static enum _ecore_status_t
3272 ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
3273 {
3274 void *p_virt = OSAL_NULL;
3275 dma_addr_t p_phys = 0;
3276
3277 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
3278 if (!p_virt) {
3279 DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
3280 return ECORE_NOMEM;
3281 }
3282
3283 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3284 ecore_chain_reset(p_chain);
3285
3286 return ECORE_SUCCESS;
3287 }
3288
3289 static enum _ecore_status_t ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
3290 struct ecore_chain *p_chain)
3291 {
3292 void *p_virt = OSAL_NULL;
3293 u8 *p_pbl_virt = OSAL_NULL;
3294 void **pp_virt_addr_tbl = OSAL_NULL;
3295 dma_addr_t p_phys = 0, p_pbl_phys = 0;
3296 u32 page_cnt = p_chain->page_cnt, size, i;
3297
3298 size = page_cnt * sizeof(*pp_virt_addr_tbl);
3299 pp_virt_addr_tbl = (void **)OSAL_VALLOC(p_dev, size);
3300 if (!pp_virt_addr_tbl) {
3301 DP_NOTICE(p_dev, true,
3302 "Failed to allocate memory for the chain virtual addresses table\n");
3303 return ECORE_NOMEM;
3304 }
3305 OSAL_MEM_ZERO(pp_virt_addr_tbl, size);
3306
3307 /* The allocation of the PBL table is done with its full size, since it
3308 * is expected to be successive.
3309 * ecore_chain_init_pbl_mem() is called even in a case of an allocation
3310 * failure, since pp_virt_addr_tbl was previously allocated, and it
3311 * should be saved to allow its freeing during the error flow.
3312 */
3313 size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
3314 p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
3315 ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3316 pp_virt_addr_tbl);
3317 if (!p_pbl_virt) {
3318 DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
3319 return ECORE_NOMEM;
3320 }
3321
3322 for (i = 0; i < page_cnt; i++) {
3323 p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
3324 ECORE_CHAIN_PAGE_SIZE);
3325 if (!p_virt) {
3326 DP_NOTICE(p_dev, true,
3327 "Failed to allocate chain memory\n");
3328 return ECORE_NOMEM;
3329 }
3330
3331 if (i == 0) {
3332 ecore_chain_init_mem(p_chain, p_virt, p_phys);
3333 ecore_chain_reset(p_chain);
3334 }
3335
3336 /* Fill the PBL table with the physical address of the page */
3337 *(dma_addr_t *)p_pbl_virt = p_phys;
3338 /* Keep the virtual address of the page */
3339 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3340
3341 p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
3342 }
3343
3344 return ECORE_SUCCESS;
3345 }
3346
3347 enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
3348 enum ecore_chain_use_mode intended_use,
3349 enum ecore_chain_mode mode,
3350 enum ecore_chain_cnt_type cnt_type,
3351 u32 num_elems, osal_size_t elem_size,
3352 struct ecore_chain *p_chain)
3353 {
3354 u32 page_cnt;
3355 enum _ecore_status_t rc = ECORE_SUCCESS;
3356
3357 if (mode == ECORE_CHAIN_MODE_SINGLE)
3358 page_cnt = 1;
3359 else
3360 page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3361
3362 rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
3363 page_cnt);
3364 if (rc) {
3365 DP_NOTICE(p_dev, true,
3366 "Cannot allocate a chain with the given arguments:\n"
3367 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3368 intended_use, mode, cnt_type, num_elems, elem_size);
3369 return rc;
3370 }
3371
3372 ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
3373 mode, cnt_type, p_dev->dp_ctx);
3374
3375 switch (mode) {
3376 case ECORE_CHAIN_MODE_NEXT_PTR:
3377 rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
3378 break;
3379 case ECORE_CHAIN_MODE_SINGLE:
3380 rc = ecore_chain_alloc_single(p_dev, p_chain);
3381 break;
3382 case ECORE_CHAIN_MODE_PBL:
3383 rc = ecore_chain_alloc_pbl(p_dev, p_chain);
3384 break;
3385 }
3386 if (rc)
3387 goto nomem;
3388
3389 return ECORE_SUCCESS;
3390
3391 nomem:
3392 ecore_chain_free(p_dev, p_chain);
3393 return rc;
3394 }
3395
3396 enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
3397 u16 src_id, u16 *dst_id)
3398 {
3399 if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
3400 u16 min, max;
3401
3402 min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
3403 max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
3404 DP_NOTICE(p_hwfn, true,
3405 "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3406 src_id, min, max);
3407
3408 return ECORE_INVAL;
3409 }
3410
3411 *dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
3412
3413 return ECORE_SUCCESS;
3414 }
3415
3416 enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
3417 u8 src_id, u8 *dst_id)
3418 {
3419 if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
3420 u8 min, max;
3421
3422 min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
3423 max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
3424 DP_NOTICE(p_hwfn, true,
3425 "vport id [%d] is not valid, available indices [%d - %d]\n",
3426 src_id, min, max);
3427
3428 return ECORE_INVAL;
3429 }
3430
3431 *dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
3432
3433 return ECORE_SUCCESS;
3434 }
3435
3436 enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
3437 u8 src_id, u8 *dst_id)
3438 {
3439 if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
3440 u8 min, max;
3441
3442 min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
3443 max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
3444 DP_NOTICE(p_hwfn, true,
3445 "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3446 src_id, min, max);
3447
3448 return ECORE_INVAL;
3449 }
3450
3451 *dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
3452
3453 return ECORE_SUCCESS;
3454 }
3455
3456 enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
3457 struct ecore_ptt *p_ptt,
3458 u8 *p_filter)
3459 {
3460 u32 high, low, en;
3461 int i;
3462
3463 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3464 return ECORE_SUCCESS;
3465
3466 high = p_filter[1] | (p_filter[0] << 8);
3467 low = p_filter[5] | (p_filter[4] << 8) |
3468 (p_filter[3] << 16) | (p_filter[2] << 24);
3469
3470 /* Find a free entry and utilize it */
3471 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3472 en = ecore_rd(p_hwfn, p_ptt,
3473 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3474 if (en)
3475 continue;
3476 ecore_wr(p_hwfn, p_ptt,
3477 NIG_REG_LLH_FUNC_FILTER_VALUE +
3478 2 * i * sizeof(u32), low);
3479 ecore_wr(p_hwfn, p_ptt,
3480 NIG_REG_LLH_FUNC_FILTER_VALUE +
3481 (2 * i + 1) * sizeof(u32), high);
3482 ecore_wr(p_hwfn, p_ptt,
3483 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3484 ecore_wr(p_hwfn, p_ptt,
3485 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3486 i * sizeof(u32), 0);
3487 ecore_wr(p_hwfn, p_ptt,
3488 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3489 break;
3490 }
3491 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3492 DP_NOTICE(p_hwfn, false,
3493 "Failed to find an empty LLH filter to utilize\n");
3494 return ECORE_INVAL;
3495 }
3496
3497 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3498 "MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
3499 p_filter[0], p_filter[1], p_filter[2],
3500 p_filter[3], p_filter[4], p_filter[5], i);
3501
3502 return ECORE_SUCCESS;
3503 }
3504
3505 void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
3506 struct ecore_ptt *p_ptt, u8 *p_filter)
3507 {
3508 u32 high, low;
3509 int i;
3510
3511 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3512 return;
3513
3514 high = p_filter[1] | (p_filter[0] << 8);
3515 low = p_filter[5] | (p_filter[4] << 8) |
3516 (p_filter[3] << 16) | (p_filter[2] << 24);
3517
3518 /* Find the entry and clean it */
3519 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3520 if (ecore_rd(p_hwfn, p_ptt,
3521 NIG_REG_LLH_FUNC_FILTER_VALUE +
3522 2 * i * sizeof(u32)) != low)
3523 continue;
3524 if (ecore_rd(p_hwfn, p_ptt,
3525 NIG_REG_LLH_FUNC_FILTER_VALUE +
3526 (2 * i + 1) * sizeof(u32)) != high)
3527 continue;
3528
3529 ecore_wr(p_hwfn, p_ptt,
3530 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3531 ecore_wr(p_hwfn, p_ptt,
3532 NIG_REG_LLH_FUNC_FILTER_VALUE +
3533 2 * i * sizeof(u32), 0);
3534 ecore_wr(p_hwfn, p_ptt,
3535 NIG_REG_LLH_FUNC_FILTER_VALUE +
3536 (2 * i + 1) * sizeof(u32), 0);
3537 break;
3538 }
3539 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3540 DP_NOTICE(p_hwfn, false,
3541 "Tried to remove a non-configured filter\n");
3542 }
3543
3544 enum _ecore_status_t
3545 ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
3546 struct ecore_ptt *p_ptt,
3547 u16 source_port_or_eth_type,
3548 u16 dest_port,
3549 enum ecore_llh_port_filter_type_t type)
3550 {
3551 u32 high, low, en;
3552 int i;
3553
3554 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3555 return ECORE_SUCCESS;
3556
3557 high = 0;
3558 low = 0;
3559 switch (type) {
3560 case ECORE_LLH_FILTER_ETHERTYPE:
3561 high = source_port_or_eth_type;
3562 break;
3563 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3564 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3565 low = source_port_or_eth_type << 16;
3566 break;
3567 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3568 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3569 low = dest_port;
3570 break;
3571 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3572 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3573 low = (source_port_or_eth_type << 16) | dest_port;
3574 break;
3575 default:
3576 DP_NOTICE(p_hwfn, true,
3577 "Non valid LLH protocol filter type %d\n", type);
3578 return ECORE_INVAL;
3579 }
3580 /* Find a free entry and utilize it */
3581 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3582 en = ecore_rd(p_hwfn, p_ptt,
3583 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3584 if (en)
3585 continue;
3586 ecore_wr(p_hwfn, p_ptt,
3587 NIG_REG_LLH_FUNC_FILTER_VALUE +
3588 2 * i * sizeof(u32), low);
3589 ecore_wr(p_hwfn, p_ptt,
3590 NIG_REG_LLH_FUNC_FILTER_VALUE +
3591 (2 * i + 1) * sizeof(u32), high);
3592 ecore_wr(p_hwfn, p_ptt,
3593 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
3594 ecore_wr(p_hwfn, p_ptt,
3595 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3596 i * sizeof(u32), 1 << type);
3597 ecore_wr(p_hwfn, p_ptt,
3598 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
3599 break;
3600 }
3601 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
3602 DP_NOTICE(p_hwfn, false,
3603 "Failed to find an empty LLH filter to utilize\n");
3604 return ECORE_NORESOURCES;
3605 }
3606 switch (type) {
3607 case ECORE_LLH_FILTER_ETHERTYPE:
3608 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3609 "ETH type %x is added at %d\n",
3610 source_port_or_eth_type, i);
3611 break;
3612 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3613 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3614 "TCP src port %x is added at %d\n",
3615 source_port_or_eth_type, i);
3616 break;
3617 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3618 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3619 "UDP src port %x is added at %d\n",
3620 source_port_or_eth_type, i);
3621 break;
3622 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3623 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3624 "TCP dst port %x is added at %d\n", dest_port, i);
3625 break;
3626 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3627 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3628 "UDP dst port %x is added at %d\n", dest_port, i);
3629 break;
3630 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3631 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3632 "TCP src/dst ports %x/%x are added at %d\n",
3633 source_port_or_eth_type, dest_port, i);
3634 break;
3635 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3636 DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
3637 "UDP src/dst ports %x/%x are added at %d\n",
3638 source_port_or_eth_type, dest_port, i);
3639 break;
3640 }
3641 return ECORE_SUCCESS;
3642 }
3643
3644 void
3645 ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
3646 struct ecore_ptt *p_ptt,
3647 u16 source_port_or_eth_type,
3648 u16 dest_port,
3649 enum ecore_llh_port_filter_type_t type)
3650 {
3651 u32 high, low;
3652 int i;
3653
3654 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3655 return;
3656
3657 high = 0;
3658 low = 0;
3659 switch (type) {
3660 case ECORE_LLH_FILTER_ETHERTYPE:
3661 high = source_port_or_eth_type;
3662 break;
3663 case ECORE_LLH_FILTER_TCP_SRC_PORT:
3664 case ECORE_LLH_FILTER_UDP_SRC_PORT:
3665 low = source_port_or_eth_type << 16;
3666 break;
3667 case ECORE_LLH_FILTER_TCP_DEST_PORT:
3668 case ECORE_LLH_FILTER_UDP_DEST_PORT:
3669 low = dest_port;
3670 break;
3671 case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3672 case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3673 low = (source_port_or_eth_type << 16) | dest_port;
3674 break;
3675 default:
3676 DP_NOTICE(p_hwfn, true,
3677 "Non valid LLH protocol filter type %d\n", type);
3678 return;
3679 }
3680
3681 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3682 if (!ecore_rd(p_hwfn, p_ptt,
3683 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3684 continue;
3685 if (!ecore_rd(p_hwfn, p_ptt,
3686 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3687 continue;
3688 if (!(ecore_rd(p_hwfn, p_ptt,
3689 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3690 i * sizeof(u32)) & (1 << type)))
3691 continue;
3692 if (ecore_rd(p_hwfn, p_ptt,
3693 NIG_REG_LLH_FUNC_FILTER_VALUE +
3694 2 * i * sizeof(u32)) != low)
3695 continue;
3696 if (ecore_rd(p_hwfn, p_ptt,
3697 NIG_REG_LLH_FUNC_FILTER_VALUE +
3698 (2 * i + 1) * sizeof(u32)) != high)
3699 continue;
3700
3701 ecore_wr(p_hwfn, p_ptt,
3702 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3703 ecore_wr(p_hwfn, p_ptt,
3704 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3705 ecore_wr(p_hwfn, p_ptt,
3706 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3707 i * sizeof(u32), 0);
3708 ecore_wr(p_hwfn, p_ptt,
3709 NIG_REG_LLH_FUNC_FILTER_VALUE +
3710 2 * i * sizeof(u32), 0);
3711 ecore_wr(p_hwfn, p_ptt,
3712 NIG_REG_LLH_FUNC_FILTER_VALUE +
3713 (2 * i + 1) * sizeof(u32), 0);
3714 break;
3715 }
3716
3717 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3718 DP_NOTICE(p_hwfn, false,
3719 "Tried to remove a non-configured filter\n");
3720 }
3721
3722 void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
3723 struct ecore_ptt *p_ptt)
3724 {
3725 int i;
3726
3727 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3728 return;
3729
3730 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3731 ecore_wr(p_hwfn, p_ptt,
3732 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3733 ecore_wr(p_hwfn, p_ptt,
3734 NIG_REG_LLH_FUNC_FILTER_VALUE +
3735 2 * i * sizeof(u32), 0);
3736 ecore_wr(p_hwfn, p_ptt,
3737 NIG_REG_LLH_FUNC_FILTER_VALUE +
3738 (2 * i + 1) * sizeof(u32), 0);
3739 }
3740 }
3741
3742 enum _ecore_status_t
3743 ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
3744 struct ecore_ptt *p_ptt)
3745 {
3746 if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
3747 ecore_wr(p_hwfn, p_ptt,
3748 NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
3749 1 << p_hwfn->abs_pf_id / 2);
3750 ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
3751 return ECORE_SUCCESS;
3752 }
3753
3754 DP_NOTICE(p_hwfn, false,
3755 "This function can't be set as default\n");
3756 return ECORE_INVAL;
3757 }
3758
3759 static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
3760 struct ecore_ptt *p_ptt,
3761 u32 hw_addr, void *p_eth_qzone,
3762 osal_size_t eth_qzone_size,
3763 u8 timeset)
3764 {
3765 struct coalescing_timeset *p_coal_timeset;
3766
3767 if (IS_VF(p_hwfn->p_dev)) {
3768 DP_NOTICE(p_hwfn, true, "VF coalescing config not supported\n");
3769 return ECORE_INVAL;
3770 }
3771
3772 if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
3773 DP_NOTICE(p_hwfn, true,
3774 "Coalescing configuration not enabled\n");
3775 return ECORE_INVAL;
3776 }
3777
3778 OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
3779 p_coal_timeset = p_eth_qzone;
3780 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3781 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3782 ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3783
3784 return ECORE_SUCCESS;
3785 }
3786
3787 enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
3788 struct ecore_ptt *p_ptt,
3789 u16 coalesce, u8 qid, u16 sb_id)
3790 {
3791 struct ustorm_eth_queue_zone eth_qzone;
3792 u16 fw_qid = 0;
3793 u32 address;
3794 enum _ecore_status_t rc;
3795 u8 timeset, timer_res;
3796
3797 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3798 if (coalesce <= 0x7F) {
3799 timer_res = 0;
3800 } else if (coalesce <= 0xFF) {
3801 timer_res = 1;
3802 } else if (coalesce <= 0x1FF) {
3803 timer_res = 2;
3804 } else {
3805 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3806 return ECORE_INVAL;
3807 }
3808 timeset = (u8)(coalesce >> timer_res);
3809
3810 rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3811 if (rc != ECORE_SUCCESS)
3812 return rc;
3813
3814 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
3815 if (rc != ECORE_SUCCESS)
3816 goto out;
3817
3818 address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3819
3820 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3821 sizeof(struct ustorm_eth_queue_zone), timeset);
3822 if (rc != ECORE_SUCCESS)
3823 goto out;
3824
3825 p_hwfn->p_dev->rx_coalesce_usecs = coalesce;
3826 out:
3827 return rc;
3828 }
3829
3830 enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
3831 struct ecore_ptt *p_ptt,
3832 u16 coalesce, u8 qid, u16 sb_id)
3833 {
3834 struct xstorm_eth_queue_zone eth_qzone;
3835 u16 fw_qid = 0;
3836 u32 address;
3837 enum _ecore_status_t rc;
3838 u8 timeset, timer_res;
3839
3840 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3841 if (coalesce <= 0x7F) {
3842 timer_res = 0;
3843 } else if (coalesce <= 0xFF) {
3844 timer_res = 1;
3845 } else if (coalesce <= 0x1FF) {
3846 timer_res = 2;
3847 } else {
3848 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3849 return ECORE_INVAL;
3850 }
3851
3852 timeset = (u8)(coalesce >> timer_res);
3853
3854 rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3855 if (rc != ECORE_SUCCESS)
3856 return rc;
3857
3858 rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
3859 if (rc != ECORE_SUCCESS)
3860 goto out;
3861
3862 address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3863
3864 rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3865 sizeof(struct xstorm_eth_queue_zone), timeset);
3866 if (rc != ECORE_SUCCESS)
3867 goto out;
3868
3869 p_hwfn->p_dev->tx_coalesce_usecs = coalesce;
3870 out:
3871 return rc;
3872 }
3873
3874 /* Calculate final WFQ values for all vports and configure it.
3875 * After this configuration each vport must have
3876 * approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
3877 */
3878 static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3879 struct ecore_ptt *p_ptt,
3880 u32 min_pf_rate)
3881 {
3882 struct init_qm_vport_params *vport_params;
3883 int i;
3884
3885 vport_params = p_hwfn->qm_info.qm_vport_params;
3886
3887 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3888 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3889
3890 vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
3891 min_pf_rate;
3892 ecore_init_vport_wfq(p_hwfn, p_ptt,
3893 vport_params[i].first_tx_pq_id,
3894 vport_params[i].vport_wfq);
3895 }
3896 }
3897
3898 static void
3899 ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
3900 {
3901 int i;
3902
3903 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
3904 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
3905 }
3906
3907 static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
3908 struct ecore_ptt *p_ptt,
3909 u32 min_pf_rate)
3910 {
3911 struct init_qm_vport_params *vport_params;
3912 int i;
3913
3914 vport_params = p_hwfn->qm_info.qm_vport_params;
3915
3916 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3917 ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
3918 ecore_init_vport_wfq(p_hwfn, p_ptt,
3919 vport_params[i].first_tx_pq_id,
3920 vport_params[i].vport_wfq);
3921 }
3922 }
3923
3924 /* This function performs several validations for WFQ
3925 * configuration and required min rate for a given vport
3926 * 1. req_rate must be greater than one percent of min_pf_rate.
3927 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
3928 * rates to get less than one percent of min_pf_rate.
3929 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
3930 */
3931 static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
3932 u16 vport_id, u32 req_rate,
3933 u32 min_pf_rate)
3934 {
3935 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
3936 int non_requested_count = 0, req_count = 0, i, num_vports;
3937
3938 num_vports = p_hwfn->qm_info.num_vports;
3939
3940 /* Accounting for the vports which are configured for WFQ explicitly */
3941
3942 for (i = 0; i < num_vports; i++) {
3943 u32 tmp_speed;
3944
3945 if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
3946 req_count++;
3947 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3948 total_req_min_rate += tmp_speed;
3949 }
3950 }
3951
3952 /* Include current vport data as well */
3953 req_count++;
3954 total_req_min_rate += req_rate;
3955 non_requested_count = num_vports - req_count;
3956
3957 /* validate possible error cases */
3958 if (req_rate > min_pf_rate) {
3959 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3960 "Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
3961 vport_id, req_rate, min_pf_rate);
3962 return ECORE_INVAL;
3963 }
3964
3965 if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
3966 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3967 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3968 vport_id, req_rate, min_pf_rate);
3969 return ECORE_INVAL;
3970 }
3971
3972 /* TBD - for number of vports greater than 100 */
3973 if (num_vports > ECORE_WFQ_UNIT) {
3974 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3975 "Number of vports is greater than %d\n",
3976 ECORE_WFQ_UNIT);
3977 return ECORE_INVAL;
3978 }
3979
3980 if (total_req_min_rate > min_pf_rate) {
3981 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3982 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
3983 total_req_min_rate, min_pf_rate);
3984 return ECORE_INVAL;
3985 }
3986
3987 /* Data left for non requested vports */
3988 total_left_rate = min_pf_rate - total_req_min_rate;
3989 left_rate_per_vp = total_left_rate / non_requested_count;
3990
3991 /* validate if non requested get < 1% of min bw */
3992 if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
3993 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
3994 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3995 left_rate_per_vp, min_pf_rate);
3996 return ECORE_INVAL;
3997 }
3998
3999 /* now req_rate for given vport passes all scenarios.
4000 * assign final wfq rates to all vports.
4001 */
4002 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4003 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4004
4005 for (i = 0; i < num_vports; i++) {
4006 if (p_hwfn->qm_info.wfq_data[i].configured)
4007 continue;
4008
4009 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4010 }
4011
4012 return ECORE_SUCCESS;
4013 }
4014
4015 static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
4016 struct ecore_ptt *p_ptt,
4017 u16 vp_id, u32 rate)
4018 {
4019 struct ecore_mcp_link_state *p_link;
4020 int rc = ECORE_SUCCESS;
4021
4022 p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
4023
4024 if (!p_link->min_pf_rate) {
4025 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4026 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4027 return rc;
4028 }
4029
4030 rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4031
4032 if (rc == ECORE_SUCCESS)
4033 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4034 p_link->min_pf_rate);
4035 else
4036 DP_NOTICE(p_hwfn, false,
4037 "Validation failed while configuring min rate\n");
4038
4039 return rc;
4040 }
4041
4042 static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
4043 struct ecore_ptt *p_ptt,
4044 u32 min_pf_rate)
4045 {
4046 bool use_wfq = false;
4047 int rc = ECORE_SUCCESS;
4048 u16 i;
4049
4050 /* Validate all pre configured vports for wfq */
4051 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4052 u32 rate;
4053
4054 if (!p_hwfn->qm_info.wfq_data[i].configured)
4055 continue;
4056
4057 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4058 use_wfq = true;
4059
4060 rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4061 if (rc != ECORE_SUCCESS) {
4062 DP_NOTICE(p_hwfn, false,
4063 "WFQ validation failed while configuring min rate\n");
4064 break;
4065 }
4066 }
4067
4068 if (rc == ECORE_SUCCESS && use_wfq)
4069 ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4070 else
4071 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4072
4073 return rc;
4074 }
4075
4076 /* Main API for ecore clients to configure vport min rate.
4077 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4078 * rate - Speed in Mbps needs to be assigned to a given vport.
4079 */
4080 int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
4081 {
4082 int i, rc = ECORE_INVAL;
4083
4084 /* TBD - for multiple hardware functions - that is 100 gig */
4085 if (p_dev->num_hwfns > 1) {
4086 DP_NOTICE(p_dev, false,
4087 "WFQ configuration is not supported for this device\n");
4088 return rc;
4089 }
4090
4091 for_each_hwfn(p_dev, i) {
4092 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4093 struct ecore_ptt *p_ptt;
4094
4095 p_ptt = ecore_ptt_acquire(p_hwfn);
4096 if (!p_ptt)
4097 return ECORE_TIMEOUT;
4098
4099 rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4100
4101 if (rc != ECORE_SUCCESS) {
4102 ecore_ptt_release(p_hwfn, p_ptt);
4103 return rc;
4104 }
4105
4106 ecore_ptt_release(p_hwfn, p_ptt);
4107 }
4108
4109 return rc;
4110 }
4111
4112 /* API to configure WFQ from mcp link change */
4113 void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
4114 u32 min_pf_rate)
4115 {
4116 int i;
4117
4118 /* TBD - for multiple hardware functions - that is 100 gig */
4119 if (p_dev->num_hwfns > 1) {
4120 DP_VERBOSE(p_dev, ECORE_MSG_LINK,
4121 "WFQ configuration is not supported for this device\n");
4122 return;
4123 }
4124
4125 for_each_hwfn(p_dev, i) {
4126 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4127
4128 __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4129 p_hwfn->p_dpc_ptt,
4130 min_pf_rate);
4131 }
4132 }
4133
4134 int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
4135 struct ecore_ptt *p_ptt,
4136 struct ecore_mcp_link_state *p_link,
4137 u8 max_bw)
4138 {
4139 int rc = ECORE_SUCCESS;
4140
4141 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4142
4143 if (!p_link->line_speed && (max_bw != 100))
4144 return rc;
4145
4146 p_link->speed = (p_link->line_speed * max_bw) / 100;
4147 p_hwfn->qm_info.pf_rl = p_link->speed;
4148
4149 /* Since the limiter also affects Tx-switched traffic, we don't want it
4150 * to limit such traffic in case there's no actual limit.
4151 * In that case, set limit to imaginary high boundary.
4152 */
4153 if (max_bw == 100)
4154 p_hwfn->qm_info.pf_rl = 100000;
4155
4156 rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4157 p_hwfn->qm_info.pf_rl);
4158
4159 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4160 "Configured MAX bandwidth to be %08x Mb/sec\n",
4161 p_link->speed);
4162
4163 return rc;
4164 }
4165
4166 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4167 int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
4168 {
4169 int i, rc = ECORE_INVAL;
4170
4171 if (max_bw < 1 || max_bw > 100) {
4172 DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
4173 return rc;
4174 }
4175
4176 for_each_hwfn(p_dev, i) {
4177 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4178 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4179 struct ecore_mcp_link_state *p_link;
4180 struct ecore_ptt *p_ptt;
4181
4182 p_link = &p_lead->mcp_info->link_output;
4183
4184 p_ptt = ecore_ptt_acquire(p_hwfn);
4185 if (!p_ptt)
4186 return ECORE_TIMEOUT;
4187
4188 rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4189 p_link, max_bw);
4190
4191 ecore_ptt_release(p_hwfn, p_ptt);
4192
4193 if (rc != ECORE_SUCCESS)
4194 break;
4195 }
4196
4197 return rc;
4198 }
4199
4200 int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
4201 struct ecore_ptt *p_ptt,
4202 struct ecore_mcp_link_state *p_link,
4203 u8 min_bw)
4204 {
4205 int rc = ECORE_SUCCESS;
4206
4207 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4208 p_hwfn->qm_info.pf_wfq = min_bw;
4209
4210 if (!p_link->line_speed)
4211 return rc;
4212
4213 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4214
4215 rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4216
4217 DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
4218 "Configured MIN bandwidth to be %d Mb/sec\n",
4219 p_link->min_pf_rate);
4220
4221 return rc;
4222 }
4223
4224 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4225 int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
4226 {
4227 int i, rc = ECORE_INVAL;
4228
4229 if (min_bw < 1 || min_bw > 100) {
4230 DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
4231 return rc;
4232 }
4233
4234 for_each_hwfn(p_dev, i) {
4235 struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
4236 struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
4237 struct ecore_mcp_link_state *p_link;
4238 struct ecore_ptt *p_ptt;
4239
4240 p_link = &p_lead->mcp_info->link_output;
4241
4242 p_ptt = ecore_ptt_acquire(p_hwfn);
4243 if (!p_ptt)
4244 return ECORE_TIMEOUT;
4245
4246 rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4247 p_link, min_bw);
4248 if (rc != ECORE_SUCCESS) {
4249 ecore_ptt_release(p_hwfn, p_ptt);
4250 return rc;
4251 }
4252
4253 if (p_link->min_pf_rate) {
4254 u32 min_rate = p_link->min_pf_rate;
4255
4256 rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
4257 p_ptt,
4258 min_rate);
4259 }
4260
4261 ecore_ptt_release(p_hwfn, p_ptt);
4262 }
4263
4264 return rc;
4265 }
4266
4267 void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
4268 {
4269 struct ecore_mcp_link_state *p_link;
4270
4271 p_link = &p_hwfn->mcp_info->link_output;
4272
4273 if (p_link->min_pf_rate)
4274 ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4275 p_link->min_pf_rate);
4276
4277 OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
4278 sizeof(*p_hwfn->qm_info.wfq_data) *
4279 p_hwfn->qm_info.num_vports);
4280 }
4281
4282 int ecore_device_num_engines(struct ecore_dev *p_dev)
4283 {
4284 return ECORE_IS_BB(p_dev) ? 2 : 1;
4285 }
4286
4287 int ecore_device_num_ports(struct ecore_dev *p_dev)
4288 {
4289 /* in CMT always only one port */
4290 if (p_dev->num_hwfns > 1)
4291 return 1;
4292
4293 return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
4294 }