]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/lib/librte_acl/acl_run_sse.h
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / lib / librte_acl / acl_run_sse.h
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "acl_run.h"
35 #include "acl_vect.h"
36
37 enum {
38 SHUFFLE32_SLOT1 = 0xe5,
39 SHUFFLE32_SLOT2 = 0xe6,
40 SHUFFLE32_SLOT3 = 0xe7,
41 SHUFFLE32_SWAP64 = 0x4e,
42 };
43
44 static const rte_xmm_t xmm_shuffle_input = {
45 .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
46 };
47
48 static const rte_xmm_t xmm_ones_16 = {
49 .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
50 };
51
52 static const rte_xmm_t xmm_match_mask = {
53 .u32 = {
54 RTE_ACL_NODE_MATCH,
55 RTE_ACL_NODE_MATCH,
56 RTE_ACL_NODE_MATCH,
57 RTE_ACL_NODE_MATCH,
58 },
59 };
60
61 static const rte_xmm_t xmm_index_mask = {
62 .u32 = {
63 RTE_ACL_NODE_INDEX,
64 RTE_ACL_NODE_INDEX,
65 RTE_ACL_NODE_INDEX,
66 RTE_ACL_NODE_INDEX,
67 },
68 };
69
70 static const rte_xmm_t xmm_range_base = {
71 .u32 = {
72 0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
73 },
74 };
75
76 /*
77 * Resolve priority for multiple results (sse version).
78 * This consists comparing the priority of the current traversal with the
79 * running set of results for the packet.
80 * For each result, keep a running array of the result (rule number) and
81 * its priority for each category.
82 */
83 static inline void
84 resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
85 struct parms *parms, const struct rte_acl_match_results *p,
86 uint32_t categories)
87 {
88 uint32_t x;
89 xmm_t results, priority, results1, priority1, selector;
90 xmm_t *saved_results, *saved_priority;
91
92 for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
93
94 saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
95 saved_priority =
96 (xmm_t *)(&parms[n].cmplt->priority[x]);
97
98 /* get results and priorities for completed trie */
99 results = _mm_loadu_si128(
100 (const xmm_t *)&p[transition].results[x]);
101 priority = _mm_loadu_si128(
102 (const xmm_t *)&p[transition].priority[x]);
103
104 /* if this is not the first completed trie */
105 if (parms[n].cmplt->count != ctx->num_tries) {
106
107 /* get running best results and their priorities */
108 results1 = _mm_loadu_si128(saved_results);
109 priority1 = _mm_loadu_si128(saved_priority);
110
111 /* select results that are highest priority */
112 selector = _mm_cmpgt_epi32(priority1, priority);
113 results = _mm_blendv_epi8(results, results1, selector);
114 priority = _mm_blendv_epi8(priority, priority1,
115 selector);
116 }
117
118 /* save running best results and their priorities */
119 _mm_storeu_si128(saved_results, results);
120 _mm_storeu_si128(saved_priority, priority);
121 }
122 }
123
124 /*
125 * Extract transitions from an XMM register and check for any matches
126 */
127 static void
128 acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
129 struct parms *parms, struct acl_flow_data *flows)
130 {
131 uint64_t transition1, transition2;
132
133 /* extract transition from low 64 bits. */
134 transition1 = _mm_cvtsi128_si64(*indices);
135
136 /* extract transition from high 64 bits. */
137 *indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64);
138 transition2 = _mm_cvtsi128_si64(*indices);
139
140 transition1 = acl_match_check(transition1, slot, ctx,
141 parms, flows, resolve_priority_sse);
142 transition2 = acl_match_check(transition2, slot + 1, ctx,
143 parms, flows, resolve_priority_sse);
144
145 /* update indices with new transitions. */
146 *indices = _mm_set_epi64x(transition2, transition1);
147 }
148
149 /*
150 * Check for any match in 4 transitions (contained in 2 SSE registers)
151 */
152 static inline __attribute__((always_inline)) void
153 acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
154 struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
155 xmm_t match_mask)
156 {
157 xmm_t temp;
158
159 /* put low 32 bits of each transition into one register */
160 temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
161 0x88);
162 /* test for match node */
163 temp = _mm_and_si128(match_mask, temp);
164
165 while (!_mm_testz_si128(temp, temp)) {
166 acl_process_matches(indices1, slot, ctx, parms, flows);
167 acl_process_matches(indices2, slot + 2, ctx, parms, flows);
168
169 temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1,
170 (__m128)*indices2,
171 0x88);
172 temp = _mm_and_si128(match_mask, temp);
173 }
174 }
175
176 /*
177 * Process 4 transitions (in 2 XMM registers) in parallel
178 */
179 static inline __attribute__((always_inline)) xmm_t
180 transition4(xmm_t next_input, const uint64_t *trans,
181 xmm_t *indices1, xmm_t *indices2)
182 {
183 xmm_t addr, tr_lo, tr_hi;
184 uint64_t trans0, trans2;
185
186 /* Shuffle low 32 into tr_lo and high 32 into tr_hi */
187 ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi);
188
189 /* Calculate the address (array index) for all 4 transitions. */
190 ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input,
191 xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x,
192 tr_lo, tr_hi);
193
194 /* Gather 64 bit transitions and pack back into 2 registers. */
195
196 trans0 = trans[_mm_cvtsi128_si32(addr)];
197
198 /* get slot 2 */
199
200 /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
201 addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2);
202 trans2 = trans[_mm_cvtsi128_si32(addr)];
203
204 /* get slot 1 */
205
206 /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
207 addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1);
208 *indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0);
209
210 /* get slot 3 */
211
212 /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
213 addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3);
214 *indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2);
215
216 return _mm_srli_epi32(next_input, CHAR_BIT);
217 }
218
219 /*
220 * Execute trie traversal with 8 traversals in parallel
221 */
222 static inline int
223 search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
224 uint32_t *results, uint32_t total_packets, uint32_t categories)
225 {
226 int n;
227 struct acl_flow_data flows;
228 uint64_t index_array[MAX_SEARCHES_SSE8];
229 struct completion cmplt[MAX_SEARCHES_SSE8];
230 struct parms parms[MAX_SEARCHES_SSE8];
231 xmm_t input0, input1;
232 xmm_t indices1, indices2, indices3, indices4;
233
234 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
235 total_packets, categories, ctx->trans_table);
236
237 for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
238 cmplt[n].count = 0;
239 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
240 }
241
242 /*
243 * indices1 contains index_array[0,1]
244 * indices2 contains index_array[2,3]
245 * indices3 contains index_array[4,5]
246 * indices4 contains index_array[6,7]
247 */
248
249 indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
250 indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
251
252 indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]);
253 indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]);
254
255 /* Check for any matches. */
256 acl_match_check_x4(0, ctx, parms, &flows,
257 &indices1, &indices2, xmm_match_mask.x);
258 acl_match_check_x4(4, ctx, parms, &flows,
259 &indices3, &indices4, xmm_match_mask.x);
260
261 while (flows.started > 0) {
262
263 /* Gather 4 bytes of input data for each stream. */
264 input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
265 input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
266
267 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1);
268 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1);
269
270 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2);
271 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2);
272
273 input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3);
274 input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3);
275
276 /* Process the 4 bytes of input on each stream. */
277
278 input0 = transition4(input0, flows.trans,
279 &indices1, &indices2);
280 input1 = transition4(input1, flows.trans,
281 &indices3, &indices4);
282
283 input0 = transition4(input0, flows.trans,
284 &indices1, &indices2);
285 input1 = transition4(input1, flows.trans,
286 &indices3, &indices4);
287
288 input0 = transition4(input0, flows.trans,
289 &indices1, &indices2);
290 input1 = transition4(input1, flows.trans,
291 &indices3, &indices4);
292
293 input0 = transition4(input0, flows.trans,
294 &indices1, &indices2);
295 input1 = transition4(input1, flows.trans,
296 &indices3, &indices4);
297
298 /* Check for any matches. */
299 acl_match_check_x4(0, ctx, parms, &flows,
300 &indices1, &indices2, xmm_match_mask.x);
301 acl_match_check_x4(4, ctx, parms, &flows,
302 &indices3, &indices4, xmm_match_mask.x);
303 }
304
305 return 0;
306 }
307
308 /*
309 * Execute trie traversal with 4 traversals in parallel
310 */
311 static inline int
312 search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
313 uint32_t *results, int total_packets, uint32_t categories)
314 {
315 int n;
316 struct acl_flow_data flows;
317 uint64_t index_array[MAX_SEARCHES_SSE4];
318 struct completion cmplt[MAX_SEARCHES_SSE4];
319 struct parms parms[MAX_SEARCHES_SSE4];
320 xmm_t input, indices1, indices2;
321
322 acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
323 total_packets, categories, ctx->trans_table);
324
325 for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
326 cmplt[n].count = 0;
327 index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
328 }
329
330 indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
331 indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
332
333 /* Check for any matches. */
334 acl_match_check_x4(0, ctx, parms, &flows,
335 &indices1, &indices2, xmm_match_mask.x);
336
337 while (flows.started > 0) {
338
339 /* Gather 4 bytes of input data for each stream. */
340 input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
341 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1);
342 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2);
343 input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3);
344
345 /* Process the 4 bytes of input on each stream. */
346 input = transition4(input, flows.trans, &indices1, &indices2);
347 input = transition4(input, flows.trans, &indices1, &indices2);
348 input = transition4(input, flows.trans, &indices1, &indices2);
349 input = transition4(input, flows.trans, &indices1, &indices2);
350
351 /* Check for any matches. */
352 acl_match_check_x4(0, ctx, parms, &flows,
353 &indices1, &indices2, xmm_match_mask.x);
354 }
355
356 return 0;
357 }