]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/examples/ipsec-secgw/ipsec-secgw.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / examples / ipsec-secgw / ipsec-secgw.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2016 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <netinet/in.h>
40 #include <netinet/ip.h>
41 #include <netinet/ip6.h>
42 #include <string.h>
43 #include <sys/queue.h>
44 #include <stdarg.h>
45 #include <errno.h>
46 #include <getopt.h>
47
48 #include <rte_common.h>
49 #include <rte_byteorder.h>
50 #include <rte_log.h>
51 #include <rte_eal.h>
52 #include <rte_launch.h>
53 #include <rte_atomic.h>
54 #include <rte_cycles.h>
55 #include <rte_prefetch.h>
56 #include <rte_lcore.h>
57 #include <rte_per_lcore.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_interrupts.h>
60 #include <rte_pci.h>
61 #include <rte_random.h>
62 #include <rte_debug.h>
63 #include <rte_ether.h>
64 #include <rte_ethdev.h>
65 #include <rte_mempool.h>
66 #include <rte_mbuf.h>
67 #include <rte_acl.h>
68 #include <rte_lpm.h>
69 #include <rte_lpm6.h>
70 #include <rte_hash.h>
71 #include <rte_jhash.h>
72 #include <rte_cryptodev.h>
73
74 #include "ipsec.h"
75 #include "parser.h"
76
77 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
78
79 #define MAX_JUMBO_PKT_LEN 9600
80
81 #define MEMPOOL_CACHE_SIZE 256
82
83 #define NB_MBUF (32000)
84
85 #define CDEV_QUEUE_DESC 2048
86 #define CDEV_MAP_ENTRIES 1024
87 #define CDEV_MP_NB_OBJS 2048
88 #define CDEV_MP_CACHE_SZ 64
89 #define MAX_QUEUE_PAIRS 1
90
91 #define OPTION_CONFIG "config"
92 #define OPTION_SINGLE_SA "single-sa"
93
94 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
95
96 #define NB_SOCKETS 4
97
98 /* Configure how many packets ahead to prefetch, when reading packets */
99 #define PREFETCH_OFFSET 3
100
101 #define MAX_RX_QUEUE_PER_LCORE 16
102
103 #define MAX_LCORE_PARAMS 1024
104
105 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
106
107 /*
108 * Configurable number of RX/TX ring descriptors
109 */
110 #define IPSEC_SECGW_RX_DESC_DEFAULT 128
111 #define IPSEC_SECGW_TX_DESC_DEFAULT 512
112 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
113 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
114
115 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
116 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
117 (((uint64_t)((a) & 0xff) << 56) | \
118 ((uint64_t)((b) & 0xff) << 48) | \
119 ((uint64_t)((c) & 0xff) << 40) | \
120 ((uint64_t)((d) & 0xff) << 32) | \
121 ((uint64_t)((e) & 0xff) << 24) | \
122 ((uint64_t)((f) & 0xff) << 16) | \
123 ((uint64_t)((g) & 0xff) << 8) | \
124 ((uint64_t)(h) & 0xff))
125 #else
126 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
127 (((uint64_t)((h) & 0xff) << 56) | \
128 ((uint64_t)((g) & 0xff) << 48) | \
129 ((uint64_t)((f) & 0xff) << 40) | \
130 ((uint64_t)((e) & 0xff) << 32) | \
131 ((uint64_t)((d) & 0xff) << 24) | \
132 ((uint64_t)((c) & 0xff) << 16) | \
133 ((uint64_t)((b) & 0xff) << 8) | \
134 ((uint64_t)(a) & 0xff))
135 #endif
136 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
137
138 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
139 addr.addr_bytes[0], addr.addr_bytes[1], \
140 addr.addr_bytes[2], addr.addr_bytes[3], \
141 addr.addr_bytes[4], addr.addr_bytes[5], \
142 0, 0)
143
144 /* port/source ethernet addr and destination ethernet addr */
145 struct ethaddr_info {
146 uint64_t src, dst;
147 };
148
149 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
150 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
151 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
152 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
153 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
154 };
155
156 /* mask of enabled ports */
157 static uint32_t enabled_port_mask;
158 static uint32_t unprotected_port_mask;
159 static int32_t promiscuous_on = 1;
160 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
161 static uint32_t nb_lcores;
162 static uint32_t single_sa;
163 static uint32_t single_sa_idx;
164
165 struct lcore_rx_queue {
166 uint8_t port_id;
167 uint8_t queue_id;
168 } __rte_cache_aligned;
169
170 struct lcore_params {
171 uint8_t port_id;
172 uint8_t queue_id;
173 uint8_t lcore_id;
174 } __rte_cache_aligned;
175
176 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
177
178 static struct lcore_params *lcore_params;
179 static uint16_t nb_lcore_params;
180
181 static struct rte_hash *cdev_map_in;
182 static struct rte_hash *cdev_map_out;
183
184 struct buffer {
185 uint16_t len;
186 struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
187 };
188
189 struct lcore_conf {
190 uint16_t nb_rx_queue;
191 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
192 uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
193 struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
194 struct ipsec_ctx inbound;
195 struct ipsec_ctx outbound;
196 struct rt_ctx *rt4_ctx;
197 struct rt_ctx *rt6_ctx;
198 } __rte_cache_aligned;
199
200 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
201
202 static struct rte_eth_conf port_conf = {
203 .rxmode = {
204 .mq_mode = ETH_MQ_RX_RSS,
205 .max_rx_pkt_len = ETHER_MAX_LEN,
206 .split_hdr_size = 0,
207 .header_split = 0, /**< Header Split disabled */
208 .hw_ip_checksum = 1, /**< IP checksum offload enabled */
209 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
210 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */
211 .hw_strip_crc = 0, /**< CRC stripped by hardware */
212 },
213 .rx_adv_conf = {
214 .rss_conf = {
215 .rss_key = NULL,
216 .rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
217 ETH_RSS_TCP | ETH_RSS_SCTP,
218 },
219 },
220 .txmode = {
221 .mq_mode = ETH_MQ_TX_NONE,
222 },
223 };
224
225 static struct socket_ctx socket_ctx[NB_SOCKETS];
226
227 struct traffic_type {
228 const uint8_t *data[MAX_PKT_BURST * 2];
229 struct rte_mbuf *pkts[MAX_PKT_BURST * 2];
230 uint32_t res[MAX_PKT_BURST * 2];
231 uint32_t num;
232 };
233
234 struct ipsec_traffic {
235 struct traffic_type ipsec;
236 struct traffic_type ip4;
237 struct traffic_type ip6;
238 };
239
240 static inline void
241 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
242 {
243 uint8_t *nlp;
244 struct ether_hdr *eth;
245
246 eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
247 if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
248 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
249 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
250 if (*nlp == IPPROTO_ESP)
251 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
252 else {
253 t->ip4.data[t->ip4.num] = nlp;
254 t->ip4.pkts[(t->ip4.num)++] = pkt;
255 }
256 } else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
257 nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
258 nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
259 if (*nlp == IPPROTO_ESP)
260 t->ipsec.pkts[(t->ipsec.num)++] = pkt;
261 else {
262 t->ip6.data[t->ip6.num] = nlp;
263 t->ip6.pkts[(t->ip6.num)++] = pkt;
264 }
265 } else {
266 /* Unknown/Unsupported type, drop the packet */
267 RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
268 rte_pktmbuf_free(pkt);
269 }
270 }
271
272 static inline void
273 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
274 uint16_t nb_pkts)
275 {
276 int32_t i;
277
278 t->ipsec.num = 0;
279 t->ip4.num = 0;
280 t->ip6.num = 0;
281
282 for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
283 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
284 void *));
285 prepare_one_packet(pkts[i], t);
286 }
287 /* Process left packets */
288 for (; i < nb_pkts; i++)
289 prepare_one_packet(pkts[i], t);
290 }
291
292 static inline void
293 prepare_tx_pkt(struct rte_mbuf *pkt, uint8_t port)
294 {
295 struct ip *ip;
296 struct ether_hdr *ethhdr;
297
298 ip = rte_pktmbuf_mtod(pkt, struct ip *);
299
300 ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
301
302 if (ip->ip_v == IPVERSION) {
303 pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
304 pkt->l3_len = sizeof(struct ip);
305 pkt->l2_len = ETHER_HDR_LEN;
306
307 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
308 } else {
309 pkt->ol_flags |= PKT_TX_IPV6;
310 pkt->l3_len = sizeof(struct ip6_hdr);
311 pkt->l2_len = ETHER_HDR_LEN;
312
313 ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
314 }
315
316 memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
317 sizeof(struct ether_addr));
318 memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
319 sizeof(struct ether_addr));
320 }
321
322 static inline void
323 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint8_t port)
324 {
325 int32_t i;
326 const int32_t prefetch_offset = 2;
327
328 for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
329 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
330 prepare_tx_pkt(pkts[i], port);
331 }
332 /* Process left packets */
333 for (; i < nb_pkts; i++)
334 prepare_tx_pkt(pkts[i], port);
335 }
336
337 /* Send burst of packets on an output interface */
338 static inline int32_t
339 send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
340 {
341 struct rte_mbuf **m_table;
342 int32_t ret;
343 uint16_t queueid;
344
345 queueid = qconf->tx_queue_id[port];
346 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
347
348 prepare_tx_burst(m_table, n, port);
349
350 ret = rte_eth_tx_burst(port, queueid, m_table, n);
351 if (unlikely(ret < n)) {
352 do {
353 rte_pktmbuf_free(m_table[ret]);
354 } while (++ret < n);
355 }
356
357 return 0;
358 }
359
360 /* Enqueue a single packet, and send burst if queue is filled */
361 static inline int32_t
362 send_single_packet(struct rte_mbuf *m, uint8_t port)
363 {
364 uint32_t lcore_id;
365 uint16_t len;
366 struct lcore_conf *qconf;
367
368 lcore_id = rte_lcore_id();
369
370 qconf = &lcore_conf[lcore_id];
371 len = qconf->tx_mbufs[port].len;
372 qconf->tx_mbufs[port].m_table[len] = m;
373 len++;
374
375 /* enough pkts to be sent */
376 if (unlikely(len == MAX_PKT_BURST)) {
377 send_burst(qconf, MAX_PKT_BURST, port);
378 len = 0;
379 }
380
381 qconf->tx_mbufs[port].len = len;
382 return 0;
383 }
384
385 static inline void
386 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
387 uint16_t lim)
388 {
389 struct rte_mbuf *m;
390 uint32_t i, j, res, sa_idx;
391
392 if (ip->num == 0 || sp == NULL)
393 return;
394
395 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
396 ip->num, DEFAULT_MAX_CATEGORIES);
397
398 j = 0;
399 for (i = 0; i < ip->num; i++) {
400 m = ip->pkts[i];
401 res = ip->res[i];
402 if (res & BYPASS) {
403 ip->pkts[j++] = m;
404 continue;
405 }
406 if (res & DISCARD || i < lim) {
407 rte_pktmbuf_free(m);
408 continue;
409 }
410 /* Only check SPI match for processed IPSec packets */
411 sa_idx = ip->res[i] & PROTECT_MASK;
412 if (sa_idx == 0 || !inbound_sa_check(sa, m, sa_idx)) {
413 rte_pktmbuf_free(m);
414 continue;
415 }
416 ip->pkts[j++] = m;
417 }
418 ip->num = j;
419 }
420
421 static inline void
422 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
423 struct ipsec_traffic *traffic)
424 {
425 struct rte_mbuf *m;
426 uint16_t idx, nb_pkts_in, i, n_ip4, n_ip6;
427
428 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
429 traffic->ipsec.num, MAX_PKT_BURST);
430
431 n_ip4 = traffic->ip4.num;
432 n_ip6 = traffic->ip6.num;
433
434 /* SP/ACL Inbound check ipsec and ip4 */
435 for (i = 0; i < nb_pkts_in; i++) {
436 m = traffic->ipsec.pkts[i];
437 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
438 if (ip->ip_v == IPVERSION) {
439 idx = traffic->ip4.num++;
440 traffic->ip4.pkts[idx] = m;
441 traffic->ip4.data[idx] = rte_pktmbuf_mtod_offset(m,
442 uint8_t *, offsetof(struct ip, ip_p));
443 } else if (ip->ip_v == IP6_VERSION) {
444 idx = traffic->ip6.num++;
445 traffic->ip6.pkts[idx] = m;
446 traffic->ip6.data[idx] = rte_pktmbuf_mtod_offset(m,
447 uint8_t *,
448 offsetof(struct ip6_hdr, ip6_nxt));
449 } else
450 rte_pktmbuf_free(m);
451 }
452
453 inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
454 n_ip4);
455
456 inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
457 n_ip6);
458 }
459
460 static inline void
461 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
462 struct traffic_type *ipsec)
463 {
464 struct rte_mbuf *m;
465 uint32_t i, j, sa_idx;
466
467 if (ip->num == 0 || sp == NULL)
468 return;
469
470 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
471 ip->num, DEFAULT_MAX_CATEGORIES);
472
473 j = 0;
474 for (i = 0; i < ip->num; i++) {
475 m = ip->pkts[i];
476 sa_idx = ip->res[i] & PROTECT_MASK;
477 if ((ip->res[i] == 0) || (ip->res[i] & DISCARD))
478 rte_pktmbuf_free(m);
479 else if (sa_idx != 0) {
480 ipsec->res[ipsec->num] = sa_idx;
481 ipsec->pkts[ipsec->num++] = m;
482 } else /* BYPASS */
483 ip->pkts[j++] = m;
484 }
485 ip->num = j;
486 }
487
488 static inline void
489 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
490 struct ipsec_traffic *traffic)
491 {
492 struct rte_mbuf *m;
493 uint16_t idx, nb_pkts_out, i;
494
495 /* Drop any IPsec traffic from protected ports */
496 for (i = 0; i < traffic->ipsec.num; i++)
497 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
498
499 traffic->ipsec.num = 0;
500
501 outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
502
503 outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
504
505 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
506 traffic->ipsec.res, traffic->ipsec.num,
507 MAX_PKT_BURST);
508
509 for (i = 0; i < nb_pkts_out; i++) {
510 m = traffic->ipsec.pkts[i];
511 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
512 if (ip->ip_v == IPVERSION) {
513 idx = traffic->ip4.num++;
514 traffic->ip4.pkts[idx] = m;
515 } else {
516 idx = traffic->ip6.num++;
517 traffic->ip6.pkts[idx] = m;
518 }
519 }
520 }
521
522 static inline void
523 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
524 struct ipsec_traffic *traffic)
525 {
526 struct rte_mbuf *m;
527 uint32_t nb_pkts_in, i, idx;
528
529 /* Drop any IPv4 traffic from unprotected ports */
530 for (i = 0; i < traffic->ip4.num; i++)
531 rte_pktmbuf_free(traffic->ip4.pkts[i]);
532
533 traffic->ip4.num = 0;
534
535 /* Drop any IPv6 traffic from unprotected ports */
536 for (i = 0; i < traffic->ip6.num; i++)
537 rte_pktmbuf_free(traffic->ip6.pkts[i]);
538
539 traffic->ip6.num = 0;
540
541 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
542 traffic->ipsec.num, MAX_PKT_BURST);
543
544 for (i = 0; i < nb_pkts_in; i++) {
545 m = traffic->ipsec.pkts[i];
546 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
547 if (ip->ip_v == IPVERSION) {
548 idx = traffic->ip4.num++;
549 traffic->ip4.pkts[idx] = m;
550 } else {
551 idx = traffic->ip6.num++;
552 traffic->ip6.pkts[idx] = m;
553 }
554 }
555 }
556
557 static inline void
558 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
559 struct ipsec_traffic *traffic)
560 {
561 struct rte_mbuf *m;
562 uint32_t nb_pkts_out, i;
563 struct ip *ip;
564
565 /* Drop any IPsec traffic from protected ports */
566 for (i = 0; i < traffic->ipsec.num; i++)
567 rte_pktmbuf_free(traffic->ipsec.pkts[i]);
568
569 traffic->ipsec.num = 0;
570
571 for (i = 0; i < traffic->ip4.num; i++)
572 traffic->ip4.res[i] = single_sa_idx;
573
574 for (i = 0; i < traffic->ip6.num; i++)
575 traffic->ip6.res[i] = single_sa_idx;
576
577 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
578 traffic->ip4.res, traffic->ip4.num,
579 MAX_PKT_BURST);
580
581 /* They all sue the same SA (ip4 or ip6 tunnel) */
582 m = traffic->ipsec.pkts[i];
583 ip = rte_pktmbuf_mtod(m, struct ip *);
584 if (ip->ip_v == IPVERSION)
585 traffic->ip4.num = nb_pkts_out;
586 else
587 traffic->ip6.num = nb_pkts_out;
588 }
589
590 static inline void
591 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
592 {
593 uint32_t hop[MAX_PKT_BURST * 2];
594 uint32_t dst_ip[MAX_PKT_BURST * 2];
595 uint16_t i, offset;
596
597 if (nb_pkts == 0)
598 return;
599
600 for (i = 0; i < nb_pkts; i++) {
601 offset = offsetof(struct ip, ip_dst);
602 dst_ip[i] = *rte_pktmbuf_mtod_offset(pkts[i],
603 uint32_t *, offset);
604 dst_ip[i] = rte_be_to_cpu_32(dst_ip[i]);
605 }
606
607 rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, nb_pkts);
608
609 for (i = 0; i < nb_pkts; i++) {
610 if ((hop[i] & RTE_LPM_LOOKUP_SUCCESS) == 0) {
611 rte_pktmbuf_free(pkts[i]);
612 continue;
613 }
614 send_single_packet(pkts[i], hop[i] & 0xff);
615 }
616 }
617
618 static inline void
619 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
620 {
621 int16_t hop[MAX_PKT_BURST * 2];
622 uint8_t dst_ip[MAX_PKT_BURST * 2][16];
623 uint8_t *ip6_dst;
624 uint16_t i, offset;
625
626 if (nb_pkts == 0)
627 return;
628
629 for (i = 0; i < nb_pkts; i++) {
630 offset = offsetof(struct ip6_hdr, ip6_dst);
631 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *, offset);
632 memcpy(&dst_ip[i][0], ip6_dst, 16);
633 }
634
635 rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip,
636 hop, nb_pkts);
637
638 for (i = 0; i < nb_pkts; i++) {
639 if (hop[i] == -1) {
640 rte_pktmbuf_free(pkts[i]);
641 continue;
642 }
643 send_single_packet(pkts[i], hop[i] & 0xff);
644 }
645 }
646
647 static inline void
648 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
649 uint8_t nb_pkts, uint8_t portid)
650 {
651 struct ipsec_traffic traffic;
652
653 prepare_traffic(pkts, &traffic, nb_pkts);
654
655 if (unlikely(single_sa)) {
656 if (UNPROTECTED_PORT(portid))
657 process_pkts_inbound_nosp(&qconf->inbound, &traffic);
658 else
659 process_pkts_outbound_nosp(&qconf->outbound, &traffic);
660 } else {
661 if (UNPROTECTED_PORT(portid))
662 process_pkts_inbound(&qconf->inbound, &traffic);
663 else
664 process_pkts_outbound(&qconf->outbound, &traffic);
665 }
666
667 route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
668 route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
669 }
670
671 static inline void
672 drain_buffers(struct lcore_conf *qconf)
673 {
674 struct buffer *buf;
675 uint32_t portid;
676
677 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
678 buf = &qconf->tx_mbufs[portid];
679 if (buf->len == 0)
680 continue;
681 send_burst(qconf, buf->len, portid);
682 buf->len = 0;
683 }
684 }
685
686 /* main processing loop */
687 static int32_t
688 main_loop(__attribute__((unused)) void *dummy)
689 {
690 struct rte_mbuf *pkts[MAX_PKT_BURST];
691 uint32_t lcore_id;
692 uint64_t prev_tsc, diff_tsc, cur_tsc;
693 int32_t i, nb_rx;
694 uint8_t portid, queueid;
695 struct lcore_conf *qconf;
696 int32_t socket_id;
697 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
698 / US_PER_S * BURST_TX_DRAIN_US;
699 struct lcore_rx_queue *rxql;
700
701 prev_tsc = 0;
702 lcore_id = rte_lcore_id();
703 qconf = &lcore_conf[lcore_id];
704 rxql = qconf->rx_queue_list;
705 socket_id = rte_lcore_to_socket_id(lcore_id);
706
707 qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
708 qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
709 qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
710 qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
711 qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
712 qconf->inbound.cdev_map = cdev_map_in;
713 qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
714 qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
715 qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
716 qconf->outbound.cdev_map = cdev_map_out;
717
718 if (qconf->nb_rx_queue == 0) {
719 RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
720 return 0;
721 }
722
723 RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
724
725 for (i = 0; i < qconf->nb_rx_queue; i++) {
726 portid = rxql[i].port_id;
727 queueid = rxql[i].queue_id;
728 RTE_LOG(INFO, IPSEC,
729 " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
730 lcore_id, portid, queueid);
731 }
732
733 while (1) {
734 cur_tsc = rte_rdtsc();
735
736 /* TX queue buffer drain */
737 diff_tsc = cur_tsc - prev_tsc;
738
739 if (unlikely(diff_tsc > drain_tsc)) {
740 drain_buffers(qconf);
741 prev_tsc = cur_tsc;
742 }
743
744 /* Read packet from RX queues */
745 for (i = 0; i < qconf->nb_rx_queue; ++i) {
746 portid = rxql[i].port_id;
747 queueid = rxql[i].queue_id;
748 nb_rx = rte_eth_rx_burst(portid, queueid,
749 pkts, MAX_PKT_BURST);
750
751 if (nb_rx > 0)
752 process_pkts(qconf, pkts, nb_rx, portid);
753 }
754 }
755 }
756
757 static int32_t
758 check_params(void)
759 {
760 uint8_t lcore, portid, nb_ports;
761 uint16_t i;
762 int32_t socket_id;
763
764 if (lcore_params == NULL) {
765 printf("Error: No port/queue/core mappings\n");
766 return -1;
767 }
768
769 nb_ports = rte_eth_dev_count();
770
771 for (i = 0; i < nb_lcore_params; ++i) {
772 lcore = lcore_params[i].lcore_id;
773 if (!rte_lcore_is_enabled(lcore)) {
774 printf("error: lcore %hhu is not enabled in "
775 "lcore mask\n", lcore);
776 return -1;
777 }
778 socket_id = rte_lcore_to_socket_id(lcore);
779 if (socket_id != 0 && numa_on == 0) {
780 printf("warning: lcore %hhu is on socket %d "
781 "with numa off\n",
782 lcore, socket_id);
783 }
784 portid = lcore_params[i].port_id;
785 if ((enabled_port_mask & (1 << portid)) == 0) {
786 printf("port %u is not enabled in port mask\n", portid);
787 return -1;
788 }
789 if (portid >= nb_ports) {
790 printf("port %u is not present on the board\n", portid);
791 return -1;
792 }
793 }
794 return 0;
795 }
796
797 static uint8_t
798 get_port_nb_rx_queues(const uint8_t port)
799 {
800 int32_t queue = -1;
801 uint16_t i;
802
803 for (i = 0; i < nb_lcore_params; ++i) {
804 if (lcore_params[i].port_id == port &&
805 lcore_params[i].queue_id > queue)
806 queue = lcore_params[i].queue_id;
807 }
808 return (uint8_t)(++queue);
809 }
810
811 static int32_t
812 init_lcore_rx_queues(void)
813 {
814 uint16_t i, nb_rx_queue;
815 uint8_t lcore;
816
817 for (i = 0; i < nb_lcore_params; ++i) {
818 lcore = lcore_params[i].lcore_id;
819 nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
820 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
821 printf("error: too many queues (%u) for lcore: %u\n",
822 nb_rx_queue + 1, lcore);
823 return -1;
824 }
825 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
826 lcore_params[i].port_id;
827 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
828 lcore_params[i].queue_id;
829 lcore_conf[lcore].nb_rx_queue++;
830 }
831 return 0;
832 }
833
834 /* display usage */
835 static void
836 print_usage(const char *prgname)
837 {
838 printf("%s [EAL options] -- -p PORTMASK -P -u PORTMASK"
839 " --"OPTION_CONFIG" (port,queue,lcore)[,(port,queue,lcore]"
840 " --single-sa SAIDX -f CONFIG_FILE\n"
841 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
842 " -P : enable promiscuous mode\n"
843 " -u PORTMASK: hexadecimal bitmask of unprotected ports\n"
844 " --"OPTION_CONFIG": (port,queue,lcore): "
845 "rx queues configuration\n"
846 " --single-sa SAIDX: use single SA index for outbound, "
847 "bypassing the SP\n"
848 " -f CONFIG_FILE: Configuration file path\n",
849 prgname);
850 }
851
852 static int32_t
853 parse_portmask(const char *portmask)
854 {
855 char *end = NULL;
856 unsigned long pm;
857
858 /* parse hexadecimal string */
859 pm = strtoul(portmask, &end, 16);
860 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
861 return -1;
862
863 if ((pm == 0) && errno)
864 return -1;
865
866 return pm;
867 }
868
869 static int32_t
870 parse_decimal(const char *str)
871 {
872 char *end = NULL;
873 unsigned long num;
874
875 num = strtoul(str, &end, 10);
876 if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
877 return -1;
878
879 return num;
880 }
881
882 static int32_t
883 parse_config(const char *q_arg)
884 {
885 char s[256];
886 const char *p, *p0 = q_arg;
887 char *end;
888 enum fieldnames {
889 FLD_PORT = 0,
890 FLD_QUEUE,
891 FLD_LCORE,
892 _NUM_FLD
893 };
894 unsigned long int_fld[_NUM_FLD];
895 char *str_fld[_NUM_FLD];
896 int32_t i;
897 uint32_t size;
898
899 nb_lcore_params = 0;
900
901 while ((p = strchr(p0, '(')) != NULL) {
902 ++p;
903 p0 = strchr(p, ')');
904 if (p0 == NULL)
905 return -1;
906
907 size = p0 - p;
908 if (size >= sizeof(s))
909 return -1;
910
911 snprintf(s, sizeof(s), "%.*s", size, p);
912 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
913 _NUM_FLD)
914 return -1;
915 for (i = 0; i < _NUM_FLD; i++) {
916 errno = 0;
917 int_fld[i] = strtoul(str_fld[i], &end, 0);
918 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
919 return -1;
920 }
921 if (nb_lcore_params >= MAX_LCORE_PARAMS) {
922 printf("exceeded max number of lcore params: %hu\n",
923 nb_lcore_params);
924 return -1;
925 }
926 lcore_params_array[nb_lcore_params].port_id =
927 (uint8_t)int_fld[FLD_PORT];
928 lcore_params_array[nb_lcore_params].queue_id =
929 (uint8_t)int_fld[FLD_QUEUE];
930 lcore_params_array[nb_lcore_params].lcore_id =
931 (uint8_t)int_fld[FLD_LCORE];
932 ++nb_lcore_params;
933 }
934 lcore_params = lcore_params_array;
935 return 0;
936 }
937
938 #define __STRNCMP(name, opt) (!strncmp(name, opt, sizeof(opt)))
939 static int32_t
940 parse_args_long_options(struct option *lgopts, int32_t option_index)
941 {
942 int32_t ret = -1;
943 const char *optname = lgopts[option_index].name;
944
945 if (__STRNCMP(optname, OPTION_CONFIG)) {
946 ret = parse_config(optarg);
947 if (ret)
948 printf("invalid config\n");
949 }
950
951 if (__STRNCMP(optname, OPTION_SINGLE_SA)) {
952 ret = parse_decimal(optarg);
953 if (ret != -1) {
954 single_sa = 1;
955 single_sa_idx = ret;
956 printf("Configured with single SA index %u\n",
957 single_sa_idx);
958 ret = 0;
959 }
960 }
961
962 return ret;
963 }
964 #undef __STRNCMP
965
966 static int32_t
967 parse_args(int32_t argc, char **argv)
968 {
969 int32_t opt, ret;
970 char **argvopt;
971 int32_t option_index;
972 char *prgname = argv[0];
973 static struct option lgopts[] = {
974 {OPTION_CONFIG, 1, 0, 0},
975 {OPTION_SINGLE_SA, 1, 0, 0},
976 {NULL, 0, 0, 0}
977 };
978 int32_t f_present = 0;
979
980 argvopt = argv;
981
982 while ((opt = getopt_long(argc, argvopt, "p:Pu:f:",
983 lgopts, &option_index)) != EOF) {
984
985 switch (opt) {
986 case 'p':
987 enabled_port_mask = parse_portmask(optarg);
988 if (enabled_port_mask == 0) {
989 printf("invalid portmask\n");
990 print_usage(prgname);
991 return -1;
992 }
993 break;
994 case 'P':
995 printf("Promiscuous mode selected\n");
996 promiscuous_on = 1;
997 break;
998 case 'u':
999 unprotected_port_mask = parse_portmask(optarg);
1000 if (unprotected_port_mask == 0) {
1001 printf("invalid unprotected portmask\n");
1002 print_usage(prgname);
1003 return -1;
1004 }
1005 break;
1006 case 'f':
1007 if (f_present == 1) {
1008 printf("\"-f\" option present more than "
1009 "once!\n");
1010 print_usage(prgname);
1011 return -1;
1012 }
1013 if (parse_cfg_file(optarg) < 0) {
1014 printf("parsing file \"%s\" failed\n",
1015 optarg);
1016 print_usage(prgname);
1017 return -1;
1018 }
1019 f_present = 1;
1020 break;
1021 case 0:
1022 if (parse_args_long_options(lgopts, option_index)) {
1023 print_usage(prgname);
1024 return -1;
1025 }
1026 break;
1027 default:
1028 print_usage(prgname);
1029 return -1;
1030 }
1031 }
1032
1033 if (f_present == 0) {
1034 printf("Mandatory option \"-f\" not present\n");
1035 return -1;
1036 }
1037
1038 if (optind >= 0)
1039 argv[optind-1] = prgname;
1040
1041 ret = optind-1;
1042 optind = 0; /* reset getopt lib */
1043 return ret;
1044 }
1045
1046 static void
1047 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1048 {
1049 char buf[ETHER_ADDR_FMT_SIZE];
1050 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1051 printf("%s%s", name, buf);
1052 }
1053
1054 /* Check the link status of all ports in up to 9s, and print them finally */
1055 static void
1056 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1057 {
1058 #define CHECK_INTERVAL 100 /* 100ms */
1059 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1060 uint8_t portid, count, all_ports_up, print_flag = 0;
1061 struct rte_eth_link link;
1062
1063 printf("\nChecking link status");
1064 fflush(stdout);
1065 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1066 all_ports_up = 1;
1067 for (portid = 0; portid < port_num; portid++) {
1068 if ((port_mask & (1 << portid)) == 0)
1069 continue;
1070 memset(&link, 0, sizeof(link));
1071 rte_eth_link_get_nowait(portid, &link);
1072 /* print link status if flag set */
1073 if (print_flag == 1) {
1074 if (link.link_status)
1075 printf("Port %d Link Up - speed %u "
1076 "Mbps - %s\n", (uint8_t)portid,
1077 (uint32_t)link.link_speed,
1078 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1079 ("full-duplex") : ("half-duplex\n"));
1080 else
1081 printf("Port %d Link Down\n",
1082 (uint8_t)portid);
1083 continue;
1084 }
1085 /* clear all_ports_up flag if any link down */
1086 if (link.link_status == ETH_LINK_DOWN) {
1087 all_ports_up = 0;
1088 break;
1089 }
1090 }
1091 /* after finally printing all link status, get out */
1092 if (print_flag == 1)
1093 break;
1094
1095 if (all_ports_up == 0) {
1096 printf(".");
1097 fflush(stdout);
1098 rte_delay_ms(CHECK_INTERVAL);
1099 }
1100
1101 /* set the print_flag if all ports up or timeout */
1102 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1103 print_flag = 1;
1104 printf("done\n");
1105 }
1106 }
1107 }
1108
1109 static int32_t
1110 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1111 uint16_t qp, struct lcore_params *params,
1112 struct ipsec_ctx *ipsec_ctx,
1113 const struct rte_cryptodev_capabilities *cipher,
1114 const struct rte_cryptodev_capabilities *auth)
1115 {
1116 int32_t ret = 0;
1117 unsigned long i;
1118 struct cdev_key key = { 0 };
1119
1120 key.lcore_id = params->lcore_id;
1121 if (cipher)
1122 key.cipher_algo = cipher->sym.cipher.algo;
1123 if (auth)
1124 key.auth_algo = auth->sym.auth.algo;
1125
1126 ret = rte_hash_lookup(map, &key);
1127 if (ret != -ENOENT)
1128 return 0;
1129
1130 for (i = 0; i < ipsec_ctx->nb_qps; i++)
1131 if (ipsec_ctx->tbl[i].id == cdev_id)
1132 break;
1133
1134 if (i == ipsec_ctx->nb_qps) {
1135 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1136 printf("Maximum number of crypto devices assigned to "
1137 "a core, increase MAX_QP_PER_LCORE value\n");
1138 return 0;
1139 }
1140 ipsec_ctx->tbl[i].id = cdev_id;
1141 ipsec_ctx->tbl[i].qp = qp;
1142 ipsec_ctx->nb_qps++;
1143 printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1144 "(cdev_id_qp %lu)\n", str, key.lcore_id,
1145 cdev_id, qp, i);
1146 }
1147
1148 ret = rte_hash_add_key_data(map, &key, (void *)i);
1149 if (ret < 0) {
1150 printf("Faled to insert cdev mapping for (lcore %u, "
1151 "cdev %u, qp %u), errno %d\n",
1152 key.lcore_id, ipsec_ctx->tbl[i].id,
1153 ipsec_ctx->tbl[i].qp, ret);
1154 return 0;
1155 }
1156
1157 return 1;
1158 }
1159
1160 static int32_t
1161 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1162 uint16_t qp, struct lcore_params *params)
1163 {
1164 int32_t ret = 0;
1165 const struct rte_cryptodev_capabilities *i, *j;
1166 struct rte_hash *map;
1167 struct lcore_conf *qconf;
1168 struct ipsec_ctx *ipsec_ctx;
1169 const char *str;
1170
1171 qconf = &lcore_conf[params->lcore_id];
1172
1173 if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1174 map = cdev_map_out;
1175 ipsec_ctx = &qconf->outbound;
1176 str = "Outbound";
1177 } else {
1178 map = cdev_map_in;
1179 ipsec_ctx = &qconf->inbound;
1180 str = "Inbound";
1181 }
1182
1183 /* Required cryptodevs with operation chainning */
1184 if (!(dev_info->feature_flags &
1185 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1186 return ret;
1187
1188 for (i = dev_info->capabilities;
1189 i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1190 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1191 continue;
1192
1193 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1194 continue;
1195
1196 for (j = dev_info->capabilities;
1197 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1198 if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1199 continue;
1200
1201 if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1202 continue;
1203
1204 ret |= add_mapping(map, str, cdev_id, qp, params,
1205 ipsec_ctx, i, j);
1206 }
1207 }
1208
1209 return ret;
1210 }
1211
1212 static int32_t
1213 cryptodevs_init(void)
1214 {
1215 struct rte_cryptodev_config dev_conf;
1216 struct rte_cryptodev_qp_conf qp_conf;
1217 uint16_t idx, max_nb_qps, qp, i;
1218 int16_t cdev_id;
1219 struct rte_hash_parameters params = { 0 };
1220
1221 params.entries = CDEV_MAP_ENTRIES;
1222 params.key_len = sizeof(struct cdev_key);
1223 params.hash_func = rte_jhash;
1224 params.hash_func_init_val = 0;
1225 params.socket_id = rte_socket_id();
1226
1227 params.name = "cdev_map_in";
1228 cdev_map_in = rte_hash_create(&params);
1229 if (cdev_map_in == NULL)
1230 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1231 rte_errno);
1232
1233 params.name = "cdev_map_out";
1234 cdev_map_out = rte_hash_create(&params);
1235 if (cdev_map_out == NULL)
1236 rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1237 rte_errno);
1238
1239 printf("lcore/cryptodev/qp mappings:\n");
1240
1241 idx = 0;
1242 /* Start from last cdev id to give HW priority */
1243 for (cdev_id = rte_cryptodev_count() - 1; cdev_id >= 0; cdev_id--) {
1244 struct rte_cryptodev_info cdev_info;
1245
1246 rte_cryptodev_info_get(cdev_id, &cdev_info);
1247
1248 if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1249 max_nb_qps = cdev_info.max_nb_queue_pairs;
1250 else
1251 max_nb_qps = nb_lcore_params;
1252
1253 qp = 0;
1254 i = 0;
1255 while (qp < max_nb_qps && i < nb_lcore_params) {
1256 if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1257 &lcore_params[idx]))
1258 qp++;
1259 idx++;
1260 idx = idx % nb_lcore_params;
1261 i++;
1262 }
1263
1264 if (qp == 0)
1265 continue;
1266
1267 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1268 dev_conf.nb_queue_pairs = qp;
1269 dev_conf.session_mp.nb_objs = CDEV_MP_NB_OBJS;
1270 dev_conf.session_mp.cache_size = CDEV_MP_CACHE_SZ;
1271
1272 if (rte_cryptodev_configure(cdev_id, &dev_conf))
1273 rte_panic("Failed to initialize crypodev %u\n",
1274 cdev_id);
1275
1276 qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1277 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1278 if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1279 &qp_conf, dev_conf.socket_id))
1280 rte_panic("Failed to setup queue %u for "
1281 "cdev_id %u\n", 0, cdev_id);
1282
1283 if (rte_cryptodev_start(cdev_id))
1284 rte_panic("Failed to start cryptodev %u\n",
1285 cdev_id);
1286 }
1287
1288 printf("\n");
1289
1290 return 0;
1291 }
1292
1293 static void
1294 port_init(uint8_t portid)
1295 {
1296 struct rte_eth_dev_info dev_info;
1297 struct rte_eth_txconf *txconf;
1298 uint16_t nb_tx_queue, nb_rx_queue;
1299 uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1300 int32_t ret, socket_id;
1301 struct lcore_conf *qconf;
1302 struct ether_addr ethaddr;
1303
1304 rte_eth_dev_info_get(portid, &dev_info);
1305
1306 printf("Configuring device port %u:\n", portid);
1307
1308 rte_eth_macaddr_get(portid, &ethaddr);
1309 ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ethaddr);
1310 print_ethaddr("Address: ", &ethaddr);
1311 printf("\n");
1312
1313 nb_rx_queue = get_port_nb_rx_queues(portid);
1314 nb_tx_queue = nb_lcores;
1315
1316 if (nb_rx_queue > dev_info.max_rx_queues)
1317 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1318 "(max rx queue is %u)\n",
1319 nb_rx_queue, dev_info.max_rx_queues);
1320
1321 if (nb_tx_queue > dev_info.max_tx_queues)
1322 rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1323 "(max tx queue is %u)\n",
1324 nb_tx_queue, dev_info.max_tx_queues);
1325
1326 printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1327 nb_rx_queue, nb_tx_queue);
1328
1329 ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1330 &port_conf);
1331 if (ret < 0)
1332 rte_exit(EXIT_FAILURE, "Cannot configure device: "
1333 "err=%d, port=%d\n", ret, portid);
1334
1335 /* init one TX queue per lcore */
1336 tx_queueid = 0;
1337 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1338 if (rte_lcore_is_enabled(lcore_id) == 0)
1339 continue;
1340
1341 if (numa_on)
1342 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1343 else
1344 socket_id = 0;
1345
1346 /* init TX queue */
1347 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1348
1349 txconf = &dev_info.default_txconf;
1350 txconf->txq_flags = 0;
1351
1352 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1353 socket_id, txconf);
1354 if (ret < 0)
1355 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1356 "err=%d, port=%d\n", ret, portid);
1357
1358 qconf = &lcore_conf[lcore_id];
1359 qconf->tx_queue_id[portid] = tx_queueid;
1360 tx_queueid++;
1361
1362 /* init RX queues */
1363 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1364 if (portid != qconf->rx_queue_list[queue].port_id)
1365 continue;
1366
1367 rx_queueid = qconf->rx_queue_list[queue].queue_id;
1368
1369 printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1370 socket_id);
1371
1372 ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1373 nb_rxd, socket_id, NULL,
1374 socket_ctx[socket_id].mbuf_pool);
1375 if (ret < 0)
1376 rte_exit(EXIT_FAILURE,
1377 "rte_eth_rx_queue_setup: err=%d, "
1378 "port=%d\n", ret, portid);
1379 }
1380 }
1381 printf("\n");
1382 }
1383
1384 static void
1385 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1386 {
1387 char s[64];
1388
1389 snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1390 ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1391 MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1392 RTE_MBUF_DEFAULT_BUF_SIZE,
1393 socket_id);
1394 if (ctx->mbuf_pool == NULL)
1395 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
1396 socket_id);
1397 else
1398 printf("Allocated mbuf pool on socket %d\n", socket_id);
1399 }
1400
1401 int32_t
1402 main(int32_t argc, char **argv)
1403 {
1404 int32_t ret;
1405 uint32_t lcore_id, nb_ports;
1406 uint8_t portid, socket_id;
1407
1408 /* init EAL */
1409 ret = rte_eal_init(argc, argv);
1410 if (ret < 0)
1411 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1412 argc -= ret;
1413 argv += ret;
1414
1415 /* parse application arguments (after the EAL ones) */
1416 ret = parse_args(argc, argv);
1417 if (ret < 0)
1418 rte_exit(EXIT_FAILURE, "Invalid parameters\n");
1419
1420 if ((unprotected_port_mask & enabled_port_mask) !=
1421 unprotected_port_mask)
1422 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
1423 unprotected_port_mask);
1424
1425 nb_ports = rte_eth_dev_count();
1426
1427 if (check_params() < 0)
1428 rte_exit(EXIT_FAILURE, "check_params failed\n");
1429
1430 ret = init_lcore_rx_queues();
1431 if (ret < 0)
1432 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1433
1434 nb_lcores = rte_lcore_count();
1435
1436 /* Replicate each contex per socket */
1437 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1438 if (rte_lcore_is_enabled(lcore_id) == 0)
1439 continue;
1440
1441 if (numa_on)
1442 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1443 else
1444 socket_id = 0;
1445
1446 if (socket_ctx[socket_id].mbuf_pool)
1447 continue;
1448
1449 sa_init(&socket_ctx[socket_id], socket_id);
1450
1451 sp4_init(&socket_ctx[socket_id], socket_id);
1452
1453 sp6_init(&socket_ctx[socket_id], socket_id);
1454
1455 rt_init(&socket_ctx[socket_id], socket_id);
1456
1457 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
1458 }
1459
1460 for (portid = 0; portid < nb_ports; portid++) {
1461 if ((enabled_port_mask & (1 << portid)) == 0)
1462 continue;
1463
1464 port_init(portid);
1465 }
1466
1467 cryptodevs_init();
1468
1469 /* start ports */
1470 for (portid = 0; portid < nb_ports; portid++) {
1471 if ((enabled_port_mask & (1 << portid)) == 0)
1472 continue;
1473
1474 /* Start device */
1475 ret = rte_eth_dev_start(portid);
1476 if (ret < 0)
1477 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
1478 "err=%d, port=%d\n", ret, portid);
1479 /*
1480 * If enabled, put device in promiscuous mode.
1481 * This allows IO forwarding mode to forward packets
1482 * to itself through 2 cross-connected ports of the
1483 * target machine.
1484 */
1485 if (promiscuous_on)
1486 rte_eth_promiscuous_enable(portid);
1487 }
1488
1489 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1490
1491 /* launch per-lcore init on every lcore */
1492 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1493 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1494 if (rte_eal_wait_lcore(lcore_id) < 0)
1495 return -1;
1496 }
1497
1498 return 0;
1499 }