]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/examples/ip_reassembly/main.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / examples / ip_reassembly / main.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 #include <signal.h>
45 #include <sys/param.h>
46
47 #include <rte_common.h>
48 #include <rte_byteorder.h>
49 #include <rte_log.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_launch.h>
56 #include <rte_atomic.h>
57 #include <rte_cycles.h>
58 #include <rte_prefetch.h>
59 #include <rte_lcore.h>
60 #include <rte_per_lcore.h>
61 #include <rte_branch_prediction.h>
62 #include <rte_interrupts.h>
63 #include <rte_pci.h>
64 #include <rte_random.h>
65 #include <rte_debug.h>
66 #include <rte_ether.h>
67 #include <rte_ethdev.h>
68 #include <rte_mempool.h>
69 #include <rte_mbuf.h>
70 #include <rte_malloc.h>
71 #include <rte_ip.h>
72 #include <rte_tcp.h>
73 #include <rte_udp.h>
74 #include <rte_string_fns.h>
75 #include <rte_lpm.h>
76 #include <rte_lpm6.h>
77
78 #include <rte_ip_frag.h>
79
80 #define MAX_PKT_BURST 32
81
82
83 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1
84
85 #define MAX_JUMBO_PKT_LEN 9600
86
87 #define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM
88 #define MBUF_SIZE \
89 (BUF_SIZE + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
90
91 #define NB_MBUF 8192
92
93 /* allow max jumbo frame 9.5 KB */
94 #define JUMBO_FRAME_MAX_SIZE 0x2600
95
96 #define MAX_FLOW_NUM UINT16_MAX
97 #define MIN_FLOW_NUM 1
98 #define DEF_FLOW_NUM 0x1000
99
100 /* TTL numbers are in ms. */
101 #define MAX_FLOW_TTL (3600 * MS_PER_S)
102 #define MIN_FLOW_TTL 1
103 #define DEF_FLOW_TTL MS_PER_S
104
105 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG
106
107 /* Should be power of two. */
108 #define IP_FRAG_TBL_BUCKET_ENTRIES 16
109
110 static uint32_t max_flow_num = DEF_FLOW_NUM;
111 static uint32_t max_flow_ttl = DEF_FLOW_TTL;
112
113 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
114
115 #define NB_SOCKETS 8
116
117 /* Configure how many packets ahead to prefetch, when reading packets */
118 #define PREFETCH_OFFSET 3
119
120 /*
121 * Configurable number of RX/TX ring descriptors
122 */
123 #define RTE_TEST_RX_DESC_DEFAULT 128
124 #define RTE_TEST_TX_DESC_DEFAULT 512
125
126 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
127 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
128
129 /* ethernet addresses of ports */
130 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
131
132 #ifndef IPv4_BYTES
133 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
134 #define IPv4_BYTES(addr) \
135 (uint8_t) (((addr) >> 24) & 0xFF),\
136 (uint8_t) (((addr) >> 16) & 0xFF),\
137 (uint8_t) (((addr) >> 8) & 0xFF),\
138 (uint8_t) ((addr) & 0xFF)
139 #endif
140
141 #ifndef IPv6_BYTES
142 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
143 "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
144 #define IPv6_BYTES(addr) \
145 addr[0], addr[1], addr[2], addr[3], \
146 addr[4], addr[5], addr[6], addr[7], \
147 addr[8], addr[9], addr[10], addr[11],\
148 addr[12], addr[13],addr[14], addr[15]
149 #endif
150
151 #define IPV6_ADDR_LEN 16
152
153 /* mask of enabled ports */
154 static uint32_t enabled_port_mask = 0;
155
156 static int rx_queue_per_lcore = 1;
157
158 struct mbuf_table {
159 uint32_t len;
160 uint32_t head;
161 uint32_t tail;
162 struct rte_mbuf *m_table[0];
163 };
164
165 struct rx_queue {
166 struct rte_ip_frag_tbl *frag_tbl;
167 struct rte_mempool *pool;
168 struct rte_lpm *lpm;
169 struct rte_lpm6 *lpm6;
170 uint8_t portid;
171 };
172
173 struct tx_lcore_stat {
174 uint64_t call;
175 uint64_t drop;
176 uint64_t queue;
177 uint64_t send;
178 };
179
180 #define MAX_RX_QUEUE_PER_LCORE 16
181 #define MAX_TX_QUEUE_PER_PORT 16
182 #define MAX_RX_QUEUE_PER_PORT 128
183
184 struct lcore_queue_conf {
185 uint16_t n_rx_queue;
186 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
187 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
188 struct rte_ip_frag_death_row death_row;
189 struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS];
190 struct tx_lcore_stat tx_stat;
191 } __rte_cache_aligned;
192 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
193
194 static struct rte_eth_conf port_conf = {
195 .rxmode = {
196 .mq_mode = ETH_MQ_RX_RSS,
197 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
198 .split_hdr_size = 0,
199 .header_split = 0, /**< Header Split disabled */
200 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
201 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
202 .jumbo_frame = 1, /**< Jumbo Frame Support disabled */
203 .hw_strip_crc = 0, /**< CRC stripped by hardware */
204 },
205 .rx_adv_conf = {
206 .rss_conf = {
207 .rss_key = NULL,
208 .rss_hf = ETH_RSS_IP,
209 },
210 },
211 .txmode = {
212 .mq_mode = ETH_MQ_TX_NONE,
213 },
214 };
215
216 /*
217 * IPv4 forwarding table
218 */
219 struct l3fwd_ipv4_route {
220 uint32_t ip;
221 uint8_t depth;
222 uint8_t if_out;
223 };
224
225 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
226 {IPv4(100,10,0,0), 16, 0},
227 {IPv4(100,20,0,0), 16, 1},
228 {IPv4(100,30,0,0), 16, 2},
229 {IPv4(100,40,0,0), 16, 3},
230 {IPv4(100,50,0,0), 16, 4},
231 {IPv4(100,60,0,0), 16, 5},
232 {IPv4(100,70,0,0), 16, 6},
233 {IPv4(100,80,0,0), 16, 7},
234 };
235
236 /*
237 * IPv6 forwarding table
238 */
239
240 struct l3fwd_ipv6_route {
241 uint8_t ip[IPV6_ADDR_LEN];
242 uint8_t depth;
243 uint8_t if_out;
244 };
245
246 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
247 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
248 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
249 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
250 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
251 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
252 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
253 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
254 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
255 };
256
257 #define LPM_MAX_RULES 1024
258 #define LPM6_MAX_RULES 1024
259 #define LPM6_NUMBER_TBL8S (1 << 16)
260
261 struct rte_lpm6_config lpm6_config = {
262 .max_rules = LPM6_MAX_RULES,
263 .number_tbl8s = LPM6_NUMBER_TBL8S,
264 .flags = 0
265 };
266
267 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
268 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
269
270 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT
271 #define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v))
272 #else
273 #define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0)
274 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */
275
276 /*
277 * If number of queued packets reached given threahold, then
278 * send burst of packets on an output interface.
279 */
280 static inline uint32_t
281 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint8_t port)
282 {
283 uint32_t fill, len, k, n;
284 struct mbuf_table *txmb;
285
286 txmb = qconf->tx_mbufs[port];
287 len = txmb->len;
288
289 if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
290 fill += len;
291
292 if (fill >= thresh) {
293 n = RTE_MIN(len - txmb->tail, fill);
294
295 k = rte_eth_tx_burst(port, qconf->tx_queue_id[port],
296 txmb->m_table + txmb->tail, (uint16_t)n);
297
298 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
299 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
300
301 fill -= k;
302 if ((txmb->tail += k) == len)
303 txmb->tail = 0;
304 }
305
306 return fill;
307 }
308
309 /* Enqueue a single packet, and send burst if queue is filled */
310 static inline int
311 send_single_packet(struct rte_mbuf *m, uint8_t port)
312 {
313 uint32_t fill, lcore_id, len;
314 struct lcore_queue_conf *qconf;
315 struct mbuf_table *txmb;
316
317 lcore_id = rte_lcore_id();
318 qconf = &lcore_queue_conf[lcore_id];
319
320 txmb = qconf->tx_mbufs[port];
321 len = txmb->len;
322
323 fill = send_burst(qconf, MAX_PKT_BURST, port);
324
325 if (fill == len - 1) {
326 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
327 rte_pktmbuf_free(txmb->m_table[txmb->tail]);
328 if (++txmb->tail == len)
329 txmb->tail = 0;
330 }
331
332 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
333 txmb->m_table[txmb->head] = m;
334 if(++txmb->head == len)
335 txmb->head = 0;
336
337 return 0;
338 }
339
340 static inline void
341 reassemble(struct rte_mbuf *m, uint8_t portid, uint32_t queue,
342 struct lcore_queue_conf *qconf, uint64_t tms)
343 {
344 struct ether_hdr *eth_hdr;
345 struct rte_ip_frag_tbl *tbl;
346 struct rte_ip_frag_death_row *dr;
347 struct rx_queue *rxq;
348 void *d_addr_bytes;
349 uint32_t next_hop_ipv4;
350 uint8_t next_hop_ipv6, dst_port;
351
352 rxq = &qconf->rx_queue_list[queue];
353
354 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
355
356 dst_port = portid;
357
358 /* if packet is IPv4 */
359 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
360 struct ipv4_hdr *ip_hdr;
361 uint32_t ip_dst;
362
363 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
364
365 /* if it is a fragmented packet, then try to reassemble. */
366 if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) {
367 struct rte_mbuf *mo;
368
369 tbl = rxq->frag_tbl;
370 dr = &qconf->death_row;
371
372 /* prepare mbuf: setup l2_len/l3_len. */
373 m->l2_len = sizeof(*eth_hdr);
374 m->l3_len = sizeof(*ip_hdr);
375
376 /* process this fragment. */
377 mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr);
378 if (mo == NULL)
379 /* no packet to send out. */
380 return;
381
382 /* we have our packet reassembled. */
383 if (mo != m) {
384 m = mo;
385 eth_hdr = rte_pktmbuf_mtod(m,
386 struct ether_hdr *);
387 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
388 }
389 }
390 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
391
392 /* Find destination port */
393 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop_ipv4) == 0 &&
394 (enabled_port_mask & 1 << next_hop_ipv4) != 0) {
395 dst_port = next_hop_ipv4;
396 }
397
398 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
399 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
400 /* if packet is IPv6 */
401 struct ipv6_extension_fragment *frag_hdr;
402 struct ipv6_hdr *ip_hdr;
403
404 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
405
406 frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr);
407
408 if (frag_hdr != NULL) {
409 struct rte_mbuf *mo;
410
411 tbl = rxq->frag_tbl;
412 dr = &qconf->death_row;
413
414 /* prepare mbuf: setup l2_len/l3_len. */
415 m->l2_len = sizeof(*eth_hdr);
416 m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr);
417
418 mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr);
419 if (mo == NULL)
420 return;
421
422 if (mo != m) {
423 m = mo;
424 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
425 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
426 }
427 }
428
429 /* Find destination port */
430 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop_ipv6) == 0 &&
431 (enabled_port_mask & 1 << next_hop_ipv6) != 0) {
432 dst_port = next_hop_ipv6;
433 }
434
435 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6);
436 }
437 /* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */
438
439 /* 02:00:00:00:00:xx */
440 d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
441 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
442
443 /* src addr */
444 ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
445
446 send_single_packet(m, dst_port);
447 }
448
449 /* main processing loop */
450 static int
451 main_loop(__attribute__((unused)) void *dummy)
452 {
453 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
454 unsigned lcore_id;
455 uint64_t diff_tsc, cur_tsc, prev_tsc;
456 int i, j, nb_rx;
457 uint8_t portid;
458 struct lcore_queue_conf *qconf;
459 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
460
461 prev_tsc = 0;
462
463 lcore_id = rte_lcore_id();
464 qconf = &lcore_queue_conf[lcore_id];
465
466 if (qconf->n_rx_queue == 0) {
467 RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id);
468 return 0;
469 }
470
471 RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id);
472
473 for (i = 0; i < qconf->n_rx_queue; i++) {
474
475 portid = qconf->rx_queue_list[i].portid;
476 RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%hhu\n", lcore_id,
477 portid);
478 }
479
480 while (1) {
481
482 cur_tsc = rte_rdtsc();
483
484 /*
485 * TX burst queue drain
486 */
487 diff_tsc = cur_tsc - prev_tsc;
488 if (unlikely(diff_tsc > drain_tsc)) {
489
490 /*
491 * This could be optimized (use queueid instead of
492 * portid), but it is not called so often
493 */
494 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
495 if ((enabled_port_mask & (1 << portid)) != 0)
496 send_burst(qconf, 1, portid);
497 }
498
499 prev_tsc = cur_tsc;
500 }
501
502 /*
503 * Read packet from RX queues
504 */
505 for (i = 0; i < qconf->n_rx_queue; ++i) {
506
507 portid = qconf->rx_queue_list[i].portid;
508
509 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
510 MAX_PKT_BURST);
511
512 /* Prefetch first packets */
513 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
514 rte_prefetch0(rte_pktmbuf_mtod(
515 pkts_burst[j], void *));
516 }
517
518 /* Prefetch and forward already prefetched packets */
519 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
520 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
521 j + PREFETCH_OFFSET], void *));
522 reassemble(pkts_burst[j], portid,
523 i, qconf, cur_tsc);
524 }
525
526 /* Forward remaining prefetched packets */
527 for (; j < nb_rx; j++) {
528 reassemble(pkts_burst[j], portid,
529 i, qconf, cur_tsc);
530 }
531
532 rte_ip_frag_free_death_row(&qconf->death_row,
533 PREFETCH_OFFSET);
534 }
535 }
536 }
537
538 /* display usage */
539 static void
540 print_usage(const char *prgname)
541 {
542 printf("%s [EAL options] -- -p PORTMASK [-q NQ]"
543 " [--max-pkt-len PKTLEN]"
544 " [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n"
545 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
546 " -q NQ: number of RX queues per lcore\n"
547 " --maxflows=<flows>: optional, maximum number of flows "
548 "supported\n"
549 " --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
550 "flow\n",
551 prgname);
552 }
553
554 static uint32_t
555 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
556 {
557 char *end;
558 uint64_t v;
559
560 /* parse decimal string */
561 errno = 0;
562 v = strtoul(str, &end, 10);
563 if (errno != 0 || *end != '\0')
564 return -EINVAL;
565
566 if (v < min || v > max)
567 return -EINVAL;
568
569 *val = (uint32_t)v;
570 return 0;
571 }
572
573 static int
574 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
575 {
576 char *end;
577 uint64_t v;
578
579 static const char frmt_sec[] = "s";
580 static const char frmt_msec[] = "ms";
581
582 /* parse decimal string */
583 errno = 0;
584 v = strtoul(str, &end, 10);
585 if (errno != 0)
586 return -EINVAL;
587
588 if (*end != '\0') {
589 if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
590 v *= MS_PER_S;
591 else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
592 return -EINVAL;
593 }
594
595 if (v < min || v > max)
596 return -EINVAL;
597
598 *val = (uint32_t)v;
599 return 0;
600 }
601
602 static int
603 parse_portmask(const char *portmask)
604 {
605 char *end = NULL;
606 unsigned long pm;
607
608 /* parse hexadecimal string */
609 pm = strtoul(portmask, &end, 16);
610 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
611 return -1;
612
613 if (pm == 0)
614 return -1;
615
616 return pm;
617 }
618
619 static int
620 parse_nqueue(const char *q_arg)
621 {
622 char *end = NULL;
623 unsigned long n;
624
625 printf("%p\n", q_arg);
626
627 /* parse hexadecimal string */
628 n = strtoul(q_arg, &end, 10);
629 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
630 return -1;
631 if (n == 0)
632 return -1;
633 if (n >= MAX_RX_QUEUE_PER_LCORE)
634 return -1;
635
636 return n;
637 }
638
639 /* Parse the argument given in the command line of the application */
640 static int
641 parse_args(int argc, char **argv)
642 {
643 int opt, ret;
644 char **argvopt;
645 int option_index;
646 char *prgname = argv[0];
647 static struct option lgopts[] = {
648 {"max-pkt-len", 1, 0, 0},
649 {"maxflows", 1, 0, 0},
650 {"flowttl", 1, 0, 0},
651 {NULL, 0, 0, 0}
652 };
653
654 argvopt = argv;
655
656 while ((opt = getopt_long(argc, argvopt, "p:q:",
657 lgopts, &option_index)) != EOF) {
658
659 switch (opt) {
660 /* portmask */
661 case 'p':
662 enabled_port_mask = parse_portmask(optarg);
663 if (enabled_port_mask == 0) {
664 printf("invalid portmask\n");
665 print_usage(prgname);
666 return -1;
667 }
668 break;
669
670 /* nqueue */
671 case 'q':
672 rx_queue_per_lcore = parse_nqueue(optarg);
673 if (rx_queue_per_lcore < 0) {
674 printf("invalid queue number\n");
675 print_usage(prgname);
676 return -1;
677 }
678 break;
679
680 /* long options */
681 case 0:
682 if (!strncmp(lgopts[option_index].name,
683 "maxflows", 8)) {
684 if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
685 MAX_FLOW_NUM,
686 &max_flow_num)) != 0) {
687 printf("invalid value: \"%s\" for "
688 "parameter %s\n",
689 optarg,
690 lgopts[option_index].name);
691 print_usage(prgname);
692 return ret;
693 }
694 }
695
696 if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
697 if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
698 MAX_FLOW_TTL,
699 &max_flow_ttl)) != 0) {
700 printf("invalid value: \"%s\" for "
701 "parameter %s\n",
702 optarg,
703 lgopts[option_index].name);
704 print_usage(prgname);
705 return ret;
706 }
707 }
708
709 break;
710
711 default:
712 print_usage(prgname);
713 return -1;
714 }
715 }
716
717 if (optind >= 0)
718 argv[optind-1] = prgname;
719
720 ret = optind-1;
721 optind = 0; /* reset getopt lib */
722 return ret;
723 }
724
725 static void
726 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
727 {
728 char buf[ETHER_ADDR_FMT_SIZE];
729 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
730 printf("%s%s", name, buf);
731 }
732
733 /* Check the link status of all ports in up to 9s, and print them finally */
734 static void
735 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
736 {
737 #define CHECK_INTERVAL 100 /* 100ms */
738 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
739 uint8_t portid, count, all_ports_up, print_flag = 0;
740 struct rte_eth_link link;
741
742 printf("\nChecking link status");
743 fflush(stdout);
744 for (count = 0; count <= MAX_CHECK_TIME; count++) {
745 all_ports_up = 1;
746 for (portid = 0; portid < port_num; portid++) {
747 if ((port_mask & (1 << portid)) == 0)
748 continue;
749 memset(&link, 0, sizeof(link));
750 rte_eth_link_get_nowait(portid, &link);
751 /* print link status if flag set */
752 if (print_flag == 1) {
753 if (link.link_status)
754 printf("Port %d Link Up - speed %u "
755 "Mbps - %s\n", (uint8_t)portid,
756 (unsigned)link.link_speed,
757 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
758 ("full-duplex") : ("half-duplex\n"));
759 else
760 printf("Port %d Link Down\n",
761 (uint8_t)portid);
762 continue;
763 }
764 /* clear all_ports_up flag if any link down */
765 if (link.link_status == ETH_LINK_DOWN) {
766 all_ports_up = 0;
767 break;
768 }
769 }
770 /* after finally printing all link status, get out */
771 if (print_flag == 1)
772 break;
773
774 if (all_ports_up == 0) {
775 printf(".");
776 fflush(stdout);
777 rte_delay_ms(CHECK_INTERVAL);
778 }
779
780 /* set the print_flag if all ports up or timeout */
781 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
782 print_flag = 1;
783 printf("\ndone\n");
784 }
785 }
786 }
787
788 static int
789 init_routing_table(void)
790 {
791 struct rte_lpm *lpm;
792 struct rte_lpm6 *lpm6;
793 int socket, ret;
794 unsigned i;
795
796 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
797 if (socket_lpm[socket]) {
798 lpm = socket_lpm[socket];
799 /* populate the LPM table */
800 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
801 ret = rte_lpm_add(lpm,
802 l3fwd_ipv4_route_array[i].ip,
803 l3fwd_ipv4_route_array[i].depth,
804 l3fwd_ipv4_route_array[i].if_out);
805
806 if (ret < 0) {
807 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
808 "LPM table\n", i);
809 return -1;
810 }
811
812 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT
813 "/%d (port %d)\n",
814 socket,
815 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
816 l3fwd_ipv4_route_array[i].depth,
817 l3fwd_ipv4_route_array[i].if_out);
818 }
819 }
820
821 if (socket_lpm6[socket]) {
822 lpm6 = socket_lpm6[socket];
823 /* populate the LPM6 table */
824 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
825 ret = rte_lpm6_add(lpm6,
826 l3fwd_ipv6_route_array[i].ip,
827 l3fwd_ipv6_route_array[i].depth,
828 l3fwd_ipv6_route_array[i].if_out);
829
830 if (ret < 0) {
831 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
832 "LPM6 table\n", i);
833 return -1;
834 }
835
836 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT
837 "/%d (port %d)\n",
838 socket,
839 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
840 l3fwd_ipv6_route_array[i].depth,
841 l3fwd_ipv6_route_array[i].if_out);
842 }
843 }
844 }
845 return 0;
846 }
847
848 static int
849 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket,
850 uint32_t port)
851 {
852 struct mbuf_table *mtb;
853 uint32_t n;
854 size_t sz;
855
856 n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
857 sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n;
858
859 if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE,
860 socket)) == NULL) {
861 RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u "
862 "failed to allocate %zu bytes\n",
863 __func__, lcore, port, sz);
864 return -1;
865 }
866
867 mtb->len = n;
868 qconf->tx_mbufs[port] = mtb;
869
870 return 0;
871 }
872
873 static int
874 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue)
875 {
876 int socket;
877 uint32_t nb_mbuf;
878 uint64_t frag_cycles;
879 char buf[RTE_MEMPOOL_NAMESIZE];
880
881 socket = rte_lcore_to_socket_id(lcore);
882 if (socket == SOCKET_ID_ANY)
883 socket = 0;
884
885 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S *
886 max_flow_ttl;
887
888 if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num,
889 IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
890 socket)) == NULL) {
891 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on "
892 "lcore: %u for queue: %u failed\n",
893 max_flow_num, lcore, queue);
894 return -1;
895 }
896
897 /*
898 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)>
899 * mbufs could be stored int the fragment table.
900 * Plus, each TX queue can hold up to <max_flow_num> packets.
901 */
902
903 nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
904 nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
905 nb_mbuf *= 2; /* ipv4 and ipv6 */
906 nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;
907
908 nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
909
910 snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
911
912 if ((rxq->pool = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0,
913 sizeof(struct rte_pktmbuf_pool_private),
914 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL,
915 socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {
916 RTE_LOG(ERR, IP_RSMBL, "mempool_create(%s) failed", buf);
917 return -1;
918 }
919
920 return 0;
921 }
922
923 static int
924 init_mem(void)
925 {
926 char buf[PATH_MAX];
927 struct rte_lpm *lpm;
928 struct rte_lpm6 *lpm6;
929 struct rte_lpm_config lpm_config;
930 int socket;
931 unsigned lcore_id;
932
933 /* traverse through lcores and initialize structures on each socket */
934
935 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
936
937 if (rte_lcore_is_enabled(lcore_id) == 0)
938 continue;
939
940 socket = rte_lcore_to_socket_id(lcore_id);
941
942 if (socket == SOCKET_ID_ANY)
943 socket = 0;
944
945 if (socket_lpm[socket] == NULL) {
946 RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket);
947 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
948
949 lpm_config.max_rules = LPM_MAX_RULES;
950 lpm_config.number_tbl8s = 256;
951 lpm_config.flags = 0;
952
953 lpm = rte_lpm_create(buf, socket, &lpm_config);
954 if (lpm == NULL) {
955 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
956 return -1;
957 }
958 socket_lpm[socket] = lpm;
959 }
960
961 if (socket_lpm6[socket] == NULL) {
962 RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket);
963 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
964
965 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
966 if (lpm6 == NULL) {
967 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
968 return -1;
969 }
970 socket_lpm6[socket] = lpm6;
971 }
972 }
973
974 return 0;
975 }
976
977 static void
978 queue_dump_stat(void)
979 {
980 uint32_t i, lcore;
981 const struct lcore_queue_conf *qconf;
982
983 for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
984 if (rte_lcore_is_enabled(lcore) == 0)
985 continue;
986
987 qconf = &lcore_queue_conf[lcore];
988 for (i = 0; i < qconf->n_rx_queue; i++) {
989
990 fprintf(stdout, " -- lcoreid=%u portid=%hhu "
991 "frag tbl stat:\n",
992 lcore, qconf->rx_queue_list[i].portid);
993 rte_ip_frag_table_statistics_dump(stdout,
994 qconf->rx_queue_list[i].frag_tbl);
995 fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
996 "TX packets _queued:\t%" PRIu64 "\n"
997 "TX packets dropped:\t%" PRIu64 "\n"
998 "TX packets send:\t%" PRIu64 "\n",
999 qconf->tx_stat.call,
1000 qconf->tx_stat.queue,
1001 qconf->tx_stat.drop,
1002 qconf->tx_stat.send);
1003 }
1004 }
1005 }
1006
1007 static void
1008 signal_handler(int signum)
1009 {
1010 queue_dump_stat();
1011 if (signum != SIGUSR1)
1012 rte_exit(0, "received signal: %d, exiting\n", signum);
1013 }
1014
1015 int
1016 main(int argc, char **argv)
1017 {
1018 struct lcore_queue_conf *qconf;
1019 struct rte_eth_dev_info dev_info;
1020 struct rte_eth_txconf *txconf;
1021 struct rx_queue *rxq;
1022 int ret, socket;
1023 unsigned nb_ports;
1024 uint16_t queueid;
1025 unsigned lcore_id = 0, rx_lcore_id = 0;
1026 uint32_t n_tx_queue, nb_lcores;
1027 uint8_t portid;
1028
1029 /* init EAL */
1030 ret = rte_eal_init(argc, argv);
1031 if (ret < 0)
1032 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1033 argc -= ret;
1034 argv += ret;
1035
1036 /* parse application arguments (after the EAL ones) */
1037 ret = parse_args(argc, argv);
1038 if (ret < 0)
1039 rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n");
1040
1041 nb_ports = rte_eth_dev_count();
1042 if (nb_ports == 0)
1043 rte_exit(EXIT_FAILURE, "No ports found!\n");
1044
1045 nb_lcores = rte_lcore_count();
1046
1047 /* initialize structures (mempools, lpm etc.) */
1048 if (init_mem() < 0)
1049 rte_panic("Cannot initialize memory structures!\n");
1050
1051 /* check if portmask has non-existent ports */
1052 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
1053 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
1054
1055 /* initialize all ports */
1056 for (portid = 0; portid < nb_ports; portid++) {
1057 /* skip ports that are not enabled */
1058 if ((enabled_port_mask & (1 << portid)) == 0) {
1059 printf("\nSkipping disabled port %d\n", portid);
1060 continue;
1061 }
1062
1063 qconf = &lcore_queue_conf[rx_lcore_id];
1064
1065 /* get the lcore_id for this port */
1066 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
1067 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
1068
1069 rx_lcore_id++;
1070 if (rx_lcore_id >= RTE_MAX_LCORE)
1071 rte_exit(EXIT_FAILURE, "Not enough cores\n");
1072
1073 qconf = &lcore_queue_conf[rx_lcore_id];
1074 }
1075
1076 socket = rte_lcore_to_socket_id(portid);
1077 if (socket == SOCKET_ID_ANY)
1078 socket = 0;
1079
1080 queueid = qconf->n_rx_queue;
1081 rxq = &qconf->rx_queue_list[queueid];
1082 rxq->portid = portid;
1083 rxq->lpm = socket_lpm[socket];
1084 rxq->lpm6 = socket_lpm6[socket];
1085 if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0)
1086 rte_exit(EXIT_FAILURE, "Failed to set up queue table\n");
1087 qconf->n_rx_queue++;
1088
1089 /* init port */
1090 printf("Initializing port %d ... ", portid );
1091 fflush(stdout);
1092
1093 n_tx_queue = nb_lcores;
1094 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1095 n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1096 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
1097 &port_conf);
1098 if (ret < 0) {
1099 printf("\n");
1100 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1101 "err=%d, port=%d\n",
1102 ret, portid);
1103 }
1104
1105 /* init one RX queue */
1106 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1107 socket, NULL,
1108 rxq->pool);
1109 if (ret < 0) {
1110 printf("\n");
1111 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
1112 "err=%d, port=%d\n",
1113 ret, portid);
1114 }
1115
1116 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1117 print_ethaddr(" Address:", &ports_eth_addr[portid]);
1118 printf("\n");
1119
1120 /* init one TX queue per couple (lcore,port) */
1121 queueid = 0;
1122 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1123 if (rte_lcore_is_enabled(lcore_id) == 0)
1124 continue;
1125
1126 socket = (int) rte_lcore_to_socket_id(lcore_id);
1127
1128 printf("txq=%u,%d,%d ", lcore_id, queueid, socket);
1129 fflush(stdout);
1130
1131 rte_eth_dev_info_get(portid, &dev_info);
1132 txconf = &dev_info.default_txconf;
1133 txconf->txq_flags = 0;
1134
1135 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1136 socket, txconf);
1137 if (ret < 0)
1138 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
1139 "port=%d\n", ret, portid);
1140
1141 qconf = &lcore_queue_conf[lcore_id];
1142 qconf->tx_queue_id[portid] = queueid;
1143 setup_port_tbl(qconf, lcore_id, socket, portid);
1144 queueid++;
1145 }
1146 printf("\n");
1147 }
1148
1149 printf("\n");
1150
1151 /* start ports */
1152 for (portid = 0; portid < nb_ports; portid++) {
1153 if ((enabled_port_mask & (1 << portid)) == 0) {
1154 continue;
1155 }
1156 /* Start device */
1157 ret = rte_eth_dev_start(portid);
1158 if (ret < 0)
1159 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1160 ret, portid);
1161
1162 rte_eth_promiscuous_enable(portid);
1163 }
1164
1165 if (init_routing_table() < 0)
1166 rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1167
1168 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1169
1170 signal(SIGUSR1, signal_handler);
1171 signal(SIGTERM, signal_handler);
1172 signal(SIGINT, signal_handler);
1173
1174 /* launch per-lcore init on every lcore */
1175 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1176 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1177 if (rte_eal_wait_lcore(lcore_id) < 0)
1178 return -1;
1179 }
1180
1181 return 0;
1182 }