]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/lib/librte_cryptodev/rte_crypto_sym.h
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / lib / librte_cryptodev / rte_crypto_sym.h
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2016 Intel Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 * * Neither the name of Intel Corporation nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #ifndef _RTE_CRYPTO_SYM_H_
34 #define _RTE_CRYPTO_SYM_H_
35
36 /**
37 * @file rte_crypto_sym.h
38 *
39 * RTE Definitions for Symmetric Cryptography
40 *
41 * Defines symmetric cipher and authentication algorithms and modes, as well
42 * as supported symmetric crypto operation combinations.
43 */
44
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48
49 #include <string.h>
50
51 #include <rte_mbuf.h>
52 #include <rte_memory.h>
53 #include <rte_mempool.h>
54 #include <rte_common.h>
55
56
57 /** Symmetric Cipher Algorithms */
58 enum rte_crypto_cipher_algorithm {
59 RTE_CRYPTO_CIPHER_NULL = 1,
60 /**< NULL cipher algorithm. No mode applies to the NULL algorithm. */
61
62 RTE_CRYPTO_CIPHER_3DES_CBC,
63 /**< Triple DES algorithm in CBC mode */
64 RTE_CRYPTO_CIPHER_3DES_CTR,
65 /**< Triple DES algorithm in CTR mode */
66 RTE_CRYPTO_CIPHER_3DES_ECB,
67 /**< Triple DES algorithm in ECB mode */
68
69 RTE_CRYPTO_CIPHER_AES_CBC,
70 /**< AES algorithm in CBC mode */
71 RTE_CRYPTO_CIPHER_AES_CCM,
72 /**< AES algorithm in CCM mode. When this cipher algorithm is used the
73 * *RTE_CRYPTO_AUTH_AES_CCM* element of the
74 * *rte_crypto_hash_algorithm* enum MUST be used to set up the related
75 * *rte_crypto_auth_xform* structure in the session context or in
76 * the op_params of the crypto operation structure in the case of a
77 * session-less crypto operation
78 */
79 RTE_CRYPTO_CIPHER_AES_CTR,
80 /**< AES algorithm in Counter mode */
81 RTE_CRYPTO_CIPHER_AES_ECB,
82 /**< AES algorithm in ECB mode */
83 RTE_CRYPTO_CIPHER_AES_F8,
84 /**< AES algorithm in F8 mode */
85 RTE_CRYPTO_CIPHER_AES_GCM,
86 /**< AES algorithm in GCM mode. When this cipher algorithm is used the
87 * *RTE_CRYPTO_AUTH_AES_GCM* or *RTE_CRYPTO_AUTH_AES_GMAC* element
88 * of the *rte_crypto_auth_algorithm* enum MUST be used to set up
89 * the related *rte_crypto_auth_setup_data* structure in the session
90 * context or in the op_params of the crypto operation structure
91 * in the case of a session-less crypto operation.
92 */
93 RTE_CRYPTO_CIPHER_AES_XTS,
94 /**< AES algorithm in XTS mode */
95
96 RTE_CRYPTO_CIPHER_ARC4,
97 /**< (A)RC4 cipher algorithm */
98
99 RTE_CRYPTO_CIPHER_KASUMI_F8,
100 /**< KASUMI algorithm in F8 mode */
101
102 RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
103 /**< SNOW 3G algorithm in UEA2 mode */
104
105 RTE_CRYPTO_CIPHER_ZUC_EEA3,
106 /**< ZUC algorithm in EEA3 mode */
107
108 RTE_CRYPTO_CIPHER_LIST_END
109 };
110
111 /** Symmetric Cipher Direction */
112 enum rte_crypto_cipher_operation {
113 RTE_CRYPTO_CIPHER_OP_ENCRYPT,
114 /**< Encrypt cipher operation */
115 RTE_CRYPTO_CIPHER_OP_DECRYPT
116 /**< Decrypt cipher operation */
117 };
118
119 /**
120 * Symmetric Cipher Setup Data.
121 *
122 * This structure contains data relating to Cipher (Encryption and Decryption)
123 * use to create a session.
124 */
125 struct rte_crypto_cipher_xform {
126 enum rte_crypto_cipher_operation op;
127 /**< This parameter determines if the cipher operation is an encrypt or
128 * a decrypt operation. For the RC4 algorithm and the F8/CTR modes,
129 * only encrypt operations are valid.
130 */
131 enum rte_crypto_cipher_algorithm algo;
132 /**< Cipher algorithm */
133
134 struct {
135 uint8_t *data; /**< pointer to key data */
136 size_t length; /**< key length in bytes */
137 } key;
138 /**< Cipher key
139 *
140 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will
141 * point to a concatenation of the AES encryption key followed by a
142 * keymask. As per RFC3711, the keymask should be padded with trailing
143 * bytes to match the length of the encryption key used.
144 *
145 * For AES-XTS mode of operation, two keys must be provided and
146 * key.data must point to the two keys concatenated together (Key1 ||
147 * Key2). The cipher key length will contain the total size of both
148 * keys.
149 *
150 * Cipher key length is in bytes. For AES it can be 128 bits (16 bytes),
151 * 192 bits (24 bytes) or 256 bits (32 bytes).
152 *
153 * For the CCM mode of operation, the only supported key length is 128
154 * bits (16 bytes).
155 *
156 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length
157 * should be set to the combined length of the encryption key and the
158 * keymask. Since the keymask and the encryption key are the same size,
159 * key.length should be set to 2 x the AES encryption key length.
160 *
161 * For the AES-XTS mode of operation:
162 * - Two keys must be provided and key.length refers to total length of
163 * the two keys.
164 * - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes).
165 * - Both keys must have the same size.
166 **/
167 };
168
169 /** Symmetric Authentication / Hash Algorithms */
170 enum rte_crypto_auth_algorithm {
171 RTE_CRYPTO_AUTH_NULL = 1,
172 /**< NULL hash algorithm. */
173
174 RTE_CRYPTO_AUTH_AES_CBC_MAC,
175 /**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */
176 RTE_CRYPTO_AUTH_AES_CCM,
177 /**< AES algorithm in CCM mode. This is an authenticated cipher. When
178 * this hash algorithm is used, the *RTE_CRYPTO_CIPHER_AES_CCM*
179 * element of the *rte_crypto_cipher_algorithm* enum MUST be used to
180 * set up the related rte_crypto_cipher_setup_data structure in the
181 * session context or the corresponding parameter in the crypto
182 * operation data structures op_params parameter MUST be set for a
183 * session-less crypto operation.
184 */
185 RTE_CRYPTO_AUTH_AES_CMAC,
186 /**< AES CMAC algorithm. */
187 RTE_CRYPTO_AUTH_AES_GCM,
188 /**< AES algorithm in GCM mode. When this hash algorithm
189 * is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the
190 * rte_crypto_cipher_algorithm enum MUST be used to set up the related
191 * rte_crypto_cipher_setup_data structure in the session context, or
192 * the corresponding parameter in the crypto operation data structures
193 * op_params parameter MUST be set for a session-less crypto operation.
194 */
195 RTE_CRYPTO_AUTH_AES_GMAC,
196 /**< AES GMAC algorithm. When this hash algorithm
197 * is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the
198 * rte_crypto_cipher_algorithm enum MUST be used to set up the related
199 * rte_crypto_cipher_setup_data structure in the session context, or
200 * the corresponding parameter in the crypto operation data structures
201 * op_params parameter MUST be set for a session-less crypto operation.
202 */
203 RTE_CRYPTO_AUTH_AES_XCBC_MAC,
204 /**< AES XCBC algorithm. */
205
206 RTE_CRYPTO_AUTH_KASUMI_F9,
207 /**< KASUMI algorithm in F9 mode. */
208
209 RTE_CRYPTO_AUTH_MD5,
210 /**< MD5 algorithm */
211 RTE_CRYPTO_AUTH_MD5_HMAC,
212 /**< HMAC using MD5 algorithm */
213
214 RTE_CRYPTO_AUTH_SHA1,
215 /**< 128 bit SHA algorithm. */
216 RTE_CRYPTO_AUTH_SHA1_HMAC,
217 /**< HMAC using 128 bit SHA algorithm. */
218 RTE_CRYPTO_AUTH_SHA224,
219 /**< 224 bit SHA algorithm. */
220 RTE_CRYPTO_AUTH_SHA224_HMAC,
221 /**< HMAC using 224 bit SHA algorithm. */
222 RTE_CRYPTO_AUTH_SHA256,
223 /**< 256 bit SHA algorithm. */
224 RTE_CRYPTO_AUTH_SHA256_HMAC,
225 /**< HMAC using 256 bit SHA algorithm. */
226 RTE_CRYPTO_AUTH_SHA384,
227 /**< 384 bit SHA algorithm. */
228 RTE_CRYPTO_AUTH_SHA384_HMAC,
229 /**< HMAC using 384 bit SHA algorithm. */
230 RTE_CRYPTO_AUTH_SHA512,
231 /**< 512 bit SHA algorithm. */
232 RTE_CRYPTO_AUTH_SHA512_HMAC,
233 /**< HMAC using 512 bit SHA algorithm. */
234
235 RTE_CRYPTO_AUTH_SNOW3G_UIA2,
236 /**< SNOW 3G algorithm in UIA2 mode. */
237
238 RTE_CRYPTO_AUTH_ZUC_EIA3,
239 /**< ZUC algorithm in EIA3 mode */
240
241 RTE_CRYPTO_AUTH_LIST_END
242 };
243
244 /** Symmetric Authentication / Hash Operations */
245 enum rte_crypto_auth_operation {
246 RTE_CRYPTO_AUTH_OP_VERIFY, /**< Verify authentication digest */
247 RTE_CRYPTO_AUTH_OP_GENERATE /**< Generate authentication digest */
248 };
249
250 /**
251 * Authentication / Hash transform data.
252 *
253 * This structure contains data relating to an authentication/hash crypto
254 * transforms. The fields op, algo and digest_length are common to all
255 * authentication transforms and MUST be set.
256 */
257 struct rte_crypto_auth_xform {
258 enum rte_crypto_auth_operation op;
259 /**< Authentication operation type */
260 enum rte_crypto_auth_algorithm algo;
261 /**< Authentication algorithm selection */
262
263 struct {
264 uint8_t *data; /**< pointer to key data */
265 size_t length; /**< key length in bytes */
266 } key;
267 /**< Authentication key data.
268 * The authentication key length MUST be less than or equal to the
269 * block size of the algorithm. It is the callers responsibility to
270 * ensure that the key length is compliant with the standard being used
271 * (for example RFC 2104, FIPS 198a).
272 */
273
274 uint32_t digest_length;
275 /**< Length of the digest to be returned. If the verify option is set,
276 * this specifies the length of the digest to be compared for the
277 * session.
278 *
279 * If the value is less than the maximum length allowed by the hash,
280 * the result shall be truncated. If the value is greater than the
281 * maximum length allowed by the hash then an error will be generated
282 * by *rte_cryptodev_sym_session_create* or by the
283 * *rte_cryptodev_sym_enqueue_burst* if using session-less APIs.
284 */
285
286 uint32_t add_auth_data_length;
287 /**< The length of the additional authenticated data (AAD) in bytes.
288 * The maximum permitted value is 240 bytes, unless otherwise specified
289 * below.
290 *
291 * This field must be specified when the hash algorithm is one of the
292 * following:
293 *
294 * - For SNOW 3G (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2), this is the
295 * length of the IV (which should be 16).
296 *
297 * - For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM). In this case, this is
298 * the length of the Additional Authenticated Data (called A, in NIST
299 * SP800-38D).
300 *
301 * - For CCM (@ref RTE_CRYPTO_AUTH_AES_CCM). In this case, this is
302 * the length of the associated data (called A, in NIST SP800-38C).
303 * Note that this does NOT include the length of any padding, or the
304 * 18 bytes reserved at the start of the above field to store the
305 * block B0 and the encoded length. The maximum permitted value in
306 * this case is 222 bytes.
307 *
308 * @note
309 * For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of operation
310 * this field is not used and should be set to 0. Instead the length
311 * of the AAD data is specified in additional authentication data
312 * length field of the rte_crypto_sym_op_data structure
313 */
314 };
315
316 /** Crypto transformation types */
317 enum rte_crypto_sym_xform_type {
318 RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */
319 RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */
320 RTE_CRYPTO_SYM_XFORM_CIPHER /**< Cipher xform */
321 };
322
323 /**
324 * Symmetric crypto transform structure.
325 *
326 * This is used to specify the crypto transforms required, multiple transforms
327 * can be chained together to specify a chain transforms such as authentication
328 * then cipher, or cipher then authentication. Each transform structure can
329 * hold a single transform, the type field is used to specify which transform
330 * is contained within the union
331 */
332 struct rte_crypto_sym_xform {
333 struct rte_crypto_sym_xform *next;
334 /**< next xform in chain */
335 enum rte_crypto_sym_xform_type type
336 ; /**< xform type */
337 RTE_STD_C11
338 union {
339 struct rte_crypto_auth_xform auth;
340 /**< Authentication / hash xform */
341 struct rte_crypto_cipher_xform cipher;
342 /**< Cipher xform */
343 };
344 };
345
346 /**
347 * Crypto operation session type. This is used to specify whether a crypto
348 * operation has session structure attached for immutable parameters or if all
349 * operation information is included in the operation data structure.
350 */
351 enum rte_crypto_sym_op_sess_type {
352 RTE_CRYPTO_SYM_OP_WITH_SESSION, /**< Session based crypto operation */
353 RTE_CRYPTO_SYM_OP_SESSIONLESS /**< Session-less crypto operation */
354 };
355
356
357 struct rte_cryptodev_sym_session;
358
359 /**
360 * Symmetric Cryptographic Operation.
361 *
362 * This structure contains data relating to performing symmetric cryptographic
363 * processing on a referenced mbuf data buffer.
364 *
365 * When a symmetric crypto operation is enqueued with the device for processing
366 * it must have a valid *rte_mbuf* structure attached, via m_src parameter,
367 * which contains the source data which the crypto operation is to be performed
368 * on.
369 * While the mbuf is in use by a crypto operation no part of the mbuf should be
370 * changed by the application as the device may read or write to any part of the
371 * mbuf. In the case of hardware crypto devices some or all of the mbuf
372 * may be DMAed in and out of the device, so writing over the original data,
373 * though only the part specified by the rte_crypto_sym_op for transformation
374 * will be changed.
375 * Out-of-place (OOP) operation, where the source mbuf is different to the
376 * destination mbuf, is a special case. Data will be copied from m_src to m_dst.
377 * The part copied includes all the parts of the source mbuf that will be
378 * operated on, based on the cipher.data.offset+cipher.data.length and
379 * auth.data.offset+auth.data.length values in the rte_crypto_sym_op. The part
380 * indicated by the cipher parameters will be transformed, any extra data around
381 * this indicated by the auth parameters will be copied unchanged from source to
382 * destination mbuf.
383 * Also in OOP operation the cipher.data.offset and auth.data.offset apply to
384 * both source and destination mbufs. As these offsets are relative to the
385 * data_off parameter in each mbuf this can result in the data written to the
386 * destination buffer being at a different alignment, relative to buffer start,
387 * to the data in the source buffer.
388 */
389 struct rte_crypto_sym_op {
390 struct rte_mbuf *m_src; /**< source mbuf */
391 struct rte_mbuf *m_dst; /**< destination mbuf */
392
393 enum rte_crypto_sym_op_sess_type sess_type;
394
395 RTE_STD_C11
396 union {
397 struct rte_cryptodev_sym_session *session;
398 /**< Handle for the initialised session context */
399 struct rte_crypto_sym_xform *xform;
400 /**< Session-less API crypto operation parameters */
401 };
402
403 struct {
404 struct {
405 uint32_t offset;
406 /**< Starting point for cipher processing, specified
407 * as number of bytes from start of data in the source
408 * buffer. The result of the cipher operation will be
409 * written back into the output buffer starting at
410 * this location.
411 *
412 * @note
413 * For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
414 * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
415 * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
416 * this field should be in bits.
417 */
418
419 uint32_t length;
420 /**< The message length, in bytes, of the source buffer
421 * on which the cryptographic operation will be
422 * computed. This must be a multiple of the block size
423 * if a block cipher is being used. This is also the
424 * same as the result length.
425 *
426 * @note
427 * In the case of CCM @ref RTE_CRYPTO_AUTH_AES_CCM,
428 * this value should not include the length of the
429 * padding or the length of the MAC; the driver will
430 * compute the actual number of bytes over which the
431 * encryption will occur, which will include these
432 * values.
433 *
434 * @note
435 * For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC, this
436 * field should be set to 0.
437 *
438 * @note
439 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2,
440 * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
441 * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
442 * this field should be in bits.
443 */
444 } data; /**< Data offsets and length for ciphering */
445
446 struct {
447 uint8_t *data;
448 /**< Initialisation Vector or Counter.
449 *
450 * - For block ciphers in CBC or F8 mode, or for KASUMI
451 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the
452 * Initialisation Vector (IV) value.
453 *
454 * - For block ciphers in CTR mode, this is the counter.
455 *
456 * - For GCM mode, this is either the IV (if the length
457 * is 96 bits) or J0 (for other sizes), where J0 is as
458 * defined by NIST SP800-38D. Regardless of the IV
459 * length, a full 16 bytes needs to be allocated.
460 *
461 * - For CCM mode, the first byte is reserved, and the
462 * nonce should be written starting at &iv[1] (to allow
463 * space for the implementation to write in the flags
464 * in the first byte). Note that a full 16 bytes should
465 * be allocated, even though the length field will
466 * have a value less than this.
467 *
468 * - For AES-XTS, this is the 128bit tweak, i, from
469 * IEEE Std 1619-2007.
470 *
471 * For optimum performance, the data pointed to SHOULD
472 * be 8-byte aligned.
473 */
474 phys_addr_t phys_addr;
475 uint16_t length;
476 /**< Length of valid IV data.
477 *
478 * - For block ciphers in CBC or F8 mode, or for KASUMI
479 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the
480 * length of the IV (which must be the same as the
481 * block length of the cipher).
482 *
483 * - For block ciphers in CTR mode, this is the length
484 * of the counter (which must be the same as the block
485 * length of the cipher).
486 *
487 * - For GCM mode, this is either 12 (for 96-bit IVs)
488 * or 16, in which case data points to J0.
489 *
490 * - For CCM mode, this is the length of the nonce,
491 * which can be in the range 7 to 13 inclusive.
492 */
493 } iv; /**< Initialisation vector parameters */
494 } cipher;
495
496 struct {
497 struct {
498 uint32_t offset;
499 /**< Starting point for hash processing, specified as
500 * number of bytes from start of packet in source
501 * buffer.
502 *
503 * @note
504 * For CCM and GCM modes of operation, this field is
505 * ignored. The field @ref aad field
506 * should be set instead.
507 *
508 * @note For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC)
509 * mode of operation, this field is set to 0. aad data
510 * pointer of rte_crypto_sym_op_data structure is
511 * used instead
512 *
513 * @note
514 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
515 * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
516 * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
517 * this field should be in bits.
518 */
519
520 uint32_t length;
521 /**< The message length, in bytes, of the source
522 * buffer that the hash will be computed on.
523 *
524 * @note
525 * For CCM and GCM modes of operation, this field is
526 * ignored. The field @ref aad field should be set
527 * instead.
528 *
529 * @note
530 * For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC mode
531 * of operation, this field is set to 0.
532 * Auth.aad.length is used instead.
533 *
534 * @note
535 * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
536 * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
537 * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
538 * this field should be in bits.
539 */
540 } data; /**< Data offsets and length for authentication */
541
542 struct {
543 uint8_t *data;
544 /**< If this member of this structure is set this is a
545 * pointer to the location where the digest result
546 * should be inserted (in the case of digest generation)
547 * or where the purported digest exists (in the case of
548 * digest verification).
549 *
550 * At session creation time, the client specified the
551 * digest result length with the digest_length member
552 * of the @ref rte_crypto_auth_xform structure. For
553 * physical crypto devices the caller must allocate at
554 * least digest_length of physically contiguous memory
555 * at this location.
556 *
557 * For digest generation, the digest result will
558 * overwrite any data at this location.
559 *
560 * @note
561 * For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), for
562 * "digest result" read "authentication tag T".
563 *
564 * If this member is not set the digest result is
565 * understood to be in the destination buffer for
566 * digest generation, and in the source buffer for
567 * digest verification. The location of the digest
568 * result in this case is immediately following the
569 * region over which the digest is computed.
570 */
571 phys_addr_t phys_addr;
572 /**< Physical address of digest */
573 uint16_t length;
574 /**< Length of digest */
575 } digest; /**< Digest parameters */
576
577 struct {
578 uint8_t *data;
579 /**< Pointer to Additional Authenticated Data (AAD)
580 * needed for authenticated cipher mechanisms (CCM and
581 * GCM), and to the IV for SNOW 3G authentication
582 * (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2). For other
583 * authentication mechanisms this pointer is ignored.
584 *
585 * The length of the data pointed to by this field is
586 * set up for the session in the @ref
587 * rte_crypto_auth_xform structure as part of the @ref
588 * rte_cryptodev_sym_session_create function call.
589 * This length must not exceed 240 bytes.
590 *
591 * Specifically for CCM (@ref RTE_CRYPTO_AUTH_AES_CCM),
592 * the caller should setup this field as follows:
593 *
594 * - the nonce should be written starting at an offset
595 * of one byte into the array, leaving room for the
596 * implementation to write in the flags to the first
597 * byte.
598 *
599 * - the additional authentication data itself should
600 * be written starting at an offset of 18 bytes into
601 * the array, leaving room for the length encoding in
602 * the first two bytes of the second block.
603 *
604 * - the array should be big enough to hold the above
605 * fields, plus any padding to round this up to the
606 * nearest multiple of the block size (16 bytes).
607 * Padding will be added by the implementation.
608 *
609 * Finally, for GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), the
610 * caller should setup this field as follows:
611 *
612 * - the AAD is written in starting at byte 0
613 * - the array must be big enough to hold the AAD, plus
614 * any space to round this up to the nearest multiple
615 * of the block size (16 bytes).
616 *
617 * @note
618 * For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of
619 * operation, this field is used to pass plaintext.
620 */
621 phys_addr_t phys_addr; /**< physical address */
622 uint16_t length; /**< Length of digest */
623 } aad;
624 /**< Additional authentication parameters */
625 } auth;
626 } __rte_cache_aligned;
627
628
629 /**
630 * Reset the fields of a symmetric operation to their default values.
631 *
632 * @param op The crypto operation to be reset.
633 */
634 static inline void
635 __rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op)
636 {
637 memset(op, 0, sizeof(*op));
638
639 op->sess_type = RTE_CRYPTO_SYM_OP_SESSIONLESS;
640 }
641
642
643 /**
644 * Allocate space for symmetric crypto xforms in the private data space of the
645 * crypto operation. This also defaults the crypto xform type to
646 * RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms
647 * in the crypto operation
648 *
649 * @return
650 * - On success returns pointer to first crypto xform in crypto operations chain
651 * - On failure returns NULL
652 */
653 static inline struct rte_crypto_sym_xform *
654 __rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op,
655 void *priv_data, uint8_t nb_xforms)
656 {
657 struct rte_crypto_sym_xform *xform;
658
659 sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data;
660
661 do {
662 xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED;
663 xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL;
664 } while (xform);
665
666 return sym_op->xform;
667 }
668
669
670 /**
671 * Attach a session to a symmetric crypto operation
672 *
673 * @param sym_op crypto operation
674 * @param sess cryptodev session
675 */
676 static inline int
677 __rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op,
678 struct rte_cryptodev_sym_session *sess)
679 {
680 sym_op->session = sess;
681 sym_op->sess_type = RTE_CRYPTO_SYM_OP_WITH_SESSION;
682
683 return 0;
684 }
685
686
687 #ifdef __cplusplus
688 }
689 #endif
690
691 #endif /* _RTE_CRYPTO_SYM_H_ */