]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/examples/ptpclient/ptpclient.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / examples / ptpclient / ptpclient.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2015 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * This application is a simple Layer 2 PTP v2 client. It shows delta values
36 * which are used to synchronize the PHC clock. if the "-T 1" parameter is
37 * passed to the application the Linux kernel clock is also synchronized.
38 */
39
40 #include <stdint.h>
41 #include <inttypes.h>
42 #include <rte_eal.h>
43 #include <rte_ethdev.h>
44 #include <rte_cycles.h>
45 #include <rte_lcore.h>
46 #include <rte_mbuf.h>
47 #include <rte_ip.h>
48 #include <limits.h>
49 #include <sys/time.h>
50 #include <getopt.h>
51
52 #define RX_RING_SIZE 128
53 #define TX_RING_SIZE 512
54
55 #define NUM_MBUFS 8191
56 #define MBUF_CACHE_SIZE 250
57
58 /* Values for the PTP messageType field. */
59 #define SYNC 0x0
60 #define DELAY_REQ 0x1
61 #define PDELAY_REQ 0x2
62 #define PDELAY_RESP 0x3
63 #define FOLLOW_UP 0x8
64 #define DELAY_RESP 0x9
65 #define PDELAY_RESP_FOLLOW_UP 0xA
66 #define ANNOUNCE 0xB
67 #define SIGNALING 0xC
68 #define MANAGEMENT 0xD
69
70 #define NSEC_PER_SEC 1000000000L
71 #define KERNEL_TIME_ADJUST_LIMIT 20000
72 #define PTP_PROTOCOL 0x88F7
73
74 struct rte_mempool *mbuf_pool;
75 uint32_t ptp_enabled_port_mask;
76 uint8_t ptp_enabled_port_nb;
77 static uint8_t ptp_enabled_ports[RTE_MAX_ETHPORTS];
78
79 static const struct rte_eth_conf port_conf_default = {
80 .rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }
81 };
82
83 static const struct ether_addr ether_multicast = {
84 .addr_bytes = {0x01, 0x1b, 0x19, 0x0, 0x0, 0x0}
85 };
86
87 /* Structs used for PTP handling. */
88 struct tstamp {
89 uint16_t sec_msb;
90 uint32_t sec_lsb;
91 uint32_t ns;
92 } __attribute__((packed));
93
94 struct clock_id {
95 uint8_t id[8];
96 };
97
98 struct port_id {
99 struct clock_id clock_id;
100 uint16_t port_number;
101 } __attribute__((packed));
102
103 struct ptp_header {
104 uint8_t msg_type;
105 uint8_t ver;
106 uint16_t message_length;
107 uint8_t domain_number;
108 uint8_t reserved1;
109 uint8_t flag_field[2];
110 int64_t correction;
111 uint32_t reserved2;
112 struct port_id source_port_id;
113 uint16_t seq_id;
114 uint8_t control;
115 int8_t log_message_interval;
116 } __attribute__((packed));
117
118 struct sync_msg {
119 struct ptp_header hdr;
120 struct tstamp origin_tstamp;
121 } __attribute__((packed));
122
123 struct follow_up_msg {
124 struct ptp_header hdr;
125 struct tstamp precise_origin_tstamp;
126 uint8_t suffix[0];
127 } __attribute__((packed));
128
129 struct delay_req_msg {
130 struct ptp_header hdr;
131 struct tstamp origin_tstamp;
132 } __attribute__((packed));
133
134 struct delay_resp_msg {
135 struct ptp_header hdr;
136 struct tstamp rx_tstamp;
137 struct port_id req_port_id;
138 uint8_t suffix[0];
139 } __attribute__((packed));
140
141 struct ptp_message {
142 union {
143 struct ptp_header header;
144 struct sync_msg sync;
145 struct delay_req_msg delay_req;
146 struct follow_up_msg follow_up;
147 struct delay_resp_msg delay_resp;
148 } __attribute__((packed));
149 };
150
151 struct ptpv2_data_slave_ordinary {
152 struct rte_mbuf *m;
153 struct timespec tstamp1;
154 struct timespec tstamp2;
155 struct timespec tstamp3;
156 struct timespec tstamp4;
157 struct clock_id client_clock_id;
158 struct clock_id master_clock_id;
159 struct timeval new_adj;
160 int64_t delta;
161 uint8_t portid;
162 uint16_t seqID_SYNC;
163 uint16_t seqID_FOLLOWUP;
164 uint8_t ptpset;
165 uint8_t kernel_time_set;
166 uint8_t current_ptp_port;
167 };
168
169 static struct ptpv2_data_slave_ordinary ptp_data;
170
171 static inline uint64_t timespec64_to_ns(const struct timespec *ts)
172 {
173 return ((uint64_t) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec;
174 }
175
176 static struct timeval
177 ns_to_timeval(int64_t nsec)
178 {
179 struct timespec t_spec = {0, 0};
180 struct timeval t_eval = {0, 0};
181 int32_t rem;
182
183 if (nsec == 0)
184 return t_eval;
185 rem = nsec % NSEC_PER_SEC;
186 t_spec.tv_sec = nsec / NSEC_PER_SEC;
187
188 if (rem < 0) {
189 t_spec.tv_sec--;
190 rem += NSEC_PER_SEC;
191 }
192
193 t_spec.tv_nsec = rem;
194 t_eval.tv_sec = t_spec.tv_sec;
195 t_eval.tv_usec = t_spec.tv_nsec / 1000;
196
197 return t_eval;
198 }
199
200 /*
201 * Initializes a given port using global settings and with the RX buffers
202 * coming from the mbuf_pool passed as a parameter.
203 */
204 static inline int
205 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
206 {
207 struct rte_eth_dev_info dev_info;
208 struct rte_eth_conf port_conf = port_conf_default;
209 const uint16_t rx_rings = 1;
210 const uint16_t tx_rings = 1;
211 int retval;
212 uint16_t q;
213
214 if (port >= rte_eth_dev_count())
215 return -1;
216
217 /* Configure the Ethernet device. */
218 retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
219 if (retval != 0)
220 return retval;
221
222 /* Allocate and set up 1 RX queue per Ethernet port. */
223 for (q = 0; q < rx_rings; q++) {
224 retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
225 rte_eth_dev_socket_id(port), NULL, mbuf_pool);
226
227 if (retval < 0)
228 return retval;
229 }
230
231 /* Allocate and set up 1 TX queue per Ethernet port. */
232 for (q = 0; q < tx_rings; q++) {
233 /* Setup txq_flags */
234 struct rte_eth_txconf *txconf;
235
236 rte_eth_dev_info_get(q, &dev_info);
237 txconf = &dev_info.default_txconf;
238 txconf->txq_flags = 0;
239
240 retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
241 rte_eth_dev_socket_id(port), txconf);
242 if (retval < 0)
243 return retval;
244 }
245
246 /* Start the Ethernet port. */
247 retval = rte_eth_dev_start(port);
248 if (retval < 0)
249 return retval;
250
251 /* Enable timesync timestamping for the Ethernet device */
252 rte_eth_timesync_enable(port);
253
254 /* Enable RX in promiscuous mode for the Ethernet device. */
255 rte_eth_promiscuous_enable(port);
256
257 return 0;
258 }
259
260 static void
261 print_clock_info(struct ptpv2_data_slave_ordinary *ptp_data)
262 {
263 int64_t nsec;
264 struct timespec net_time, sys_time;
265
266 printf("Master Clock id: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
267 ptp_data->master_clock_id.id[0],
268 ptp_data->master_clock_id.id[1],
269 ptp_data->master_clock_id.id[2],
270 ptp_data->master_clock_id.id[3],
271 ptp_data->master_clock_id.id[4],
272 ptp_data->master_clock_id.id[5],
273 ptp_data->master_clock_id.id[6],
274 ptp_data->master_clock_id.id[7]);
275
276 printf("\nT2 - Slave Clock. %lds %ldns",
277 (ptp_data->tstamp2.tv_sec),
278 (ptp_data->tstamp2.tv_nsec));
279
280 printf("\nT1 - Master Clock. %lds %ldns ",
281 ptp_data->tstamp1.tv_sec,
282 (ptp_data->tstamp1.tv_nsec));
283
284 printf("\nT3 - Slave Clock. %lds %ldns",
285 ptp_data->tstamp3.tv_sec,
286 (ptp_data->tstamp3.tv_nsec));
287
288 printf("\nT4 - Master Clock. %lds %ldns ",
289 ptp_data->tstamp4.tv_sec,
290 (ptp_data->tstamp4.tv_nsec));
291
292 printf("\nDelta between master and slave clocks:%"PRId64"ns\n",
293 ptp_data->delta);
294
295 clock_gettime(CLOCK_REALTIME, &sys_time);
296 rte_eth_timesync_read_time(ptp_data->current_ptp_port, &net_time);
297
298 time_t ts = net_time.tv_sec;
299
300 printf("\n\nComparison between Linux kernel Time and PTP:");
301
302 printf("\nCurrent PTP Time: %.24s %.9ld ns",
303 ctime(&ts), net_time.tv_nsec);
304
305 nsec = (int64_t)timespec64_to_ns(&net_time) -
306 (int64_t)timespec64_to_ns(&sys_time);
307 ptp_data->new_adj = ns_to_timeval(nsec);
308
309 gettimeofday(&ptp_data->new_adj, NULL);
310
311 time_t tp = ptp_data->new_adj.tv_sec;
312
313 printf("\nCurrent SYS Time: %.24s %.6ld ns",
314 ctime(&tp), ptp_data->new_adj.tv_usec);
315
316 printf("\nDelta between PTP and Linux Kernel time:%"PRId64"ns\n",
317 nsec);
318
319 printf("[Ctrl+C to quit]\n");
320
321 /* Clear screen and put cursor in column 1, row 1 */
322 printf("\033[2J\033[1;1H");
323 }
324
325 static int64_t
326 delta_eval(struct ptpv2_data_slave_ordinary *ptp_data)
327 {
328 int64_t delta;
329 uint64_t t1 = 0;
330 uint64_t t2 = 0;
331 uint64_t t3 = 0;
332 uint64_t t4 = 0;
333
334 t1 = timespec64_to_ns(&ptp_data->tstamp1);
335 t2 = timespec64_to_ns(&ptp_data->tstamp2);
336 t3 = timespec64_to_ns(&ptp_data->tstamp3);
337 t4 = timespec64_to_ns(&ptp_data->tstamp4);
338
339 delta = -((int64_t)((t2 - t1) - (t4 - t3))) / 2;
340
341 return delta;
342 }
343
344 /*
345 * Parse the PTP SYNC message.
346 */
347 static void
348 parse_sync(struct ptpv2_data_slave_ordinary *ptp_data, uint16_t rx_tstamp_idx)
349 {
350 struct ptp_header *ptp_hdr;
351
352 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(ptp_data->m, char *)
353 + sizeof(struct ether_hdr));
354 ptp_data->seqID_SYNC = rte_be_to_cpu_16(ptp_hdr->seq_id);
355
356 if (ptp_data->ptpset == 0) {
357 rte_memcpy(&ptp_data->master_clock_id,
358 &ptp_hdr->source_port_id.clock_id,
359 sizeof(struct clock_id));
360 ptp_data->ptpset = 1;
361 }
362
363 if (memcmp(&ptp_hdr->source_port_id.clock_id,
364 &ptp_hdr->source_port_id.clock_id,
365 sizeof(struct clock_id)) == 0) {
366
367 if (ptp_data->ptpset == 1)
368 rte_eth_timesync_read_rx_timestamp(ptp_data->portid,
369 &ptp_data->tstamp2, rx_tstamp_idx);
370 }
371
372 }
373
374 /*
375 * Parse the PTP FOLLOWUP message and send DELAY_REQ to the master clock.
376 */
377 static void
378 parse_fup(struct ptpv2_data_slave_ordinary *ptp_data)
379 {
380 struct ether_hdr *eth_hdr;
381 struct ptp_header *ptp_hdr;
382 struct clock_id *client_clkid;
383 struct ptp_message *ptp_msg;
384 struct rte_mbuf *created_pkt;
385 struct tstamp *origin_tstamp;
386 struct ether_addr eth_multicast = ether_multicast;
387 size_t pkt_size;
388 int wait_us;
389 struct rte_mbuf *m = ptp_data->m;
390
391 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
392 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
393 + sizeof(struct ether_hdr));
394 if (memcmp(&ptp_data->master_clock_id,
395 &ptp_hdr->source_port_id.clock_id,
396 sizeof(struct clock_id)) != 0)
397 return;
398
399 ptp_data->seqID_FOLLOWUP = rte_be_to_cpu_16(ptp_hdr->seq_id);
400 ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) +
401 sizeof(struct ether_hdr));
402
403 origin_tstamp = &ptp_msg->follow_up.precise_origin_tstamp;
404 ptp_data->tstamp1.tv_nsec = ntohl(origin_tstamp->ns);
405 ptp_data->tstamp1.tv_sec =
406 ((uint64_t)ntohl(origin_tstamp->sec_lsb)) |
407 (((uint64_t)ntohs(origin_tstamp->sec_msb)) << 32);
408
409 if (ptp_data->seqID_FOLLOWUP == ptp_data->seqID_SYNC) {
410
411 created_pkt = rte_pktmbuf_alloc(mbuf_pool);
412 pkt_size = sizeof(struct ether_hdr) +
413 sizeof(struct ptp_message);
414 created_pkt->data_len = pkt_size;
415 created_pkt->pkt_len = pkt_size;
416 eth_hdr = rte_pktmbuf_mtod(created_pkt, struct ether_hdr *);
417 rte_eth_macaddr_get(ptp_data->portid, &eth_hdr->s_addr);
418
419 /* Set multicast address 01-1B-19-00-00-00. */
420 ether_addr_copy(&eth_multicast, &eth_hdr->d_addr);
421
422 eth_hdr->ether_type = htons(PTP_PROTOCOL);
423 ptp_msg = (struct ptp_message *)
424 (rte_pktmbuf_mtod(created_pkt, char *) +
425 sizeof(struct ether_hdr));
426
427 ptp_msg->delay_req.hdr.seq_id = htons(ptp_data->seqID_SYNC);
428 ptp_msg->delay_req.hdr.msg_type = DELAY_REQ;
429 ptp_msg->delay_req.hdr.ver = 2;
430 ptp_msg->delay_req.hdr.control = 1;
431 ptp_msg->delay_req.hdr.log_message_interval = 127;
432
433 /* Set up clock id. */
434 client_clkid =
435 &ptp_msg->delay_req.hdr.source_port_id.clock_id;
436
437 client_clkid->id[0] = eth_hdr->s_addr.addr_bytes[0];
438 client_clkid->id[1] = eth_hdr->s_addr.addr_bytes[1];
439 client_clkid->id[2] = eth_hdr->s_addr.addr_bytes[2];
440 client_clkid->id[3] = 0xFF;
441 client_clkid->id[4] = 0xFE;
442 client_clkid->id[5] = eth_hdr->s_addr.addr_bytes[3];
443 client_clkid->id[6] = eth_hdr->s_addr.addr_bytes[4];
444 client_clkid->id[7] = eth_hdr->s_addr.addr_bytes[5];
445
446 rte_memcpy(&ptp_data->client_clock_id,
447 client_clkid,
448 sizeof(struct clock_id));
449
450 /* Enable flag for hardware timestamping. */
451 created_pkt->ol_flags |= PKT_TX_IEEE1588_TMST;
452
453 /*Read value from NIC to prevent latching with old value. */
454 rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
455 &ptp_data->tstamp3);
456
457 /* Transmit the packet. */
458 rte_eth_tx_burst(ptp_data->portid, 0, &created_pkt, 1);
459
460 wait_us = 0;
461 ptp_data->tstamp3.tv_nsec = 0;
462 ptp_data->tstamp3.tv_sec = 0;
463
464 /* Wait at least 1 us to read TX timestamp. */
465 while ((rte_eth_timesync_read_tx_timestamp(ptp_data->portid,
466 &ptp_data->tstamp3) < 0) && (wait_us < 1000)) {
467 rte_delay_us(1);
468 wait_us++;
469 }
470 }
471 }
472
473 /*
474 * Update the kernel time with the difference between it and the current NIC
475 * time.
476 */
477 static inline void
478 update_kernel_time(void)
479 {
480 int64_t nsec;
481 struct timespec net_time, sys_time;
482
483 clock_gettime(CLOCK_REALTIME, &sys_time);
484 rte_eth_timesync_read_time(ptp_data.current_ptp_port, &net_time);
485
486 nsec = (int64_t)timespec64_to_ns(&net_time) -
487 (int64_t)timespec64_to_ns(&sys_time);
488
489 ptp_data.new_adj = ns_to_timeval(nsec);
490
491 /*
492 * If difference between kernel time and system time in NIC is too big
493 * (more than +/- 20 microseconds), use clock_settime to set directly
494 * the kernel time, as adjtime is better for small adjustments (takes
495 * longer to adjust the time).
496 */
497
498 if (nsec > KERNEL_TIME_ADJUST_LIMIT || nsec < -KERNEL_TIME_ADJUST_LIMIT)
499 clock_settime(CLOCK_REALTIME, &net_time);
500 else
501 adjtime(&ptp_data.new_adj, 0);
502
503
504 }
505
506 /*
507 * Parse the DELAY_RESP message.
508 */
509 static void
510 parse_drsp(struct ptpv2_data_slave_ordinary *ptp_data)
511 {
512 struct rte_mbuf *m = ptp_data->m;
513 struct ptp_message *ptp_msg;
514 struct tstamp *rx_tstamp;
515 uint16_t seq_id;
516
517 ptp_msg = (struct ptp_message *) (rte_pktmbuf_mtod(m, char *) +
518 sizeof(struct ether_hdr));
519 seq_id = rte_be_to_cpu_16(ptp_msg->delay_resp.hdr.seq_id);
520 if (memcmp(&ptp_data->client_clock_id,
521 &ptp_msg->delay_resp.req_port_id.clock_id,
522 sizeof(struct clock_id)) == 0) {
523 if (seq_id == ptp_data->seqID_FOLLOWUP) {
524 rx_tstamp = &ptp_msg->delay_resp.rx_tstamp;
525 ptp_data->tstamp4.tv_nsec = ntohl(rx_tstamp->ns);
526 ptp_data->tstamp4.tv_sec =
527 ((uint64_t)ntohl(rx_tstamp->sec_lsb)) |
528 (((uint64_t)ntohs(rx_tstamp->sec_msb)) << 32);
529
530 /* Evaluate the delta for adjustment. */
531 ptp_data->delta = delta_eval(ptp_data);
532
533 rte_eth_timesync_adjust_time(ptp_data->portid,
534 ptp_data->delta);
535
536 ptp_data->current_ptp_port = ptp_data->portid;
537
538 /* Update kernel time if enabled in app parameters. */
539 if (ptp_data->kernel_time_set == 1)
540 update_kernel_time();
541
542
543
544 }
545 }
546 }
547
548 /* This function processes PTP packets, implementing slave PTP IEEE1588 L2
549 * functionality.
550 */
551 static void
552 parse_ptp_frames(uint8_t portid, struct rte_mbuf *m) {
553 struct ptp_header *ptp_hdr;
554 struct ether_hdr *eth_hdr;
555 uint16_t eth_type;
556
557 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
558 eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);
559
560 if (eth_type == PTP_PROTOCOL) {
561 ptp_data.m = m;
562 ptp_data.portid = portid;
563 ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)
564 + sizeof(struct ether_hdr));
565
566 switch (ptp_hdr->msg_type) {
567 case SYNC:
568 parse_sync(&ptp_data, m->timesync);
569 break;
570 case FOLLOW_UP:
571 parse_fup(&ptp_data);
572 break;
573 case DELAY_RESP:
574 parse_drsp(&ptp_data);
575 print_clock_info(&ptp_data);
576 break;
577 default:
578 break;
579 }
580 }
581 }
582
583 /*
584 * The lcore main. This is the main thread that does the work, reading from an
585 * input port and writing to an output port.
586 */
587 static __attribute__((noreturn)) void
588 lcore_main(void)
589 {
590 uint8_t portid;
591 unsigned nb_rx;
592 struct rte_mbuf *m;
593
594 /*
595 * Check that the port is on the same NUMA node as the polling thread
596 * for best performance.
597 */
598 printf("\nCore %u Waiting for SYNC packets. [Ctrl+C to quit]\n",
599 rte_lcore_id());
600
601 /* Run until the application is quit or killed. */
602
603 while (1) {
604 /* Read packet from RX queues. */
605 for (portid = 0; portid < ptp_enabled_port_nb; portid++) {
606
607 portid = ptp_enabled_ports[portid];
608 nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);
609
610 if (likely(nb_rx == 0))
611 continue;
612
613 if (m->ol_flags & PKT_RX_IEEE1588_PTP)
614 parse_ptp_frames(portid, m);
615
616 rte_pktmbuf_free(m);
617 }
618 }
619 }
620
621 static void
622 print_usage(const char *prgname)
623 {
624 printf("%s [EAL options] -- -p PORTMASK -T VALUE\n"
625 " -T VALUE: 0 - Disable, 1 - Enable Linux Clock"
626 " Synchronization (0 default)\n"
627 " -p PORTMASK: hexadecimal bitmask of ports to configure\n",
628 prgname);
629 }
630
631 static int
632 ptp_parse_portmask(const char *portmask)
633 {
634 char *end = NULL;
635 unsigned long pm;
636
637 /* Parse the hexadecimal string. */
638 pm = strtoul(portmask, &end, 16);
639
640 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
641 return -1;
642
643 if (pm == 0)
644 return -1;
645
646 return pm;
647 }
648
649 static int
650 parse_ptp_kernel(const char *param)
651 {
652 char *end = NULL;
653 unsigned long pm;
654
655 /* Parse the hexadecimal string. */
656 pm = strtoul(param, &end, 16);
657
658 if ((param[0] == '\0') || (end == NULL) || (*end != '\0'))
659 return -1;
660 if (pm == 0)
661 return 0;
662
663 return 1;
664 }
665
666 /* Parse the commandline arguments. */
667 static int
668 ptp_parse_args(int argc, char **argv)
669 {
670 int opt, ret;
671 char **argvopt;
672 int option_index;
673 char *prgname = argv[0];
674 static struct option lgopts[] = { {NULL, 0, 0, 0} };
675
676 argvopt = argv;
677
678 while ((opt = getopt_long(argc, argvopt, "p:T:",
679 lgopts, &option_index)) != EOF) {
680
681 switch (opt) {
682
683 /* Portmask. */
684 case 'p':
685 ptp_enabled_port_mask = ptp_parse_portmask(optarg);
686 if (ptp_enabled_port_mask == 0) {
687 printf("invalid portmask\n");
688 print_usage(prgname);
689 return -1;
690 }
691 break;
692 /* Time synchronization. */
693 case 'T':
694 ret = parse_ptp_kernel(optarg);
695 if (ret < 0) {
696 print_usage(prgname);
697 return -1;
698 }
699
700 ptp_data.kernel_time_set = ret;
701 break;
702
703 default:
704 print_usage(prgname);
705 return -1;
706 }
707 }
708
709 argv[optind-1] = prgname;
710
711 optind = 0; /* Reset getopt lib. */
712
713 return 0;
714 }
715
716 /*
717 * The main function, which does initialization and calls the per-lcore
718 * functions.
719 */
720 int
721 main(int argc, char *argv[])
722 {
723 unsigned nb_ports;
724
725 uint8_t portid;
726
727 /* Initialize the Environment Abstraction Layer (EAL). */
728 int ret = rte_eal_init(argc, argv);
729
730 if (ret < 0)
731 rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
732
733 memset(&ptp_data, '\0', sizeof(struct ptpv2_data_slave_ordinary));
734
735 argc -= ret;
736 argv += ret;
737
738 ret = ptp_parse_args(argc, argv);
739 if (ret < 0)
740 rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");
741
742 /* Check that there is an even number of ports to send/receive on. */
743 nb_ports = rte_eth_dev_count();
744
745 /* Creates a new mempool in memory to hold the mbufs. */
746 mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
747 MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
748
749 if (mbuf_pool == NULL)
750 rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
751
752 /* Initialize all ports. */
753 for (portid = 0; portid < nb_ports; portid++) {
754 if ((ptp_enabled_port_mask & (1 << portid)) != 0) {
755 if (port_init(portid, mbuf_pool) == 0) {
756 ptp_enabled_ports[ptp_enabled_port_nb] = portid;
757 ptp_enabled_port_nb++;
758 } else {
759 rte_exit(EXIT_FAILURE,
760 "Cannot init port %"PRIu8 "\n",
761 portid);
762 }
763 } else
764 printf("Skipping disabled port %u\n", portid);
765 }
766
767 if (ptp_enabled_port_nb == 0) {
768 rte_exit(EXIT_FAILURE,
769 "All available ports are disabled."
770 " Please set portmask.\n");
771 }
772
773 if (rte_lcore_count() > 1)
774 printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");
775
776 /* Call lcore_main on the master core only. */
777 lcore_main();
778
779 return 0;
780 }