]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/examples/ip_fragmentation/main.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / examples / ip_fragmentation / main.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <string.h>
41 #include <sys/queue.h>
42 #include <stdarg.h>
43 #include <errno.h>
44 #include <getopt.h>
45
46 #include <rte_common.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_eal.h>
53 #include <rte_per_lcore.h>
54 #include <rte_launch.h>
55 #include <rte_atomic.h>
56 #include <rte_cycles.h>
57 #include <rte_prefetch.h>
58 #include <rte_lcore.h>
59 #include <rte_per_lcore.h>
60 #include <rte_branch_prediction.h>
61 #include <rte_interrupts.h>
62 #include <rte_pci.h>
63 #include <rte_random.h>
64 #include <rte_debug.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
67 #include <rte_mempool.h>
68 #include <rte_mbuf.h>
69 #include <rte_lpm.h>
70 #include <rte_lpm6.h>
71 #include <rte_ip.h>
72 #include <rte_string_fns.h>
73
74 #include <rte_ip_frag.h>
75
76 #define RTE_LOGTYPE_IP_FRAG RTE_LOGTYPE_USER1
77
78 /* allow max jumbo frame 9.5 KB */
79 #define JUMBO_FRAME_MAX_SIZE 0x2600
80
81 #define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b))
82
83 /*
84 * Default byte size for the IPv6 Maximum Transfer Unit (MTU).
85 * This value includes the size of IPv6 header.
86 */
87 #define IPV4_MTU_DEFAULT ETHER_MTU
88 #define IPV6_MTU_DEFAULT ETHER_MTU
89
90 /*
91 * Default payload in bytes for the IPv6 packet.
92 */
93 #define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr))
94 #define IPV6_DEFAULT_PAYLOAD (IPV6_MTU_DEFAULT - sizeof(struct ipv6_hdr))
95
96 /*
97 * Max number of fragments per packet expected - defined by config file.
98 */
99 #define MAX_PACKET_FRAG RTE_LIBRTE_IP_FRAG_MAX_FRAG
100
101 #define NB_MBUF 8192
102
103 #define MAX_PKT_BURST 32
104 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
105
106 /* Configure how many packets ahead to prefetch, when reading packets */
107 #define PREFETCH_OFFSET 3
108
109 /*
110 * Configurable number of RX/TX ring descriptors
111 */
112 #define RTE_TEST_RX_DESC_DEFAULT 128
113 #define RTE_TEST_TX_DESC_DEFAULT 512
114 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
115 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
116
117 /* ethernet addresses of ports */
118 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
119
120 #ifndef IPv4_BYTES
121 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
122 #define IPv4_BYTES(addr) \
123 (uint8_t) (((addr) >> 24) & 0xFF),\
124 (uint8_t) (((addr) >> 16) & 0xFF),\
125 (uint8_t) (((addr) >> 8) & 0xFF),\
126 (uint8_t) ((addr) & 0xFF)
127 #endif
128
129 #ifndef IPv6_BYTES
130 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
131 "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
132 #define IPv6_BYTES(addr) \
133 addr[0], addr[1], addr[2], addr[3], \
134 addr[4], addr[5], addr[6], addr[7], \
135 addr[8], addr[9], addr[10], addr[11],\
136 addr[12], addr[13],addr[14], addr[15]
137 #endif
138
139 #define IPV6_ADDR_LEN 16
140
141 /* mask of enabled ports */
142 static int enabled_port_mask = 0;
143
144 static int rx_queue_per_lcore = 1;
145
146 #define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
147
148 struct mbuf_table {
149 uint16_t len;
150 struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
151 };
152
153 struct rx_queue {
154 struct rte_mempool *direct_pool;
155 struct rte_mempool *indirect_pool;
156 struct rte_lpm *lpm;
157 struct rte_lpm6 *lpm6;
158 uint8_t portid;
159 };
160
161 #define MAX_RX_QUEUE_PER_LCORE 16
162 #define MAX_TX_QUEUE_PER_PORT 16
163 struct lcore_queue_conf {
164 uint16_t n_rx_queue;
165 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
166 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
167 struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
168 } __rte_cache_aligned;
169 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
170
171 static const struct rte_eth_conf port_conf = {
172 .rxmode = {
173 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
174 .split_hdr_size = 0,
175 .header_split = 0, /**< Header Split disabled */
176 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
177 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
178 .jumbo_frame = 1, /**< Jumbo Frame Support enabled */
179 .hw_strip_crc = 0, /**< CRC stripped by hardware */
180 },
181 .txmode = {
182 .mq_mode = ETH_MQ_TX_NONE,
183 },
184 };
185
186 /*
187 * IPv4 forwarding table
188 */
189 struct l3fwd_ipv4_route {
190 uint32_t ip;
191 uint8_t depth;
192 uint8_t if_out;
193 };
194
195 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
196 {IPv4(100,10,0,0), 16, 0},
197 {IPv4(100,20,0,0), 16, 1},
198 {IPv4(100,30,0,0), 16, 2},
199 {IPv4(100,40,0,0), 16, 3},
200 {IPv4(100,50,0,0), 16, 4},
201 {IPv4(100,60,0,0), 16, 5},
202 {IPv4(100,70,0,0), 16, 6},
203 {IPv4(100,80,0,0), 16, 7},
204 };
205
206 /*
207 * IPv6 forwarding table
208 */
209
210 struct l3fwd_ipv6_route {
211 uint8_t ip[IPV6_ADDR_LEN];
212 uint8_t depth;
213 uint8_t if_out;
214 };
215
216 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
217 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
218 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
219 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
220 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
221 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
222 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
223 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
224 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
225 };
226
227 #define LPM_MAX_RULES 1024
228 #define LPM6_MAX_RULES 1024
229 #define LPM6_NUMBER_TBL8S (1 << 16)
230
231 struct rte_lpm6_config lpm6_config = {
232 .max_rules = LPM6_MAX_RULES,
233 .number_tbl8s = LPM6_NUMBER_TBL8S,
234 .flags = 0
235 };
236
237 static struct rte_mempool *socket_direct_pool[RTE_MAX_NUMA_NODES];
238 static struct rte_mempool *socket_indirect_pool[RTE_MAX_NUMA_NODES];
239 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
240 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
241
242 /* Send burst of packets on an output interface */
243 static inline int
244 send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port)
245 {
246 struct rte_mbuf **m_table;
247 int ret;
248 uint16_t queueid;
249
250 queueid = qconf->tx_queue_id[port];
251 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
252
253 ret = rte_eth_tx_burst(port, queueid, m_table, n);
254 if (unlikely(ret < n)) {
255 do {
256 rte_pktmbuf_free(m_table[ret]);
257 } while (++ret < n);
258 }
259
260 return 0;
261 }
262
263 static inline void
264 l3fwd_simple_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf,
265 uint8_t queueid, uint8_t port_in)
266 {
267 struct rx_queue *rxq;
268 uint32_t i, len, next_hop_ipv4;
269 uint8_t next_hop_ipv6, port_out, ipv6;
270 int32_t len2;
271
272 ipv6 = 0;
273 rxq = &qconf->rx_queue_list[queueid];
274
275 /* by default, send everything back to the source port */
276 port_out = port_in;
277
278 /* Remove the Ethernet header and trailer from the input packet */
279 rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
280
281 /* Build transmission burst */
282 len = qconf->tx_mbufs[port_out].len;
283
284 /* if this is an IPv4 packet */
285 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
286 struct ipv4_hdr *ip_hdr;
287 uint32_t ip_dst;
288 /* Read the lookup key (i.e. ip_dst) from the input packet */
289 ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *);
290 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
291
292 /* Find destination port */
293 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop_ipv4) == 0 &&
294 (enabled_port_mask & 1 << next_hop_ipv4) != 0) {
295 port_out = next_hop_ipv4;
296
297 /* Build transmission burst for new port */
298 len = qconf->tx_mbufs[port_out].len;
299 }
300
301 /* if we don't need to do any fragmentation */
302 if (likely (IPV4_MTU_DEFAULT >= m->pkt_len)) {
303 qconf->tx_mbufs[port_out].m_table[len] = m;
304 len2 = 1;
305 } else {
306 len2 = rte_ipv4_fragment_packet(m,
307 &qconf->tx_mbufs[port_out].m_table[len],
308 (uint16_t)(MBUF_TABLE_SIZE - len),
309 IPV4_MTU_DEFAULT,
310 rxq->direct_pool, rxq->indirect_pool);
311
312 /* Free input packet */
313 rte_pktmbuf_free(m);
314
315 /* If we fail to fragment the packet */
316 if (unlikely (len2 < 0))
317 return;
318 }
319 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
320 /* if this is an IPv6 packet */
321 struct ipv6_hdr *ip_hdr;
322
323 ipv6 = 1;
324
325 /* Read the lookup key (i.e. ip_dst) from the input packet */
326 ip_hdr = rte_pktmbuf_mtod(m, struct ipv6_hdr *);
327
328 /* Find destination port */
329 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop_ipv6) == 0 &&
330 (enabled_port_mask & 1 << next_hop_ipv6) != 0) {
331 port_out = next_hop_ipv6;
332
333 /* Build transmission burst for new port */
334 len = qconf->tx_mbufs[port_out].len;
335 }
336
337 /* if we don't need to do any fragmentation */
338 if (likely (IPV6_MTU_DEFAULT >= m->pkt_len)) {
339 qconf->tx_mbufs[port_out].m_table[len] = m;
340 len2 = 1;
341 } else {
342 len2 = rte_ipv6_fragment_packet(m,
343 &qconf->tx_mbufs[port_out].m_table[len],
344 (uint16_t)(MBUF_TABLE_SIZE - len),
345 IPV6_MTU_DEFAULT,
346 rxq->direct_pool, rxq->indirect_pool);
347
348 /* Free input packet */
349 rte_pktmbuf_free(m);
350
351 /* If we fail to fragment the packet */
352 if (unlikely (len2 < 0))
353 return;
354 }
355 }
356 /* else, just forward the packet */
357 else {
358 qconf->tx_mbufs[port_out].m_table[len] = m;
359 len2 = 1;
360 }
361
362 for (i = len; i < len + len2; i ++) {
363 void *d_addr_bytes;
364
365 m = qconf->tx_mbufs[port_out].m_table[i];
366 struct ether_hdr *eth_hdr = (struct ether_hdr *)
367 rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr));
368 if (eth_hdr == NULL) {
369 rte_panic("No headroom in mbuf.\n");
370 }
371
372 m->l2_len = sizeof(struct ether_hdr);
373
374 /* 02:00:00:00:00:xx */
375 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
376 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)port_out << 40);
377
378 /* src addr */
379 ether_addr_copy(&ports_eth_addr[port_out], &eth_hdr->s_addr);
380 if (ipv6)
381 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6);
382 else
383 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
384 }
385
386 len += len2;
387
388 if (likely(len < MAX_PKT_BURST)) {
389 qconf->tx_mbufs[port_out].len = (uint16_t)len;
390 return;
391 }
392
393 /* Transmit packets */
394 send_burst(qconf, (uint16_t)len, port_out);
395 qconf->tx_mbufs[port_out].len = 0;
396 }
397
398 /* main processing loop */
399 static int
400 main_loop(__attribute__((unused)) void *dummy)
401 {
402 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
403 unsigned lcore_id;
404 uint64_t prev_tsc, diff_tsc, cur_tsc;
405 int i, j, nb_rx;
406 uint8_t portid;
407 struct lcore_queue_conf *qconf;
408 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
409
410 prev_tsc = 0;
411
412 lcore_id = rte_lcore_id();
413 qconf = &lcore_queue_conf[lcore_id];
414
415 if (qconf->n_rx_queue == 0) {
416 RTE_LOG(INFO, IP_FRAG, "lcore %u has nothing to do\n", lcore_id);
417 return 0;
418 }
419
420 RTE_LOG(INFO, IP_FRAG, "entering main loop on lcore %u\n", lcore_id);
421
422 for (i = 0; i < qconf->n_rx_queue; i++) {
423
424 portid = qconf->rx_queue_list[i].portid;
425 RTE_LOG(INFO, IP_FRAG, " -- lcoreid=%u portid=%d\n", lcore_id,
426 (int) portid);
427 }
428
429 while (1) {
430
431 cur_tsc = rte_rdtsc();
432
433 /*
434 * TX burst queue drain
435 */
436 diff_tsc = cur_tsc - prev_tsc;
437 if (unlikely(diff_tsc > drain_tsc)) {
438
439 /*
440 * This could be optimized (use queueid instead of
441 * portid), but it is not called so often
442 */
443 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
444 if (qconf->tx_mbufs[portid].len == 0)
445 continue;
446 send_burst(&lcore_queue_conf[lcore_id],
447 qconf->tx_mbufs[portid].len,
448 portid);
449 qconf->tx_mbufs[portid].len = 0;
450 }
451
452 prev_tsc = cur_tsc;
453 }
454
455 /*
456 * Read packet from RX queues
457 */
458 for (i = 0; i < qconf->n_rx_queue; i++) {
459
460 portid = qconf->rx_queue_list[i].portid;
461 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
462 MAX_PKT_BURST);
463
464 /* Prefetch first packets */
465 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
466 rte_prefetch0(rte_pktmbuf_mtod(
467 pkts_burst[j], void *));
468 }
469
470 /* Prefetch and forward already prefetched packets */
471 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
472 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
473 j + PREFETCH_OFFSET], void *));
474 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
475 }
476
477 /* Forward remaining prefetched packets */
478 for (; j < nb_rx; j++) {
479 l3fwd_simple_forward(pkts_burst[j], qconf, i, portid);
480 }
481 }
482 }
483 }
484
485 /* display usage */
486 static void
487 print_usage(const char *prgname)
488 {
489 printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
490 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
491 " -q NQ: number of queue (=ports) per lcore (default is 1)\n",
492 prgname);
493 }
494
495 static int
496 parse_portmask(const char *portmask)
497 {
498 char *end = NULL;
499 unsigned long pm;
500
501 /* parse hexadecimal string */
502 pm = strtoul(portmask, &end, 16);
503 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
504 return -1;
505
506 if (pm == 0)
507 return -1;
508
509 return pm;
510 }
511
512 static int
513 parse_nqueue(const char *q_arg)
514 {
515 char *end = NULL;
516 unsigned long n;
517
518 /* parse hexadecimal string */
519 n = strtoul(q_arg, &end, 10);
520 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
521 return -1;
522 if (n == 0)
523 return -1;
524 if (n >= MAX_RX_QUEUE_PER_LCORE)
525 return -1;
526
527 return n;
528 }
529
530 /* Parse the argument given in the command line of the application */
531 static int
532 parse_args(int argc, char **argv)
533 {
534 int opt, ret;
535 char **argvopt;
536 int option_index;
537 char *prgname = argv[0];
538 static struct option lgopts[] = {
539 {NULL, 0, 0, 0}
540 };
541
542 argvopt = argv;
543
544 while ((opt = getopt_long(argc, argvopt, "p:q:",
545 lgopts, &option_index)) != EOF) {
546
547 switch (opt) {
548 /* portmask */
549 case 'p':
550 enabled_port_mask = parse_portmask(optarg);
551 if (enabled_port_mask < 0) {
552 printf("invalid portmask\n");
553 print_usage(prgname);
554 return -1;
555 }
556 break;
557
558 /* nqueue */
559 case 'q':
560 rx_queue_per_lcore = parse_nqueue(optarg);
561 if (rx_queue_per_lcore < 0) {
562 printf("invalid queue number\n");
563 print_usage(prgname);
564 return -1;
565 }
566 break;
567
568 /* long options */
569 case 0:
570 print_usage(prgname);
571 return -1;
572
573 default:
574 print_usage(prgname);
575 return -1;
576 }
577 }
578
579 if (enabled_port_mask == 0) {
580 printf("portmask not specified\n");
581 print_usage(prgname);
582 return -1;
583 }
584
585 if (optind >= 0)
586 argv[optind-1] = prgname;
587
588 ret = optind-1;
589 optind = 0; /* reset getopt lib */
590 return ret;
591 }
592
593 static void
594 print_ethaddr(const char *name, struct ether_addr *eth_addr)
595 {
596 char buf[ETHER_ADDR_FMT_SIZE];
597 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
598 printf("%s%s", name, buf);
599 }
600
601 /* Check the link status of all ports in up to 9s, and print them finally */
602 static void
603 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
604 {
605 #define CHECK_INTERVAL 100 /* 100ms */
606 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
607 uint8_t portid, count, all_ports_up, print_flag = 0;
608 struct rte_eth_link link;
609
610 printf("\nChecking link status");
611 fflush(stdout);
612 for (count = 0; count <= MAX_CHECK_TIME; count++) {
613 all_ports_up = 1;
614 for (portid = 0; portid < port_num; portid++) {
615 if ((port_mask & (1 << portid)) == 0)
616 continue;
617 memset(&link, 0, sizeof(link));
618 rte_eth_link_get_nowait(portid, &link);
619 /* print link status if flag set */
620 if (print_flag == 1) {
621 if (link.link_status)
622 printf("Port %d Link Up - speed %u "
623 "Mbps - %s\n", (uint8_t)portid,
624 (unsigned)link.link_speed,
625 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
626 ("full-duplex") : ("half-duplex\n"));
627 else
628 printf("Port %d Link Down\n",
629 (uint8_t)portid);
630 continue;
631 }
632 /* clear all_ports_up flag if any link down */
633 if (link.link_status == ETH_LINK_DOWN) {
634 all_ports_up = 0;
635 break;
636 }
637 }
638 /* after finally printing all link status, get out */
639 if (print_flag == 1)
640 break;
641
642 if (all_ports_up == 0) {
643 printf(".");
644 fflush(stdout);
645 rte_delay_ms(CHECK_INTERVAL);
646 }
647
648 /* set the print_flag if all ports up or timeout */
649 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
650 print_flag = 1;
651 printf("\ndone\n");
652 }
653 }
654 }
655
656 static int
657 init_routing_table(void)
658 {
659 struct rte_lpm *lpm;
660 struct rte_lpm6 *lpm6;
661 int socket, ret;
662 unsigned i;
663
664 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
665 if (socket_lpm[socket]) {
666 lpm = socket_lpm[socket];
667 /* populate the LPM table */
668 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
669 ret = rte_lpm_add(lpm,
670 l3fwd_ipv4_route_array[i].ip,
671 l3fwd_ipv4_route_array[i].depth,
672 l3fwd_ipv4_route_array[i].if_out);
673
674 if (ret < 0) {
675 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
676 "LPM table\n", i);
677 return -1;
678 }
679
680 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv4_BYTES_FMT
681 "/%d (port %d)\n",
682 socket,
683 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
684 l3fwd_ipv4_route_array[i].depth,
685 l3fwd_ipv4_route_array[i].if_out);
686 }
687 }
688
689 if (socket_lpm6[socket]) {
690 lpm6 = socket_lpm6[socket];
691 /* populate the LPM6 table */
692 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
693 ret = rte_lpm6_add(lpm6,
694 l3fwd_ipv6_route_array[i].ip,
695 l3fwd_ipv6_route_array[i].depth,
696 l3fwd_ipv6_route_array[i].if_out);
697
698 if (ret < 0) {
699 RTE_LOG(ERR, IP_FRAG, "Unable to add entry %i to the l3fwd "
700 "LPM6 table\n", i);
701 return -1;
702 }
703
704 RTE_LOG(INFO, IP_FRAG, "Socket %i: adding route " IPv6_BYTES_FMT
705 "/%d (port %d)\n",
706 socket,
707 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
708 l3fwd_ipv6_route_array[i].depth,
709 l3fwd_ipv6_route_array[i].if_out);
710 }
711 }
712 }
713 return 0;
714 }
715
716 static int
717 init_mem(void)
718 {
719 char buf[PATH_MAX];
720 struct rte_mempool *mp;
721 struct rte_lpm *lpm;
722 struct rte_lpm6 *lpm6;
723 struct rte_lpm_config lpm_config;
724 int socket;
725 unsigned lcore_id;
726
727 /* traverse through lcores and initialize structures on each socket */
728
729 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
730
731 if (rte_lcore_is_enabled(lcore_id) == 0)
732 continue;
733
734 socket = rte_lcore_to_socket_id(lcore_id);
735
736 if (socket == SOCKET_ID_ANY)
737 socket = 0;
738
739 if (socket_direct_pool[socket] == NULL) {
740 RTE_LOG(INFO, IP_FRAG, "Creating direct mempool on socket %i\n",
741 socket);
742 snprintf(buf, sizeof(buf), "pool_direct_%i", socket);
743
744 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32,
745 0, RTE_MBUF_DEFAULT_BUF_SIZE, socket);
746 if (mp == NULL) {
747 RTE_LOG(ERR, IP_FRAG, "Cannot create direct mempool\n");
748 return -1;
749 }
750 socket_direct_pool[socket] = mp;
751 }
752
753 if (socket_indirect_pool[socket] == NULL) {
754 RTE_LOG(INFO, IP_FRAG, "Creating indirect mempool on socket %i\n",
755 socket);
756 snprintf(buf, sizeof(buf), "pool_indirect_%i", socket);
757
758 mp = rte_pktmbuf_pool_create(buf, NB_MBUF, 32, 0, 0,
759 socket);
760 if (mp == NULL) {
761 RTE_LOG(ERR, IP_FRAG, "Cannot create indirect mempool\n");
762 return -1;
763 }
764 socket_indirect_pool[socket] = mp;
765 }
766
767 if (socket_lpm[socket] == NULL) {
768 RTE_LOG(INFO, IP_FRAG, "Creating LPM table on socket %i\n", socket);
769 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
770
771 lpm_config.max_rules = LPM_MAX_RULES;
772 lpm_config.number_tbl8s = 256;
773 lpm_config.flags = 0;
774
775 lpm = rte_lpm_create(buf, socket, &lpm_config);
776 if (lpm == NULL) {
777 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
778 return -1;
779 }
780 socket_lpm[socket] = lpm;
781 }
782
783 if (socket_lpm6[socket] == NULL) {
784 RTE_LOG(INFO, IP_FRAG, "Creating LPM6 table on socket %i\n", socket);
785 snprintf(buf, sizeof(buf), "IP_FRAG_LPM_%i", socket);
786
787 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
788 if (lpm6 == NULL) {
789 RTE_LOG(ERR, IP_FRAG, "Cannot create LPM table\n");
790 return -1;
791 }
792 socket_lpm6[socket] = lpm6;
793 }
794 }
795
796 return 0;
797 }
798
799 int
800 main(int argc, char **argv)
801 {
802 struct lcore_queue_conf *qconf;
803 struct rte_eth_dev_info dev_info;
804 struct rte_eth_txconf *txconf;
805 struct rx_queue *rxq;
806 int socket, ret;
807 unsigned nb_ports;
808 uint16_t queueid = 0;
809 unsigned lcore_id = 0, rx_lcore_id = 0;
810 uint32_t n_tx_queue, nb_lcores;
811 uint8_t portid;
812
813 /* init EAL */
814 ret = rte_eal_init(argc, argv);
815 if (ret < 0)
816 rte_exit(EXIT_FAILURE, "rte_eal_init failed");
817 argc -= ret;
818 argv += ret;
819
820 /* parse application arguments (after the EAL ones) */
821 ret = parse_args(argc, argv);
822 if (ret < 0)
823 rte_exit(EXIT_FAILURE, "Invalid arguments");
824
825 nb_ports = rte_eth_dev_count();
826 if (nb_ports == 0)
827 rte_exit(EXIT_FAILURE, "No ports found!\n");
828
829 nb_lcores = rte_lcore_count();
830
831 /* initialize structures (mempools, lpm etc.) */
832 if (init_mem() < 0)
833 rte_panic("Cannot initialize memory structures!\n");
834
835 /* check if portmask has non-existent ports */
836 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
837 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
838
839 /* initialize all ports */
840 for (portid = 0; portid < nb_ports; portid++) {
841 /* skip ports that are not enabled */
842 if ((enabled_port_mask & (1 << portid)) == 0) {
843 printf("Skipping disabled port %d\n", portid);
844 continue;
845 }
846
847 qconf = &lcore_queue_conf[rx_lcore_id];
848
849 /* get the lcore_id for this port */
850 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
851 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
852
853 rx_lcore_id ++;
854 if (rx_lcore_id >= RTE_MAX_LCORE)
855 rte_exit(EXIT_FAILURE, "Not enough cores\n");
856
857 qconf = &lcore_queue_conf[rx_lcore_id];
858 }
859
860 socket = (int) rte_lcore_to_socket_id(rx_lcore_id);
861 if (socket == SOCKET_ID_ANY)
862 socket = 0;
863
864 rxq = &qconf->rx_queue_list[qconf->n_rx_queue];
865 rxq->portid = portid;
866 rxq->direct_pool = socket_direct_pool[socket];
867 rxq->indirect_pool = socket_indirect_pool[socket];
868 rxq->lpm = socket_lpm[socket];
869 rxq->lpm6 = socket_lpm6[socket];
870 qconf->n_rx_queue++;
871
872 /* init port */
873 printf("Initializing port %d on lcore %u...", portid,
874 rx_lcore_id);
875 fflush(stdout);
876
877 n_tx_queue = nb_lcores;
878 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
879 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
880 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
881 &port_conf);
882 if (ret < 0) {
883 printf("\n");
884 rte_exit(EXIT_FAILURE, "Cannot configure device: "
885 "err=%d, port=%d\n",
886 ret, portid);
887 }
888
889 /* init one RX queue */
890 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
891 socket, NULL,
892 socket_direct_pool[socket]);
893 if (ret < 0) {
894 printf("\n");
895 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
896 "err=%d, port=%d\n",
897 ret, portid);
898 }
899
900 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
901 print_ethaddr(" Address:", &ports_eth_addr[portid]);
902 printf("\n");
903
904 /* init one TX queue per couple (lcore,port) */
905 queueid = 0;
906 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
907 if (rte_lcore_is_enabled(lcore_id) == 0)
908 continue;
909
910 socket = (int) rte_lcore_to_socket_id(lcore_id);
911 printf("txq=%u,%d ", lcore_id, queueid);
912 fflush(stdout);
913
914 rte_eth_dev_info_get(portid, &dev_info);
915 txconf = &dev_info.default_txconf;
916 txconf->txq_flags = 0;
917 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
918 socket, txconf);
919 if (ret < 0) {
920 printf("\n");
921 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
922 "err=%d, port=%d\n", ret, portid);
923 }
924
925 qconf = &lcore_queue_conf[lcore_id];
926 qconf->tx_queue_id[portid] = queueid;
927 queueid++;
928 }
929
930 printf("\n");
931 }
932
933 printf("\n");
934
935 /* start ports */
936 for (portid = 0; portid < nb_ports; portid++) {
937 if ((enabled_port_mask & (1 << portid)) == 0) {
938 continue;
939 }
940 /* Start device */
941 ret = rte_eth_dev_start(portid);
942 if (ret < 0)
943 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
944 ret, portid);
945
946 rte_eth_promiscuous_enable(portid);
947 }
948
949 if (init_routing_table() < 0)
950 rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
951
952 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
953
954 /* launch per-lcore init on every lcore */
955 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
956 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
957 if (rte_eal_wait_lcore(lcore_id) < 0)
958 return -1;
959 }
960
961 return 0;
962 }