]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/examples/l2fwd-crypto/main.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / examples / l2fwd-crypto / main.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <time.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdint.h>
39 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/queue.h>
42 #include <netinet/in.h>
43 #include <setjmp.h>
44 #include <stdarg.h>
45 #include <ctype.h>
46 #include <errno.h>
47 #include <getopt.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_cryptodev.h>
55 #include <rte_cycles.h>
56 #include <rte_debug.h>
57 #include <rte_eal.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_interrupts.h>
61 #include <rte_ip.h>
62 #include <rte_launch.h>
63 #include <rte_lcore.h>
64 #include <rte_log.h>
65 #include <rte_malloc.h>
66 #include <rte_mbuf.h>
67 #include <rte_memcpy.h>
68 #include <rte_memory.h>
69 #include <rte_mempool.h>
70 #include <rte_memzone.h>
71 #include <rte_pci.h>
72 #include <rte_per_lcore.h>
73 #include <rte_prefetch.h>
74 #include <rte_random.h>
75 #include <rte_hexdump.h>
76
77 enum cdev_type {
78 CDEV_TYPE_ANY,
79 CDEV_TYPE_HW,
80 CDEV_TYPE_SW
81 };
82
83 #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
84
85 #define NB_MBUF 8192
86
87 #define MAX_STR_LEN 32
88 #define MAX_KEY_SIZE 128
89 #define MAX_PKT_BURST 32
90 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
91
92 /*
93 * Configurable number of RX/TX ring descriptors
94 */
95 #define RTE_TEST_RX_DESC_DEFAULT 128
96 #define RTE_TEST_TX_DESC_DEFAULT 512
97
98 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
99 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
100
101 /* ethernet addresses of ports */
102 static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
103
104 /* mask of enabled ports */
105 static uint64_t l2fwd_enabled_port_mask;
106 static uint64_t l2fwd_enabled_crypto_mask;
107
108 /* list of enabled ports */
109 static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
110
111
112 struct pkt_buffer {
113 unsigned len;
114 struct rte_mbuf *buffer[MAX_PKT_BURST];
115 };
116
117 struct op_buffer {
118 unsigned len;
119 struct rte_crypto_op *buffer[MAX_PKT_BURST];
120 };
121
122 #define MAX_RX_QUEUE_PER_LCORE 16
123 #define MAX_TX_QUEUE_PER_PORT 16
124
125 enum l2fwd_crypto_xform_chain {
126 L2FWD_CRYPTO_CIPHER_HASH,
127 L2FWD_CRYPTO_HASH_CIPHER,
128 L2FWD_CRYPTO_CIPHER_ONLY,
129 L2FWD_CRYPTO_HASH_ONLY
130 };
131
132 struct l2fwd_key {
133 uint8_t *data;
134 uint32_t length;
135 phys_addr_t phys_addr;
136 };
137
138 char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN];
139 char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN];
140
141 /** l2fwd crypto application command line options */
142 struct l2fwd_crypto_options {
143 unsigned portmask;
144 unsigned nb_ports_per_lcore;
145 unsigned refresh_period;
146 unsigned single_lcore:1;
147
148 enum cdev_type type;
149 unsigned sessionless:1;
150
151 enum l2fwd_crypto_xform_chain xform_chain;
152
153 struct rte_crypto_sym_xform cipher_xform;
154 unsigned ckey_param;
155 int ckey_random_size;
156
157 struct l2fwd_key iv;
158 unsigned iv_param;
159 int iv_random_size;
160
161 struct rte_crypto_sym_xform auth_xform;
162 uint8_t akey_param;
163 int akey_random_size;
164
165 struct l2fwd_key aad;
166 unsigned aad_param;
167 int aad_random_size;
168
169 int digest_size;
170
171 uint16_t block_size;
172 char string_type[MAX_STR_LEN];
173 };
174
175 /** l2fwd crypto lcore params */
176 struct l2fwd_crypto_params {
177 uint8_t dev_id;
178 uint8_t qp_id;
179
180 unsigned digest_length;
181 unsigned block_size;
182
183 struct l2fwd_key iv;
184 struct l2fwd_key aad;
185 struct rte_cryptodev_sym_session *session;
186
187 uint8_t do_cipher;
188 uint8_t do_hash;
189 uint8_t hash_verify;
190
191 enum rte_crypto_cipher_algorithm cipher_algo;
192 enum rte_crypto_auth_algorithm auth_algo;
193 };
194
195 /** lcore configuration */
196 struct lcore_queue_conf {
197 unsigned nb_rx_ports;
198 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
199
200 unsigned nb_crypto_devs;
201 unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
202
203 struct op_buffer op_buf[RTE_MAX_ETHPORTS];
204 struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
205 } __rte_cache_aligned;
206
207 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
208
209 static const struct rte_eth_conf port_conf = {
210 .rxmode = {
211 .mq_mode = ETH_MQ_RX_NONE,
212 .max_rx_pkt_len = ETHER_MAX_LEN,
213 .split_hdr_size = 0,
214 .header_split = 0, /**< Header Split disabled */
215 .hw_ip_checksum = 0, /**< IP checksum offload disabled */
216 .hw_vlan_filter = 0, /**< VLAN filtering disabled */
217 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */
218 .hw_strip_crc = 0, /**< CRC stripped by hardware */
219 },
220 .txmode = {
221 .mq_mode = ETH_MQ_TX_NONE,
222 },
223 };
224
225 struct rte_mempool *l2fwd_pktmbuf_pool;
226 struct rte_mempool *l2fwd_crypto_op_pool;
227
228 /* Per-port statistics struct */
229 struct l2fwd_port_statistics {
230 uint64_t tx;
231 uint64_t rx;
232
233 uint64_t crypto_enqueued;
234 uint64_t crypto_dequeued;
235
236 uint64_t dropped;
237 } __rte_cache_aligned;
238
239 struct l2fwd_crypto_statistics {
240 uint64_t enqueued;
241 uint64_t dequeued;
242
243 uint64_t errors;
244 } __rte_cache_aligned;
245
246 struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
247 struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
248
249 /* A tsc-based timer responsible for triggering statistics printout */
250 #define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
251 #define MAX_TIMER_PERIOD 86400UL /* 1 day max */
252
253 /* default period is 10 seconds */
254 static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
255
256 /* Print out statistics on packets dropped */
257 static void
258 print_stats(void)
259 {
260 uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
261 uint64_t total_packets_enqueued, total_packets_dequeued,
262 total_packets_errors;
263 unsigned portid;
264 uint64_t cdevid;
265
266 total_packets_dropped = 0;
267 total_packets_tx = 0;
268 total_packets_rx = 0;
269 total_packets_enqueued = 0;
270 total_packets_dequeued = 0;
271 total_packets_errors = 0;
272
273 const char clr[] = { 27, '[', '2', 'J', '\0' };
274 const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
275
276 /* Clear screen and move to top left */
277 printf("%s%s", clr, topLeft);
278
279 printf("\nPort statistics ====================================");
280
281 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
282 /* skip disabled ports */
283 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
284 continue;
285 printf("\nStatistics for port %u ------------------------------"
286 "\nPackets sent: %32"PRIu64
287 "\nPackets received: %28"PRIu64
288 "\nPackets dropped: %29"PRIu64,
289 portid,
290 port_statistics[portid].tx,
291 port_statistics[portid].rx,
292 port_statistics[portid].dropped);
293
294 total_packets_dropped += port_statistics[portid].dropped;
295 total_packets_tx += port_statistics[portid].tx;
296 total_packets_rx += port_statistics[portid].rx;
297 }
298 printf("\nCrypto statistics ==================================");
299
300 for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
301 /* skip disabled ports */
302 if ((l2fwd_enabled_crypto_mask & (1lu << cdevid)) == 0)
303 continue;
304 printf("\nStatistics for cryptodev %"PRIu64
305 " -------------------------"
306 "\nPackets enqueued: %28"PRIu64
307 "\nPackets dequeued: %28"PRIu64
308 "\nPackets errors: %30"PRIu64,
309 cdevid,
310 crypto_statistics[cdevid].enqueued,
311 crypto_statistics[cdevid].dequeued,
312 crypto_statistics[cdevid].errors);
313
314 total_packets_enqueued += crypto_statistics[cdevid].enqueued;
315 total_packets_dequeued += crypto_statistics[cdevid].dequeued;
316 total_packets_errors += crypto_statistics[cdevid].errors;
317 }
318 printf("\nAggregate statistics ==============================="
319 "\nTotal packets received: %22"PRIu64
320 "\nTotal packets enqueued: %22"PRIu64
321 "\nTotal packets dequeued: %22"PRIu64
322 "\nTotal packets sent: %26"PRIu64
323 "\nTotal packets dropped: %23"PRIu64
324 "\nTotal packets crypto errors: %17"PRIu64,
325 total_packets_rx,
326 total_packets_enqueued,
327 total_packets_dequeued,
328 total_packets_tx,
329 total_packets_dropped,
330 total_packets_errors);
331 printf("\n====================================================\n");
332 }
333
334 static void
335 fill_supported_algorithm_tables(void)
336 {
337 unsigned i;
338
339 for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++)
340 strcpy(supported_auth_algo[i], "NOT_SUPPORTED");
341
342 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM");
343 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GMAC], "AES_GMAC");
344 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC");
345 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5], "MD5");
346 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL");
347 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
348 "AES_XCBC_MAC");
349 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC");
350 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1], "SHA1");
351 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC");
352 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224], "SHA224");
353 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC");
354 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256], "SHA256");
355 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC");
356 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384], "SHA384");
357 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC");
358 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512], "SHA512");
359 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2");
360 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_ZUC_EIA3], "ZUC_EIA3");
361 strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9");
362
363 for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++)
364 strcpy(supported_cipher_algo[i], "NOT_SUPPORTED");
365
366 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC");
367 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR");
368 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM");
369 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL");
370 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2");
371 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_ZUC_EEA3], "ZUC_EEA3");
372 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8");
373 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_3DES_CTR], "3DES_CTR");
374 strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_3DES_CBC], "3DES_CBC");
375 }
376
377
378 static int
379 l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
380 struct l2fwd_crypto_params *cparams)
381 {
382 struct rte_crypto_op **op_buffer;
383 unsigned ret;
384
385 op_buffer = (struct rte_crypto_op **)
386 qconf->op_buf[cparams->dev_id].buffer;
387
388 ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
389 cparams->qp_id, op_buffer, (uint16_t) n);
390
391 crypto_statistics[cparams->dev_id].enqueued += ret;
392 if (unlikely(ret < n)) {
393 crypto_statistics[cparams->dev_id].errors += (n - ret);
394 do {
395 rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
396 rte_crypto_op_free(op_buffer[ret]);
397 } while (++ret < n);
398 }
399
400 return 0;
401 }
402
403 static int
404 l2fwd_crypto_enqueue(struct rte_crypto_op *op,
405 struct l2fwd_crypto_params *cparams)
406 {
407 unsigned lcore_id, len;
408 struct lcore_queue_conf *qconf;
409
410 lcore_id = rte_lcore_id();
411
412 qconf = &lcore_queue_conf[lcore_id];
413 len = qconf->op_buf[cparams->dev_id].len;
414 qconf->op_buf[cparams->dev_id].buffer[len] = op;
415 len++;
416
417 /* enough ops to be sent */
418 if (len == MAX_PKT_BURST) {
419 l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
420 len = 0;
421 }
422
423 qconf->op_buf[cparams->dev_id].len = len;
424 return 0;
425 }
426
427 static int
428 l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
429 struct rte_crypto_op *op,
430 struct l2fwd_crypto_params *cparams)
431 {
432 struct ether_hdr *eth_hdr;
433 struct ipv4_hdr *ip_hdr;
434
435 unsigned ipdata_offset, pad_len, data_len;
436 char *padding;
437
438 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
439
440 if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
441 return -1;
442
443 ipdata_offset = sizeof(struct ether_hdr);
444
445 ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
446 ipdata_offset);
447
448 ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
449 * IPV4_IHL_MULTIPLIER;
450
451
452 /* Zero pad data to be crypto'd so it is block aligned */
453 data_len = rte_pktmbuf_data_len(m) - ipdata_offset;
454
455 if (cparams->do_hash && cparams->hash_verify)
456 data_len -= cparams->digest_length;
457
458 pad_len = data_len % cparams->block_size ? cparams->block_size -
459 (data_len % cparams->block_size) : 0;
460
461 if (pad_len) {
462 padding = rte_pktmbuf_append(m, pad_len);
463 if (unlikely(!padding))
464 return -1;
465
466 data_len += pad_len;
467 memset(padding, 0, pad_len);
468 }
469
470 /* Set crypto operation data parameters */
471 rte_crypto_op_attach_sym_session(op, cparams->session);
472
473 if (cparams->do_hash) {
474 if (!cparams->hash_verify) {
475 /* Append space for digest to end of packet */
476 op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
477 cparams->digest_length);
478 } else {
479 op->sym->auth.digest.data = rte_pktmbuf_mtod(m,
480 uint8_t *) + ipdata_offset + data_len;
481 }
482
483 op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
484 rte_pktmbuf_pkt_len(m) - cparams->digest_length);
485 op->sym->auth.digest.length = cparams->digest_length;
486
487 /* For wireless algorithms, offset/length must be in bits */
488 if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
489 cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9 ||
490 cparams->auth_algo == RTE_CRYPTO_AUTH_ZUC_EIA3) {
491 op->sym->auth.data.offset = ipdata_offset << 3;
492 op->sym->auth.data.length = data_len << 3;
493 } else {
494 op->sym->auth.data.offset = ipdata_offset;
495 op->sym->auth.data.length = data_len;
496 }
497
498 if (cparams->aad.length) {
499 op->sym->auth.aad.data = cparams->aad.data;
500 op->sym->auth.aad.phys_addr = cparams->aad.phys_addr;
501 op->sym->auth.aad.length = cparams->aad.length;
502 }
503 }
504
505 if (cparams->do_cipher) {
506 op->sym->cipher.iv.data = cparams->iv.data;
507 op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr;
508 op->sym->cipher.iv.length = cparams->iv.length;
509
510 /* For wireless algorithms, offset/length must be in bits */
511 if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
512 cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8 ||
513 cparams->cipher_algo == RTE_CRYPTO_CIPHER_ZUC_EEA3) {
514 op->sym->cipher.data.offset = ipdata_offset << 3;
515 op->sym->cipher.data.length = data_len << 3;
516 } else {
517 op->sym->cipher.data.offset = ipdata_offset;
518 op->sym->cipher.data.length = data_len;
519 }
520 }
521
522 op->sym->m_src = m;
523
524 return l2fwd_crypto_enqueue(op, cparams);
525 }
526
527
528 /* Send the burst of packets on an output interface */
529 static int
530 l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
531 uint8_t port)
532 {
533 struct rte_mbuf **pkt_buffer;
534 unsigned ret;
535
536 pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
537
538 ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
539 port_statistics[port].tx += ret;
540 if (unlikely(ret < n)) {
541 port_statistics[port].dropped += (n - ret);
542 do {
543 rte_pktmbuf_free(pkt_buffer[ret]);
544 } while (++ret < n);
545 }
546
547 return 0;
548 }
549
550 /* Enqueue packets for TX and prepare them to be sent */
551 static int
552 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
553 {
554 unsigned lcore_id, len;
555 struct lcore_queue_conf *qconf;
556
557 lcore_id = rte_lcore_id();
558
559 qconf = &lcore_queue_conf[lcore_id];
560 len = qconf->pkt_buf[port].len;
561 qconf->pkt_buf[port].buffer[len] = m;
562 len++;
563
564 /* enough pkts to be sent */
565 if (unlikely(len == MAX_PKT_BURST)) {
566 l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
567 len = 0;
568 }
569
570 qconf->pkt_buf[port].len = len;
571 return 0;
572 }
573
574 static void
575 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
576 {
577 struct ether_hdr *eth;
578 void *tmp;
579 unsigned dst_port;
580
581 dst_port = l2fwd_dst_ports[portid];
582 eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
583
584 /* 02:00:00:00:00:xx */
585 tmp = &eth->d_addr.addr_bytes[0];
586 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
587
588 /* src addr */
589 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
590
591 l2fwd_send_packet(m, (uint8_t) dst_port);
592 }
593
594 /** Generate random key */
595 static void
596 generate_random_key(uint8_t *key, unsigned length)
597 {
598 int fd;
599 int ret;
600
601 fd = open("/dev/urandom", O_RDONLY);
602 if (fd < 0)
603 rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
604
605 ret = read(fd, key, length);
606 close(fd);
607
608 if (ret != (signed)length)
609 rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
610 }
611
612 static struct rte_cryptodev_sym_session *
613 initialize_crypto_session(struct l2fwd_crypto_options *options,
614 uint8_t cdev_id)
615 {
616 struct rte_crypto_sym_xform *first_xform;
617
618 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
619 first_xform = &options->cipher_xform;
620 first_xform->next = &options->auth_xform;
621 } else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
622 first_xform = &options->auth_xform;
623 first_xform->next = &options->cipher_xform;
624 } else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
625 first_xform = &options->cipher_xform;
626 } else {
627 first_xform = &options->auth_xform;
628 }
629
630 /* Setup Cipher Parameters */
631 return rte_cryptodev_sym_session_create(cdev_id, first_xform);
632 }
633
634 static void
635 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
636
637 /* main processing loop */
638 static void
639 l2fwd_main_loop(struct l2fwd_crypto_options *options)
640 {
641 struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
642 struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
643
644 unsigned lcore_id = rte_lcore_id();
645 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
646 unsigned i, j, portid, nb_rx, len;
647 struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
648 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
649 US_PER_S * BURST_TX_DRAIN_US;
650 struct l2fwd_crypto_params *cparams;
651 struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
652
653 if (qconf->nb_rx_ports == 0) {
654 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
655 return;
656 }
657
658 RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
659
660 for (i = 0; i < qconf->nb_rx_ports; i++) {
661
662 portid = qconf->rx_port_list[i];
663 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
664 portid);
665 }
666
667 for (i = 0; i < qconf->nb_crypto_devs; i++) {
668 port_cparams[i].do_cipher = 0;
669 port_cparams[i].do_hash = 0;
670
671 switch (options->xform_chain) {
672 case L2FWD_CRYPTO_CIPHER_HASH:
673 case L2FWD_CRYPTO_HASH_CIPHER:
674 port_cparams[i].do_cipher = 1;
675 port_cparams[i].do_hash = 1;
676 break;
677 case L2FWD_CRYPTO_HASH_ONLY:
678 port_cparams[i].do_hash = 1;
679 break;
680 case L2FWD_CRYPTO_CIPHER_ONLY:
681 port_cparams[i].do_cipher = 1;
682 break;
683 }
684
685 port_cparams[i].dev_id = qconf->cryptodev_list[i];
686 port_cparams[i].qp_id = 0;
687
688 port_cparams[i].block_size = options->block_size;
689
690 if (port_cparams[i].do_hash) {
691 port_cparams[i].digest_length =
692 options->auth_xform.auth.digest_length;
693 if (options->auth_xform.auth.add_auth_data_length) {
694 port_cparams[i].aad.data = options->aad.data;
695 port_cparams[i].aad.length =
696 options->auth_xform.auth.add_auth_data_length;
697 port_cparams[i].aad.phys_addr = options->aad.phys_addr;
698 if (!options->aad_param)
699 generate_random_key(port_cparams[i].aad.data,
700 port_cparams[i].aad.length);
701
702 }
703
704 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
705 port_cparams[i].hash_verify = 1;
706 else
707 port_cparams[i].hash_verify = 0;
708
709 port_cparams[i].auth_algo = options->auth_xform.auth.algo;
710 }
711
712 if (port_cparams[i].do_cipher) {
713 port_cparams[i].iv.data = options->iv.data;
714 port_cparams[i].iv.length = options->iv.length;
715 port_cparams[i].iv.phys_addr = options->iv.phys_addr;
716 if (!options->iv_param)
717 generate_random_key(port_cparams[i].iv.data,
718 port_cparams[i].iv.length);
719
720 port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
721 }
722
723 port_cparams[i].session = initialize_crypto_session(options,
724 port_cparams[i].dev_id);
725
726 if (port_cparams[i].session == NULL)
727 return;
728 RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
729 port_cparams[i].dev_id);
730 }
731
732 l2fwd_crypto_options_print(options);
733
734 /*
735 * Initialize previous tsc timestamp before the loop,
736 * to avoid showing the port statistics immediately,
737 * so user can see the crypto information.
738 */
739 prev_tsc = rte_rdtsc();
740 while (1) {
741
742 cur_tsc = rte_rdtsc();
743
744 /*
745 * Crypto device/TX burst queue drain
746 */
747 diff_tsc = cur_tsc - prev_tsc;
748 if (unlikely(diff_tsc > drain_tsc)) {
749 /* Enqueue all crypto ops remaining in buffers */
750 for (i = 0; i < qconf->nb_crypto_devs; i++) {
751 cparams = &port_cparams[i];
752 len = qconf->op_buf[cparams->dev_id].len;
753 l2fwd_crypto_send_burst(qconf, len, cparams);
754 qconf->op_buf[cparams->dev_id].len = 0;
755 }
756 /* Transmit all packets remaining in buffers */
757 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
758 if (qconf->pkt_buf[portid].len == 0)
759 continue;
760 l2fwd_send_burst(&lcore_queue_conf[lcore_id],
761 qconf->pkt_buf[portid].len,
762 (uint8_t) portid);
763 qconf->pkt_buf[portid].len = 0;
764 }
765
766 /* if timer is enabled */
767 if (timer_period > 0) {
768
769 /* advance the timer */
770 timer_tsc += diff_tsc;
771
772 /* if timer has reached its timeout */
773 if (unlikely(timer_tsc >=
774 (uint64_t)timer_period)) {
775
776 /* do this only on master core */
777 if (lcore_id == rte_get_master_lcore()
778 && options->refresh_period) {
779 print_stats();
780 timer_tsc = 0;
781 }
782 }
783 }
784
785 prev_tsc = cur_tsc;
786 }
787
788 /*
789 * Read packet from RX queues
790 */
791 for (i = 0; i < qconf->nb_rx_ports; i++) {
792 portid = qconf->rx_port_list[i];
793
794 cparams = &port_cparams[i];
795
796 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
797 pkts_burst, MAX_PKT_BURST);
798
799 port_statistics[portid].rx += nb_rx;
800
801 if (nb_rx) {
802 /*
803 * If we can't allocate a crypto_ops, then drop
804 * the rest of the burst and dequeue and
805 * process the packets to free offload structs
806 */
807 if (rte_crypto_op_bulk_alloc(
808 l2fwd_crypto_op_pool,
809 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
810 ops_burst, nb_rx) !=
811 nb_rx) {
812 for (j = 0; j < nb_rx; j++)
813 rte_pktmbuf_free(pkts_burst[i]);
814
815 nb_rx = 0;
816 }
817
818 /* Enqueue packets from Crypto device*/
819 for (j = 0; j < nb_rx; j++) {
820 m = pkts_burst[j];
821
822 l2fwd_simple_crypto_enqueue(m,
823 ops_burst[j], cparams);
824 }
825 }
826
827 /* Dequeue packets from Crypto device */
828 do {
829 nb_rx = rte_cryptodev_dequeue_burst(
830 cparams->dev_id, cparams->qp_id,
831 ops_burst, MAX_PKT_BURST);
832
833 crypto_statistics[cparams->dev_id].dequeued +=
834 nb_rx;
835
836 /* Forward crypto'd packets */
837 for (j = 0; j < nb_rx; j++) {
838 m = ops_burst[j]->sym->m_src;
839
840 rte_crypto_op_free(ops_burst[j]);
841 l2fwd_simple_forward(m, portid);
842 }
843 } while (nb_rx == MAX_PKT_BURST);
844 }
845 }
846 }
847
848 static int
849 l2fwd_launch_one_lcore(void *arg)
850 {
851 l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
852 return 0;
853 }
854
855 /* Display command line arguments usage */
856 static void
857 l2fwd_crypto_usage(const char *prgname)
858 {
859 printf("%s [EAL options] --\n"
860 " -p PORTMASK: hexadecimal bitmask of ports to configure\n"
861 " -q NQ: number of queue (=ports) per lcore (default is 1)\n"
862 " -s manage all ports from single lcore\n"
863 " -T PERIOD: statistics will be refreshed each PERIOD seconds"
864 " (0 to disable, 10 default, 86400 maximum)\n"
865
866 " --cdev_type HW / SW / ANY\n"
867 " --chain HASH_CIPHER / CIPHER_HASH\n"
868
869 " --cipher_algo ALGO\n"
870 " --cipher_op ENCRYPT / DECRYPT\n"
871 " --cipher_key KEY (bytes separated with \":\")\n"
872 " --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
873 " --iv IV (bytes separated with \":\")\n"
874 " --iv_random_size SIZE: size of IV when generated randomly\n"
875
876 " --auth_algo ALGO\n"
877 " --auth_op GENERATE / VERIFY\n"
878 " --auth_key KEY (bytes separated with \":\")\n"
879 " --auth_key_random_size SIZE: size of auth key when generated randomly\n"
880 " --aad AAD (bytes separated with \":\")\n"
881 " --aad_random_size SIZE: size of AAD when generated randomly\n"
882 " --digest_size SIZE: size of digest to be generated/verified\n"
883
884 " --sessionless\n",
885 prgname);
886 }
887
888 /** Parse crypto device type command line argument */
889 static int
890 parse_cryptodev_type(enum cdev_type *type, char *optarg)
891 {
892 if (strcmp("HW", optarg) == 0) {
893 *type = CDEV_TYPE_HW;
894 return 0;
895 } else if (strcmp("SW", optarg) == 0) {
896 *type = CDEV_TYPE_SW;
897 return 0;
898 } else if (strcmp("ANY", optarg) == 0) {
899 *type = CDEV_TYPE_ANY;
900 return 0;
901 }
902
903 return -1;
904 }
905
906 /** Parse crypto chain xform command line argument */
907 static int
908 parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
909 {
910 if (strcmp("CIPHER_HASH", optarg) == 0) {
911 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
912 return 0;
913 } else if (strcmp("HASH_CIPHER", optarg) == 0) {
914 options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
915 return 0;
916 } else if (strcmp("CIPHER_ONLY", optarg) == 0) {
917 options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
918 return 0;
919 } else if (strcmp("HASH_ONLY", optarg) == 0) {
920 options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
921 return 0;
922 }
923
924 return -1;
925 }
926
927 /** Parse crypto cipher algo option command line argument */
928 static int
929 parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
930 {
931 unsigned i;
932
933 for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) {
934 if (!strcmp(supported_cipher_algo[i], optarg)) {
935 *algo = (enum rte_crypto_cipher_algorithm)i;
936 return 0;
937 }
938 }
939
940 printf("Cipher algorithm not supported!\n");
941 return -1;
942 }
943
944 /** Parse crypto cipher operation command line argument */
945 static int
946 parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
947 {
948 if (strcmp("ENCRYPT", optarg) == 0) {
949 *op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
950 return 0;
951 } else if (strcmp("DECRYPT", optarg) == 0) {
952 *op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
953 return 0;
954 }
955
956 printf("Cipher operation not supported!\n");
957 return -1;
958 }
959
960 /** Parse crypto key command line argument */
961 static int
962 parse_key(uint8_t *data, char *input_arg)
963 {
964 unsigned byte_count;
965 char *token;
966
967 for (byte_count = 0, token = strtok(input_arg, ":");
968 (byte_count < MAX_KEY_SIZE) && (token != NULL);
969 token = strtok(NULL, ":")) {
970
971 int number = (int)strtol(token, NULL, 16);
972
973 if (errno == EINVAL || errno == ERANGE || number > 0xFF)
974 return -1;
975
976 data[byte_count++] = (uint8_t)number;
977 }
978
979 return byte_count;
980 }
981
982 /** Parse size param*/
983 static int
984 parse_size(int *size, const char *q_arg)
985 {
986 char *end = NULL;
987 unsigned long n;
988
989 /* parse hexadecimal string */
990 n = strtoul(q_arg, &end, 10);
991 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
992 n = 0;
993
994 if (n == 0) {
995 printf("invalid size\n");
996 return -1;
997 }
998
999 *size = n;
1000 return 0;
1001 }
1002
1003 /** Parse crypto cipher operation command line argument */
1004 static int
1005 parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
1006 {
1007 unsigned i;
1008
1009 for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) {
1010 if (!strcmp(supported_auth_algo[i], optarg)) {
1011 *algo = (enum rte_crypto_auth_algorithm)i;
1012 return 0;
1013 }
1014 }
1015
1016 printf("Authentication algorithm specified not supported!\n");
1017 return -1;
1018 }
1019
1020 static int
1021 parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
1022 {
1023 if (strcmp("VERIFY", optarg) == 0) {
1024 *op = RTE_CRYPTO_AUTH_OP_VERIFY;
1025 return 0;
1026 } else if (strcmp("GENERATE", optarg) == 0) {
1027 *op = RTE_CRYPTO_AUTH_OP_GENERATE;
1028 return 0;
1029 }
1030
1031 printf("Authentication operation specified not supported!\n");
1032 return -1;
1033 }
1034
1035 /** Parse long options */
1036 static int
1037 l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
1038 struct option *lgopts, int option_index)
1039 {
1040 int retval;
1041
1042 if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
1043 retval = parse_cryptodev_type(&options->type, optarg);
1044 if (retval == 0)
1045 snprintf(options->string_type, MAX_STR_LEN,
1046 "%s", optarg);
1047 return retval;
1048 }
1049
1050 else if (strcmp(lgopts[option_index].name, "chain") == 0)
1051 return parse_crypto_opt_chain(options, optarg);
1052
1053 /* Cipher options */
1054 else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
1055 return parse_cipher_algo(&options->cipher_xform.cipher.algo,
1056 optarg);
1057
1058 else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
1059 return parse_cipher_op(&options->cipher_xform.cipher.op,
1060 optarg);
1061
1062 else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
1063 options->ckey_param = 1;
1064 options->cipher_xform.cipher.key.length =
1065 parse_key(options->cipher_xform.cipher.key.data, optarg);
1066 if (options->cipher_xform.cipher.key.length > 0)
1067 return 0;
1068 else
1069 return -1;
1070 }
1071
1072 else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
1073 return parse_size(&options->ckey_random_size, optarg);
1074
1075 else if (strcmp(lgopts[option_index].name, "iv") == 0) {
1076 options->iv_param = 1;
1077 options->iv.length =
1078 parse_key(options->iv.data, optarg);
1079 if (options->iv.length > 0)
1080 return 0;
1081 else
1082 return -1;
1083 }
1084
1085 else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0)
1086 return parse_size(&options->iv_random_size, optarg);
1087
1088 /* Authentication options */
1089 else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
1090 return parse_auth_algo(&options->auth_xform.auth.algo,
1091 optarg);
1092 }
1093
1094 else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
1095 return parse_auth_op(&options->auth_xform.auth.op,
1096 optarg);
1097
1098 else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
1099 options->akey_param = 1;
1100 options->auth_xform.auth.key.length =
1101 parse_key(options->auth_xform.auth.key.data, optarg);
1102 if (options->auth_xform.auth.key.length > 0)
1103 return 0;
1104 else
1105 return -1;
1106 }
1107
1108 else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
1109 return parse_size(&options->akey_random_size, optarg);
1110 }
1111
1112 else if (strcmp(lgopts[option_index].name, "aad") == 0) {
1113 options->aad_param = 1;
1114 options->aad.length =
1115 parse_key(options->aad.data, optarg);
1116 if (options->aad.length > 0)
1117 return 0;
1118 else
1119 return -1;
1120 }
1121
1122 else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
1123 return parse_size(&options->aad_random_size, optarg);
1124 }
1125
1126 else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
1127 return parse_size(&options->digest_size, optarg);
1128 }
1129
1130 else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
1131 options->sessionless = 1;
1132 return 0;
1133 }
1134
1135 return -1;
1136 }
1137
1138 /** Parse port mask */
1139 static int
1140 l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
1141 const char *q_arg)
1142 {
1143 char *end = NULL;
1144 unsigned long pm;
1145
1146 /* parse hexadecimal string */
1147 pm = strtoul(q_arg, &end, 16);
1148 if ((pm == '\0') || (end == NULL) || (*end != '\0'))
1149 pm = 0;
1150
1151 options->portmask = pm;
1152 if (options->portmask == 0) {
1153 printf("invalid portmask specified\n");
1154 return -1;
1155 }
1156
1157 return pm;
1158 }
1159
1160 /** Parse number of queues */
1161 static int
1162 l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
1163 const char *q_arg)
1164 {
1165 char *end = NULL;
1166 unsigned long n;
1167
1168 /* parse hexadecimal string */
1169 n = strtoul(q_arg, &end, 10);
1170 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1171 n = 0;
1172 else if (n >= MAX_RX_QUEUE_PER_LCORE)
1173 n = 0;
1174
1175 options->nb_ports_per_lcore = n;
1176 if (options->nb_ports_per_lcore == 0) {
1177 printf("invalid number of ports selected\n");
1178 return -1;
1179 }
1180
1181 return 0;
1182 }
1183
1184 /** Parse timer period */
1185 static int
1186 l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
1187 const char *q_arg)
1188 {
1189 char *end = NULL;
1190 unsigned long n;
1191
1192 /* parse number string */
1193 n = (unsigned)strtol(q_arg, &end, 10);
1194 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
1195 n = 0;
1196
1197 if (n >= MAX_TIMER_PERIOD) {
1198 printf("Warning refresh period specified %lu is greater than "
1199 "max value %lu! using max value",
1200 n, MAX_TIMER_PERIOD);
1201 n = MAX_TIMER_PERIOD;
1202 }
1203
1204 options->refresh_period = n * 1000 * TIMER_MILLISECOND;
1205
1206 return 0;
1207 }
1208
1209 /** Generate default options for application */
1210 static void
1211 l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
1212 {
1213 options->portmask = 0xffffffff;
1214 options->nb_ports_per_lcore = 1;
1215 options->refresh_period = 10000;
1216 options->single_lcore = 0;
1217 options->sessionless = 0;
1218
1219 options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
1220
1221 /* Cipher Data */
1222 options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1223 options->cipher_xform.next = NULL;
1224 options->ckey_param = 0;
1225 options->ckey_random_size = -1;
1226 options->cipher_xform.cipher.key.length = 0;
1227 options->iv_param = 0;
1228 options->iv_random_size = -1;
1229 options->iv.length = 0;
1230
1231 options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
1232 options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1233
1234 /* Authentication Data */
1235 options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1236 options->auth_xform.next = NULL;
1237 options->akey_param = 0;
1238 options->akey_random_size = -1;
1239 options->auth_xform.auth.key.length = 0;
1240 options->aad_param = 0;
1241 options->aad_random_size = -1;
1242 options->aad.length = 0;
1243 options->digest_size = -1;
1244
1245 options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
1246 options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
1247
1248 options->type = CDEV_TYPE_ANY;
1249 }
1250
1251 static void
1252 display_cipher_info(struct l2fwd_crypto_options *options)
1253 {
1254 printf("\n---- Cipher information ---\n");
1255 printf("Algorithm: %s\n",
1256 supported_cipher_algo[options->cipher_xform.cipher.algo]);
1257 rte_hexdump(stdout, "Cipher key:",
1258 options->cipher_xform.cipher.key.data,
1259 options->cipher_xform.cipher.key.length);
1260 rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length);
1261 }
1262
1263 static void
1264 display_auth_info(struct l2fwd_crypto_options *options)
1265 {
1266 printf("\n---- Authentication information ---\n");
1267 printf("Algorithm: %s\n",
1268 supported_auth_algo[options->auth_xform.auth.algo]);
1269 rte_hexdump(stdout, "Auth key:",
1270 options->auth_xform.auth.key.data,
1271 options->auth_xform.auth.key.length);
1272 rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
1273 }
1274
1275 static void
1276 l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
1277 {
1278 char string_cipher_op[MAX_STR_LEN];
1279 char string_auth_op[MAX_STR_LEN];
1280
1281 if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1282 strcpy(string_cipher_op, "Encrypt");
1283 else
1284 strcpy(string_cipher_op, "Decrypt");
1285
1286 if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
1287 strcpy(string_auth_op, "Auth generate");
1288 else
1289 strcpy(string_auth_op, "Auth verify");
1290
1291 printf("Options:-\nn");
1292 printf("portmask: %x\n", options->portmask);
1293 printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
1294 printf("refresh period : %u\n", options->refresh_period);
1295 printf("single lcore mode: %s\n",
1296 options->single_lcore ? "enabled" : "disabled");
1297 printf("stats_printing: %s\n",
1298 options->refresh_period == 0 ? "disabled" : "enabled");
1299
1300 printf("sessionless crypto: %s\n",
1301 options->sessionless ? "enabled" : "disabled");
1302
1303 if (options->ckey_param && (options->ckey_random_size != -1))
1304 printf("Cipher key already parsed, ignoring size of random key\n");
1305
1306 if (options->akey_param && (options->akey_random_size != -1))
1307 printf("Auth key already parsed, ignoring size of random key\n");
1308
1309 if (options->iv_param && (options->iv_random_size != -1))
1310 printf("IV already parsed, ignoring size of random IV\n");
1311
1312 if (options->aad_param && (options->aad_random_size != -1))
1313 printf("AAD already parsed, ignoring size of random AAD\n");
1314
1315 printf("\nCrypto chain: ");
1316 switch (options->xform_chain) {
1317 case L2FWD_CRYPTO_CIPHER_HASH:
1318 printf("Input --> %s --> %s --> Output\n",
1319 string_cipher_op, string_auth_op);
1320 display_cipher_info(options);
1321 display_auth_info(options);
1322 break;
1323 case L2FWD_CRYPTO_HASH_CIPHER:
1324 printf("Input --> %s --> %s --> Output\n",
1325 string_auth_op, string_cipher_op);
1326 display_cipher_info(options);
1327 display_auth_info(options);
1328 break;
1329 case L2FWD_CRYPTO_HASH_ONLY:
1330 printf("Input --> %s --> Output\n", string_auth_op);
1331 display_auth_info(options);
1332 break;
1333 case L2FWD_CRYPTO_CIPHER_ONLY:
1334 printf("Input --> %s --> Output\n", string_cipher_op);
1335 display_cipher_info(options);
1336 break;
1337 }
1338 }
1339
1340 /* Parse the argument given in the command line of the application */
1341 static int
1342 l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
1343 int argc, char **argv)
1344 {
1345 int opt, retval, option_index;
1346 char **argvopt = argv, *prgname = argv[0];
1347
1348 static struct option lgopts[] = {
1349 { "sessionless", no_argument, 0, 0 },
1350
1351 { "cdev_type", required_argument, 0, 0 },
1352 { "chain", required_argument, 0, 0 },
1353
1354 { "cipher_algo", required_argument, 0, 0 },
1355 { "cipher_op", required_argument, 0, 0 },
1356 { "cipher_key", required_argument, 0, 0 },
1357 { "cipher_key_random_size", required_argument, 0, 0 },
1358
1359 { "auth_algo", required_argument, 0, 0 },
1360 { "auth_op", required_argument, 0, 0 },
1361 { "auth_key", required_argument, 0, 0 },
1362 { "auth_key_random_size", required_argument, 0, 0 },
1363
1364 { "iv", required_argument, 0, 0 },
1365 { "iv_random_size", required_argument, 0, 0 },
1366 { "aad", required_argument, 0, 0 },
1367 { "aad_random_size", required_argument, 0, 0 },
1368 { "digest_size", required_argument, 0, 0 },
1369
1370 { "sessionless", no_argument, 0, 0 },
1371
1372 { NULL, 0, 0, 0 }
1373 };
1374
1375 l2fwd_crypto_default_options(options);
1376
1377 while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts,
1378 &option_index)) != EOF) {
1379 switch (opt) {
1380 /* long options */
1381 case 0:
1382 retval = l2fwd_crypto_parse_args_long_options(options,
1383 lgopts, option_index);
1384 if (retval < 0) {
1385 l2fwd_crypto_usage(prgname);
1386 return -1;
1387 }
1388 break;
1389
1390 /* portmask */
1391 case 'p':
1392 retval = l2fwd_crypto_parse_portmask(options, optarg);
1393 if (retval < 0) {
1394 l2fwd_crypto_usage(prgname);
1395 return -1;
1396 }
1397 break;
1398
1399 /* nqueue */
1400 case 'q':
1401 retval = l2fwd_crypto_parse_nqueue(options, optarg);
1402 if (retval < 0) {
1403 l2fwd_crypto_usage(prgname);
1404 return -1;
1405 }
1406 break;
1407
1408 /* single */
1409 case 's':
1410 options->single_lcore = 1;
1411
1412 break;
1413
1414 /* timer period */
1415 case 'T':
1416 retval = l2fwd_crypto_parse_timer_period(options,
1417 optarg);
1418 if (retval < 0) {
1419 l2fwd_crypto_usage(prgname);
1420 return -1;
1421 }
1422 break;
1423
1424 default:
1425 l2fwd_crypto_usage(prgname);
1426 return -1;
1427 }
1428 }
1429
1430
1431 if (optind >= 0)
1432 argv[optind-1] = prgname;
1433
1434 retval = optind-1;
1435 optind = 0; /* reset getopt lib */
1436
1437 return retval;
1438 }
1439
1440 /* Check the link status of all ports in up to 9s, and print them finally */
1441 static void
1442 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1443 {
1444 #define CHECK_INTERVAL 100 /* 100ms */
1445 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1446 uint8_t portid, count, all_ports_up, print_flag = 0;
1447 struct rte_eth_link link;
1448
1449 printf("\nChecking link status");
1450 fflush(stdout);
1451 for (count = 0; count <= MAX_CHECK_TIME; count++) {
1452 all_ports_up = 1;
1453 for (portid = 0; portid < port_num; portid++) {
1454 if ((port_mask & (1 << portid)) == 0)
1455 continue;
1456 memset(&link, 0, sizeof(link));
1457 rte_eth_link_get_nowait(portid, &link);
1458 /* print link status if flag set */
1459 if (print_flag == 1) {
1460 if (link.link_status)
1461 printf("Port %d Link Up - speed %u "
1462 "Mbps - %s\n", (uint8_t)portid,
1463 (unsigned)link.link_speed,
1464 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1465 ("full-duplex") : ("half-duplex\n"));
1466 else
1467 printf("Port %d Link Down\n",
1468 (uint8_t)portid);
1469 continue;
1470 }
1471 /* clear all_ports_up flag if any link down */
1472 if (link.link_status == ETH_LINK_DOWN) {
1473 all_ports_up = 0;
1474 break;
1475 }
1476 }
1477 /* after finally printing all link status, get out */
1478 if (print_flag == 1)
1479 break;
1480
1481 if (all_ports_up == 0) {
1482 printf(".");
1483 fflush(stdout);
1484 rte_delay_ms(CHECK_INTERVAL);
1485 }
1486
1487 /* set the print_flag if all ports up or timeout */
1488 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1489 print_flag = 1;
1490 printf("done\n");
1491 }
1492 }
1493 }
1494
1495 /* Check if device has to be HW/SW or any */
1496 static int
1497 check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info)
1498 {
1499 if (options->type == CDEV_TYPE_HW &&
1500 (dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1501 return 0;
1502 if (options->type == CDEV_TYPE_SW &&
1503 !(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
1504 return 0;
1505 if (options->type == CDEV_TYPE_ANY)
1506 return 0;
1507
1508 return -1;
1509 }
1510
1511 static inline int
1512 check_supported_size(uint16_t length, uint16_t min, uint16_t max,
1513 uint16_t increment)
1514 {
1515 uint16_t supp_size;
1516
1517 /* Single value */
1518 if (increment == 0) {
1519 if (length == min)
1520 return 0;
1521 else
1522 return -1;
1523 }
1524
1525 /* Range of values */
1526 for (supp_size = min; supp_size <= max; supp_size += increment) {
1527 if (length == supp_size)
1528 return 0;
1529 }
1530
1531 return -1;
1532 }
1533 static int
1534 initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
1535 uint8_t *enabled_cdevs)
1536 {
1537 unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0;
1538 const struct rte_cryptodev_capabilities *cap;
1539 enum rte_crypto_auth_algorithm cap_auth_algo;
1540 enum rte_crypto_auth_algorithm opt_auth_algo;
1541 enum rte_crypto_cipher_algorithm cap_cipher_algo;
1542 enum rte_crypto_cipher_algorithm opt_cipher_algo;
1543 int retval;
1544
1545 cdev_count = rte_cryptodev_count();
1546 if (cdev_count == 0) {
1547 printf("No crypto devices available\n");
1548 return -1;
1549 }
1550
1551 for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
1552 cdev_id++) {
1553 struct rte_cryptodev_qp_conf qp_conf;
1554 struct rte_cryptodev_info dev_info;
1555
1556 struct rte_cryptodev_config conf = {
1557 .nb_queue_pairs = 1,
1558 .socket_id = SOCKET_ID_ANY,
1559 .session_mp = {
1560 .nb_objs = 2048,
1561 .cache_size = 64
1562 }
1563 };
1564
1565 rte_cryptodev_info_get(cdev_id, &dev_info);
1566
1567 /* Set cipher parameters */
1568 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1569 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1570 options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
1571 /* Check if device supports cipher algo */
1572 i = 0;
1573 opt_cipher_algo = options->cipher_xform.cipher.algo;
1574 cap = &dev_info.capabilities[i];
1575 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1576 cap_cipher_algo = cap->sym.cipher.algo;
1577 if (cap->sym.xform_type ==
1578 RTE_CRYPTO_SYM_XFORM_CIPHER) {
1579 if (cap_cipher_algo == opt_cipher_algo) {
1580 if (check_type(options, &dev_info) == 0)
1581 break;
1582 }
1583 }
1584 cap = &dev_info.capabilities[++i];
1585 }
1586
1587 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1588 printf("Algorithm %s not supported by cryptodev %u"
1589 " or device not of preferred type (%s)\n",
1590 supported_cipher_algo[opt_cipher_algo],
1591 cdev_id,
1592 options->string_type);
1593 continue;
1594 }
1595
1596 options->block_size = cap->sym.cipher.block_size;
1597 /*
1598 * Check if length of provided IV is supported
1599 * by the algorithm chosen.
1600 */
1601 if (options->iv_param) {
1602 if (check_supported_size(options->iv.length,
1603 cap->sym.cipher.iv_size.min,
1604 cap->sym.cipher.iv_size.max,
1605 cap->sym.cipher.iv_size.increment)
1606 != 0) {
1607 printf("Unsupported IV length\n");
1608 return -1;
1609 }
1610 /*
1611 * Check if length of IV to be randomly generated
1612 * is supported by the algorithm chosen.
1613 */
1614 } else if (options->iv_random_size != -1) {
1615 if (check_supported_size(options->iv_random_size,
1616 cap->sym.cipher.iv_size.min,
1617 cap->sym.cipher.iv_size.max,
1618 cap->sym.cipher.iv_size.increment)
1619 != 0) {
1620 printf("Unsupported IV length\n");
1621 return -1;
1622 }
1623 options->iv.length = options->iv_random_size;
1624 /* No size provided, use minimum size. */
1625 } else
1626 options->iv.length = cap->sym.cipher.iv_size.min;
1627
1628 /*
1629 * Check if length of provided cipher key is supported
1630 * by the algorithm chosen.
1631 */
1632 if (options->ckey_param) {
1633 if (check_supported_size(
1634 options->cipher_xform.cipher.key.length,
1635 cap->sym.cipher.key_size.min,
1636 cap->sym.cipher.key_size.max,
1637 cap->sym.cipher.key_size.increment)
1638 != 0) {
1639 printf("Unsupported cipher key length\n");
1640 return -1;
1641 }
1642 /*
1643 * Check if length of the cipher key to be randomly generated
1644 * is supported by the algorithm chosen.
1645 */
1646 } else if (options->ckey_random_size != -1) {
1647 if (check_supported_size(options->ckey_random_size,
1648 cap->sym.cipher.key_size.min,
1649 cap->sym.cipher.key_size.max,
1650 cap->sym.cipher.key_size.increment)
1651 != 0) {
1652 printf("Unsupported cipher key length\n");
1653 return -1;
1654 }
1655 options->cipher_xform.cipher.key.length =
1656 options->ckey_random_size;
1657 /* No size provided, use minimum size. */
1658 } else
1659 options->cipher_xform.cipher.key.length =
1660 cap->sym.cipher.key_size.min;
1661
1662 if (!options->ckey_param)
1663 generate_random_key(
1664 options->cipher_xform.cipher.key.data,
1665 options->cipher_xform.cipher.key.length);
1666
1667 }
1668
1669 /* Set auth parameters */
1670 if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
1671 options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
1672 options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
1673 /* Check if device supports auth algo */
1674 i = 0;
1675 opt_auth_algo = options->auth_xform.auth.algo;
1676 cap = &dev_info.capabilities[i];
1677 while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1678 cap_auth_algo = cap->sym.auth.algo;
1679 if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
1680 (cap_auth_algo == opt_auth_algo) &&
1681 (check_type(options, &dev_info) == 0)) {
1682 break;
1683 }
1684 cap = &dev_info.capabilities[++i];
1685 }
1686
1687 if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
1688 printf("Algorithm %s not supported by cryptodev %u"
1689 " or device not of preferred type (%s)\n",
1690 supported_auth_algo[opt_auth_algo],
1691 cdev_id,
1692 options->string_type);
1693 continue;
1694 }
1695
1696 options->block_size = cap->sym.auth.block_size;
1697 /*
1698 * Check if length of provided AAD is supported
1699 * by the algorithm chosen.
1700 */
1701 if (options->aad_param) {
1702 if (check_supported_size(options->aad.length,
1703 cap->sym.auth.aad_size.min,
1704 cap->sym.auth.aad_size.max,
1705 cap->sym.auth.aad_size.increment)
1706 != 0) {
1707 printf("Unsupported AAD length\n");
1708 return -1;
1709 }
1710 /*
1711 * Check if length of AAD to be randomly generated
1712 * is supported by the algorithm chosen.
1713 */
1714 } else if (options->aad_random_size != -1) {
1715 if (check_supported_size(options->aad_random_size,
1716 cap->sym.auth.aad_size.min,
1717 cap->sym.auth.aad_size.max,
1718 cap->sym.auth.aad_size.increment)
1719 != 0) {
1720 printf("Unsupported AAD length\n");
1721 return -1;
1722 }
1723 options->aad.length = options->aad_random_size;
1724 /* No size provided, use minimum size. */
1725 } else
1726 options->aad.length = cap->sym.auth.aad_size.min;
1727
1728 options->auth_xform.auth.add_auth_data_length =
1729 options->aad.length;
1730
1731 /*
1732 * Check if length of provided auth key is supported
1733 * by the algorithm chosen.
1734 */
1735 if (options->akey_param) {
1736 if (check_supported_size(
1737 options->auth_xform.auth.key.length,
1738 cap->sym.auth.key_size.min,
1739 cap->sym.auth.key_size.max,
1740 cap->sym.auth.key_size.increment)
1741 != 0) {
1742 printf("Unsupported auth key length\n");
1743 return -1;
1744 }
1745 /*
1746 * Check if length of the auth key to be randomly generated
1747 * is supported by the algorithm chosen.
1748 */
1749 } else if (options->akey_random_size != -1) {
1750 if (check_supported_size(options->akey_random_size,
1751 cap->sym.auth.key_size.min,
1752 cap->sym.auth.key_size.max,
1753 cap->sym.auth.key_size.increment)
1754 != 0) {
1755 printf("Unsupported auth key length\n");
1756 return -1;
1757 }
1758 options->auth_xform.auth.key.length =
1759 options->akey_random_size;
1760 /* No size provided, use minimum size. */
1761 } else
1762 options->auth_xform.auth.key.length =
1763 cap->sym.auth.key_size.min;
1764
1765 if (!options->akey_param)
1766 generate_random_key(
1767 options->auth_xform.auth.key.data,
1768 options->auth_xform.auth.key.length);
1769
1770 /* Check if digest size is supported by the algorithm. */
1771 if (options->digest_size != -1) {
1772 if (check_supported_size(options->digest_size,
1773 cap->sym.auth.digest_size.min,
1774 cap->sym.auth.digest_size.max,
1775 cap->sym.auth.digest_size.increment)
1776 != 0) {
1777 printf("Unsupported digest length\n");
1778 return -1;
1779 }
1780 options->auth_xform.auth.digest_length =
1781 options->digest_size;
1782 /* No size provided, use minimum size. */
1783 } else
1784 options->auth_xform.auth.digest_length =
1785 cap->sym.auth.digest_size.min;
1786 }
1787
1788 retval = rte_cryptodev_configure(cdev_id, &conf);
1789 if (retval < 0) {
1790 printf("Failed to configure cryptodev %u", cdev_id);
1791 return -1;
1792 }
1793
1794 qp_conf.nb_descriptors = 2048;
1795
1796 retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
1797 SOCKET_ID_ANY);
1798 if (retval < 0) {
1799 printf("Failed to setup queue pair %u on cryptodev %u",
1800 0, cdev_id);
1801 return -1;
1802 }
1803
1804 retval = rte_cryptodev_start(cdev_id);
1805 if (retval < 0) {
1806 printf("Failed to start device %u: error %d\n",
1807 cdev_id, retval);
1808 return -1;
1809 }
1810
1811 l2fwd_enabled_crypto_mask |= (1 << cdev_id);
1812
1813 enabled_cdevs[cdev_id] = 1;
1814 enabled_cdev_count++;
1815 }
1816
1817 return enabled_cdev_count;
1818 }
1819
1820 static int
1821 initialize_ports(struct l2fwd_crypto_options *options)
1822 {
1823 uint8_t last_portid, portid;
1824 unsigned enabled_portcount = 0;
1825 unsigned nb_ports = rte_eth_dev_count();
1826
1827 if (nb_ports == 0) {
1828 printf("No Ethernet ports - bye\n");
1829 return -1;
1830 }
1831
1832 /* Reset l2fwd_dst_ports */
1833 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
1834 l2fwd_dst_ports[portid] = 0;
1835
1836 for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
1837 int retval;
1838
1839 /* Skip ports that are not enabled */
1840 if ((options->portmask & (1 << portid)) == 0)
1841 continue;
1842
1843 /* init port */
1844 printf("Initializing port %u... ", (unsigned) portid);
1845 fflush(stdout);
1846 retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
1847 if (retval < 0) {
1848 printf("Cannot configure device: err=%d, port=%u\n",
1849 retval, (unsigned) portid);
1850 return -1;
1851 }
1852
1853 /* init one RX queue */
1854 fflush(stdout);
1855 retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1856 rte_eth_dev_socket_id(portid),
1857 NULL, l2fwd_pktmbuf_pool);
1858 if (retval < 0) {
1859 printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
1860 retval, (unsigned) portid);
1861 return -1;
1862 }
1863
1864 /* init one TX queue on each port */
1865 fflush(stdout);
1866 retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
1867 rte_eth_dev_socket_id(portid),
1868 NULL);
1869 if (retval < 0) {
1870 printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
1871 retval, (unsigned) portid);
1872
1873 return -1;
1874 }
1875
1876 /* Start device */
1877 retval = rte_eth_dev_start(portid);
1878 if (retval < 0) {
1879 printf("rte_eth_dev_start:err=%d, port=%u\n",
1880 retval, (unsigned) portid);
1881 return -1;
1882 }
1883
1884 rte_eth_promiscuous_enable(portid);
1885
1886 rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
1887
1888 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
1889 (unsigned) portid,
1890 l2fwd_ports_eth_addr[portid].addr_bytes[0],
1891 l2fwd_ports_eth_addr[portid].addr_bytes[1],
1892 l2fwd_ports_eth_addr[portid].addr_bytes[2],
1893 l2fwd_ports_eth_addr[portid].addr_bytes[3],
1894 l2fwd_ports_eth_addr[portid].addr_bytes[4],
1895 l2fwd_ports_eth_addr[portid].addr_bytes[5]);
1896
1897 /* initialize port stats */
1898 memset(&port_statistics, 0, sizeof(port_statistics));
1899
1900 /* Setup port forwarding table */
1901 if (enabled_portcount % 2) {
1902 l2fwd_dst_ports[portid] = last_portid;
1903 l2fwd_dst_ports[last_portid] = portid;
1904 } else {
1905 last_portid = portid;
1906 }
1907
1908 l2fwd_enabled_port_mask |= (1 << portid);
1909 enabled_portcount++;
1910 }
1911
1912 if (enabled_portcount == 1) {
1913 l2fwd_dst_ports[last_portid] = last_portid;
1914 } else if (enabled_portcount % 2) {
1915 printf("odd number of ports in portmask- bye\n");
1916 return -1;
1917 }
1918
1919 check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
1920
1921 return enabled_portcount;
1922 }
1923
1924 static void
1925 reserve_key_memory(struct l2fwd_crypto_options *options)
1926 {
1927 options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
1928 MAX_KEY_SIZE, 0);
1929 if (options->cipher_xform.cipher.key.data == NULL)
1930 rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
1931
1932
1933 options->auth_xform.auth.key.data = rte_malloc("auth key",
1934 MAX_KEY_SIZE, 0);
1935 if (options->auth_xform.auth.key.data == NULL)
1936 rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
1937
1938 options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0);
1939 if (options->iv.data == NULL)
1940 rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV");
1941 options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data);
1942
1943 options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
1944 if (options->aad.data == NULL)
1945 rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
1946 options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
1947 }
1948
1949 int
1950 main(int argc, char **argv)
1951 {
1952 struct lcore_queue_conf *qconf;
1953 struct l2fwd_crypto_options options;
1954
1955 uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
1956 unsigned lcore_id, rx_lcore_id;
1957 int ret, enabled_cdevcount, enabled_portcount;
1958 uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
1959
1960 /* init EAL */
1961 ret = rte_eal_init(argc, argv);
1962 if (ret < 0)
1963 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
1964 argc -= ret;
1965 argv += ret;
1966
1967 /* reserve memory for Cipher/Auth key and IV */
1968 reserve_key_memory(&options);
1969
1970 /* fill out the supported algorithm tables */
1971 fill_supported_algorithm_tables();
1972
1973 /* parse application arguments (after the EAL ones) */
1974 ret = l2fwd_crypto_parse_args(&options, argc, argv);
1975 if (ret < 0)
1976 rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
1977
1978 /* create the mbuf pool */
1979 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
1980 sizeof(struct rte_crypto_op),
1981 RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
1982 if (l2fwd_pktmbuf_pool == NULL)
1983 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
1984
1985 /* create crypto op pool */
1986 l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
1987 RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0,
1988 rte_socket_id());
1989 if (l2fwd_crypto_op_pool == NULL)
1990 rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
1991
1992 /* Enable Ethernet ports */
1993 enabled_portcount = initialize_ports(&options);
1994 if (enabled_portcount < 1)
1995 rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
1996
1997 nb_ports = rte_eth_dev_count();
1998 /* Initialize the port/queue configuration of each logical core */
1999 for (rx_lcore_id = 0, qconf = NULL, portid = 0;
2000 portid < nb_ports; portid++) {
2001
2002 /* skip ports that are not enabled */
2003 if ((options.portmask & (1 << portid)) == 0)
2004 continue;
2005
2006 if (options.single_lcore && qconf == NULL) {
2007 while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2008 rx_lcore_id++;
2009 if (rx_lcore_id >= RTE_MAX_LCORE)
2010 rte_exit(EXIT_FAILURE,
2011 "Not enough cores\n");
2012 }
2013 } else if (!options.single_lcore) {
2014 /* get the lcore_id for this port */
2015 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2016 lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
2017 options.nb_ports_per_lcore) {
2018 rx_lcore_id++;
2019 if (rx_lcore_id >= RTE_MAX_LCORE)
2020 rte_exit(EXIT_FAILURE,
2021 "Not enough cores\n");
2022 }
2023 }
2024
2025 /* Assigned a new logical core in the loop above. */
2026 if (qconf != &lcore_queue_conf[rx_lcore_id])
2027 qconf = &lcore_queue_conf[rx_lcore_id];
2028
2029 qconf->rx_port_list[qconf->nb_rx_ports] = portid;
2030 qconf->nb_rx_ports++;
2031
2032 printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
2033 }
2034
2035 /* Enable Crypto devices */
2036 enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
2037 enabled_cdevs);
2038 if (enabled_cdevcount < 0)
2039 rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
2040
2041 if (enabled_cdevcount < enabled_portcount)
2042 rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
2043 "has to be more or equal to number of ports (%d)\n",
2044 enabled_cdevcount, enabled_portcount);
2045
2046 nb_cryptodevs = rte_cryptodev_count();
2047
2048 /* Initialize the port/cryptodev configuration of each logical core */
2049 for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
2050 cdev_id < nb_cryptodevs && enabled_cdevcount;
2051 cdev_id++) {
2052 /* Crypto op not supported by crypto device */
2053 if (!enabled_cdevs[cdev_id])
2054 continue;
2055
2056 if (options.single_lcore && qconf == NULL) {
2057 while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
2058 rx_lcore_id++;
2059 if (rx_lcore_id >= RTE_MAX_LCORE)
2060 rte_exit(EXIT_FAILURE,
2061 "Not enough cores\n");
2062 }
2063 } else if (!options.single_lcore) {
2064 /* get the lcore_id for this port */
2065 while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
2066 lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
2067 options.nb_ports_per_lcore) {
2068 rx_lcore_id++;
2069 if (rx_lcore_id >= RTE_MAX_LCORE)
2070 rte_exit(EXIT_FAILURE,
2071 "Not enough cores\n");
2072 }
2073 }
2074
2075 /* Assigned a new logical core in the loop above. */
2076 if (qconf != &lcore_queue_conf[rx_lcore_id])
2077 qconf = &lcore_queue_conf[rx_lcore_id];
2078
2079 qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
2080 qconf->nb_crypto_devs++;
2081
2082 enabled_cdevcount--;
2083
2084 printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
2085 (unsigned)cdev_id);
2086 }
2087
2088 /* launch per-lcore init on every lcore */
2089 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
2090 CALL_MASTER);
2091 RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2092 if (rte_eal_wait_lcore(lcore_id) < 0)
2093 return -1;
2094 }
2095
2096 return 0;
2097 }