]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_phy.c
bump version to 12.2.12-pve1
[ceph.git] / ceph / src / dpdk / lib / librte_eal / linuxapp / kni / ethtool / igb / e1000_phy.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "LICENSE.GPL".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include "e1000_api.h"
29
30 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
31 /* Cable length tables */
32 static const u16 e1000_m88_cable_length_table[] = {
33 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
34 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
35 (sizeof(e1000_m88_cable_length_table) / \
36 sizeof(e1000_m88_cable_length_table[0]))
37
38 static const u16 e1000_igp_2_cable_length_table[] = {
39 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
40 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
41 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
42 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
43 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
44 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
45 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
46 124};
47 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
48 (sizeof(e1000_igp_2_cable_length_table) / \
49 sizeof(e1000_igp_2_cable_length_table[0]))
50
51 /**
52 * e1000_init_phy_ops_generic - Initialize PHY function pointers
53 * @hw: pointer to the HW structure
54 *
55 * Setups up the function pointers to no-op functions
56 **/
57 void e1000_init_phy_ops_generic(struct e1000_hw *hw)
58 {
59 struct e1000_phy_info *phy = &hw->phy;
60 DEBUGFUNC("e1000_init_phy_ops_generic");
61
62 /* Initialize function pointers */
63 phy->ops.init_params = e1000_null_ops_generic;
64 phy->ops.acquire = e1000_null_ops_generic;
65 phy->ops.check_polarity = e1000_null_ops_generic;
66 phy->ops.check_reset_block = e1000_null_ops_generic;
67 phy->ops.commit = e1000_null_ops_generic;
68 phy->ops.force_speed_duplex = e1000_null_ops_generic;
69 phy->ops.get_cfg_done = e1000_null_ops_generic;
70 phy->ops.get_cable_length = e1000_null_ops_generic;
71 phy->ops.get_info = e1000_null_ops_generic;
72 phy->ops.set_page = e1000_null_set_page;
73 phy->ops.read_reg = e1000_null_read_reg;
74 phy->ops.read_reg_locked = e1000_null_read_reg;
75 phy->ops.read_reg_page = e1000_null_read_reg;
76 phy->ops.release = e1000_null_phy_generic;
77 phy->ops.reset = e1000_null_ops_generic;
78 phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
79 phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
80 phy->ops.write_reg = e1000_null_write_reg;
81 phy->ops.write_reg_locked = e1000_null_write_reg;
82 phy->ops.write_reg_page = e1000_null_write_reg;
83 phy->ops.power_up = e1000_null_phy_generic;
84 phy->ops.power_down = e1000_null_phy_generic;
85 phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
86 phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
87 }
88
89 /**
90 * e1000_null_set_page - No-op function, return 0
91 * @hw: pointer to the HW structure
92 **/
93 s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
94 u16 E1000_UNUSEDARG data)
95 {
96 DEBUGFUNC("e1000_null_set_page");
97 return E1000_SUCCESS;
98 }
99
100 /**
101 * e1000_null_read_reg - No-op function, return 0
102 * @hw: pointer to the HW structure
103 **/
104 s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
105 u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
106 {
107 DEBUGFUNC("e1000_null_read_reg");
108 return E1000_SUCCESS;
109 }
110
111 /**
112 * e1000_null_phy_generic - No-op function, return void
113 * @hw: pointer to the HW structure
114 **/
115 void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
116 {
117 DEBUGFUNC("e1000_null_phy_generic");
118 return;
119 }
120
121 /**
122 * e1000_null_lplu_state - No-op function, return 0
123 * @hw: pointer to the HW structure
124 **/
125 s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
126 bool E1000_UNUSEDARG active)
127 {
128 DEBUGFUNC("e1000_null_lplu_state");
129 return E1000_SUCCESS;
130 }
131
132 /**
133 * e1000_null_write_reg - No-op function, return 0
134 * @hw: pointer to the HW structure
135 **/
136 s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
137 u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
138 {
139 DEBUGFUNC("e1000_null_write_reg");
140 return E1000_SUCCESS;
141 }
142
143 /**
144 * e1000_read_i2c_byte_null - No-op function, return 0
145 * @hw: pointer to hardware structure
146 * @byte_offset: byte offset to write
147 * @dev_addr: device address
148 * @data: data value read
149 *
150 **/
151 s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
152 u8 E1000_UNUSEDARG byte_offset,
153 u8 E1000_UNUSEDARG dev_addr,
154 u8 E1000_UNUSEDARG *data)
155 {
156 DEBUGFUNC("e1000_read_i2c_byte_null");
157 return E1000_SUCCESS;
158 }
159
160 /**
161 * e1000_write_i2c_byte_null - No-op function, return 0
162 * @hw: pointer to hardware structure
163 * @byte_offset: byte offset to write
164 * @dev_addr: device address
165 * @data: data value to write
166 *
167 **/
168 s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
169 u8 E1000_UNUSEDARG byte_offset,
170 u8 E1000_UNUSEDARG dev_addr,
171 u8 E1000_UNUSEDARG data)
172 {
173 DEBUGFUNC("e1000_write_i2c_byte_null");
174 return E1000_SUCCESS;
175 }
176
177 /**
178 * e1000_check_reset_block_generic - Check if PHY reset is blocked
179 * @hw: pointer to the HW structure
180 *
181 * Read the PHY management control register and check whether a PHY reset
182 * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
183 * return E1000_BLK_PHY_RESET (12).
184 **/
185 s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
186 {
187 u32 manc;
188
189 DEBUGFUNC("e1000_check_reset_block");
190
191 manc = E1000_READ_REG(hw, E1000_MANC);
192
193 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
194 E1000_BLK_PHY_RESET : E1000_SUCCESS;
195 }
196
197 /**
198 * e1000_get_phy_id - Retrieve the PHY ID and revision
199 * @hw: pointer to the HW structure
200 *
201 * Reads the PHY registers and stores the PHY ID and possibly the PHY
202 * revision in the hardware structure.
203 **/
204 s32 e1000_get_phy_id(struct e1000_hw *hw)
205 {
206 struct e1000_phy_info *phy = &hw->phy;
207 s32 ret_val = E1000_SUCCESS;
208 u16 phy_id;
209
210 DEBUGFUNC("e1000_get_phy_id");
211
212 if (!phy->ops.read_reg)
213 return E1000_SUCCESS;
214
215 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
216 if (ret_val)
217 return ret_val;
218
219 phy->id = (u32)(phy_id << 16);
220 usec_delay(20);
221 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
222 if (ret_val)
223 return ret_val;
224
225 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
226 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
227
228
229 return E1000_SUCCESS;
230 }
231
232 /**
233 * e1000_phy_reset_dsp_generic - Reset PHY DSP
234 * @hw: pointer to the HW structure
235 *
236 * Reset the digital signal processor.
237 **/
238 s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
239 {
240 s32 ret_val;
241
242 DEBUGFUNC("e1000_phy_reset_dsp_generic");
243
244 if (!hw->phy.ops.write_reg)
245 return E1000_SUCCESS;
246
247 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
248 if (ret_val)
249 return ret_val;
250
251 return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
252 }
253
254 /**
255 * e1000_read_phy_reg_mdic - Read MDI control register
256 * @hw: pointer to the HW structure
257 * @offset: register offset to be read
258 * @data: pointer to the read data
259 *
260 * Reads the MDI control register in the PHY at offset and stores the
261 * information read to data.
262 **/
263 s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
264 {
265 struct e1000_phy_info *phy = &hw->phy;
266 u32 i, mdic = 0;
267
268 DEBUGFUNC("e1000_read_phy_reg_mdic");
269
270 if (offset > MAX_PHY_REG_ADDRESS) {
271 DEBUGOUT1("PHY Address %d is out of range\n", offset);
272 return -E1000_ERR_PARAM;
273 }
274
275 /* Set up Op-code, Phy Address, and register offset in the MDI
276 * Control register. The MAC will take care of interfacing with the
277 * PHY to retrieve the desired data.
278 */
279 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
280 (phy->addr << E1000_MDIC_PHY_SHIFT) |
281 (E1000_MDIC_OP_READ));
282
283 E1000_WRITE_REG(hw, E1000_MDIC, mdic);
284
285 /* Poll the ready bit to see if the MDI read completed
286 * Increasing the time out as testing showed failures with
287 * the lower time out
288 */
289 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
290 usec_delay_irq(50);
291 mdic = E1000_READ_REG(hw, E1000_MDIC);
292 if (mdic & E1000_MDIC_READY)
293 break;
294 }
295 if (!(mdic & E1000_MDIC_READY)) {
296 DEBUGOUT("MDI Read did not complete\n");
297 return -E1000_ERR_PHY;
298 }
299 if (mdic & E1000_MDIC_ERROR) {
300 DEBUGOUT("MDI Error\n");
301 return -E1000_ERR_PHY;
302 }
303 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
304 DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
305 offset,
306 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
307 return -E1000_ERR_PHY;
308 }
309 *data = (u16) mdic;
310
311 return E1000_SUCCESS;
312 }
313
314 /**
315 * e1000_write_phy_reg_mdic - Write MDI control register
316 * @hw: pointer to the HW structure
317 * @offset: register offset to write to
318 * @data: data to write to register at offset
319 *
320 * Writes data to MDI control register in the PHY at offset.
321 **/
322 s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
323 {
324 struct e1000_phy_info *phy = &hw->phy;
325 u32 i, mdic = 0;
326
327 DEBUGFUNC("e1000_write_phy_reg_mdic");
328
329 if (offset > MAX_PHY_REG_ADDRESS) {
330 DEBUGOUT1("PHY Address %d is out of range\n", offset);
331 return -E1000_ERR_PARAM;
332 }
333
334 /* Set up Op-code, Phy Address, and register offset in the MDI
335 * Control register. The MAC will take care of interfacing with the
336 * PHY to retrieve the desired data.
337 */
338 mdic = (((u32)data) |
339 (offset << E1000_MDIC_REG_SHIFT) |
340 (phy->addr << E1000_MDIC_PHY_SHIFT) |
341 (E1000_MDIC_OP_WRITE));
342
343 E1000_WRITE_REG(hw, E1000_MDIC, mdic);
344
345 /* Poll the ready bit to see if the MDI read completed
346 * Increasing the time out as testing showed failures with
347 * the lower time out
348 */
349 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
350 usec_delay_irq(50);
351 mdic = E1000_READ_REG(hw, E1000_MDIC);
352 if (mdic & E1000_MDIC_READY)
353 break;
354 }
355 if (!(mdic & E1000_MDIC_READY)) {
356 DEBUGOUT("MDI Write did not complete\n");
357 return -E1000_ERR_PHY;
358 }
359 if (mdic & E1000_MDIC_ERROR) {
360 DEBUGOUT("MDI Error\n");
361 return -E1000_ERR_PHY;
362 }
363 if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
364 DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
365 offset,
366 (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
367 return -E1000_ERR_PHY;
368 }
369
370 return E1000_SUCCESS;
371 }
372
373 /**
374 * e1000_read_phy_reg_i2c - Read PHY register using i2c
375 * @hw: pointer to the HW structure
376 * @offset: register offset to be read
377 * @data: pointer to the read data
378 *
379 * Reads the PHY register at offset using the i2c interface and stores the
380 * retrieved information in data.
381 **/
382 s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
383 {
384 struct e1000_phy_info *phy = &hw->phy;
385 u32 i, i2ccmd = 0;
386
387 DEBUGFUNC("e1000_read_phy_reg_i2c");
388
389 /* Set up Op-code, Phy Address, and register address in the I2CCMD
390 * register. The MAC will take care of interfacing with the
391 * PHY to retrieve the desired data.
392 */
393 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
394 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
395 (E1000_I2CCMD_OPCODE_READ));
396
397 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
398
399 /* Poll the ready bit to see if the I2C read completed */
400 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
401 usec_delay(50);
402 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
403 if (i2ccmd & E1000_I2CCMD_READY)
404 break;
405 }
406 if (!(i2ccmd & E1000_I2CCMD_READY)) {
407 DEBUGOUT("I2CCMD Read did not complete\n");
408 return -E1000_ERR_PHY;
409 }
410 if (i2ccmd & E1000_I2CCMD_ERROR) {
411 DEBUGOUT("I2CCMD Error bit set\n");
412 return -E1000_ERR_PHY;
413 }
414
415 /* Need to byte-swap the 16-bit value. */
416 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
417
418 return E1000_SUCCESS;
419 }
420
421 /**
422 * e1000_write_phy_reg_i2c - Write PHY register using i2c
423 * @hw: pointer to the HW structure
424 * @offset: register offset to write to
425 * @data: data to write at register offset
426 *
427 * Writes the data to PHY register at the offset using the i2c interface.
428 **/
429 s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
430 {
431 struct e1000_phy_info *phy = &hw->phy;
432 u32 i, i2ccmd = 0;
433 u16 phy_data_swapped;
434
435 DEBUGFUNC("e1000_write_phy_reg_i2c");
436
437 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
438 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
439 DEBUGOUT1("PHY I2C Address %d is out of range.\n",
440 hw->phy.addr);
441 return -E1000_ERR_CONFIG;
442 }
443
444 /* Swap the data bytes for the I2C interface */
445 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
446
447 /* Set up Op-code, Phy Address, and register address in the I2CCMD
448 * register. The MAC will take care of interfacing with the
449 * PHY to retrieve the desired data.
450 */
451 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
452 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
453 E1000_I2CCMD_OPCODE_WRITE |
454 phy_data_swapped);
455
456 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
457
458 /* Poll the ready bit to see if the I2C read completed */
459 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
460 usec_delay(50);
461 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
462 if (i2ccmd & E1000_I2CCMD_READY)
463 break;
464 }
465 if (!(i2ccmd & E1000_I2CCMD_READY)) {
466 DEBUGOUT("I2CCMD Write did not complete\n");
467 return -E1000_ERR_PHY;
468 }
469 if (i2ccmd & E1000_I2CCMD_ERROR) {
470 DEBUGOUT("I2CCMD Error bit set\n");
471 return -E1000_ERR_PHY;
472 }
473
474 return E1000_SUCCESS;
475 }
476
477 /**
478 * e1000_read_sfp_data_byte - Reads SFP module data.
479 * @hw: pointer to the HW structure
480 * @offset: byte location offset to be read
481 * @data: read data buffer pointer
482 *
483 * Reads one byte from SFP module data stored
484 * in SFP resided EEPROM memory or SFP diagnostic area.
485 * Function should be called with
486 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
487 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
488 * access
489 **/
490 s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
491 {
492 u32 i = 0;
493 u32 i2ccmd = 0;
494 u32 data_local = 0;
495
496 DEBUGFUNC("e1000_read_sfp_data_byte");
497
498 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
499 DEBUGOUT("I2CCMD command address exceeds upper limit\n");
500 return -E1000_ERR_PHY;
501 }
502
503 /* Set up Op-code, EEPROM Address,in the I2CCMD
504 * register. The MAC will take care of interfacing with the
505 * EEPROM to retrieve the desired data.
506 */
507 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
508 E1000_I2CCMD_OPCODE_READ);
509
510 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
511
512 /* Poll the ready bit to see if the I2C read completed */
513 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
514 usec_delay(50);
515 data_local = E1000_READ_REG(hw, E1000_I2CCMD);
516 if (data_local & E1000_I2CCMD_READY)
517 break;
518 }
519 if (!(data_local & E1000_I2CCMD_READY)) {
520 DEBUGOUT("I2CCMD Read did not complete\n");
521 return -E1000_ERR_PHY;
522 }
523 if (data_local & E1000_I2CCMD_ERROR) {
524 DEBUGOUT("I2CCMD Error bit set\n");
525 return -E1000_ERR_PHY;
526 }
527 *data = (u8) data_local & 0xFF;
528
529 return E1000_SUCCESS;
530 }
531
532 /**
533 * e1000_write_sfp_data_byte - Writes SFP module data.
534 * @hw: pointer to the HW structure
535 * @offset: byte location offset to write to
536 * @data: data to write
537 *
538 * Writes one byte to SFP module data stored
539 * in SFP resided EEPROM memory or SFP diagnostic area.
540 * Function should be called with
541 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
542 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
543 * access
544 **/
545 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
546 {
547 u32 i = 0;
548 u32 i2ccmd = 0;
549 u32 data_local = 0;
550
551 DEBUGFUNC("e1000_write_sfp_data_byte");
552
553 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
554 DEBUGOUT("I2CCMD command address exceeds upper limit\n");
555 return -E1000_ERR_PHY;
556 }
557 /* The programming interface is 16 bits wide
558 * so we need to read the whole word first
559 * then update appropriate byte lane and write
560 * the updated word back.
561 */
562 /* Set up Op-code, EEPROM Address,in the I2CCMD
563 * register. The MAC will take care of interfacing
564 * with an EEPROM to write the data given.
565 */
566 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
567 E1000_I2CCMD_OPCODE_READ);
568 /* Set a command to read single word */
569 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
570 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
571 usec_delay(50);
572 /* Poll the ready bit to see if lastly
573 * launched I2C operation completed
574 */
575 i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
576 if (i2ccmd & E1000_I2CCMD_READY) {
577 /* Check if this is READ or WRITE phase */
578 if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
579 E1000_I2CCMD_OPCODE_READ) {
580 /* Write the selected byte
581 * lane and update whole word
582 */
583 data_local = i2ccmd & 0xFF00;
584 data_local |= data;
585 i2ccmd = ((offset <<
586 E1000_I2CCMD_REG_ADDR_SHIFT) |
587 E1000_I2CCMD_OPCODE_WRITE | data_local);
588 E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
589 } else {
590 break;
591 }
592 }
593 }
594 if (!(i2ccmd & E1000_I2CCMD_READY)) {
595 DEBUGOUT("I2CCMD Write did not complete\n");
596 return -E1000_ERR_PHY;
597 }
598 if (i2ccmd & E1000_I2CCMD_ERROR) {
599 DEBUGOUT("I2CCMD Error bit set\n");
600 return -E1000_ERR_PHY;
601 }
602 return E1000_SUCCESS;
603 }
604
605 /**
606 * e1000_read_phy_reg_m88 - Read m88 PHY register
607 * @hw: pointer to the HW structure
608 * @offset: register offset to be read
609 * @data: pointer to the read data
610 *
611 * Acquires semaphore, if necessary, then reads the PHY register at offset
612 * and storing the retrieved information in data. Release any acquired
613 * semaphores before exiting.
614 **/
615 s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
616 {
617 s32 ret_val;
618
619 DEBUGFUNC("e1000_read_phy_reg_m88");
620
621 if (!hw->phy.ops.acquire)
622 return E1000_SUCCESS;
623
624 ret_val = hw->phy.ops.acquire(hw);
625 if (ret_val)
626 return ret_val;
627
628 ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
629 data);
630
631 hw->phy.ops.release(hw);
632
633 return ret_val;
634 }
635
636 /**
637 * e1000_write_phy_reg_m88 - Write m88 PHY register
638 * @hw: pointer to the HW structure
639 * @offset: register offset to write to
640 * @data: data to write at register offset
641 *
642 * Acquires semaphore, if necessary, then writes the data to PHY register
643 * at the offset. Release any acquired semaphores before exiting.
644 **/
645 s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
646 {
647 s32 ret_val;
648
649 DEBUGFUNC("e1000_write_phy_reg_m88");
650
651 if (!hw->phy.ops.acquire)
652 return E1000_SUCCESS;
653
654 ret_val = hw->phy.ops.acquire(hw);
655 if (ret_val)
656 return ret_val;
657
658 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
659 data);
660
661 hw->phy.ops.release(hw);
662
663 return ret_val;
664 }
665
666 /**
667 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
668 * @hw: pointer to the HW structure
669 * @page: page to set (shifted left when necessary)
670 *
671 * Sets PHY page required for PHY register access. Assumes semaphore is
672 * already acquired. Note, this function sets phy.addr to 1 so the caller
673 * must set it appropriately (if necessary) after this function returns.
674 **/
675 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
676 {
677 DEBUGFUNC("e1000_set_page_igp");
678
679 DEBUGOUT1("Setting page 0x%x\n", page);
680
681 hw->phy.addr = 1;
682
683 return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
684 }
685
686 /**
687 * __e1000_read_phy_reg_igp - Read igp PHY register
688 * @hw: pointer to the HW structure
689 * @offset: register offset to be read
690 * @data: pointer to the read data
691 * @locked: semaphore has already been acquired or not
692 *
693 * Acquires semaphore, if necessary, then reads the PHY register at offset
694 * and stores the retrieved information in data. Release any acquired
695 * semaphores before exiting.
696 **/
697 static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
698 bool locked)
699 {
700 s32 ret_val = E1000_SUCCESS;
701
702 DEBUGFUNC("__e1000_read_phy_reg_igp");
703
704 if (!locked) {
705 if (!hw->phy.ops.acquire)
706 return E1000_SUCCESS;
707
708 ret_val = hw->phy.ops.acquire(hw);
709 if (ret_val)
710 return ret_val;
711 }
712
713 if (offset > MAX_PHY_MULTI_PAGE_REG)
714 ret_val = e1000_write_phy_reg_mdic(hw,
715 IGP01E1000_PHY_PAGE_SELECT,
716 (u16)offset);
717 if (!ret_val)
718 ret_val = e1000_read_phy_reg_mdic(hw,
719 MAX_PHY_REG_ADDRESS & offset,
720 data);
721 if (!locked)
722 hw->phy.ops.release(hw);
723
724 return ret_val;
725 }
726
727 /**
728 * e1000_read_phy_reg_igp - Read igp PHY register
729 * @hw: pointer to the HW structure
730 * @offset: register offset to be read
731 * @data: pointer to the read data
732 *
733 * Acquires semaphore then reads the PHY register at offset and stores the
734 * retrieved information in data.
735 * Release the acquired semaphore before exiting.
736 **/
737 s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
738 {
739 return __e1000_read_phy_reg_igp(hw, offset, data, false);
740 }
741
742 /**
743 * e1000_read_phy_reg_igp_locked - Read igp PHY register
744 * @hw: pointer to the HW structure
745 * @offset: register offset to be read
746 * @data: pointer to the read data
747 *
748 * Reads the PHY register at offset and stores the retrieved information
749 * in data. Assumes semaphore already acquired.
750 **/
751 s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
752 {
753 return __e1000_read_phy_reg_igp(hw, offset, data, true);
754 }
755
756 /**
757 * e1000_write_phy_reg_igp - Write igp PHY register
758 * @hw: pointer to the HW structure
759 * @offset: register offset to write to
760 * @data: data to write at register offset
761 * @locked: semaphore has already been acquired or not
762 *
763 * Acquires semaphore, if necessary, then writes the data to PHY register
764 * at the offset. Release any acquired semaphores before exiting.
765 **/
766 static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
767 bool locked)
768 {
769 s32 ret_val = E1000_SUCCESS;
770
771 DEBUGFUNC("e1000_write_phy_reg_igp");
772
773 if (!locked) {
774 if (!hw->phy.ops.acquire)
775 return E1000_SUCCESS;
776
777 ret_val = hw->phy.ops.acquire(hw);
778 if (ret_val)
779 return ret_val;
780 }
781
782 if (offset > MAX_PHY_MULTI_PAGE_REG)
783 ret_val = e1000_write_phy_reg_mdic(hw,
784 IGP01E1000_PHY_PAGE_SELECT,
785 (u16)offset);
786 if (!ret_val)
787 ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
788 offset,
789 data);
790 if (!locked)
791 hw->phy.ops.release(hw);
792
793 return ret_val;
794 }
795
796 /**
797 * e1000_write_phy_reg_igp - Write igp PHY register
798 * @hw: pointer to the HW structure
799 * @offset: register offset to write to
800 * @data: data to write at register offset
801 *
802 * Acquires semaphore then writes the data to PHY register
803 * at the offset. Release any acquired semaphores before exiting.
804 **/
805 s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
806 {
807 return __e1000_write_phy_reg_igp(hw, offset, data, false);
808 }
809
810 /**
811 * e1000_write_phy_reg_igp_locked - Write igp PHY register
812 * @hw: pointer to the HW structure
813 * @offset: register offset to write to
814 * @data: data to write at register offset
815 *
816 * Writes the data to PHY register at the offset.
817 * Assumes semaphore already acquired.
818 **/
819 s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
820 {
821 return __e1000_write_phy_reg_igp(hw, offset, data, true);
822 }
823
824 /**
825 * __e1000_read_kmrn_reg - Read kumeran register
826 * @hw: pointer to the HW structure
827 * @offset: register offset to be read
828 * @data: pointer to the read data
829 * @locked: semaphore has already been acquired or not
830 *
831 * Acquires semaphore, if necessary. Then reads the PHY register at offset
832 * using the kumeran interface. The information retrieved is stored in data.
833 * Release any acquired semaphores before exiting.
834 **/
835 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
836 bool locked)
837 {
838 u32 kmrnctrlsta;
839
840 DEBUGFUNC("__e1000_read_kmrn_reg");
841
842 if (!locked) {
843 s32 ret_val = E1000_SUCCESS;
844
845 if (!hw->phy.ops.acquire)
846 return E1000_SUCCESS;
847
848 ret_val = hw->phy.ops.acquire(hw);
849 if (ret_val)
850 return ret_val;
851 }
852
853 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
854 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
855 E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
856 E1000_WRITE_FLUSH(hw);
857
858 usec_delay(2);
859
860 kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
861 *data = (u16)kmrnctrlsta;
862
863 if (!locked)
864 hw->phy.ops.release(hw);
865
866 return E1000_SUCCESS;
867 }
868
869 /**
870 * e1000_read_kmrn_reg_generic - Read kumeran register
871 * @hw: pointer to the HW structure
872 * @offset: register offset to be read
873 * @data: pointer to the read data
874 *
875 * Acquires semaphore then reads the PHY register at offset using the
876 * kumeran interface. The information retrieved is stored in data.
877 * Release the acquired semaphore before exiting.
878 **/
879 s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
880 {
881 return __e1000_read_kmrn_reg(hw, offset, data, false);
882 }
883
884 /**
885 * e1000_read_kmrn_reg_locked - Read kumeran register
886 * @hw: pointer to the HW structure
887 * @offset: register offset to be read
888 * @data: pointer to the read data
889 *
890 * Reads the PHY register at offset using the kumeran interface. The
891 * information retrieved is stored in data.
892 * Assumes semaphore already acquired.
893 **/
894 s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
895 {
896 return __e1000_read_kmrn_reg(hw, offset, data, true);
897 }
898
899 /**
900 * __e1000_write_kmrn_reg - Write kumeran register
901 * @hw: pointer to the HW structure
902 * @offset: register offset to write to
903 * @data: data to write at register offset
904 * @locked: semaphore has already been acquired or not
905 *
906 * Acquires semaphore, if necessary. Then write the data to PHY register
907 * at the offset using the kumeran interface. Release any acquired semaphores
908 * before exiting.
909 **/
910 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
911 bool locked)
912 {
913 u32 kmrnctrlsta;
914
915 DEBUGFUNC("e1000_write_kmrn_reg_generic");
916
917 if (!locked) {
918 s32 ret_val = E1000_SUCCESS;
919
920 if (!hw->phy.ops.acquire)
921 return E1000_SUCCESS;
922
923 ret_val = hw->phy.ops.acquire(hw);
924 if (ret_val)
925 return ret_val;
926 }
927
928 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
929 E1000_KMRNCTRLSTA_OFFSET) | data;
930 E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
931 E1000_WRITE_FLUSH(hw);
932
933 usec_delay(2);
934
935 if (!locked)
936 hw->phy.ops.release(hw);
937
938 return E1000_SUCCESS;
939 }
940
941 /**
942 * e1000_write_kmrn_reg_generic - Write kumeran register
943 * @hw: pointer to the HW structure
944 * @offset: register offset to write to
945 * @data: data to write at register offset
946 *
947 * Acquires semaphore then writes the data to the PHY register at the offset
948 * using the kumeran interface. Release the acquired semaphore before exiting.
949 **/
950 s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
951 {
952 return __e1000_write_kmrn_reg(hw, offset, data, false);
953 }
954
955 /**
956 * e1000_write_kmrn_reg_locked - Write kumeran register
957 * @hw: pointer to the HW structure
958 * @offset: register offset to write to
959 * @data: data to write at register offset
960 *
961 * Write the data to PHY register at the offset using the kumeran interface.
962 * Assumes semaphore already acquired.
963 **/
964 s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
965 {
966 return __e1000_write_kmrn_reg(hw, offset, data, true);
967 }
968
969 /**
970 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
971 * @hw: pointer to the HW structure
972 *
973 * Sets up Master/slave mode
974 **/
975 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
976 {
977 s32 ret_val;
978 u16 phy_data;
979
980 /* Resolve Master/Slave mode */
981 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
982 if (ret_val)
983 return ret_val;
984
985 /* load defaults for future use */
986 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
987 ((phy_data & CR_1000T_MS_VALUE) ?
988 e1000_ms_force_master :
989 e1000_ms_force_slave) : e1000_ms_auto;
990
991 switch (hw->phy.ms_type) {
992 case e1000_ms_force_master:
993 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
994 break;
995 case e1000_ms_force_slave:
996 phy_data |= CR_1000T_MS_ENABLE;
997 phy_data &= ~(CR_1000T_MS_VALUE);
998 break;
999 case e1000_ms_auto:
1000 phy_data &= ~CR_1000T_MS_ENABLE;
1001 /* fall-through */
1002 default:
1003 break;
1004 }
1005
1006 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
1007 }
1008
1009 /**
1010 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
1011 * @hw: pointer to the HW structure
1012 *
1013 * Sets up Carrier-sense on Transmit and downshift values.
1014 **/
1015 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
1016 {
1017 s32 ret_val;
1018 u16 phy_data;
1019
1020 DEBUGFUNC("e1000_copper_link_setup_82577");
1021
1022 if (hw->phy.reset_disable)
1023 return E1000_SUCCESS;
1024
1025 if (hw->phy.type == e1000_phy_82580) {
1026 ret_val = hw->phy.ops.reset(hw);
1027 if (ret_val) {
1028 DEBUGOUT("Error resetting the PHY.\n");
1029 return ret_val;
1030 }
1031 }
1032
1033 /* Enable CRS on Tx. This must be set for half-duplex operation. */
1034 ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
1035 if (ret_val)
1036 return ret_val;
1037
1038 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
1039
1040 /* Enable downshift */
1041 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
1042
1043 ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
1044 if (ret_val)
1045 return ret_val;
1046
1047 /* Set MDI/MDIX mode */
1048 ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
1049 if (ret_val)
1050 return ret_val;
1051 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
1052 /* Options:
1053 * 0 - Auto (default)
1054 * 1 - MDI mode
1055 * 2 - MDI-X mode
1056 */
1057 switch (hw->phy.mdix) {
1058 case 1:
1059 break;
1060 case 2:
1061 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
1062 break;
1063 case 0:
1064 default:
1065 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
1066 break;
1067 }
1068 ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
1069 if (ret_val)
1070 return ret_val;
1071
1072 return e1000_set_master_slave_mode(hw);
1073 }
1074
1075 /**
1076 * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
1077 * @hw: pointer to the HW structure
1078 *
1079 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
1080 * and downshift values are set also.
1081 **/
1082 s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
1083 {
1084 struct e1000_phy_info *phy = &hw->phy;
1085 s32 ret_val;
1086 u16 phy_data;
1087
1088 DEBUGFUNC("e1000_copper_link_setup_m88");
1089
1090 if (phy->reset_disable)
1091 return E1000_SUCCESS;
1092
1093 /* Enable CRS on Tx. This must be set for half-duplex operation. */
1094 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1095 if (ret_val)
1096 return ret_val;
1097
1098 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1099
1100 /* Options:
1101 * MDI/MDI-X = 0 (default)
1102 * 0 - Auto for all speeds
1103 * 1 - MDI mode
1104 * 2 - MDI-X mode
1105 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1106 */
1107 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1108
1109 switch (phy->mdix) {
1110 case 1:
1111 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1112 break;
1113 case 2:
1114 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1115 break;
1116 case 3:
1117 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1118 break;
1119 case 0:
1120 default:
1121 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1122 break;
1123 }
1124
1125 /* Options:
1126 * disable_polarity_correction = 0 (default)
1127 * Automatic Correction for Reversed Cable Polarity
1128 * 0 - Disabled
1129 * 1 - Enabled
1130 */
1131 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1132 if (phy->disable_polarity_correction)
1133 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1134
1135 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1136 if (ret_val)
1137 return ret_val;
1138
1139 if (phy->revision < E1000_REVISION_4) {
1140 /* Force TX_CLK in the Extended PHY Specific Control Register
1141 * to 25MHz clock.
1142 */
1143 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1144 &phy_data);
1145 if (ret_val)
1146 return ret_val;
1147
1148 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1149
1150 if ((phy->revision == E1000_REVISION_2) &&
1151 (phy->id == M88E1111_I_PHY_ID)) {
1152 /* 82573L PHY - set the downshift counter to 5x. */
1153 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
1154 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1155 } else {
1156 /* Configure Master and Slave downshift values */
1157 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1158 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1159 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1160 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1161 }
1162 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1163 phy_data);
1164 if (ret_val)
1165 return ret_val;
1166 }
1167
1168 /* Commit the changes. */
1169 ret_val = phy->ops.commit(hw);
1170 if (ret_val) {
1171 DEBUGOUT("Error committing the PHY changes\n");
1172 return ret_val;
1173 }
1174
1175 return E1000_SUCCESS;
1176 }
1177
1178 /**
1179 * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
1180 * @hw: pointer to the HW structure
1181 *
1182 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
1183 * Also enables and sets the downshift parameters.
1184 **/
1185 s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
1186 {
1187 struct e1000_phy_info *phy = &hw->phy;
1188 s32 ret_val;
1189 u16 phy_data;
1190
1191 DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
1192
1193 if (phy->reset_disable)
1194 return E1000_SUCCESS;
1195
1196 /* Enable CRS on Tx. This must be set for half-duplex operation. */
1197 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1198 if (ret_val)
1199 return ret_val;
1200
1201 /* Options:
1202 * MDI/MDI-X = 0 (default)
1203 * 0 - Auto for all speeds
1204 * 1 - MDI mode
1205 * 2 - MDI-X mode
1206 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1207 */
1208 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1209
1210 switch (phy->mdix) {
1211 case 1:
1212 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1213 break;
1214 case 2:
1215 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1216 break;
1217 case 3:
1218 /* M88E1112 does not support this mode) */
1219 if (phy->id != M88E1112_E_PHY_ID) {
1220 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1221 break;
1222 }
1223 case 0:
1224 default:
1225 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1226 break;
1227 }
1228
1229 /* Options:
1230 * disable_polarity_correction = 0 (default)
1231 * Automatic Correction for Reversed Cable Polarity
1232 * 0 - Disabled
1233 * 1 - Enabled
1234 */
1235 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1236 if (phy->disable_polarity_correction)
1237 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1238
1239 /* Enable downshift and setting it to X6 */
1240 if (phy->id == M88E1543_E_PHY_ID) {
1241 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
1242 ret_val =
1243 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1244 if (ret_val)
1245 return ret_val;
1246
1247 ret_val = phy->ops.commit(hw);
1248 if (ret_val) {
1249 DEBUGOUT("Error committing the PHY changes\n");
1250 return ret_val;
1251 }
1252 }
1253
1254 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
1255 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
1256 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
1257
1258 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1259 if (ret_val)
1260 return ret_val;
1261
1262 /* Commit the changes. */
1263 ret_val = phy->ops.commit(hw);
1264 if (ret_val) {
1265 DEBUGOUT("Error committing the PHY changes\n");
1266 return ret_val;
1267 }
1268
1269 ret_val = e1000_set_master_slave_mode(hw);
1270 if (ret_val)
1271 return ret_val;
1272
1273 return E1000_SUCCESS;
1274 }
1275
1276 /**
1277 * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
1278 * @hw: pointer to the HW structure
1279 *
1280 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
1281 * igp PHY's.
1282 **/
1283 s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
1284 {
1285 struct e1000_phy_info *phy = &hw->phy;
1286 s32 ret_val;
1287 u16 data;
1288
1289 DEBUGFUNC("e1000_copper_link_setup_igp");
1290
1291 if (phy->reset_disable)
1292 return E1000_SUCCESS;
1293
1294 ret_val = hw->phy.ops.reset(hw);
1295 if (ret_val) {
1296 DEBUGOUT("Error resetting the PHY.\n");
1297 return ret_val;
1298 }
1299
1300 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
1301 * timeout issues when LFS is enabled.
1302 */
1303 msec_delay(100);
1304
1305 /* disable lplu d0 during driver init */
1306 if (hw->phy.ops.set_d0_lplu_state) {
1307 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
1308 if (ret_val) {
1309 DEBUGOUT("Error Disabling LPLU D0\n");
1310 return ret_val;
1311 }
1312 }
1313 /* Configure mdi-mdix settings */
1314 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
1315 if (ret_val)
1316 return ret_val;
1317
1318 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1319
1320 switch (phy->mdix) {
1321 case 1:
1322 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1323 break;
1324 case 2:
1325 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1326 break;
1327 case 0:
1328 default:
1329 data |= IGP01E1000_PSCR_AUTO_MDIX;
1330 break;
1331 }
1332 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
1333 if (ret_val)
1334 return ret_val;
1335
1336 /* set auto-master slave resolution settings */
1337 if (hw->mac.autoneg) {
1338 /* when autonegotiation advertisement is only 1000Mbps then we
1339 * should disable SmartSpeed and enable Auto MasterSlave
1340 * resolution as hardware default.
1341 */
1342 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
1343 /* Disable SmartSpeed */
1344 ret_val = phy->ops.read_reg(hw,
1345 IGP01E1000_PHY_PORT_CONFIG,
1346 &data);
1347 if (ret_val)
1348 return ret_val;
1349
1350 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1351 ret_val = phy->ops.write_reg(hw,
1352 IGP01E1000_PHY_PORT_CONFIG,
1353 data);
1354 if (ret_val)
1355 return ret_val;
1356
1357 /* Set auto Master/Slave resolution process */
1358 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
1359 if (ret_val)
1360 return ret_val;
1361
1362 data &= ~CR_1000T_MS_ENABLE;
1363 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
1364 if (ret_val)
1365 return ret_val;
1366 }
1367
1368 ret_val = e1000_set_master_slave_mode(hw);
1369 }
1370
1371 return ret_val;
1372 }
1373
1374 /**
1375 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
1376 * @hw: pointer to the HW structure
1377 *
1378 * Reads the MII auto-neg advertisement register and/or the 1000T control
1379 * register and if the PHY is already setup for auto-negotiation, then
1380 * return successful. Otherwise, setup advertisement and flow control to
1381 * the appropriate values for the wanted auto-negotiation.
1382 **/
1383 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1384 {
1385 struct e1000_phy_info *phy = &hw->phy;
1386 s32 ret_val;
1387 u16 mii_autoneg_adv_reg;
1388 u16 mii_1000t_ctrl_reg = 0;
1389
1390 DEBUGFUNC("e1000_phy_setup_autoneg");
1391
1392 phy->autoneg_advertised &= phy->autoneg_mask;
1393
1394 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1395 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1396 if (ret_val)
1397 return ret_val;
1398
1399 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1400 /* Read the MII 1000Base-T Control Register (Address 9). */
1401 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1402 &mii_1000t_ctrl_reg);
1403 if (ret_val)
1404 return ret_val;
1405 }
1406
1407 /* Need to parse both autoneg_advertised and fc and set up
1408 * the appropriate PHY registers. First we will parse for
1409 * autoneg_advertised software override. Since we can advertise
1410 * a plethora of combinations, we need to check each bit
1411 * individually.
1412 */
1413
1414 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1415 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1416 * the 1000Base-T Control Register (Address 9).
1417 */
1418 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1419 NWAY_AR_100TX_HD_CAPS |
1420 NWAY_AR_10T_FD_CAPS |
1421 NWAY_AR_10T_HD_CAPS);
1422 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1423
1424 DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
1425
1426 /* Do we want to advertise 10 Mb Half Duplex? */
1427 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1428 DEBUGOUT("Advertise 10mb Half duplex\n");
1429 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1430 }
1431
1432 /* Do we want to advertise 10 Mb Full Duplex? */
1433 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1434 DEBUGOUT("Advertise 10mb Full duplex\n");
1435 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1436 }
1437
1438 /* Do we want to advertise 100 Mb Half Duplex? */
1439 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1440 DEBUGOUT("Advertise 100mb Half duplex\n");
1441 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1442 }
1443
1444 /* Do we want to advertise 100 Mb Full Duplex? */
1445 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1446 DEBUGOUT("Advertise 100mb Full duplex\n");
1447 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1448 }
1449
1450 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1451 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1452 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
1453
1454 /* Do we want to advertise 1000 Mb Full Duplex? */
1455 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1456 DEBUGOUT("Advertise 1000mb Full duplex\n");
1457 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1458 }
1459
1460 /* Check for a software override of the flow control settings, and
1461 * setup the PHY advertisement registers accordingly. If
1462 * auto-negotiation is enabled, then software will have to set the
1463 * "PAUSE" bits to the correct value in the Auto-Negotiation
1464 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1465 * negotiation.
1466 *
1467 * The possible values of the "fc" parameter are:
1468 * 0: Flow control is completely disabled
1469 * 1: Rx flow control is enabled (we can receive pause frames
1470 * but not send pause frames).
1471 * 2: Tx flow control is enabled (we can send pause frames
1472 * but we do not support receiving pause frames).
1473 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1474 * other: No software override. The flow control configuration
1475 * in the EEPROM is used.
1476 */
1477 switch (hw->fc.current_mode) {
1478 case e1000_fc_none:
1479 /* Flow control (Rx & Tx) is completely disabled by a
1480 * software over-ride.
1481 */
1482 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1483 break;
1484 case e1000_fc_rx_pause:
1485 /* Rx Flow control is enabled, and Tx Flow control is
1486 * disabled, by a software over-ride.
1487 *
1488 * Since there really isn't a way to advertise that we are
1489 * capable of Rx Pause ONLY, we will advertise that we
1490 * support both symmetric and asymmetric Rx PAUSE. Later
1491 * (in e1000_config_fc_after_link_up) we will disable the
1492 * hw's ability to send PAUSE frames.
1493 */
1494 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1495 break;
1496 case e1000_fc_tx_pause:
1497 /* Tx Flow control is enabled, and Rx Flow control is
1498 * disabled, by a software over-ride.
1499 */
1500 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1501 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1502 break;
1503 case e1000_fc_full:
1504 /* Flow control (both Rx and Tx) is enabled by a software
1505 * over-ride.
1506 */
1507 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1508 break;
1509 default:
1510 DEBUGOUT("Flow control param set incorrectly\n");
1511 return -E1000_ERR_CONFIG;
1512 }
1513
1514 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1515 if (ret_val)
1516 return ret_val;
1517
1518 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1519
1520 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1521 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
1522 mii_1000t_ctrl_reg);
1523
1524 return ret_val;
1525 }
1526
1527 /**
1528 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1529 * @hw: pointer to the HW structure
1530 *
1531 * Performs initial bounds checking on autoneg advertisement parameter, then
1532 * configure to advertise the full capability. Setup the PHY to autoneg
1533 * and restart the negotiation process between the link partner. If
1534 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1535 **/
1536 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1537 {
1538 struct e1000_phy_info *phy = &hw->phy;
1539 s32 ret_val;
1540 u16 phy_ctrl;
1541
1542 DEBUGFUNC("e1000_copper_link_autoneg");
1543
1544 /* Perform some bounds checking on the autoneg advertisement
1545 * parameter.
1546 */
1547 phy->autoneg_advertised &= phy->autoneg_mask;
1548
1549 /* If autoneg_advertised is zero, we assume it was not defaulted
1550 * by the calling code so we set to advertise full capability.
1551 */
1552 if (!phy->autoneg_advertised)
1553 phy->autoneg_advertised = phy->autoneg_mask;
1554
1555 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1556 ret_val = e1000_phy_setup_autoneg(hw);
1557 if (ret_val) {
1558 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1559 return ret_val;
1560 }
1561 DEBUGOUT("Restarting Auto-Neg\n");
1562
1563 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1564 * the Auto Neg Restart bit in the PHY control register.
1565 */
1566 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1567 if (ret_val)
1568 return ret_val;
1569
1570 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1571 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1572 if (ret_val)
1573 return ret_val;
1574
1575 /* Does the user want to wait for Auto-Neg to complete here, or
1576 * check at a later time (for example, callback routine).
1577 */
1578 if (phy->autoneg_wait_to_complete) {
1579 ret_val = e1000_wait_autoneg(hw);
1580 if (ret_val) {
1581 DEBUGOUT("Error while waiting for autoneg to complete\n");
1582 return ret_val;
1583 }
1584 }
1585
1586 hw->mac.get_link_status = true;
1587
1588 return ret_val;
1589 }
1590
1591 /**
1592 * e1000_setup_copper_link_generic - Configure copper link settings
1593 * @hw: pointer to the HW structure
1594 *
1595 * Calls the appropriate function to configure the link for auto-neg or forced
1596 * speed and duplex. Then we check for link, once link is established calls
1597 * to configure collision distance and flow control are called. If link is
1598 * not established, we return -E1000_ERR_PHY (-2).
1599 **/
1600 s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
1601 {
1602 s32 ret_val;
1603 bool link;
1604
1605 DEBUGFUNC("e1000_setup_copper_link_generic");
1606
1607 if (hw->mac.autoneg) {
1608 /* Setup autoneg and flow control advertisement and perform
1609 * autonegotiation.
1610 */
1611 ret_val = e1000_copper_link_autoneg(hw);
1612 if (ret_val)
1613 return ret_val;
1614 } else {
1615 /* PHY will be set to 10H, 10F, 100H or 100F
1616 * depending on user settings.
1617 */
1618 DEBUGOUT("Forcing Speed and Duplex\n");
1619 ret_val = hw->phy.ops.force_speed_duplex(hw);
1620 if (ret_val) {
1621 DEBUGOUT("Error Forcing Speed and Duplex\n");
1622 return ret_val;
1623 }
1624 }
1625
1626 /* Check link status. Wait up to 100 microseconds for link to become
1627 * valid.
1628 */
1629 ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1630 &link);
1631 if (ret_val)
1632 return ret_val;
1633
1634 if (link) {
1635 DEBUGOUT("Valid link established!!!\n");
1636 hw->mac.ops.config_collision_dist(hw);
1637 ret_val = e1000_config_fc_after_link_up_generic(hw);
1638 } else {
1639 DEBUGOUT("Unable to establish link!!!\n");
1640 }
1641
1642 return ret_val;
1643 }
1644
1645 /**
1646 * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1647 * @hw: pointer to the HW structure
1648 *
1649 * Calls the PHY setup function to force speed and duplex. Clears the
1650 * auto-crossover to force MDI manually. Waits for link and returns
1651 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1652 **/
1653 s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1654 {
1655 struct e1000_phy_info *phy = &hw->phy;
1656 s32 ret_val;
1657 u16 phy_data;
1658 bool link;
1659
1660 DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
1661
1662 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1663 if (ret_val)
1664 return ret_val;
1665
1666 e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1667
1668 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1669 if (ret_val)
1670 return ret_val;
1671
1672 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1673 * forced whenever speed and duplex are forced.
1674 */
1675 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1676 if (ret_val)
1677 return ret_val;
1678
1679 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1680 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1681
1682 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1683 if (ret_val)
1684 return ret_val;
1685
1686 DEBUGOUT1("IGP PSCR: %X\n", phy_data);
1687
1688 usec_delay(1);
1689
1690 if (phy->autoneg_wait_to_complete) {
1691 DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1692
1693 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1694 100000, &link);
1695 if (ret_val)
1696 return ret_val;
1697
1698 if (!link)
1699 DEBUGOUT("Link taking longer than expected.\n");
1700
1701 /* Try once more */
1702 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1703 100000, &link);
1704 }
1705
1706 return ret_val;
1707 }
1708
1709 /**
1710 * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1711 * @hw: pointer to the HW structure
1712 *
1713 * Calls the PHY setup function to force speed and duplex. Clears the
1714 * auto-crossover to force MDI manually. Resets the PHY to commit the
1715 * changes. If time expires while waiting for link up, we reset the DSP.
1716 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1717 * successful completion, else return corresponding error code.
1718 **/
1719 s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1720 {
1721 struct e1000_phy_info *phy = &hw->phy;
1722 s32 ret_val;
1723 u16 phy_data;
1724 bool link;
1725
1726 DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
1727
1728 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1729 if (phy->type != e1000_phy_i210) {
1730 /* Clear Auto-Crossover to force MDI manually. M88E1000
1731 * requires MDI forced whenever speed and duplex are forced.
1732 */
1733 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1734 &phy_data);
1735 if (ret_val)
1736 return ret_val;
1737
1738 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1739 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1740 phy_data);
1741 if (ret_val)
1742 return ret_val;
1743 }
1744
1745 DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
1746
1747 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1748 if (ret_val)
1749 return ret_val;
1750
1751 e1000_phy_force_speed_duplex_setup(hw, &phy_data);
1752
1753 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1754 if (ret_val)
1755 return ret_val;
1756
1757 /* Reset the phy to commit changes. */
1758 ret_val = hw->phy.ops.commit(hw);
1759 if (ret_val)
1760 return ret_val;
1761
1762 if (phy->autoneg_wait_to_complete) {
1763 DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1764
1765 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1766 100000, &link);
1767 if (ret_val)
1768 return ret_val;
1769
1770 if (!link) {
1771 bool reset_dsp = true;
1772
1773 switch (hw->phy.id) {
1774 case I347AT4_E_PHY_ID:
1775 case M88E1340M_E_PHY_ID:
1776 case M88E1112_E_PHY_ID:
1777 case M88E1543_E_PHY_ID:
1778 case I210_I_PHY_ID:
1779 reset_dsp = false;
1780 break;
1781 default:
1782 if (hw->phy.type != e1000_phy_m88)
1783 reset_dsp = false;
1784 break;
1785 }
1786
1787 if (!reset_dsp) {
1788 DEBUGOUT("Link taking longer than expected.\n");
1789 } else {
1790 /* We didn't get link.
1791 * Reset the DSP and cross our fingers.
1792 */
1793 ret_val = phy->ops.write_reg(hw,
1794 M88E1000_PHY_PAGE_SELECT,
1795 0x001d);
1796 if (ret_val)
1797 return ret_val;
1798 ret_val = e1000_phy_reset_dsp_generic(hw);
1799 if (ret_val)
1800 return ret_val;
1801 }
1802 }
1803
1804 /* Try once more */
1805 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1806 100000, &link);
1807 if (ret_val)
1808 return ret_val;
1809 }
1810
1811 if (hw->phy.type != e1000_phy_m88)
1812 return E1000_SUCCESS;
1813
1814 if (hw->phy.id == I347AT4_E_PHY_ID ||
1815 hw->phy.id == M88E1340M_E_PHY_ID ||
1816 hw->phy.id == M88E1112_E_PHY_ID)
1817 return E1000_SUCCESS;
1818 if (hw->phy.id == I210_I_PHY_ID)
1819 return E1000_SUCCESS;
1820 if ((hw->phy.id == M88E1543_E_PHY_ID))
1821 return E1000_SUCCESS;
1822 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1823 if (ret_val)
1824 return ret_val;
1825
1826 /* Resetting the phy means we need to re-force TX_CLK in the
1827 * Extended PHY Specific Control Register to 25MHz clock from
1828 * the reset value of 2.5MHz.
1829 */
1830 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1831 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1832 if (ret_val)
1833 return ret_val;
1834
1835 /* In addition, we must re-enable CRS on Tx for both half and full
1836 * duplex.
1837 */
1838 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1839 if (ret_val)
1840 return ret_val;
1841
1842 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1843 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1844
1845 return ret_val;
1846 }
1847
1848 /**
1849 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1850 * @hw: pointer to the HW structure
1851 *
1852 * Forces the speed and duplex settings of the PHY.
1853 * This is a function pointer entry point only called by
1854 * PHY setup routines.
1855 **/
1856 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1857 {
1858 struct e1000_phy_info *phy = &hw->phy;
1859 s32 ret_val;
1860 u16 data;
1861 bool link;
1862
1863 DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
1864
1865 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
1866 if (ret_val)
1867 return ret_val;
1868
1869 e1000_phy_force_speed_duplex_setup(hw, &data);
1870
1871 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
1872 if (ret_val)
1873 return ret_val;
1874
1875 /* Disable MDI-X support for 10/100 */
1876 ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
1877 if (ret_val)
1878 return ret_val;
1879
1880 data &= ~IFE_PMC_AUTO_MDIX;
1881 data &= ~IFE_PMC_FORCE_MDIX;
1882
1883 ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
1884 if (ret_val)
1885 return ret_val;
1886
1887 DEBUGOUT1("IFE PMC: %X\n", data);
1888
1889 usec_delay(1);
1890
1891 if (phy->autoneg_wait_to_complete) {
1892 DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
1893
1894 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1895 100000, &link);
1896 if (ret_val)
1897 return ret_val;
1898
1899 if (!link)
1900 DEBUGOUT("Link taking longer than expected.\n");
1901
1902 /* Try once more */
1903 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1904 100000, &link);
1905 if (ret_val)
1906 return ret_val;
1907 }
1908
1909 return E1000_SUCCESS;
1910 }
1911
1912 /**
1913 * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1914 * @hw: pointer to the HW structure
1915 * @phy_ctrl: pointer to current value of PHY_CONTROL
1916 *
1917 * Forces speed and duplex on the PHY by doing the following: disable flow
1918 * control, force speed/duplex on the MAC, disable auto speed detection,
1919 * disable auto-negotiation, configure duplex, configure speed, configure
1920 * the collision distance, write configuration to CTRL register. The
1921 * caller must write to the PHY_CONTROL register for these settings to
1922 * take affect.
1923 **/
1924 void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1925 {
1926 struct e1000_mac_info *mac = &hw->mac;
1927 u32 ctrl;
1928
1929 DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
1930
1931 /* Turn off flow control when forcing speed/duplex */
1932 hw->fc.current_mode = e1000_fc_none;
1933
1934 /* Force speed/duplex on the mac */
1935 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1936 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1937 ctrl &= ~E1000_CTRL_SPD_SEL;
1938
1939 /* Disable Auto Speed Detection */
1940 ctrl &= ~E1000_CTRL_ASDE;
1941
1942 /* Disable autoneg on the phy */
1943 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1944
1945 /* Forcing Full or Half Duplex? */
1946 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1947 ctrl &= ~E1000_CTRL_FD;
1948 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1949 DEBUGOUT("Half Duplex\n");
1950 } else {
1951 ctrl |= E1000_CTRL_FD;
1952 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1953 DEBUGOUT("Full Duplex\n");
1954 }
1955
1956 /* Forcing 10mb or 100mb? */
1957 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1958 ctrl |= E1000_CTRL_SPD_100;
1959 *phy_ctrl |= MII_CR_SPEED_100;
1960 *phy_ctrl &= ~MII_CR_SPEED_1000;
1961 DEBUGOUT("Forcing 100mb\n");
1962 } else {
1963 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1964 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1965 DEBUGOUT("Forcing 10mb\n");
1966 }
1967
1968 hw->mac.ops.config_collision_dist(hw);
1969
1970 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1971 }
1972
1973 /**
1974 * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
1975 * @hw: pointer to the HW structure
1976 * @active: boolean used to enable/disable lplu
1977 *
1978 * Success returns 0, Failure returns 1
1979 *
1980 * The low power link up (lplu) state is set to the power management level D3
1981 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1982 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1983 * is used during Dx states where the power conservation is most important.
1984 * During driver activity, SmartSpeed should be enabled so performance is
1985 * maintained.
1986 **/
1987 s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
1988 {
1989 struct e1000_phy_info *phy = &hw->phy;
1990 s32 ret_val;
1991 u16 data;
1992
1993 DEBUGFUNC("e1000_set_d3_lplu_state_generic");
1994
1995 if (!hw->phy.ops.read_reg)
1996 return E1000_SUCCESS;
1997
1998 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1999 if (ret_val)
2000 return ret_val;
2001
2002 if (!active) {
2003 data &= ~IGP02E1000_PM_D3_LPLU;
2004 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2005 data);
2006 if (ret_val)
2007 return ret_val;
2008 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2009 * during Dx states where the power conservation is most
2010 * important. During driver activity we should enable
2011 * SmartSpeed, so performance is maintained.
2012 */
2013 if (phy->smart_speed == e1000_smart_speed_on) {
2014 ret_val = phy->ops.read_reg(hw,
2015 IGP01E1000_PHY_PORT_CONFIG,
2016 &data);
2017 if (ret_val)
2018 return ret_val;
2019
2020 data |= IGP01E1000_PSCFR_SMART_SPEED;
2021 ret_val = phy->ops.write_reg(hw,
2022 IGP01E1000_PHY_PORT_CONFIG,
2023 data);
2024 if (ret_val)
2025 return ret_val;
2026 } else if (phy->smart_speed == e1000_smart_speed_off) {
2027 ret_val = phy->ops.read_reg(hw,
2028 IGP01E1000_PHY_PORT_CONFIG,
2029 &data);
2030 if (ret_val)
2031 return ret_val;
2032
2033 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2034 ret_val = phy->ops.write_reg(hw,
2035 IGP01E1000_PHY_PORT_CONFIG,
2036 data);
2037 if (ret_val)
2038 return ret_val;
2039 }
2040 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2041 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2042 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2043 data |= IGP02E1000_PM_D3_LPLU;
2044 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2045 data);
2046 if (ret_val)
2047 return ret_val;
2048
2049 /* When LPLU is enabled, we should disable SmartSpeed */
2050 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2051 &data);
2052 if (ret_val)
2053 return ret_val;
2054
2055 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2056 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2057 data);
2058 }
2059
2060 return ret_val;
2061 }
2062
2063 /**
2064 * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
2065 * @hw: pointer to the HW structure
2066 *
2067 * Success returns 0, Failure returns 1
2068 *
2069 * A downshift is detected by querying the PHY link health.
2070 **/
2071 s32 e1000_check_downshift_generic(struct e1000_hw *hw)
2072 {
2073 struct e1000_phy_info *phy = &hw->phy;
2074 s32 ret_val;
2075 u16 phy_data, offset, mask;
2076
2077 DEBUGFUNC("e1000_check_downshift_generic");
2078
2079 switch (phy->type) {
2080 case e1000_phy_i210:
2081 case e1000_phy_m88:
2082 case e1000_phy_gg82563:
2083 offset = M88E1000_PHY_SPEC_STATUS;
2084 mask = M88E1000_PSSR_DOWNSHIFT;
2085 break;
2086 case e1000_phy_igp_2:
2087 case e1000_phy_igp_3:
2088 offset = IGP01E1000_PHY_LINK_HEALTH;
2089 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
2090 break;
2091 default:
2092 /* speed downshift not supported */
2093 phy->speed_downgraded = false;
2094 return E1000_SUCCESS;
2095 }
2096
2097 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2098
2099 if (!ret_val)
2100 phy->speed_downgraded = !!(phy_data & mask);
2101
2102 return ret_val;
2103 }
2104
2105 /**
2106 * e1000_check_polarity_m88 - Checks the polarity.
2107 * @hw: pointer to the HW structure
2108 *
2109 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2110 *
2111 * Polarity is determined based on the PHY specific status register.
2112 **/
2113 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
2114 {
2115 struct e1000_phy_info *phy = &hw->phy;
2116 s32 ret_val;
2117 u16 data;
2118
2119 DEBUGFUNC("e1000_check_polarity_m88");
2120
2121 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
2122
2123 if (!ret_val)
2124 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
2125 ? e1000_rev_polarity_reversed
2126 : e1000_rev_polarity_normal);
2127
2128 return ret_val;
2129 }
2130
2131 /**
2132 * e1000_check_polarity_igp - Checks the polarity.
2133 * @hw: pointer to the HW structure
2134 *
2135 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2136 *
2137 * Polarity is determined based on the PHY port status register, and the
2138 * current speed (since there is no polarity at 100Mbps).
2139 **/
2140 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
2141 {
2142 struct e1000_phy_info *phy = &hw->phy;
2143 s32 ret_val;
2144 u16 data, offset, mask;
2145
2146 DEBUGFUNC("e1000_check_polarity_igp");
2147
2148 /* Polarity is determined based on the speed of
2149 * our connection.
2150 */
2151 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2152 if (ret_val)
2153 return ret_val;
2154
2155 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2156 IGP01E1000_PSSR_SPEED_1000MBPS) {
2157 offset = IGP01E1000_PHY_PCS_INIT_REG;
2158 mask = IGP01E1000_PHY_POLARITY_MASK;
2159 } else {
2160 /* This really only applies to 10Mbps since
2161 * there is no polarity for 100Mbps (always 0).
2162 */
2163 offset = IGP01E1000_PHY_PORT_STATUS;
2164 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
2165 }
2166
2167 ret_val = phy->ops.read_reg(hw, offset, &data);
2168
2169 if (!ret_val)
2170 phy->cable_polarity = ((data & mask)
2171 ? e1000_rev_polarity_reversed
2172 : e1000_rev_polarity_normal);
2173
2174 return ret_val;
2175 }
2176
2177 /**
2178 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
2179 * @hw: pointer to the HW structure
2180 *
2181 * Polarity is determined on the polarity reversal feature being enabled.
2182 **/
2183 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
2184 {
2185 struct e1000_phy_info *phy = &hw->phy;
2186 s32 ret_val;
2187 u16 phy_data, offset, mask;
2188
2189 DEBUGFUNC("e1000_check_polarity_ife");
2190
2191 /* Polarity is determined based on the reversal feature being enabled.
2192 */
2193 if (phy->polarity_correction) {
2194 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
2195 mask = IFE_PESC_POLARITY_REVERSED;
2196 } else {
2197 offset = IFE_PHY_SPECIAL_CONTROL;
2198 mask = IFE_PSC_FORCE_POLARITY;
2199 }
2200
2201 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
2202
2203 if (!ret_val)
2204 phy->cable_polarity = ((phy_data & mask)
2205 ? e1000_rev_polarity_reversed
2206 : e1000_rev_polarity_normal);
2207
2208 return ret_val;
2209 }
2210
2211 /**
2212 * e1000_wait_autoneg - Wait for auto-neg completion
2213 * @hw: pointer to the HW structure
2214 *
2215 * Waits for auto-negotiation to complete or for the auto-negotiation time
2216 * limit to expire, which ever happens first.
2217 **/
2218 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2219 {
2220 s32 ret_val = E1000_SUCCESS;
2221 u16 i, phy_status;
2222
2223 DEBUGFUNC("e1000_wait_autoneg");
2224
2225 if (!hw->phy.ops.read_reg)
2226 return E1000_SUCCESS;
2227
2228 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
2229 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
2230 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2231 if (ret_val)
2232 break;
2233 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2234 if (ret_val)
2235 break;
2236 if (phy_status & MII_SR_AUTONEG_COMPLETE)
2237 break;
2238 msec_delay(100);
2239 }
2240
2241 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
2242 * has completed.
2243 */
2244 return ret_val;
2245 }
2246
2247 /**
2248 * e1000_phy_has_link_generic - Polls PHY for link
2249 * @hw: pointer to the HW structure
2250 * @iterations: number of times to poll for link
2251 * @usec_interval: delay between polling attempts
2252 * @success: pointer to whether polling was successful or not
2253 *
2254 * Polls the PHY status register for link, 'iterations' number of times.
2255 **/
2256 s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
2257 u32 usec_interval, bool *success)
2258 {
2259 s32 ret_val = E1000_SUCCESS;
2260 u16 i, phy_status;
2261
2262 DEBUGFUNC("e1000_phy_has_link_generic");
2263
2264 if (!hw->phy.ops.read_reg)
2265 return E1000_SUCCESS;
2266
2267 for (i = 0; i < iterations; i++) {
2268 /* Some PHYs require the PHY_STATUS register to be read
2269 * twice due to the link bit being sticky. No harm doing
2270 * it across the board.
2271 */
2272 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2273 if (ret_val)
2274 /* If the first read fails, another entity may have
2275 * ownership of the resources, wait and try again to
2276 * see if they have relinquished the resources yet.
2277 */
2278 usec_delay(usec_interval);
2279 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
2280 if (ret_val)
2281 break;
2282 if (phy_status & MII_SR_LINK_STATUS)
2283 break;
2284 if (usec_interval >= 1000)
2285 msec_delay_irq(usec_interval/1000);
2286 else
2287 usec_delay(usec_interval);
2288 }
2289
2290 *success = (i < iterations);
2291
2292 return ret_val;
2293 }
2294
2295 /**
2296 * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
2297 * @hw: pointer to the HW structure
2298 *
2299 * Reads the PHY specific status register to retrieve the cable length
2300 * information. The cable length is determined by averaging the minimum and
2301 * maximum values to get the "average" cable length. The m88 PHY has four
2302 * possible cable length values, which are:
2303 * Register Value Cable Length
2304 * 0 < 50 meters
2305 * 1 50 - 80 meters
2306 * 2 80 - 110 meters
2307 * 3 110 - 140 meters
2308 * 4 > 140 meters
2309 **/
2310 s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
2311 {
2312 struct e1000_phy_info *phy = &hw->phy;
2313 s32 ret_val;
2314 u16 phy_data, index;
2315
2316 DEBUGFUNC("e1000_get_cable_length_m88");
2317
2318 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2319 if (ret_val)
2320 return ret_val;
2321
2322 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2323 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
2324
2325 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
2326 return -E1000_ERR_PHY;
2327
2328 phy->min_cable_length = e1000_m88_cable_length_table[index];
2329 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2330
2331 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2332
2333 return E1000_SUCCESS;
2334 }
2335
2336 s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
2337 {
2338 struct e1000_phy_info *phy = &hw->phy;
2339 s32 ret_val;
2340 u16 phy_data, phy_data2, is_cm;
2341 u16 index, default_page;
2342
2343 DEBUGFUNC("e1000_get_cable_length_m88_gen2");
2344
2345 switch (hw->phy.id) {
2346 case I210_I_PHY_ID:
2347 /* Get cable length from PHY Cable Diagnostics Control Reg */
2348 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2349 (I347AT4_PCDL + phy->addr),
2350 &phy_data);
2351 if (ret_val)
2352 return ret_val;
2353
2354 /* Check if the unit of cable length is meters or cm */
2355 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
2356 I347AT4_PCDC, &phy_data2);
2357 if (ret_val)
2358 return ret_val;
2359
2360 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2361
2362 /* Populate the phy structure with cable length in meters */
2363 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2364 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2365 phy->cable_length = phy_data / (is_cm ? 100 : 1);
2366 break;
2367 case M88E1543_E_PHY_ID:
2368 case M88E1340M_E_PHY_ID:
2369 case I347AT4_E_PHY_ID:
2370 /* Remember the original page select and set it to 7 */
2371 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2372 &default_page);
2373 if (ret_val)
2374 return ret_val;
2375
2376 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
2377 if (ret_val)
2378 return ret_val;
2379
2380 /* Get cable length from PHY Cable Diagnostics Control Reg */
2381 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
2382 &phy_data);
2383 if (ret_val)
2384 return ret_val;
2385
2386 /* Check if the unit of cable length is meters or cm */
2387 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
2388 if (ret_val)
2389 return ret_val;
2390
2391 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
2392
2393 /* Populate the phy structure with cable length in meters */
2394 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
2395 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
2396 phy->cable_length = phy_data / (is_cm ? 100 : 1);
2397
2398 /* Reset the page select to its original value */
2399 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2400 default_page);
2401 if (ret_val)
2402 return ret_val;
2403 break;
2404
2405 case M88E1112_E_PHY_ID:
2406 /* Remember the original page select and set it to 5 */
2407 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
2408 &default_page);
2409 if (ret_val)
2410 return ret_val;
2411
2412 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
2413 if (ret_val)
2414 return ret_val;
2415
2416 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
2417 &phy_data);
2418 if (ret_val)
2419 return ret_val;
2420
2421 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
2422 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
2423
2424 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
2425 return -E1000_ERR_PHY;
2426
2427 phy->min_cable_length = e1000_m88_cable_length_table[index];
2428 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
2429
2430 phy->cable_length = (phy->min_cable_length +
2431 phy->max_cable_length) / 2;
2432
2433 /* Reset the page select to its original value */
2434 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
2435 default_page);
2436 if (ret_val)
2437 return ret_val;
2438
2439 break;
2440 default:
2441 return -E1000_ERR_PHY;
2442 }
2443
2444 return ret_val;
2445 }
2446
2447 /**
2448 * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
2449 * @hw: pointer to the HW structure
2450 *
2451 * The automatic gain control (agc) normalizes the amplitude of the
2452 * received signal, adjusting for the attenuation produced by the
2453 * cable. By reading the AGC registers, which represent the
2454 * combination of coarse and fine gain value, the value can be put
2455 * into a lookup table to obtain the approximate cable length
2456 * for each channel.
2457 **/
2458 s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
2459 {
2460 struct e1000_phy_info *phy = &hw->phy;
2461 s32 ret_val;
2462 u16 phy_data, i, agc_value = 0;
2463 u16 cur_agc_index, max_agc_index = 0;
2464 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
2465 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
2466 IGP02E1000_PHY_AGC_A,
2467 IGP02E1000_PHY_AGC_B,
2468 IGP02E1000_PHY_AGC_C,
2469 IGP02E1000_PHY_AGC_D
2470 };
2471
2472 DEBUGFUNC("e1000_get_cable_length_igp_2");
2473
2474 /* Read the AGC registers for all channels */
2475 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
2476 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
2477 if (ret_val)
2478 return ret_val;
2479
2480 /* Getting bits 15:9, which represent the combination of
2481 * coarse and fine gain values. The result is a number
2482 * that can be put into the lookup table to obtain the
2483 * approximate cable length.
2484 */
2485 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
2486 IGP02E1000_AGC_LENGTH_MASK);
2487
2488 /* Array index bound check. */
2489 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
2490 (cur_agc_index == 0))
2491 return -E1000_ERR_PHY;
2492
2493 /* Remove min & max AGC values from calculation. */
2494 if (e1000_igp_2_cable_length_table[min_agc_index] >
2495 e1000_igp_2_cable_length_table[cur_agc_index])
2496 min_agc_index = cur_agc_index;
2497 if (e1000_igp_2_cable_length_table[max_agc_index] <
2498 e1000_igp_2_cable_length_table[cur_agc_index])
2499 max_agc_index = cur_agc_index;
2500
2501 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
2502 }
2503
2504 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
2505 e1000_igp_2_cable_length_table[max_agc_index]);
2506 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
2507
2508 /* Calculate cable length with the error range of +/- 10 meters. */
2509 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
2510 (agc_value - IGP02E1000_AGC_RANGE) : 0);
2511 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
2512
2513 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
2514
2515 return E1000_SUCCESS;
2516 }
2517
2518 /**
2519 * e1000_get_phy_info_m88 - Retrieve PHY information
2520 * @hw: pointer to the HW structure
2521 *
2522 * Valid for only copper links. Read the PHY status register (sticky read)
2523 * to verify that link is up. Read the PHY special control register to
2524 * determine the polarity and 10base-T extended distance. Read the PHY
2525 * special status register to determine MDI/MDIx and current speed. If
2526 * speed is 1000, then determine cable length, local and remote receiver.
2527 **/
2528 s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
2529 {
2530 struct e1000_phy_info *phy = &hw->phy;
2531 s32 ret_val;
2532 u16 phy_data;
2533 bool link;
2534
2535 DEBUGFUNC("e1000_get_phy_info_m88");
2536
2537 if (phy->media_type != e1000_media_type_copper) {
2538 DEBUGOUT("Phy info is only valid for copper media\n");
2539 return -E1000_ERR_CONFIG;
2540 }
2541
2542 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2543 if (ret_val)
2544 return ret_val;
2545
2546 if (!link) {
2547 DEBUGOUT("Phy info is only valid if link is up\n");
2548 return -E1000_ERR_CONFIG;
2549 }
2550
2551 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2552 if (ret_val)
2553 return ret_val;
2554
2555 phy->polarity_correction = !!(phy_data &
2556 M88E1000_PSCR_POLARITY_REVERSAL);
2557
2558 ret_val = e1000_check_polarity_m88(hw);
2559 if (ret_val)
2560 return ret_val;
2561
2562 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2563 if (ret_val)
2564 return ret_val;
2565
2566 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
2567
2568 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2569 ret_val = hw->phy.ops.get_cable_length(hw);
2570 if (ret_val)
2571 return ret_val;
2572
2573 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2574 if (ret_val)
2575 return ret_val;
2576
2577 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2578 ? e1000_1000t_rx_status_ok
2579 : e1000_1000t_rx_status_not_ok;
2580
2581 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2582 ? e1000_1000t_rx_status_ok
2583 : e1000_1000t_rx_status_not_ok;
2584 } else {
2585 /* Set values to "undefined" */
2586 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2587 phy->local_rx = e1000_1000t_rx_status_undefined;
2588 phy->remote_rx = e1000_1000t_rx_status_undefined;
2589 }
2590
2591 return ret_val;
2592 }
2593
2594 /**
2595 * e1000_get_phy_info_igp - Retrieve igp PHY information
2596 * @hw: pointer to the HW structure
2597 *
2598 * Read PHY status to determine if link is up. If link is up, then
2599 * set/determine 10base-T extended distance and polarity correction. Read
2600 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2601 * determine on the cable length, local and remote receiver.
2602 **/
2603 s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
2604 {
2605 struct e1000_phy_info *phy = &hw->phy;
2606 s32 ret_val;
2607 u16 data;
2608 bool link;
2609
2610 DEBUGFUNC("e1000_get_phy_info_igp");
2611
2612 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2613 if (ret_val)
2614 return ret_val;
2615
2616 if (!link) {
2617 DEBUGOUT("Phy info is only valid if link is up\n");
2618 return -E1000_ERR_CONFIG;
2619 }
2620
2621 phy->polarity_correction = true;
2622
2623 ret_val = e1000_check_polarity_igp(hw);
2624 if (ret_val)
2625 return ret_val;
2626
2627 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2628 if (ret_val)
2629 return ret_val;
2630
2631 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2632
2633 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2634 IGP01E1000_PSSR_SPEED_1000MBPS) {
2635 ret_val = phy->ops.get_cable_length(hw);
2636 if (ret_val)
2637 return ret_val;
2638
2639 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2640 if (ret_val)
2641 return ret_val;
2642
2643 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2644 ? e1000_1000t_rx_status_ok
2645 : e1000_1000t_rx_status_not_ok;
2646
2647 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2648 ? e1000_1000t_rx_status_ok
2649 : e1000_1000t_rx_status_not_ok;
2650 } else {
2651 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2652 phy->local_rx = e1000_1000t_rx_status_undefined;
2653 phy->remote_rx = e1000_1000t_rx_status_undefined;
2654 }
2655
2656 return ret_val;
2657 }
2658
2659 /**
2660 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2661 * @hw: pointer to the HW structure
2662 *
2663 * Populates "phy" structure with various feature states.
2664 **/
2665 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2666 {
2667 struct e1000_phy_info *phy = &hw->phy;
2668 s32 ret_val;
2669 u16 data;
2670 bool link;
2671
2672 DEBUGFUNC("e1000_get_phy_info_ife");
2673
2674 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
2675 if (ret_val)
2676 return ret_val;
2677
2678 if (!link) {
2679 DEBUGOUT("Phy info is only valid if link is up\n");
2680 return -E1000_ERR_CONFIG;
2681 }
2682
2683 ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2684 if (ret_val)
2685 return ret_val;
2686 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2687
2688 if (phy->polarity_correction) {
2689 ret_val = e1000_check_polarity_ife(hw);
2690 if (ret_val)
2691 return ret_val;
2692 } else {
2693 /* Polarity is forced */
2694 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2695 ? e1000_rev_polarity_reversed
2696 : e1000_rev_polarity_normal);
2697 }
2698
2699 ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
2700 if (ret_val)
2701 return ret_val;
2702
2703 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2704
2705 /* The following parameters are undefined for 10/100 operation. */
2706 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2707 phy->local_rx = e1000_1000t_rx_status_undefined;
2708 phy->remote_rx = e1000_1000t_rx_status_undefined;
2709
2710 return E1000_SUCCESS;
2711 }
2712
2713 /**
2714 * e1000_phy_sw_reset_generic - PHY software reset
2715 * @hw: pointer to the HW structure
2716 *
2717 * Does a software reset of the PHY by reading the PHY control register and
2718 * setting/write the control register reset bit to the PHY.
2719 **/
2720 s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
2721 {
2722 s32 ret_val;
2723 u16 phy_ctrl;
2724
2725 DEBUGFUNC("e1000_phy_sw_reset_generic");
2726
2727 if (!hw->phy.ops.read_reg)
2728 return E1000_SUCCESS;
2729
2730 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2731 if (ret_val)
2732 return ret_val;
2733
2734 phy_ctrl |= MII_CR_RESET;
2735 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2736 if (ret_val)
2737 return ret_val;
2738
2739 usec_delay(1);
2740
2741 return ret_val;
2742 }
2743
2744 /**
2745 * e1000_phy_hw_reset_generic - PHY hardware reset
2746 * @hw: pointer to the HW structure
2747 *
2748 * Verify the reset block is not blocking us from resetting. Acquire
2749 * semaphore (if necessary) and read/set/write the device control reset
2750 * bit in the PHY. Wait the appropriate delay time for the device to
2751 * reset and release the semaphore (if necessary).
2752 **/
2753 s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
2754 {
2755 struct e1000_phy_info *phy = &hw->phy;
2756 s32 ret_val;
2757 u32 ctrl;
2758
2759 DEBUGFUNC("e1000_phy_hw_reset_generic");
2760
2761 if (phy->ops.check_reset_block) {
2762 ret_val = phy->ops.check_reset_block(hw);
2763 if (ret_val)
2764 return E1000_SUCCESS;
2765 }
2766
2767 ret_val = phy->ops.acquire(hw);
2768 if (ret_val)
2769 return ret_val;
2770
2771 ctrl = E1000_READ_REG(hw, E1000_CTRL);
2772 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2773 E1000_WRITE_FLUSH(hw);
2774
2775 usec_delay(phy->reset_delay_us);
2776
2777 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2778 E1000_WRITE_FLUSH(hw);
2779
2780 usec_delay(150);
2781
2782 phy->ops.release(hw);
2783
2784 return phy->ops.get_cfg_done(hw);
2785 }
2786
2787 /**
2788 * e1000_get_cfg_done_generic - Generic configuration done
2789 * @hw: pointer to the HW structure
2790 *
2791 * Generic function to wait 10 milli-seconds for configuration to complete
2792 * and return success.
2793 **/
2794 s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
2795 {
2796 DEBUGFUNC("e1000_get_cfg_done_generic");
2797
2798 msec_delay_irq(10);
2799
2800 return E1000_SUCCESS;
2801 }
2802
2803 /**
2804 * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
2805 * @hw: pointer to the HW structure
2806 *
2807 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2808 **/
2809 s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
2810 {
2811 DEBUGOUT("Running IGP 3 PHY init script\n");
2812
2813 /* PHY init IGP 3 */
2814 /* Enable rise/fall, 10-mode work in class-A */
2815 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2816 /* Remove all caps from Replica path filter */
2817 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2818 /* Bias trimming for ADC, AFE and Driver (Default) */
2819 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2820 /* Increase Hybrid poly bias */
2821 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2822 /* Add 4% to Tx amplitude in Gig mode */
2823 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2824 /* Disable trimming (TTT) */
2825 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2826 /* Poly DC correction to 94.6% + 2% for all channels */
2827 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2828 /* ABS DC correction to 95.9% */
2829 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2830 /* BG temp curve trim */
2831 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2832 /* Increasing ADC OPAMP stage 1 currents to max */
2833 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2834 /* Force 1000 ( required for enabling PHY regs configuration) */
2835 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2836 /* Set upd_freq to 6 */
2837 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2838 /* Disable NPDFE */
2839 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2840 /* Disable adaptive fixed FFE (Default) */
2841 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2842 /* Enable FFE hysteresis */
2843 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2844 /* Fixed FFE for short cable lengths */
2845 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2846 /* Fixed FFE for medium cable lengths */
2847 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2848 /* Fixed FFE for long cable lengths */
2849 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2850 /* Enable Adaptive Clip Threshold */
2851 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2852 /* AHT reset limit to 1 */
2853 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2854 /* Set AHT master delay to 127 msec */
2855 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2856 /* Set scan bits for AHT */
2857 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2858 /* Set AHT Preset bits */
2859 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2860 /* Change integ_factor of channel A to 3 */
2861 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2862 /* Change prop_factor of channels BCD to 8 */
2863 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2864 /* Change cg_icount + enable integbp for channels BCD */
2865 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2866 /* Change cg_icount + enable integbp + change prop_factor_master
2867 * to 8 for channel A
2868 */
2869 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2870 /* Disable AHT in Slave mode on channel A */
2871 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2872 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2873 * Enable SPD+B2B
2874 */
2875 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2876 /* Enable restart AN on an1000_dis change */
2877 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2878 /* Enable wh_fifo read clock in 10/100 modes */
2879 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2880 /* Restart AN, Speed selection is 1000 */
2881 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2882
2883 return E1000_SUCCESS;
2884 }
2885
2886 /**
2887 * e1000_get_phy_type_from_id - Get PHY type from id
2888 * @phy_id: phy_id read from the phy
2889 *
2890 * Returns the phy type from the id.
2891 **/
2892 enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
2893 {
2894 enum e1000_phy_type phy_type = e1000_phy_unknown;
2895
2896 switch (phy_id) {
2897 case M88E1000_I_PHY_ID:
2898 case M88E1000_E_PHY_ID:
2899 case M88E1111_I_PHY_ID:
2900 case M88E1011_I_PHY_ID:
2901 case M88E1543_E_PHY_ID:
2902 case I347AT4_E_PHY_ID:
2903 case M88E1112_E_PHY_ID:
2904 case M88E1340M_E_PHY_ID:
2905 phy_type = e1000_phy_m88;
2906 break;
2907 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2908 phy_type = e1000_phy_igp_2;
2909 break;
2910 case GG82563_E_PHY_ID:
2911 phy_type = e1000_phy_gg82563;
2912 break;
2913 case IGP03E1000_E_PHY_ID:
2914 phy_type = e1000_phy_igp_3;
2915 break;
2916 case IFE_E_PHY_ID:
2917 case IFE_PLUS_E_PHY_ID:
2918 case IFE_C_E_PHY_ID:
2919 phy_type = e1000_phy_ife;
2920 break;
2921 case I82580_I_PHY_ID:
2922 phy_type = e1000_phy_82580;
2923 break;
2924 case I210_I_PHY_ID:
2925 phy_type = e1000_phy_i210;
2926 break;
2927 default:
2928 phy_type = e1000_phy_unknown;
2929 break;
2930 }
2931 return phy_type;
2932 }
2933
2934 /**
2935 * e1000_determine_phy_address - Determines PHY address.
2936 * @hw: pointer to the HW structure
2937 *
2938 * This uses a trial and error method to loop through possible PHY
2939 * addresses. It tests each by reading the PHY ID registers and
2940 * checking for a match.
2941 **/
2942 s32 e1000_determine_phy_address(struct e1000_hw *hw)
2943 {
2944 u32 phy_addr = 0;
2945 u32 i;
2946 enum e1000_phy_type phy_type = e1000_phy_unknown;
2947
2948 hw->phy.id = phy_type;
2949
2950 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2951 hw->phy.addr = phy_addr;
2952 i = 0;
2953
2954 do {
2955 e1000_get_phy_id(hw);
2956 phy_type = e1000_get_phy_type_from_id(hw->phy.id);
2957
2958 /* If phy_type is valid, break - we found our
2959 * PHY address
2960 */
2961 if (phy_type != e1000_phy_unknown)
2962 return E1000_SUCCESS;
2963
2964 msec_delay(1);
2965 i++;
2966 } while (i < 10);
2967 }
2968
2969 return -E1000_ERR_PHY_TYPE;
2970 }
2971
2972 /**
2973 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2974 * @hw: pointer to the HW structure
2975 *
2976 * In the case of a PHY power down to save power, or to turn off link during a
2977 * driver unload, or wake on lan is not enabled, restore the link to previous
2978 * settings.
2979 **/
2980 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2981 {
2982 u16 mii_reg = 0;
2983 u16 power_reg = 0;
2984
2985 /* The PHY will retain its settings across a power down/up cycle */
2986 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2987 mii_reg &= ~MII_CR_POWER_DOWN;
2988 if (hw->phy.type == e1000_phy_i210) {
2989 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2990 power_reg &= ~GS40G_CS_POWER_DOWN;
2991 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2992 }
2993 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2994 }
2995
2996 /**
2997 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2998 * @hw: pointer to the HW structure
2999 *
3000 * In the case of a PHY power down to save power, or to turn off link during a
3001 * driver unload, or wake on lan is not enabled, restore the link to previous
3002 * settings.
3003 **/
3004 void e1000_power_down_phy_copper(struct e1000_hw *hw)
3005 {
3006 u16 mii_reg = 0;
3007 u16 power_reg = 0;
3008
3009 /* The PHY will retain its settings across a power down/up cycle */
3010 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
3011 mii_reg |= MII_CR_POWER_DOWN;
3012 /* i210 Phy requires an additional bit for power up/down */
3013 if (hw->phy.type == e1000_phy_i210) {
3014 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
3015 power_reg |= GS40G_CS_POWER_DOWN;
3016 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
3017 }
3018 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
3019 msec_delay(1);
3020 }
3021
3022 /**
3023 * e1000_check_polarity_82577 - Checks the polarity.
3024 * @hw: pointer to the HW structure
3025 *
3026 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3027 *
3028 * Polarity is determined based on the PHY specific status register.
3029 **/
3030 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3031 {
3032 struct e1000_phy_info *phy = &hw->phy;
3033 s32 ret_val;
3034 u16 data;
3035
3036 DEBUGFUNC("e1000_check_polarity_82577");
3037
3038 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3039
3040 if (!ret_val)
3041 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3042 ? e1000_rev_polarity_reversed
3043 : e1000_rev_polarity_normal);
3044
3045 return ret_val;
3046 }
3047
3048 /**
3049 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3050 * @hw: pointer to the HW structure
3051 *
3052 * Calls the PHY setup function to force speed and duplex.
3053 **/
3054 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3055 {
3056 struct e1000_phy_info *phy = &hw->phy;
3057 s32 ret_val;
3058 u16 phy_data;
3059 bool link;
3060
3061 DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
3062
3063 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
3064 if (ret_val)
3065 return ret_val;
3066
3067 e1000_phy_force_speed_duplex_setup(hw, &phy_data);
3068
3069 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
3070 if (ret_val)
3071 return ret_val;
3072
3073 usec_delay(1);
3074
3075 if (phy->autoneg_wait_to_complete) {
3076 DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
3077
3078 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3079 100000, &link);
3080 if (ret_val)
3081 return ret_val;
3082
3083 if (!link)
3084 DEBUGOUT("Link taking longer than expected.\n");
3085
3086 /* Try once more */
3087 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3088 100000, &link);
3089 }
3090
3091 return ret_val;
3092 }
3093
3094 /**
3095 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3096 * @hw: pointer to the HW structure
3097 *
3098 * Read PHY status to determine if link is up. If link is up, then
3099 * set/determine 10base-T extended distance and polarity correction. Read
3100 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3101 * determine on the cable length, local and remote receiver.
3102 **/
3103 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3104 {
3105 struct e1000_phy_info *phy = &hw->phy;
3106 s32 ret_val;
3107 u16 data;
3108 bool link;
3109
3110 DEBUGFUNC("e1000_get_phy_info_82577");
3111
3112 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
3113 if (ret_val)
3114 return ret_val;
3115
3116 if (!link) {
3117 DEBUGOUT("Phy info is only valid if link is up\n");
3118 return -E1000_ERR_CONFIG;
3119 }
3120
3121 phy->polarity_correction = true;
3122
3123 ret_val = e1000_check_polarity_82577(hw);
3124 if (ret_val)
3125 return ret_val;
3126
3127 ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
3128 if (ret_val)
3129 return ret_val;
3130
3131 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3132
3133 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3134 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3135 ret_val = hw->phy.ops.get_cable_length(hw);
3136 if (ret_val)
3137 return ret_val;
3138
3139 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
3140 if (ret_val)
3141 return ret_val;
3142
3143 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3144 ? e1000_1000t_rx_status_ok
3145 : e1000_1000t_rx_status_not_ok;
3146
3147 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3148 ? e1000_1000t_rx_status_ok
3149 : e1000_1000t_rx_status_not_ok;
3150 } else {
3151 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3152 phy->local_rx = e1000_1000t_rx_status_undefined;
3153 phy->remote_rx = e1000_1000t_rx_status_undefined;
3154 }
3155
3156 return E1000_SUCCESS;
3157 }
3158
3159 /**
3160 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3161 * @hw: pointer to the HW structure
3162 *
3163 * Reads the diagnostic status register and verifies result is valid before
3164 * placing it in the phy_cable_length field.
3165 **/
3166 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3167 {
3168 struct e1000_phy_info *phy = &hw->phy;
3169 s32 ret_val;
3170 u16 phy_data, length;
3171
3172 DEBUGFUNC("e1000_get_cable_length_82577");
3173
3174 ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3175 if (ret_val)
3176 return ret_val;
3177
3178 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3179 I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3180
3181 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3182 return -E1000_ERR_PHY;
3183
3184 phy->cable_length = length;
3185
3186 return E1000_SUCCESS;
3187 }
3188
3189 /**
3190 * e1000_write_phy_reg_gs40g - Write GS40G PHY register
3191 * @hw: pointer to the HW structure
3192 * @offset: register offset to write to
3193 * @data: data to write at register offset
3194 *
3195 * Acquires semaphore, if necessary, then writes the data to PHY register
3196 * at the offset. Release any acquired semaphores before exiting.
3197 **/
3198 s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
3199 {
3200 s32 ret_val;
3201 u16 page = offset >> GS40G_PAGE_SHIFT;
3202
3203 DEBUGFUNC("e1000_write_phy_reg_gs40g");
3204
3205 offset = offset & GS40G_OFFSET_MASK;
3206 ret_val = hw->phy.ops.acquire(hw);
3207 if (ret_val)
3208 return ret_val;
3209
3210 ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
3211 if (ret_val)
3212 goto release;
3213 ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
3214
3215 release:
3216 hw->phy.ops.release(hw);
3217 return ret_val;
3218 }
3219
3220 /**
3221 * e1000_read_phy_reg_gs40g - Read GS40G PHY register
3222 * @hw: pointer to the HW structure
3223 * @offset: lower half is register offset to read to
3224 * upper half is page to use.
3225 * @data: data to read at register offset
3226 *
3227 * Acquires semaphore, if necessary, then reads the data in the PHY register
3228 * at the offset. Release any acquired semaphores before exiting.
3229 **/
3230 s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
3231 {
3232 s32 ret_val;
3233 u16 page = offset >> GS40G_PAGE_SHIFT;
3234
3235 DEBUGFUNC("e1000_read_phy_reg_gs40g");
3236
3237 offset = offset & GS40G_OFFSET_MASK;
3238 ret_val = hw->phy.ops.acquire(hw);
3239 if (ret_val)
3240 return ret_val;
3241
3242 ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
3243 if (ret_val)
3244 goto release;
3245 ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
3246
3247 release:
3248 hw->phy.ops.release(hw);
3249 return ret_val;
3250 }
3251
3252 /**
3253 * e1000_read_phy_reg_mphy - Read mPHY control register
3254 * @hw: pointer to the HW structure
3255 * @address: address to be read
3256 * @data: pointer to the read data
3257 *
3258 * Reads the mPHY control register in the PHY at offset and stores the
3259 * information read to data.
3260 **/
3261 s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
3262 {
3263 u32 mphy_ctrl = 0;
3264 bool locked = false;
3265 bool ready = false;
3266
3267 DEBUGFUNC("e1000_read_phy_reg_mphy");
3268
3269 /* Check if mPHY is ready to read/write operations */
3270 ready = e1000_is_mphy_ready(hw);
3271 if (!ready)
3272 return -E1000_ERR_PHY;
3273
3274 /* Check if mPHY access is disabled and enable it if so */
3275 mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
3276 if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
3277 locked = true;
3278 ready = e1000_is_mphy_ready(hw);
3279 if (!ready)
3280 return -E1000_ERR_PHY;
3281 mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
3282 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
3283 }
3284
3285 /* Set the address that we want to read */
3286 ready = e1000_is_mphy_ready(hw);
3287 if (!ready)
3288 return -E1000_ERR_PHY;
3289
3290 /* We mask address, because we want to use only current lane */
3291 mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
3292 ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
3293 (address & E1000_MPHY_ADDRESS_MASK);
3294 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
3295
3296 /* Read data from the address */
3297 ready = e1000_is_mphy_ready(hw);
3298 if (!ready)
3299 return -E1000_ERR_PHY;
3300 *data = E1000_READ_REG(hw, E1000_MPHY_DATA);
3301
3302 /* Disable access to mPHY if it was originally disabled */
3303 if (locked) {
3304 ready = e1000_is_mphy_ready(hw);
3305 if (!ready)
3306 return -E1000_ERR_PHY;
3307 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
3308 E1000_MPHY_DIS_ACCESS);
3309 }
3310
3311 return E1000_SUCCESS;
3312 }
3313
3314 /**
3315 * e1000_write_phy_reg_mphy - Write mPHY control register
3316 * @hw: pointer to the HW structure
3317 * @address: address to write to
3318 * @data: data to write to register at offset
3319 * @line_override: used when we want to use different line than default one
3320 *
3321 * Writes data to mPHY control register.
3322 **/
3323 s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
3324 bool line_override)
3325 {
3326 u32 mphy_ctrl = 0;
3327 bool locked = false;
3328 bool ready = false;
3329
3330 DEBUGFUNC("e1000_write_phy_reg_mphy");
3331
3332 /* Check if mPHY is ready to read/write operations */
3333 ready = e1000_is_mphy_ready(hw);
3334 if (!ready)
3335 return -E1000_ERR_PHY;
3336
3337 /* Check if mPHY access is disabled and enable it if so */
3338 mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
3339 if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
3340 locked = true;
3341 ready = e1000_is_mphy_ready(hw);
3342 if (!ready)
3343 return -E1000_ERR_PHY;
3344 mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
3345 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
3346 }
3347
3348 /* Set the address that we want to read */
3349 ready = e1000_is_mphy_ready(hw);
3350 if (!ready)
3351 return -E1000_ERR_PHY;
3352
3353 /* We mask address, because we want to use only current lane */
3354 if (line_override)
3355 mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
3356 else
3357 mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
3358 mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
3359 (address & E1000_MPHY_ADDRESS_MASK);
3360 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
3361
3362 /* Read data from the address */
3363 ready = e1000_is_mphy_ready(hw);
3364 if (!ready)
3365 return -E1000_ERR_PHY;
3366 E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
3367
3368 /* Disable access to mPHY if it was originally disabled */
3369 if (locked) {
3370 ready = e1000_is_mphy_ready(hw);
3371 if (!ready)
3372 return -E1000_ERR_PHY;
3373 E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
3374 E1000_MPHY_DIS_ACCESS);
3375 }
3376
3377 return E1000_SUCCESS;
3378 }
3379
3380 /**
3381 * e1000_is_mphy_ready - Check if mPHY control register is not busy
3382 * @hw: pointer to the HW structure
3383 *
3384 * Returns mPHY control register status.
3385 **/
3386 bool e1000_is_mphy_ready(struct e1000_hw *hw)
3387 {
3388 u16 retry_count = 0;
3389 u32 mphy_ctrl = 0;
3390 bool ready = false;
3391
3392 while (retry_count < 2) {
3393 mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
3394 if (mphy_ctrl & E1000_MPHY_BUSY) {
3395 usec_delay(20);
3396 retry_count++;
3397 continue;
3398 }
3399 ready = true;
3400 break;
3401 }
3402
3403 if (!ready)
3404 DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
3405
3406 return ready;
3407 }