]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/drivers/net/qede/base/ecore_init_fw_funcs.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / drivers / net / qede / base / ecore_init_fw_funcs.c
1 /*
2 * Copyright (c) 2016 QLogic Corporation.
3 * All rights reserved.
4 * www.qlogic.com
5 *
6 * See LICENSE.qede_pmd for copyright and licensing details.
7 */
8
9 #include "bcm_osal.h"
10 #include "ecore_hw.h"
11 #include "ecore_init_ops.h"
12 #include "reg_addr.h"
13 #include "ecore_rt_defs.h"
14 #include "ecore_hsi_common.h"
15 #include "ecore_hsi_init_func.h"
16 #include "ecore_hsi_eth.h"
17 #include "ecore_hsi_init_tool.h"
18 #include "ecore_iro.h"
19 #include "ecore_init_fw_funcs.h"
20 enum CmInterfaceEnum {
21 MCM_SEC,
22 MCM_PRI,
23 UCM_SEC,
24 UCM_PRI,
25 TCM_SEC,
26 TCM_PRI,
27 YCM_SEC,
28 YCM_PRI,
29 XCM_SEC,
30 XCM_PRI,
31 NUM_OF_CM_INTERFACES
32 };
33 /* general constants */
34 #define QM_PQ_MEM_4KB(pq_size) \
35 (pq_size ? DIV_ROUND_UP((pq_size + 1) * QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
36 #define QM_PQ_SIZE_256B(pq_size) \
37 (pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : 0)
38 #define QM_INVALID_PQ_ID 0xffff
39 /* feature enable */
40 #define QM_BYPASS_EN 1
41 #define QM_BYTE_CRD_EN 1
42 /* other PQ constants */
43 #define QM_OTHER_PQS_PER_PF 4
44 /* WFQ constants */
45 #define QM_WFQ_UPPER_BOUND 62500000
46 #define QM_WFQ_VP_PQ_VOQ_SHIFT 0
47 #define QM_WFQ_VP_PQ_PF_SHIFT 5
48 #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
49 #define QM_WFQ_MAX_INC_VAL 43750000
50 /* RL constants */
51 #define QM_RL_UPPER_BOUND 62500000
52 #define QM_RL_PERIOD 5
53 #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
54 #define QM_RL_MAX_INC_VAL 43750000
55 /* RL increment value - the factor of 1.01 was added after seeing only
56 * 99% factor reached in a 25Gbps port with DPDK RFC 2544 test.
57 * In this scenario the PF RL was reducing the line rate to 99% although
58 * the credit increment value was the correct one and FW calculated
59 * correct packet sizes. The reason for the inaccuracy of the RL is
60 * unknown at this point.
61 */
62 /* rate in mbps */
63 #define QM_RL_INC_VAL(rate) OSAL_MAX_T(u32, (u32)(((rate ? rate : 1000000) * \
64 QM_RL_PERIOD * 101) / (8 * 100)), 1)
65 /* AFullOprtnstcCrdMask constants */
66 #define QM_OPPOR_LINE_VOQ_DEF 1
67 #define QM_OPPOR_FW_STOP_DEF 0
68 #define QM_OPPOR_PQ_EMPTY_DEF 1
69 /* Command Queue constants */
70 #define PBF_CMDQ_PURE_LB_LINES 150
71 #define PBF_CMDQ_LINES_RT_OFFSET(voq) \
72 (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
73 voq * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET \
74 - PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
75 #define PBF_BTB_GUARANTEED_RT_OFFSET(voq) \
76 (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + voq * \
77 (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
78 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
79 ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
80 /* BTB: blocks constants (block size = 256B) */
81 #define BTB_JUMBO_PKT_BLOCKS 38 /* 256B blocks in 9700B packet */
82 /* headroom per-port */
83 #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
84 #define BTB_PURE_LB_FACTOR 10
85 #define BTB_PURE_LB_RATIO 7 /* factored (hence really 0.7) */
86 /* QM stop command constants */
87 #define QM_STOP_PQ_MASK_WIDTH 32
88 #define QM_STOP_CMD_ADDR 0x2
89 #define QM_STOP_CMD_STRUCT_SIZE 2
90 #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
91 #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
92 #define QM_STOP_CMD_PAUSE_MASK_MASK -1
93 #define QM_STOP_CMD_GROUP_ID_OFFSET 1
94 #define QM_STOP_CMD_GROUP_ID_SHIFT 16
95 #define QM_STOP_CMD_GROUP_ID_MASK 15
96 #define QM_STOP_CMD_PQ_TYPE_OFFSET 1
97 #define QM_STOP_CMD_PQ_TYPE_SHIFT 24
98 #define QM_STOP_CMD_PQ_TYPE_MASK 1
99 #define QM_STOP_CMD_MAX_POLL_COUNT 100
100 #define QM_STOP_CMD_POLL_PERIOD_US 500
101 /* QM command macros */
102 #define QM_CMD_STRUCT_SIZE(cmd) cmd##_STRUCT_SIZE
103 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
104 SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
105 /* QM: VOQ macros */
106 #define PHYS_VOQ(port, tc, max_phys_tcs_per_port) \
107 ((port) * (max_phys_tcs_per_port) + (tc))
108 #define LB_VOQ(port) (MAX_PHYS_VOQS + (port))
109 #define VOQ(port, tc, max_phys_tcs_per_port) \
110 ((tc) < LB_TC ? PHYS_VOQ(port, tc, max_phys_tcs_per_port) : LB_VOQ(port))
111 /******************** INTERNAL IMPLEMENTATION *********************/
112 /* Prepare PF RL enable/disable runtime init values */
113 static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn, bool pf_rl_en)
114 {
115 STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
116 if (pf_rl_en) {
117 /* enable RLs for all VOQs */
118 STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
119 (1 << MAX_NUM_VOQS) - 1);
120 /* write RL period */
121 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET,
122 QM_RL_PERIOD_CLK_25M);
123 STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET,
124 QM_RL_PERIOD_CLK_25M);
125 /* set credit threshold for QM bypass flow */
126 if (QM_BYPASS_EN)
127 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
128 QM_RL_UPPER_BOUND);
129 }
130 }
131
132 /* Prepare PF WFQ enable/disable runtime init values */
133 static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn, bool pf_wfq_en)
134 {
135 STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
136 /* set credit threshold for QM bypass flow */
137 if (pf_wfq_en && QM_BYPASS_EN)
138 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
139 QM_WFQ_UPPER_BOUND);
140 }
141
142 /* Prepare VPORT RL enable/disable runtime init values */
143 static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn, bool vport_rl_en)
144 {
145 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
146 vport_rl_en ? 1 : 0);
147 if (vport_rl_en) {
148 /* write RL period (use timer 0 only) */
149 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
150 QM_RL_PERIOD_CLK_25M);
151 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
152 QM_RL_PERIOD_CLK_25M);
153 /* set credit threshold for QM bypass flow */
154 if (QM_BYPASS_EN)
155 STORE_RT_REG(p_hwfn,
156 QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
157 QM_RL_UPPER_BOUND);
158 }
159 }
160
161 /* Prepare VPORT WFQ enable/disable runtime init values */
162 static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn, bool vport_wfq_en)
163 {
164 STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
165 vport_wfq_en ? 1 : 0);
166 /* set credit threshold for QM bypass flow */
167 if (vport_wfq_en && QM_BYPASS_EN)
168 STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
169 QM_WFQ_UPPER_BOUND);
170 }
171
172 /* Prepare runtime init values to allocate PBF command queue lines for
173 * the specified VOQ
174 */
175 static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
176 u8 voq, u16 cmdq_lines)
177 {
178 u32 qm_line_crd;
179 /* In A0 - Limit the size of pbf queue so that only 511 commands
180 * with the minimum size of 4 (FCoE minimum size)
181 */
182 bool is_bb_a0 = ECORE_IS_BB_A0(p_hwfn->p_dev);
183 if (is_bb_a0)
184 cmdq_lines = OSAL_MIN_T(u32, cmdq_lines, 1022);
185 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
186 OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq),
187 (u32)cmdq_lines);
188 STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + voq, qm_line_crd);
189 STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + voq,
190 qm_line_crd);
191 }
192
193 /* Prepare runtime init values to allocate PBF command queue lines. */
194 static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
195 u8 max_ports_per_engine,
196 u8 max_phys_tcs_per_port,
197 struct init_qm_port_params
198 port_params[MAX_NUM_PORTS])
199 {
200 u8 tc, voq, port_id, num_tcs_in_port;
201 /* clear PBF lines for all VOQs */
202 for (voq = 0; voq < MAX_NUM_VOQS; voq++)
203 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq), 0);
204 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
205 if (port_params[port_id].active) {
206 u16 phys_lines, phys_lines_per_tc;
207 /* find #lines to divide between active physical TCs */
208 phys_lines =
209 port_params[port_id].num_pbf_cmd_lines -
210 PBF_CMDQ_PURE_LB_LINES;
211 /* find #lines per active physical TC */
212 num_tcs_in_port = 0;
213 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
214 if (((port_params[port_id].active_phys_tcs >>
215 tc) & 0x1) == 1)
216 num_tcs_in_port++;
217 }
218 phys_lines_per_tc = phys_lines / num_tcs_in_port;
219 /* init registers per active TC */
220 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
221 if (((port_params[port_id].active_phys_tcs >>
222 tc) & 0x1) == 1) {
223 voq = PHYS_VOQ(port_id, tc,
224 max_phys_tcs_per_port);
225 ecore_cmdq_lines_voq_rt_init(p_hwfn,
226 voq, phys_lines_per_tc);
227 }
228 }
229 /* init registers for pure LB TC */
230 ecore_cmdq_lines_voq_rt_init(p_hwfn, LB_VOQ(port_id),
231 PBF_CMDQ_PURE_LB_LINES);
232 }
233 }
234 }
235
236 /*
237 * Prepare runtime init values to allocate guaranteed BTB blocks for the
238 * specified port. The guaranteed BTB space is divided between the TCs as
239 * follows (shared space Is currently not used):
240 * 1. Parameters:
241 * B BTB blocks for this port
242 * C Number of physical TCs for this port
243 * 2. Calculation:
244 * a. 38 blocks (9700B jumbo frame) are allocated for global per port
245 * headroom
246 * b. B = B 38 (remainder after global headroom allocation)
247 * c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
248 * d. B = B MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
249 * e. B/C blocks are allocated for each physical TC.
250 * Assumptions:
251 * - MTU is up to 9700 bytes (38 blocks)
252 * - All TCs are considered symmetrical (same rate and packet size)
253 * - No optimization for lossy TC (all are considered lossless). Shared space is
254 * not enabled and allocated for each TC.
255 */
256 static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
257 u8 max_ports_per_engine,
258 u8 max_phys_tcs_per_port,
259 struct init_qm_port_params
260 port_params[MAX_NUM_PORTS])
261 {
262 u8 tc, voq, port_id, num_tcs_in_port;
263 u32 usable_blocks, pure_lb_blocks, phys_blocks;
264 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
265 if (port_params[port_id].active) {
266 /* subtract headroom blocks */
267 usable_blocks =
268 port_params[port_id].num_btb_blocks -
269 BTB_HEADROOM_BLOCKS;
270 /* find blocks per physical TC. use factor to avoid floating arithmethic */
271
272 num_tcs_in_port = 0;
273 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
274 if (((port_params[port_id].active_phys_tcs >>
275 tc) & 0x1) == 1)
276 num_tcs_in_port++;
277 pure_lb_blocks =
278 (usable_blocks * BTB_PURE_LB_FACTOR) /
279 (num_tcs_in_port *
280 BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO);
281 pure_lb_blocks =
282 OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS,
283 pure_lb_blocks / BTB_PURE_LB_FACTOR);
284 phys_blocks =
285 (usable_blocks -
286 pure_lb_blocks) /
287 num_tcs_in_port;
288 /* init physical TCs */
289 for (tc = 0;
290 tc < NUM_OF_PHYS_TCS;
291 tc++) {
292 if (((port_params[port_id].active_phys_tcs >>
293 tc) & 0x1) == 1) {
294 voq = PHYS_VOQ(port_id, tc,
295 max_phys_tcs_per_port);
296 STORE_RT_REG(p_hwfn,
297 PBF_BTB_GUARANTEED_RT_OFFSET(voq),
298 phys_blocks);
299 }
300 }
301 /* init pure LB TC */
302 STORE_RT_REG(p_hwfn,
303 PBF_BTB_GUARANTEED_RT_OFFSET(
304 LB_VOQ(port_id)), pure_lb_blocks);
305 }
306 }
307 }
308
309 /* Prepare Tx PQ mapping runtime init values for the specified PF */
310 static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
311 struct ecore_ptt *p_ptt,
312 u8 port_id,
313 u8 pf_id,
314 u8 max_phys_tcs_per_port,
315 bool is_first_pf,
316 u32 num_pf_cids,
317 u32 num_vf_cids,
318 u16 start_pq,
319 u16 num_pf_pqs,
320 u16 num_vf_pqs,
321 u8 start_vport,
322 u32 base_mem_addr_4kb,
323 struct init_qm_pq_params *pq_params,
324 struct init_qm_vport_params *vport_params)
325 {
326 u16 i, pq_id, pq_group;
327 u16 num_pqs = num_pf_pqs + num_vf_pqs;
328 u16 first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
329 u16 last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
330 bool is_bb_a0 = ECORE_IS_BB_A0(p_hwfn->p_dev);
331 /* a bit per Tx PQ indicating if the PQ is associated with a VF */
332 u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
333 u32 tx_pq_vf_mask_width = is_bb_a0 ? 32 : QM_PF_QUEUE_GROUP_SIZE;
334 u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / tx_pq_vf_mask_width;
335 u32 pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
336 u32 vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
337 u32 mem_addr_4kb = base_mem_addr_4kb;
338 /* set mapping from PQ group to PF */
339 for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
340 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
341 (u32)(pf_id));
342 /* set PQ sizes */
343 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
344 QM_PQ_SIZE_256B(num_pf_cids));
345 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
346 QM_PQ_SIZE_256B(num_vf_cids));
347 /* go over all Tx PQs */
348 for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
349 struct qm_rf_pq_map tx_pq_map;
350 u8 voq =
351 VOQ(port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
352 bool is_vf_pq = (i >= num_pf_pqs);
353 /* added to avoid compilation warning */
354 u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
355 bool rl_valid = pq_params[i].rl_valid &&
356 pq_params[i].vport_id < max_qm_global_rls;
357 /* update first Tx PQ of VPORT/TC */
358 u8 vport_id_in_pf = pq_params[i].vport_id - start_vport;
359 u16 first_tx_pq_id =
360 vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].
361 tc_id];
362 if (first_tx_pq_id == QM_INVALID_PQ_ID) {
363 /* create new VP PQ */
364 vport_params[vport_id_in_pf].
365 first_tx_pq_id[pq_params[i].tc_id] = pq_id;
366 first_tx_pq_id = pq_id;
367 /* map VP PQ to VOQ and PF */
368 STORE_RT_REG(p_hwfn,
369 QM_REG_WFQVPMAP_RT_OFFSET + first_tx_pq_id,
370 (voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (pf_id <<
371 QM_WFQ_VP_PQ_PF_SHIFT));
372 }
373 /* check RL ID */
374 if (pq_params[i].rl_valid && pq_params[i].vport_id >=
375 max_qm_global_rls)
376 DP_NOTICE(p_hwfn, true,
377 "Invalid VPORT ID for rate limiter config");
378 /* fill PQ map entry */
379 OSAL_MEMSET(&tx_pq_map, 0, sizeof(tx_pq_map));
380 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_PQ_VALID, 1);
381 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_VALID,
382 rl_valid ? 1 : 0);
383 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VP_PQ_ID, first_tx_pq_id);
384 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_ID,
385 rl_valid ? pq_params[i].vport_id : 0);
386 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VOQ, voq);
387 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,
388 pq_params[i].wrr_group);
389 /* write PQ map entry to CAM */
390 STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id,
391 *((u32 *)&tx_pq_map));
392 /* set base address */
393 STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
394 mem_addr_4kb);
395 /* check if VF PQ */
396 if (is_vf_pq) {
397 /* if PQ is associated with a VF, add indication to PQ
398 * VF mask
399 */
400 tx_pq_vf_mask[pq_id / tx_pq_vf_mask_width] |=
401 (1 << (pq_id % tx_pq_vf_mask_width));
402 mem_addr_4kb += vport_pq_mem_4kb;
403 } else {
404 mem_addr_4kb += pq_mem_4kb;
405 }
406 }
407 /* store Tx PQ VF mask to size select register */
408 for (i = 0; i < num_tx_pq_vf_masks; i++) {
409 if (tx_pq_vf_mask[i]) {
410 if (is_bb_a0) {
411 /* A0-only: perform read-modify-write
412 *(fixed in B0)
413 */
414 u32 curr_mask =
415 is_first_pf ? 0 : ecore_rd(p_hwfn, p_ptt,
416 QM_REG_MAXPQSIZETXSEL_0
417 + i * 4);
418 STORE_RT_REG(p_hwfn,
419 QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET +
420 i, curr_mask | tx_pq_vf_mask[i]);
421 } else
422 STORE_RT_REG(p_hwfn,
423 QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET +
424 i, tx_pq_vf_mask[i]);
425 }
426 }
427 }
428
429 /* Prepare Other PQ mapping runtime init values for the specified PF */
430 static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
431 u8 port_id,
432 u8 pf_id,
433 u32 num_pf_cids,
434 u32 num_tids, u32 base_mem_addr_4kb)
435 {
436 u16 i, pq_id;
437 /* a single other PQ grp is used in each PF, where PQ group i is used in PF i */
438
439 u16 pq_group = pf_id;
440 u32 pq_size = num_pf_cids + num_tids;
441 u32 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
442 u32 mem_addr_4kb = base_mem_addr_4kb;
443 /* map PQ group to PF */
444 STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
445 (u32)(pf_id));
446 /* set PQ sizes */
447 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
448 QM_PQ_SIZE_256B(pq_size));
449 /* set base address */
450 for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
451 i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
452 STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
453 mem_addr_4kb);
454 mem_addr_4kb += pq_mem_4kb;
455 }
456 }
457 /* Prepare PF WFQ runtime init values for specified PF. Return -1 on error. */
458 static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
459 u8 port_id,
460 u8 pf_id,
461 u16 pf_wfq,
462 u8 max_phys_tcs_per_port,
463 u16 num_tx_pqs,
464 struct init_qm_pq_params *pq_params)
465 {
466 u16 i;
467 u32 inc_val;
468 u32 crd_reg_offset =
469 (pf_id <
470 MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET :
471 QM_REG_WFQPFCRD_MSB_RT_OFFSET) + (pf_id % MAX_NUM_PFS_BB);
472 inc_val = QM_WFQ_INC_VAL(pf_wfq);
473 if (inc_val == 0 || inc_val > QM_WFQ_MAX_INC_VAL) {
474 DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration");
475 return -1;
476 }
477 for (i = 0; i < num_tx_pqs; i++) {
478 u8 voq =
479 VOQ(port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
480 OVERWRITE_RT_REG(p_hwfn, crd_reg_offset + voq * MAX_NUM_PFS_BB,
481 (u32)QM_WFQ_CRD_REG_SIGN_BIT);
482 }
483 STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + pf_id,
484 QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
485 STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
486 return 0;
487 }
488 /* Prepare PF RL runtime init values for specified PF. Return -1 on error. */
489 static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
490 {
491 u32 inc_val = QM_RL_INC_VAL(pf_rl);
492 if (inc_val > QM_RL_MAX_INC_VAL) {
493 DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration");
494 return -1;
495 }
496 STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
497 (u32)QM_RL_CRD_REG_SIGN_BIT);
498 STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
499 QM_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
500 STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
501 return 0;
502 }
503 /* Prepare VPORT WFQ runtime init values for the specified VPORTs. Return -1 on
504 * error.
505 */
506 static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
507 u8 num_vports,
508 struct init_qm_vport_params *vport_params)
509 {
510 u8 tc, i;
511 u32 inc_val;
512 /* go over all PF VPORTs */
513 for (i = 0; i < num_vports; i++) {
514 if (vport_params[i].vport_wfq) {
515 inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
516 if (inc_val > QM_WFQ_MAX_INC_VAL) {
517 DP_NOTICE(p_hwfn, true,
518 "Invalid VPORT WFQ weight config");
519 return -1;
520 }
521 /* each VPORT can have several VPORT PQ IDs for
522 * different TCs
523 */
524 for (tc = 0; tc < NUM_OF_TCS; tc++) {
525 u16 vport_pq_id =
526 vport_params[i].first_tx_pq_id[tc];
527 if (vport_pq_id != QM_INVALID_PQ_ID) {
528 STORE_RT_REG(p_hwfn,
529 QM_REG_WFQVPCRD_RT_OFFSET +
530 vport_pq_id,
531 (u32)QM_WFQ_CRD_REG_SIGN_BIT);
532 STORE_RT_REG(p_hwfn,
533 QM_REG_WFQVPWEIGHT_RT_OFFSET
534 + vport_pq_id, inc_val);
535 }
536 }
537 }
538 }
539 return 0;
540 }
541
542 /* Prepare VPORT RL runtime init values for the specified VPORTs.
543 * Return -1 on error.
544 */
545 static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
546 u8 start_vport,
547 u8 num_vports,
548 struct init_qm_vport_params *vport_params)
549 {
550 u8 i, vport_id;
551 if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
552 DP_NOTICE(p_hwfn, true,
553 "Invalid VPORT ID for rate limiter configuration");
554 return -1;
555 }
556 /* go over all PF VPORTs */
557 for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
558 u32 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl);
559 if (inc_val > QM_RL_MAX_INC_VAL) {
560 DP_NOTICE(p_hwfn, true,
561 "Invalid VPORT rate-limit configuration");
562 return -1;
563 }
564 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
565 (u32)QM_RL_CRD_REG_SIGN_BIT);
566 STORE_RT_REG(p_hwfn,
567 QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
568 QM_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
569 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
570 inc_val);
571 }
572 return 0;
573 }
574
575 static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
576 struct ecore_ptt *p_ptt)
577 {
578 u32 reg_val, i;
579 for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && reg_val == 0;
580 i++) {
581 OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
582 reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
583 }
584 /* check if timeout while waiting for SDM command ready */
585 if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
586 DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG,
587 "Timeout waiting for QM SDM cmd ready signal\n");
588 return false;
589 }
590 return true;
591 }
592
593 static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
594 struct ecore_ptt *p_ptt,
595 u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
596 {
597 if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
598 return false;
599 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
600 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
601 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
602 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
603 ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
604 return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
605 }
606
607 /******************** INTERFACE IMPLEMENTATION *********************/
608 u32 ecore_qm_pf_mem_size(u8 pf_id,
609 u32 num_pf_cids,
610 u32 num_vf_cids,
611 u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
612 {
613 return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
614 QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
615 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
616 }
617
618 int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
619 u8 max_ports_per_engine,
620 u8 max_phys_tcs_per_port,
621 bool pf_rl_en,
622 bool pf_wfq_en,
623 bool vport_rl_en,
624 bool vport_wfq_en,
625 struct init_qm_port_params
626 port_params[MAX_NUM_PORTS])
627 {
628 /* init AFullOprtnstcCrdMask */
629 u32 mask =
630 (QM_OPPOR_LINE_VOQ_DEF << QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
631 (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
632 (pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
633 (vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
634 (pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
635 (vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
636 (QM_OPPOR_FW_STOP_DEF << QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
637 (QM_OPPOR_PQ_EMPTY_DEF <<
638 QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
639 STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
640 /* enable/disable PF RL */
641 ecore_enable_pf_rl(p_hwfn, pf_rl_en);
642 /* enable/disable PF WFQ */
643 ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
644 /* enable/disable VPORT RL */
645 ecore_enable_vport_rl(p_hwfn, vport_rl_en);
646 /* enable/disable VPORT WFQ */
647 ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
648 /* init PBF CMDQ line credit */
649 ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine,
650 max_phys_tcs_per_port, port_params);
651 /* init BTB blocks in PBF */
652 ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine,
653 max_phys_tcs_per_port, port_params);
654 return 0;
655 }
656
657 int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
658 struct ecore_ptt *p_ptt,
659 u8 port_id,
660 u8 pf_id,
661 u8 max_phys_tcs_per_port,
662 bool is_first_pf,
663 u32 num_pf_cids,
664 u32 num_vf_cids,
665 u32 num_tids,
666 u16 start_pq,
667 u16 num_pf_pqs,
668 u16 num_vf_pqs,
669 u8 start_vport,
670 u8 num_vports,
671 u16 pf_wfq,
672 u32 pf_rl,
673 struct init_qm_pq_params *pq_params,
674 struct init_qm_vport_params *vport_params)
675 {
676 u8 tc, i;
677 u32 other_mem_size_4kb =
678 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
679 /* clear first Tx PQ ID array for each VPORT */
680 for (i = 0; i < num_vports; i++)
681 for (tc = 0; tc < NUM_OF_TCS; tc++)
682 vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
683 /* map Other PQs (if any) */
684 #if QM_OTHER_PQS_PER_PF > 0
685 ecore_other_pq_map_rt_init(p_hwfn, port_id, pf_id, num_pf_cids,
686 num_tids, 0);
687 #endif
688 /* map Tx PQs */
689 ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, port_id, pf_id,
690 max_phys_tcs_per_port, is_first_pf, num_pf_cids,
691 num_vf_cids, start_pq, num_pf_pqs, num_vf_pqs,
692 start_vport, other_mem_size_4kb, pq_params,
693 vport_params);
694 /* init PF WFQ */
695 if (pf_wfq)
696 if (ecore_pf_wfq_rt_init
697 (p_hwfn, port_id, pf_id, pf_wfq, max_phys_tcs_per_port,
698 num_pf_pqs + num_vf_pqs, pq_params) != 0)
699 return -1;
700 /* init PF RL */
701 if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl) != 0)
702 return -1;
703 /* set VPORT WFQ */
704 if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params) != 0)
705 return -1;
706 /* set VPORT RL */
707 if (ecore_vport_rl_rt_init
708 (p_hwfn, start_vport, num_vports, vport_params) != 0)
709 return -1;
710 return 0;
711 }
712
713 int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
714 struct ecore_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
715 {
716 u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
717 if (inc_val == 0 || inc_val > QM_WFQ_MAX_INC_VAL) {
718 DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration");
719 return -1;
720 }
721 ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
722 return 0;
723 }
724
725 int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
726 struct ecore_ptt *p_ptt, u8 pf_id, u32 pf_rl)
727 {
728 u32 inc_val = QM_RL_INC_VAL(pf_rl);
729 if (inc_val > QM_RL_MAX_INC_VAL) {
730 DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration");
731 return -1;
732 }
733 ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4,
734 (u32)QM_RL_CRD_REG_SIGN_BIT);
735 ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
736 return 0;
737 }
738
739 int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
740 struct ecore_ptt *p_ptt,
741 u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
742 {
743 u8 tc;
744 u32 inc_val = QM_WFQ_INC_VAL(vport_wfq);
745 if (inc_val == 0 || inc_val > QM_WFQ_MAX_INC_VAL) {
746 DP_NOTICE(p_hwfn, true,
747 "Invalid VPORT WFQ weight configuration");
748 return -1;
749 }
750 for (tc = 0; tc < NUM_OF_TCS; tc++) {
751 u16 vport_pq_id = first_tx_pq_id[tc];
752 if (vport_pq_id != QM_INVALID_PQ_ID) {
753 ecore_wr(p_hwfn, p_ptt,
754 QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
755 }
756 }
757 return 0;
758 }
759
760 int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
761 struct ecore_ptt *p_ptt, u8 vport_id, u32 vport_rl)
762 {
763 u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
764 if (vport_id >= max_qm_global_rls) {
765 DP_NOTICE(p_hwfn, true,
766 "Invalid VPORT ID for rate limiter configuration");
767 return -1;
768 }
769 inc_val = QM_RL_INC_VAL(vport_rl);
770 if (inc_val > QM_RL_MAX_INC_VAL) {
771 DP_NOTICE(p_hwfn, true,
772 "Invalid VPORT rate-limit configuration");
773 return -1;
774 }
775 ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4,
776 (u32)QM_RL_CRD_REG_SIGN_BIT);
777 ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
778 return 0;
779 }
780
781 bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
782 struct ecore_ptt *p_ptt,
783 bool is_release_cmd,
784 bool is_tx_pq, u16 start_pq, u16 num_pqs)
785 {
786 u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
787 u32 pq_mask = 0, last_pq = start_pq + num_pqs - 1, pq_id;
788 /* set command's PQ type */
789 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
790 /* go over requested PQs */
791 for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
792 /* set PQ bit in mask (stop command only) */
793 if (!is_release_cmd)
794 pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
795 /* if last PQ or end of PQ mask, write command */
796 if ((pq_id == last_pq) ||
797 (pq_id % QM_STOP_PQ_MASK_WIDTH ==
798 (QM_STOP_PQ_MASK_WIDTH - 1))) {
799 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PAUSE_MASK,
800 pq_mask);
801 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID,
802 pq_id / QM_STOP_PQ_MASK_WIDTH);
803 if (!ecore_send_qm_cmd
804 (p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0],
805 cmd_arr[1]))
806 return false;
807 pq_mask = 0;
808 }
809 }
810 return true;
811 }
812
813 /* NIG: ETS configuration constants */
814 #define NIG_TX_ETS_CLIENT_OFFSET 4
815 #define NIG_LB_ETS_CLIENT_OFFSET 1
816 #define NIG_ETS_MIN_WFQ_BYTES 1600
817 /* NIG: ETS constants */
818 #define NIG_ETS_UP_BOUND(weight, mtu) \
819 (2 * ((weight) > (mtu) ? (weight) : (mtu)))
820 /* NIG: RL constants */
821 #define NIG_RL_BASE_TYPE 1 /* byte base type */
822 #define NIG_RL_PERIOD 1 /* in us */
823 #define NIG_RL_PERIOD_CLK_25M (25 * NIG_RL_PERIOD)
824 #define NIG_RL_INC_VAL(rate) (((rate) * NIG_RL_PERIOD) / 8)
825 #define NIG_RL_MAX_VAL(inc_val, mtu) \
826 (2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
827 /* NIG: packet prioritry configuration constants */
828 #define NIG_PRIORITY_MAP_TC_BITS 4
829 void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
830 struct ecore_ptt *p_ptt,
831 struct init_ets_req *req, bool is_lb)
832 {
833 u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
834 u8 num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
835 u8 tc_client_offset =
836 is_lb ? NIG_LB_ETS_CLIENT_OFFSET : NIG_TX_ETS_CLIENT_OFFSET;
837 u32 min_weight = 0xffffffff;
838 u32 tc_weight_base_addr =
839 is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
840 NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
841 u32 tc_weight_addr_diff =
842 is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 -
843 NIG_REG_LB_ARB_CREDIT_WEIGHT_0 : NIG_REG_TX_ARB_CREDIT_WEIGHT_1 -
844 NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
845 u32 tc_bound_base_addr =
846 is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
847 NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
848 u32 tc_bound_addr_diff =
849 is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 -
850 NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
851 NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 -
852 NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
853 for (tc = 0; tc < num_tc; tc++) {
854 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
855 /* update SP map */
856 if (tc_req->use_sp)
857 sp_tc_map |= (1 << tc);
858 if (tc_req->use_wfq) {
859 /* update WFQ map */
860 wfq_tc_map |= (1 << tc);
861 /* find minimal weight */
862 if (tc_req->weight < min_weight)
863 min_weight = tc_req->weight;
864 }
865 }
866 /* write SP map */
867 ecore_wr(p_hwfn, p_ptt,
868 is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT :
869 NIG_REG_TX_ARB_CLIENT_IS_STRICT,
870 (sp_tc_map << tc_client_offset));
871 /* write WFQ map */
872 ecore_wr(p_hwfn, p_ptt,
873 is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ :
874 NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ,
875 (wfq_tc_map << tc_client_offset));
876 /* write WFQ weights */
877 for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
878 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
879 if (tc_req->use_wfq) {
880 /* translate weight to bytes */
881 u32 byte_weight =
882 (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) /
883 min_weight;
884 /* write WFQ weight */
885 ecore_wr(p_hwfn, p_ptt,
886 tc_weight_base_addr +
887 tc_weight_addr_diff * tc_client_offset,
888 byte_weight);
889 /* write WFQ upper bound */
890 ecore_wr(p_hwfn, p_ptt,
891 tc_bound_base_addr +
892 tc_bound_addr_diff * tc_client_offset,
893 NIG_ETS_UP_BOUND(byte_weight, req->mtu));
894 }
895 }
896 }
897
898 void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
899 struct ecore_ptt *p_ptt,
900 struct init_nig_lb_rl_req *req)
901 {
902 u8 tc;
903 u32 ctrl, inc_val, reg_offset;
904 /* disable global MAC+LB RL */
905 ctrl =
906 NIG_RL_BASE_TYPE <<
907 NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
908 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
909 /* configure and enable global MAC+LB RL */
910 if (req->lb_mac_rate) {
911 /* configure */
912 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD,
913 NIG_RL_PERIOD_CLK_25M);
914 inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
915 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE,
916 inc_val);
917 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE,
918 NIG_RL_MAX_VAL(inc_val, req->mtu));
919 /* enable */
920 ctrl |=
921 1 <<
922 NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
923 ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
924 }
925 /* disable global LB-only RL */
926 ctrl =
927 NIG_RL_BASE_TYPE <<
928 NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
929 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
930 /* configure and enable global LB-only RL */
931 if (req->lb_rate) {
932 /* configure */
933 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD,
934 NIG_RL_PERIOD_CLK_25M);
935 inc_val = NIG_RL_INC_VAL(req->lb_rate);
936 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE,
937 inc_val);
938 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE,
939 NIG_RL_MAX_VAL(inc_val, req->mtu));
940 /* enable */
941 ctrl |=
942 1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
943 ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
944 }
945 /* per-TC RLs */
946 for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS;
947 tc++, reg_offset += 4) {
948 /* disable TC RL */
949 ctrl =
950 NIG_RL_BASE_TYPE <<
951 NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
952 ecore_wr(p_hwfn, p_ptt,
953 NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
954 /* configure and enable TC RL */
955 if (req->tc_rate[tc]) {
956 /* configure */
957 ecore_wr(p_hwfn, p_ptt,
958 NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 +
959 reg_offset, NIG_RL_PERIOD_CLK_25M);
960 inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
961 ecore_wr(p_hwfn, p_ptt,
962 NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 +
963 reg_offset, inc_val);
964 ecore_wr(p_hwfn, p_ptt,
965 NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 +
966 reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
967 /* enable */
968 ctrl |=
969 1 <<
970 NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
971 ecore_wr(p_hwfn, p_ptt,
972 NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset,
973 ctrl);
974 }
975 }
976 }
977
978 void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
979 struct ecore_ptt *p_ptt,
980 struct init_nig_pri_tc_map_req *req)
981 {
982 u8 pri, tc;
983 u32 pri_tc_mask = 0;
984 u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
985 for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
986 if (req->pri[pri].valid) {
987 pri_tc_mask |=
988 (req->pri[pri].
989 tc_id << (pri * NIG_PRIORITY_MAP_TC_BITS));
990 tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
991 }
992 }
993 /* write priority -> TC mask */
994 ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
995 /* write TC -> priority mask */
996 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
997 ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4,
998 tc_pri_mask[tc]);
999 ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4,
1000 tc_pri_mask[tc]);
1001 }
1002 }
1003
1004 /* PRS: ETS configuration constants */
1005 #define PRS_ETS_MIN_WFQ_BYTES 1600
1006 #define PRS_ETS_UP_BOUND(weight, mtu) \
1007 (2 * ((weight) > (mtu) ? (weight) : (mtu)))
1008 void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
1009 struct ecore_ptt *p_ptt, struct init_ets_req *req)
1010 {
1011 u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
1012 u32 min_weight = 0xffffffff;
1013 u32 tc_weight_addr_diff =
1014 PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 - PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
1015 u32 tc_bound_addr_diff =
1016 PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 -
1017 PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
1018 for (tc = 0; tc < NUM_OF_TCS; tc++) {
1019 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1020 /* update SP map */
1021 if (tc_req->use_sp)
1022 sp_tc_map |= (1 << tc);
1023 if (tc_req->use_wfq) {
1024 /* update WFQ map */
1025 wfq_tc_map |= (1 << tc);
1026 /* find minimal weight */
1027 if (tc_req->weight < min_weight)
1028 min_weight = tc_req->weight;
1029 }
1030 }
1031 /* write SP map */
1032 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
1033 /* write WFQ map */
1034 ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ,
1035 wfq_tc_map);
1036 /* write WFQ weights */
1037 for (tc = 0; tc < NUM_OF_TCS; tc++) {
1038 struct init_ets_tc_req *tc_req = &req->tc_req[tc];
1039 if (tc_req->use_wfq) {
1040 /* translate weight to bytes */
1041 u32 byte_weight =
1042 (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) /
1043 min_weight;
1044 /* write WFQ weight */
1045 ecore_wr(p_hwfn, p_ptt,
1046 PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 +
1047 tc * tc_weight_addr_diff, byte_weight);
1048 /* write WFQ upper bound */
1049 ecore_wr(p_hwfn, p_ptt,
1050 PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 +
1051 tc * tc_bound_addr_diff,
1052 PRS_ETS_UP_BOUND(byte_weight, req->mtu));
1053 }
1054 }
1055 }
1056
1057 /* BRB: RAM configuration constants */
1058 #define BRB_TOTAL_RAM_BLOCKS_BB 4800
1059 #define BRB_TOTAL_RAM_BLOCKS_K2 5632
1060 #define BRB_BLOCK_SIZE 128 /* in bytes */
1061 #define BRB_MIN_BLOCKS_PER_TC 9
1062 #define BRB_HYST_BYTES 10240
1063 #define BRB_HYST_BLOCKS (BRB_HYST_BYTES / BRB_BLOCK_SIZE)
1064 /*
1065 * temporary big RAM allocation - should be updated
1066 */
1067 void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
1068 struct ecore_ptt *p_ptt, struct init_brb_ram_req *req)
1069 {
1070 u8 port, active_ports = 0;
1071 u32 active_port_blocks, reg_offset = 0;
1072 u32 tc_headroom_blocks =
1073 (u32)DIV_ROUND_UP(req->headroom_per_tc, BRB_BLOCK_SIZE);
1074 u32 min_pkt_size_blocks =
1075 (u32)DIV_ROUND_UP(req->min_pkt_size, BRB_BLOCK_SIZE);
1076 u32 total_blocks =
1077 ECORE_IS_K2(p_hwfn->
1078 p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 :
1079 BRB_TOTAL_RAM_BLOCKS_BB;
1080 /* find number of active ports */
1081 for (port = 0; port < MAX_NUM_PORTS; port++)
1082 if (req->num_active_tcs[port])
1083 active_ports++;
1084 active_port_blocks = (u32)(total_blocks / active_ports);
1085 for (port = 0; port < req->max_ports_per_engine; port++) {
1086 /* calculate per-port sizes */
1087 u32 tc_guaranteed_blocks =
1088 (u32)DIV_ROUND_UP(req->guranteed_per_tc, BRB_BLOCK_SIZE);
1089 u32 port_blocks =
1090 req->num_active_tcs[port] ? active_port_blocks : 0;
1091 u32 port_guaranteed_blocks =
1092 req->num_active_tcs[port] * tc_guaranteed_blocks;
1093 u32 port_shared_blocks = port_blocks - port_guaranteed_blocks;
1094 u32 full_xoff_th =
1095 req->num_active_tcs[port] * BRB_MIN_BLOCKS_PER_TC;
1096 u32 full_xon_th = full_xoff_th + min_pkt_size_blocks;
1097 u32 pause_xoff_th = tc_headroom_blocks;
1098 u32 pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
1099 u8 tc;
1100 /* init total size per port */
1101 ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4,
1102 port_blocks);
1103 /* init shared size per port */
1104 ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4,
1105 port_shared_blocks);
1106 for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
1107 /* clear init values for non-active TCs */
1108 if (tc == req->num_active_tcs[port]) {
1109 tc_guaranteed_blocks = 0;
1110 full_xoff_th = 0;
1111 full_xon_th = 0;
1112 pause_xoff_th = 0;
1113 pause_xon_th = 0;
1114 }
1115 /* init guaranteed size per TC */
1116 ecore_wr(p_hwfn, p_ptt,
1117 BRB_REG_TC_GUARANTIED_0 + reg_offset,
1118 tc_guaranteed_blocks);
1119 ecore_wr(p_hwfn, p_ptt,
1120 BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset,
1121 BRB_HYST_BLOCKS);
1122 /* init pause/full thresholds per physical TC - for loopback traffic */
1123
1124 ecore_wr(p_hwfn, p_ptt,
1125 BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 +
1126 reg_offset, full_xoff_th);
1127 ecore_wr(p_hwfn, p_ptt,
1128 BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 +
1129 reg_offset, full_xon_th);
1130 ecore_wr(p_hwfn, p_ptt,
1131 BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 +
1132 reg_offset, pause_xoff_th);
1133 ecore_wr(p_hwfn, p_ptt,
1134 BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 +
1135 reg_offset, pause_xon_th);
1136 /* init pause/full thresholds per physical TC - for main traffic */
1137 ecore_wr(p_hwfn, p_ptt,
1138 BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 +
1139 reg_offset, full_xoff_th);
1140 ecore_wr(p_hwfn, p_ptt,
1141 BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 +
1142 reg_offset, full_xon_th);
1143 ecore_wr(p_hwfn, p_ptt,
1144 BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 +
1145 reg_offset, pause_xoff_th);
1146 ecore_wr(p_hwfn, p_ptt,
1147 BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 +
1148 reg_offset, pause_xon_th);
1149 }
1150 }
1151 }
1152
1153 /*In MF should be called once per engine to set EtherType of OuterTag*/
1154 void ecore_set_engine_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn,
1155 struct ecore_ptt *p_ptt, u32 ethType)
1156 {
1157 /* update PRS register */
1158 STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET, ethType);
1159 /* update NIG register */
1160 STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET, ethType);
1161 /* update PBF register */
1162 STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET, ethType);
1163 }
1164
1165 /*In MF should be called once per port to set EtherType of OuterTag*/
1166 void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn,
1167 struct ecore_ptt *p_ptt, u32 ethType)
1168 {
1169 /* update DORQ register */
1170 STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
1171 }
1172
1173 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
1174 (var = ((var) & ~(1 << (offset))) | ((enable) ? (1 << (offset)) : 0))
1175 #define PRS_ETH_TUNN_FIC_FORMAT -188897008
1176 void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
1177 struct ecore_ptt *p_ptt, u16 dest_port)
1178 {
1179 /* update PRS register */
1180 ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1181 /* update NIG register */
1182 ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1183 /* update PBF register */
1184 ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1185 }
1186
1187 void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
1188 struct ecore_ptt *p_ptt, bool vxlan_enable)
1189 {
1190 u32 reg_val;
1191 /* update PRS register */
1192 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1193 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1194 PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT,
1195 vxlan_enable);
1196 ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1197 if (reg_val) {
1198 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1199 (u32)PRS_ETH_TUNN_FIC_FORMAT);
1200 }
1201 /* update NIG register */
1202 reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1203 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1204 NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT,
1205 vxlan_enable);
1206 ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1207 /* update DORQ register */
1208 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN,
1209 vxlan_enable ? 1 : 0);
1210 }
1211
1212 void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
1213 struct ecore_ptt *p_ptt,
1214 bool eth_gre_enable, bool ip_gre_enable)
1215 {
1216 u32 reg_val;
1217 /* update PRS register */
1218 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1219 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1220 PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT,
1221 eth_gre_enable);
1222 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1223 PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT,
1224 ip_gre_enable);
1225 ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1226 if (reg_val) {
1227 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1228 (u32)PRS_ETH_TUNN_FIC_FORMAT);
1229 }
1230 /* update NIG register */
1231 reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1232 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1233 NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT,
1234 eth_gre_enable);
1235 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1236 NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT,
1237 ip_gre_enable);
1238 ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1239 /* update DORQ registers */
1240 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN,
1241 eth_gre_enable ? 1 : 0);
1242 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN,
1243 ip_gre_enable ? 1 : 0);
1244 }
1245
1246 void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
1247 struct ecore_ptt *p_ptt, u16 dest_port)
1248 {
1249 /* geneve tunnel not supported in BB_A0 */
1250 if (ECORE_IS_BB_A0(p_hwfn->p_dev))
1251 return;
1252 /* update PRS register */
1253 ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1254 /* update NIG register */
1255 ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1256 /* update PBF register */
1257 ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1258 }
1259
1260 void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
1261 struct ecore_ptt *p_ptt,
1262 bool eth_geneve_enable, bool ip_geneve_enable)
1263 {
1264 u32 reg_val;
1265 /* geneve tunnel not supported in BB_A0 */
1266 if (ECORE_IS_BB_A0(p_hwfn->p_dev))
1267 return;
1268 /* update PRS register */
1269 reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1270 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1271 PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT,
1272 eth_geneve_enable);
1273 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val,
1274 PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT,
1275 ip_geneve_enable);
1276 ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1277 if (reg_val) {
1278 ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
1279 (u32)PRS_ETH_TUNN_FIC_FORMAT);
1280 }
1281 /* update NIG register */
1282 ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1283 eth_geneve_enable ? 1 : 0);
1284 ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE,
1285 ip_geneve_enable ? 1 : 0);
1286 /* comp ver */
1287 reg_val = (ip_geneve_enable || eth_geneve_enable) ? 1 : 0;
1288 ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_COMP_VER, reg_val);
1289 ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_COMP_VER, reg_val);
1290 ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_COMP_VER, reg_val);
1291 /* EDPM with geneve tunnel not supported in BB_B0 */
1292 if (ECORE_IS_BB_B0(p_hwfn->p_dev))
1293 return;
1294 /* update DORQ registers */
1295 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN,
1296 eth_geneve_enable ? 1 : 0);
1297 ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN,
1298 ip_geneve_enable ? 1 : 0);
1299 }
1300
1301 #define T_ETH_PACKET_ACTION_GFT_EVENTID 23
1302 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
1303 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1304 #define PARSER_ETH_CONN_CM_HDR (0x0)
1305 #define CAM_LINE_SIZE sizeof(u32)
1306 #define RAM_LINE_SIZE sizeof(u64)
1307 #define REG_SIZE sizeof(u32)
1308
1309 void ecore_set_gft_event_id_cm_hdr(struct ecore_hwfn *p_hwfn,
1310 struct ecore_ptt *p_ptt)
1311 {
1312 /* set RFS event ID to be awakened i Tstorm By Prs */
1313 u32 rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1314 rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID <<
1315 PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1316 rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR <<
1317 PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1318 ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1319 }
1320
1321 void ecore_set_rfs_mode_enable(struct ecore_hwfn *p_hwfn,
1322 struct ecore_ptt *p_ptt,
1323 u16 pf_id,
1324 bool tcp,
1325 bool udp,
1326 bool ipv4,
1327 bool ipv6)
1328 {
1329 u32 rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
1330 union gft_cam_line_union camLine;
1331 struct gft_ram_line ramLine;
1332 u32 *ramLinePointer = (u32 *)&ramLine;
1333 int i;
1334 if (!ipv6 && !ipv4)
1335 DP_NOTICE(p_hwfn, true,
1336 "set_rfs_mode_enable: must accept at "
1337 "least on of - ipv4 or ipv6");
1338 if (!tcp && !udp)
1339 DP_NOTICE(p_hwfn, true,
1340 "set_rfs_mode_enable: must accept at "
1341 "least on of - udp or tcp");
1342 /* set RFS event ID to be awakened i Tstorm By Prs */
1343 rfs_cm_hdr_event_id |= T_ETH_PACKET_MATCH_RFS_EVENTID <<
1344 PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1345 rfs_cm_hdr_event_id |= PARSER_ETH_CONN_CM_HDR <<
1346 PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1347 ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
1348 /* Configure Registers for RFS mode */
1349 /* enable gft search */
1350 ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1351 ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0); /* do not load
1352 * context only cid
1353 * in PRS on match
1354 */
1355 camLine.cam_line_mapped.camline = 0;
1356 /* cam line is now valid!! */
1357 SET_FIELD(camLine.cam_line_mapped.camline,
1358 GFT_CAM_LINE_MAPPED_VALID, 1);
1359 /* filters are per PF!! */
1360 SET_FIELD(camLine.cam_line_mapped.camline,
1361 GFT_CAM_LINE_MAPPED_PF_ID_MASK, 1);
1362 SET_FIELD(camLine.cam_line_mapped.camline,
1363 GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1364 if (!(tcp && udp)) {
1365 SET_FIELD(camLine.cam_line_mapped.camline,
1366 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, 1);
1367 if (tcp)
1368 SET_FIELD(camLine.cam_line_mapped.camline,
1369 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1370 GFT_PROFILE_TCP_PROTOCOL);
1371 else
1372 SET_FIELD(camLine.cam_line_mapped.camline,
1373 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1374 GFT_PROFILE_UDP_PROTOCOL);
1375 }
1376 if (!(ipv4 && ipv6)) {
1377 SET_FIELD(camLine.cam_line_mapped.camline,
1378 GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1379 if (ipv4)
1380 SET_FIELD(camLine.cam_line_mapped.camline,
1381 GFT_CAM_LINE_MAPPED_IP_VERSION,
1382 GFT_PROFILE_IPV4);
1383 else
1384 SET_FIELD(camLine.cam_line_mapped.camline,
1385 GFT_CAM_LINE_MAPPED_IP_VERSION,
1386 GFT_PROFILE_IPV6);
1387 }
1388 /* write characteristics to cam */
1389 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1390 camLine.cam_line_mapped.camline);
1391 camLine.cam_line_mapped.camline =
1392 ecore_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1393 /* write line to RAM - compare to filter 4 tuple */
1394 ramLine.low32bits = 0;
1395 ramLine.high32bits = 0;
1396 SET_FIELD(ramLine.high32bits, GFT_RAM_LINE_DST_IP, 1);
1397 SET_FIELD(ramLine.high32bits, GFT_RAM_LINE_SRC_IP, 1);
1398 SET_FIELD(ramLine.low32bits, GFT_RAM_LINE_SRC_PORT, 1);
1399 SET_FIELD(ramLine.low32bits, GFT_RAM_LINE_DST_PORT, 1);
1400 /* each iteration write to reg */
1401 for (i = 0; i < RAM_LINE_SIZE / REG_SIZE; i++)
1402 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM +
1403 RAM_LINE_SIZE * pf_id +
1404 i * REG_SIZE, *(ramLinePointer + i));
1405 /* set default profile so that no filter match will happen */
1406 ramLine.low32bits = 0xffff;
1407 ramLine.high32bits = 0xffff;
1408 for (i = 0; i < RAM_LINE_SIZE / REG_SIZE; i++)
1409 ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM +
1410 RAM_LINE_SIZE * PRS_GFT_CAM_LINES_NO_MATCH +
1411 i * REG_SIZE, *(ramLinePointer + i));
1412 }
1413
1414 /* Configure VF zone size mode*/
1415 void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn,
1416 struct ecore_ptt *p_ptt, u16 mode,
1417 bool runtime_init)
1418 {
1419 u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
1420 u32 msdm_vf_offset_mask;
1421 if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
1422 msdm_vf_size_log += 1;
1423 else if (mode == VF_ZONE_SIZE_MODE_QUAD)
1424 msdm_vf_size_log += 2;
1425 msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
1426 if (runtime_init) {
1427 STORE_RT_REG(p_hwfn,
1428 PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET,
1429 msdm_vf_size_log);
1430 STORE_RT_REG(p_hwfn,
1431 PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET,
1432 msdm_vf_offset_mask);
1433 } else {
1434 ecore_wr(p_hwfn, p_ptt,
1435 PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
1436 ecore_wr(p_hwfn, p_ptt,
1437 PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
1438 }
1439 }
1440
1441 /* get mstorm statistics for offset by VF zone size mode*/
1442 u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn,
1443 u16 stat_cnt_id,
1444 u16 vf_zone_size_mode)
1445 {
1446 u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
1447 if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) &&
1448 (stat_cnt_id > MAX_NUM_PFS)) {
1449 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1450 offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1451 (stat_cnt_id - MAX_NUM_PFS);
1452 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1453 offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1454 (stat_cnt_id - MAX_NUM_PFS);
1455 }
1456 return offset;
1457 }
1458
1459 /* get mstorm VF producer offset by VF zone size mode*/
1460 u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn,
1461 u8 vf_id,
1462 u8 vf_queue_id,
1463 u16 vf_zone_size_mode)
1464 {
1465 u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
1466 if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
1467 if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
1468 offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1469 vf_id;
1470 else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
1471 offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) *
1472 vf_id;
1473 }
1474 return offset;
1475 }