]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/lib/librte_eal/linuxapp/kni/ethtool/ixgbe/ixgbe_phy.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / lib / librte_eal / linuxapp / kni / ethtool / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "LICENSE.GPL".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include "ixgbe_api.h"
29 #include "ixgbe_common.h"
30 #include "ixgbe_phy.h"
31
32 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
33 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
34 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
35 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
36 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
38 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
39 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
40 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
41 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
42 static bool ixgbe_get_i2c_data(u32 *i2cctl);
43
44 /**
45 * ixgbe_init_phy_ops_generic - Inits PHY function ptrs
46 * @hw: pointer to the hardware structure
47 *
48 * Initialize the function pointers.
49 **/
50 s32 ixgbe_init_phy_ops_generic(struct ixgbe_hw *hw)
51 {
52 struct ixgbe_phy_info *phy = &hw->phy;
53
54 /* PHY */
55 phy->ops.identify = &ixgbe_identify_phy_generic;
56 phy->ops.reset = &ixgbe_reset_phy_generic;
57 phy->ops.read_reg = &ixgbe_read_phy_reg_generic;
58 phy->ops.write_reg = &ixgbe_write_phy_reg_generic;
59 phy->ops.setup_link = &ixgbe_setup_phy_link_generic;
60 phy->ops.setup_link_speed = &ixgbe_setup_phy_link_speed_generic;
61 phy->ops.check_link = NULL;
62 phy->ops.get_firmware_version = ixgbe_get_phy_firmware_version_generic;
63 phy->ops.read_i2c_byte = &ixgbe_read_i2c_byte_generic;
64 phy->ops.write_i2c_byte = &ixgbe_write_i2c_byte_generic;
65 phy->ops.read_i2c_eeprom = &ixgbe_read_i2c_eeprom_generic;
66 phy->ops.write_i2c_eeprom = &ixgbe_write_i2c_eeprom_generic;
67 phy->ops.i2c_bus_clear = &ixgbe_i2c_bus_clear;
68 phy->ops.identify_sfp = &ixgbe_identify_module_generic;
69 phy->sfp_type = ixgbe_sfp_type_unknown;
70 phy->ops.check_overtemp = &ixgbe_tn_check_overtemp;
71 return 0;
72 }
73
74 /**
75 * ixgbe_identify_phy_generic - Get physical layer module
76 * @hw: pointer to hardware structure
77 *
78 * Determines the physical layer module found on the current adapter.
79 **/
80 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
81 {
82 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
83 u32 phy_addr;
84 u16 ext_ability = 0;
85
86 if (hw->phy.type == ixgbe_phy_unknown) {
87 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
88 if (ixgbe_validate_phy_addr(hw, phy_addr)) {
89 hw->phy.addr = phy_addr;
90 ixgbe_get_phy_id(hw);
91 hw->phy.type =
92 ixgbe_get_phy_type_from_id(hw->phy.id);
93
94 if (hw->phy.type == ixgbe_phy_unknown) {
95 hw->phy.ops.read_reg(hw,
96 IXGBE_MDIO_PHY_EXT_ABILITY,
97 IXGBE_MDIO_PMA_PMD_DEV_TYPE,
98 &ext_ability);
99 if (ext_ability &
100 (IXGBE_MDIO_PHY_10GBASET_ABILITY |
101 IXGBE_MDIO_PHY_1000BASET_ABILITY))
102 hw->phy.type =
103 ixgbe_phy_cu_unknown;
104 else
105 hw->phy.type =
106 ixgbe_phy_generic;
107 }
108
109 status = 0;
110 break;
111 }
112 }
113 /* clear value if nothing found */
114 if (status != 0)
115 hw->phy.addr = 0;
116 } else {
117 status = 0;
118 }
119
120 return status;
121 }
122
123 /**
124 * ixgbe_validate_phy_addr - Determines phy address is valid
125 * @hw: pointer to hardware structure
126 *
127 **/
128 bool ixgbe_validate_phy_addr(struct ixgbe_hw *hw, u32 phy_addr)
129 {
130 u16 phy_id = 0;
131 bool valid = false;
132
133 hw->phy.addr = phy_addr;
134 hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH,
135 IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_id);
136
137 if (phy_id != 0xFFFF && phy_id != 0x0)
138 valid = true;
139
140 return valid;
141 }
142
143 /**
144 * ixgbe_get_phy_id - Get the phy type
145 * @hw: pointer to hardware structure
146 *
147 **/
148 s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
149 {
150 u32 status;
151 u16 phy_id_high = 0;
152 u16 phy_id_low = 0;
153
154 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_HIGH,
155 IXGBE_MDIO_PMA_PMD_DEV_TYPE,
156 &phy_id_high);
157
158 if (status == 0) {
159 hw->phy.id = (u32)(phy_id_high << 16);
160 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_ID_LOW,
161 IXGBE_MDIO_PMA_PMD_DEV_TYPE,
162 &phy_id_low);
163 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
164 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
165 }
166 return status;
167 }
168
169 /**
170 * ixgbe_get_phy_type_from_id - Get the phy type
171 * @hw: pointer to hardware structure
172 *
173 **/
174 enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
175 {
176 enum ixgbe_phy_type phy_type;
177
178 switch (phy_id) {
179 case TN1010_PHY_ID:
180 phy_type = ixgbe_phy_tn;
181 break;
182 case X540_PHY_ID:
183 phy_type = ixgbe_phy_aq;
184 break;
185 case QT2022_PHY_ID:
186 phy_type = ixgbe_phy_qt;
187 break;
188 case ATH_PHY_ID:
189 phy_type = ixgbe_phy_nl;
190 break;
191 default:
192 phy_type = ixgbe_phy_unknown;
193 break;
194 }
195
196 hw_dbg(hw, "phy type found is %d\n", phy_type);
197 return phy_type;
198 }
199
200 /**
201 * ixgbe_reset_phy_generic - Performs a PHY reset
202 * @hw: pointer to hardware structure
203 **/
204 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
205 {
206 u32 i;
207 u16 ctrl = 0;
208 s32 status = 0;
209
210 if (hw->phy.type == ixgbe_phy_unknown)
211 status = ixgbe_identify_phy_generic(hw);
212
213 if (status != 0 || hw->phy.type == ixgbe_phy_none)
214 goto out;
215
216 /* Don't reset PHY if it's shut down due to overtemp. */
217 if (!hw->phy.reset_if_overtemp &&
218 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
219 goto out;
220
221 /*
222 * Perform soft PHY reset to the PHY_XS.
223 * This will cause a soft reset to the PHY
224 */
225 hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
226 IXGBE_MDIO_PHY_XS_DEV_TYPE,
227 IXGBE_MDIO_PHY_XS_RESET);
228
229 /*
230 * Poll for reset bit to self-clear indicating reset is complete.
231 * Some PHYs could take up to 3 seconds to complete and need about
232 * 1.7 usec delay after the reset is complete.
233 */
234 for (i = 0; i < 30; i++) {
235 msleep(100);
236 hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
237 IXGBE_MDIO_PHY_XS_DEV_TYPE, &ctrl);
238 if (!(ctrl & IXGBE_MDIO_PHY_XS_RESET)) {
239 udelay(2);
240 break;
241 }
242 }
243
244 if (ctrl & IXGBE_MDIO_PHY_XS_RESET) {
245 status = IXGBE_ERR_RESET_FAILED;
246 hw_dbg(hw, "PHY reset polling failed to complete.\n");
247 }
248
249 out:
250 return status;
251 }
252
253 /**
254 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
255 * @hw: pointer to hardware structure
256 * @reg_addr: 32 bit address of PHY register to read
257 * @phy_data: Pointer to read data from PHY register
258 **/
259 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
260 u32 device_type, u16 *phy_data)
261 {
262 u32 command;
263 u32 i;
264 u32 data;
265 s32 status = 0;
266 u16 gssr;
267
268 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
269 gssr = IXGBE_GSSR_PHY1_SM;
270 else
271 gssr = IXGBE_GSSR_PHY0_SM;
272
273 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
274 status = IXGBE_ERR_SWFW_SYNC;
275
276 if (status == 0) {
277 /* Setup and write the address cycle command */
278 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
279 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
280 (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
281 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
282
283 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
284
285 /*
286 * Check every 10 usec to see if the address cycle completed.
287 * The MDI Command bit will clear when the operation is
288 * complete
289 */
290 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
291 udelay(10);
292
293 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
294
295 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
296 break;
297 }
298
299 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
300 hw_dbg(hw, "PHY address command did not complete.\n");
301 status = IXGBE_ERR_PHY;
302 }
303
304 if (status == 0) {
305 /*
306 * Address cycle complete, setup and write the read
307 * command
308 */
309 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
310 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
311 (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
312 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
313
314 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
315
316 /*
317 * Check every 10 usec to see if the address cycle
318 * completed. The MDI Command bit will clear when the
319 * operation is complete
320 */
321 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
322 udelay(10);
323
324 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
325
326 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
327 break;
328 }
329
330 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
331 hw_dbg(hw, "PHY read command didn't complete\n");
332 status = IXGBE_ERR_PHY;
333 } else {
334 /*
335 * Read operation is complete. Get the data
336 * from MSRWD
337 */
338 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
339 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
340 *phy_data = (u16)(data);
341 }
342 }
343
344 hw->mac.ops.release_swfw_sync(hw, gssr);
345 }
346
347 return status;
348 }
349
350 /**
351 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
352 * @hw: pointer to hardware structure
353 * @reg_addr: 32 bit PHY register to write
354 * @device_type: 5 bit device type
355 * @phy_data: Data to write to the PHY register
356 **/
357 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
358 u32 device_type, u16 phy_data)
359 {
360 u32 command;
361 u32 i;
362 s32 status = 0;
363 u16 gssr;
364
365 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
366 gssr = IXGBE_GSSR_PHY1_SM;
367 else
368 gssr = IXGBE_GSSR_PHY0_SM;
369
370 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
371 status = IXGBE_ERR_SWFW_SYNC;
372
373 if (status == 0) {
374 /* Put the data in the MDI single read and write data register*/
375 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
376
377 /* Setup and write the address cycle command */
378 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
379 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
380 (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
381 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
382
383 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
384
385 /*
386 * Check every 10 usec to see if the address cycle completed.
387 * The MDI Command bit will clear when the operation is
388 * complete
389 */
390 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
391 udelay(10);
392
393 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
394
395 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
396 break;
397 }
398
399 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
400 hw_dbg(hw, "PHY address cmd didn't complete\n");
401 status = IXGBE_ERR_PHY;
402 }
403
404 if (status == 0) {
405 /*
406 * Address cycle complete, setup and write the write
407 * command
408 */
409 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
410 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
411 (hw->phy.addr << IXGBE_MSCA_PHY_ADDR_SHIFT) |
412 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
413
414 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
415
416 /*
417 * Check every 10 usec to see if the address cycle
418 * completed. The MDI Command bit will clear when the
419 * operation is complete
420 */
421 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
422 udelay(10);
423
424 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
425
426 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
427 break;
428 }
429
430 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
431 hw_dbg(hw, "PHY address cmd didn't complete\n");
432 status = IXGBE_ERR_PHY;
433 }
434 }
435
436 hw->mac.ops.release_swfw_sync(hw, gssr);
437 }
438
439 return status;
440 }
441
442 /**
443 * ixgbe_setup_phy_link_generic - Set and restart autoneg
444 * @hw: pointer to hardware structure
445 *
446 * Restart autonegotiation and PHY and waits for completion.
447 **/
448 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
449 {
450 s32 status = 0;
451 u32 time_out;
452 u32 max_time_out = 10;
453 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
454 bool autoneg = false;
455 ixgbe_link_speed speed;
456
457 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
458
459 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
460 /* Set or unset auto-negotiation 10G advertisement */
461 hw->phy.ops.read_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
462 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
463 &autoneg_reg);
464
465 autoneg_reg &= ~IXGBE_MII_10GBASE_T_ADVERTISE;
466 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
467 autoneg_reg |= IXGBE_MII_10GBASE_T_ADVERTISE;
468
469 hw->phy.ops.write_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
470 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
471 autoneg_reg);
472 }
473
474 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
475 /* Set or unset auto-negotiation 1G advertisement */
476 hw->phy.ops.read_reg(hw,
477 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
478 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
479 &autoneg_reg);
480
481 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
482 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
483 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
484
485 hw->phy.ops.write_reg(hw,
486 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
487 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
488 autoneg_reg);
489 }
490
491 if (speed & IXGBE_LINK_SPEED_100_FULL) {
492 /* Set or unset auto-negotiation 100M advertisement */
493 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG,
494 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
495 &autoneg_reg);
496
497 autoneg_reg &= ~(IXGBE_MII_100BASE_T_ADVERTISE |
498 IXGBE_MII_100BASE_T_ADVERTISE_HALF);
499 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
500 autoneg_reg |= IXGBE_MII_100BASE_T_ADVERTISE;
501
502 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG,
503 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
504 autoneg_reg);
505 }
506
507 /* Restart PHY autonegotiation and wait for completion */
508 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
509 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
510
511 autoneg_reg |= IXGBE_MII_RESTART;
512
513 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
514 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
515
516 /* Wait for autonegotiation to finish */
517 for (time_out = 0; time_out < max_time_out; time_out++) {
518 udelay(10);
519 /* Restart PHY autonegotiation and wait for completion */
520 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_STATUS,
521 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
522 &autoneg_reg);
523
524 autoneg_reg &= IXGBE_MII_AUTONEG_COMPLETE;
525 if (autoneg_reg == IXGBE_MII_AUTONEG_COMPLETE)
526 break;
527 }
528
529 if (time_out == max_time_out) {
530 status = IXGBE_ERR_LINK_SETUP;
531 hw_dbg(hw, "ixgbe_setup_phy_link_generic: time out");
532 }
533
534 return status;
535 }
536
537 /**
538 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
539 * @hw: pointer to hardware structure
540 * @speed: new link speed
541 * @autoneg: true if autonegotiation enabled
542 **/
543 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
544 ixgbe_link_speed speed,
545 bool autoneg,
546 bool autoneg_wait_to_complete)
547 {
548
549 /*
550 * Clear autoneg_advertised and set new values based on input link
551 * speed.
552 */
553 hw->phy.autoneg_advertised = 0;
554
555 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
556 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
557
558 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
559 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
560
561 if (speed & IXGBE_LINK_SPEED_100_FULL)
562 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
563
564 /* Setup link based on the new speed settings */
565 hw->phy.ops.setup_link(hw);
566
567 return 0;
568 }
569
570 /**
571 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
572 * @hw: pointer to hardware structure
573 * @speed: pointer to link speed
574 * @autoneg: boolean auto-negotiation value
575 *
576 * Determines the link capabilities by reading the AUTOC register.
577 **/
578 s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
579 ixgbe_link_speed *speed,
580 bool *autoneg)
581 {
582 s32 status = IXGBE_ERR_LINK_SETUP;
583 u16 speed_ability;
584
585 *speed = 0;
586 *autoneg = true;
587
588 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_SPEED_ABILITY,
589 IXGBE_MDIO_PMA_PMD_DEV_TYPE,
590 &speed_ability);
591
592 if (status == 0) {
593 if (speed_ability & IXGBE_MDIO_PHY_SPEED_10G)
594 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
595 if (speed_ability & IXGBE_MDIO_PHY_SPEED_1G)
596 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
597 if (speed_ability & IXGBE_MDIO_PHY_SPEED_100M)
598 *speed |= IXGBE_LINK_SPEED_100_FULL;
599 }
600
601 return status;
602 }
603
604 /**
605 * ixgbe_check_phy_link_tnx - Determine link and speed status
606 * @hw: pointer to hardware structure
607 *
608 * Reads the VS1 register to determine if link is up and the current speed for
609 * the PHY.
610 **/
611 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
612 bool *link_up)
613 {
614 s32 status = 0;
615 u32 time_out;
616 u32 max_time_out = 10;
617 u16 phy_link = 0;
618 u16 phy_speed = 0;
619 u16 phy_data = 0;
620
621 /* Initialize speed and link to default case */
622 *link_up = false;
623 *speed = IXGBE_LINK_SPEED_10GB_FULL;
624
625 /*
626 * Check current speed and link status of the PHY register.
627 * This is a vendor specific register and may have to
628 * be changed for other copper PHYs.
629 */
630 for (time_out = 0; time_out < max_time_out; time_out++) {
631 udelay(10);
632 status = hw->phy.ops.read_reg(hw,
633 IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
634 IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
635 &phy_data);
636 phy_link = phy_data & IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
637 phy_speed = phy_data &
638 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
639 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
640 *link_up = true;
641 if (phy_speed ==
642 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
643 *speed = IXGBE_LINK_SPEED_1GB_FULL;
644 break;
645 }
646 }
647
648 return status;
649 }
650
651 /**
652 * ixgbe_setup_phy_link_tnx - Set and restart autoneg
653 * @hw: pointer to hardware structure
654 *
655 * Restart autonegotiation and PHY and waits for completion.
656 **/
657 s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
658 {
659 s32 status = 0;
660 u32 time_out;
661 u32 max_time_out = 10;
662 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
663 bool autoneg = false;
664 ixgbe_link_speed speed;
665
666 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
667
668 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
669 /* Set or unset auto-negotiation 10G advertisement */
670 hw->phy.ops.read_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
671 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
672 &autoneg_reg);
673
674 autoneg_reg &= ~IXGBE_MII_10GBASE_T_ADVERTISE;
675 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
676 autoneg_reg |= IXGBE_MII_10GBASE_T_ADVERTISE;
677
678 hw->phy.ops.write_reg(hw, IXGBE_MII_10GBASE_T_AUTONEG_CTRL_REG,
679 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
680 autoneg_reg);
681 }
682
683 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
684 /* Set or unset auto-negotiation 1G advertisement */
685 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
686 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
687 &autoneg_reg);
688
689 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
690 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
691 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
692
693 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
694 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
695 autoneg_reg);
696 }
697
698 if (speed & IXGBE_LINK_SPEED_100_FULL) {
699 /* Set or unset auto-negotiation 100M advertisement */
700 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG,
701 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
702 &autoneg_reg);
703
704 autoneg_reg &= ~IXGBE_MII_100BASE_T_ADVERTISE;
705 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
706 autoneg_reg |= IXGBE_MII_100BASE_T_ADVERTISE;
707
708 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_ADVERTISE_REG,
709 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
710 autoneg_reg);
711 }
712
713 /* Restart PHY autonegotiation and wait for completion */
714 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
715 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
716
717 autoneg_reg |= IXGBE_MII_RESTART;
718
719 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
720 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
721
722 /* Wait for autonegotiation to finish */
723 for (time_out = 0; time_out < max_time_out; time_out++) {
724 udelay(10);
725 /* Restart PHY autonegotiation and wait for completion */
726 status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_STATUS,
727 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
728 &autoneg_reg);
729
730 autoneg_reg &= IXGBE_MII_AUTONEG_COMPLETE;
731 if (autoneg_reg == IXGBE_MII_AUTONEG_COMPLETE)
732 break;
733 }
734
735 if (time_out == max_time_out) {
736 status = IXGBE_ERR_LINK_SETUP;
737 hw_dbg(hw, "ixgbe_setup_phy_link_tnx: time out");
738 }
739
740 return status;
741 }
742
743 /**
744 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
745 * @hw: pointer to hardware structure
746 * @firmware_version: pointer to the PHY Firmware Version
747 **/
748 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
749 u16 *firmware_version)
750 {
751 s32 status = 0;
752
753 status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
754 IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
755 firmware_version);
756
757 return status;
758 }
759
760 /**
761 * ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
762 * @hw: pointer to hardware structure
763 * @firmware_version: pointer to the PHY Firmware Version
764 **/
765 s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
766 u16 *firmware_version)
767 {
768 s32 status = 0;
769
770 status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
771 IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
772 firmware_version);
773
774 return status;
775 }
776
777 /**
778 * ixgbe_reset_phy_nl - Performs a PHY reset
779 * @hw: pointer to hardware structure
780 **/
781 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
782 {
783 u16 phy_offset, control, eword, edata, block_crc;
784 bool end_data = false;
785 u16 list_offset, data_offset;
786 u16 phy_data = 0;
787 s32 ret_val = 0;
788 u32 i;
789
790 hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
791 IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data);
792
793 /* reset the PHY and poll for completion */
794 hw->phy.ops.write_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
795 IXGBE_MDIO_PHY_XS_DEV_TYPE,
796 (phy_data | IXGBE_MDIO_PHY_XS_RESET));
797
798 for (i = 0; i < 100; i++) {
799 hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_XS_CONTROL,
800 IXGBE_MDIO_PHY_XS_DEV_TYPE, &phy_data);
801 if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) == 0)
802 break;
803 msleep(10);
804 }
805
806 if ((phy_data & IXGBE_MDIO_PHY_XS_RESET) != 0) {
807 hw_dbg(hw, "PHY reset did not complete.\n");
808 ret_val = IXGBE_ERR_PHY;
809 goto out;
810 }
811
812 /* Get init offsets */
813 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
814 &data_offset);
815 if (ret_val != 0)
816 goto out;
817
818 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
819 data_offset++;
820 while (!end_data) {
821 /*
822 * Read control word from PHY init contents offset
823 */
824 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
825 control = (eword & IXGBE_CONTROL_MASK_NL) >>
826 IXGBE_CONTROL_SHIFT_NL;
827 edata = eword & IXGBE_DATA_MASK_NL;
828 switch (control) {
829 case IXGBE_DELAY_NL:
830 data_offset++;
831 hw_dbg(hw, "DELAY: %d MS\n", edata);
832 msleep(edata);
833 break;
834 case IXGBE_DATA_NL:
835 hw_dbg(hw, "DATA:\n");
836 data_offset++;
837 hw->eeprom.ops.read(hw, data_offset++,
838 &phy_offset);
839 for (i = 0; i < edata; i++) {
840 hw->eeprom.ops.read(hw, data_offset, &eword);
841 hw->phy.ops.write_reg(hw, phy_offset,
842 IXGBE_TWINAX_DEV, eword);
843 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
844 phy_offset);
845 data_offset++;
846 phy_offset++;
847 }
848 break;
849 case IXGBE_CONTROL_NL:
850 data_offset++;
851 hw_dbg(hw, "CONTROL:\n");
852 if (edata == IXGBE_CONTROL_EOL_NL) {
853 hw_dbg(hw, "EOL\n");
854 end_data = true;
855 } else if (edata == IXGBE_CONTROL_SOL_NL) {
856 hw_dbg(hw, "SOL\n");
857 } else {
858 hw_dbg(hw, "Bad control value\n");
859 ret_val = IXGBE_ERR_PHY;
860 goto out;
861 }
862 break;
863 default:
864 hw_dbg(hw, "Bad control type\n");
865 ret_val = IXGBE_ERR_PHY;
866 goto out;
867 }
868 }
869
870 out:
871 return ret_val;
872 }
873
874 /**
875 * ixgbe_identify_module_generic - Identifies module type
876 * @hw: pointer to hardware structure
877 *
878 * Determines HW type and calls appropriate function.
879 **/
880 s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
881 {
882 s32 status = IXGBE_ERR_SFP_NOT_PRESENT;
883
884 switch (hw->mac.ops.get_media_type(hw)) {
885 case ixgbe_media_type_fiber:
886 status = ixgbe_identify_sfp_module_generic(hw);
887 break;
888
889 case ixgbe_media_type_fiber_qsfp:
890 status = ixgbe_identify_qsfp_module_generic(hw);
891 break;
892
893 default:
894 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
895 status = IXGBE_ERR_SFP_NOT_PRESENT;
896 break;
897 }
898
899 return status;
900 }
901
902 /**
903 * ixgbe_identify_sfp_module_generic - Identifies SFP modules
904 * @hw: pointer to hardware structure
905 *
906 * Searches for and identifies the SFP module and assigns appropriate PHY type.
907 **/
908 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
909 {
910 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
911 u32 vendor_oui = 0;
912 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
913 u8 identifier = 0;
914 u8 comp_codes_1g = 0;
915 u8 comp_codes_10g = 0;
916 u8 oui_bytes[3] = {0, 0, 0};
917 u8 cable_tech = 0;
918 u8 cable_spec = 0;
919 u16 enforce_sfp = 0;
920
921 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
922 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
923 status = IXGBE_ERR_SFP_NOT_PRESENT;
924 goto out;
925 }
926
927 status = hw->phy.ops.read_i2c_eeprom(hw,
928 IXGBE_SFF_IDENTIFIER,
929 &identifier);
930
931 if (status == IXGBE_ERR_SWFW_SYNC ||
932 status == IXGBE_ERR_I2C ||
933 status == IXGBE_ERR_SFP_NOT_PRESENT)
934 goto err_read_i2c_eeprom;
935
936 /* LAN ID is needed for sfp_type determination */
937 hw->mac.ops.set_lan_id(hw);
938
939 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
940 hw->phy.type = ixgbe_phy_sfp_unsupported;
941 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
942 } else {
943 status = hw->phy.ops.read_i2c_eeprom(hw,
944 IXGBE_SFF_1GBE_COMP_CODES,
945 &comp_codes_1g);
946
947 if (status == IXGBE_ERR_SWFW_SYNC ||
948 status == IXGBE_ERR_I2C ||
949 status == IXGBE_ERR_SFP_NOT_PRESENT)
950 goto err_read_i2c_eeprom;
951
952 status = hw->phy.ops.read_i2c_eeprom(hw,
953 IXGBE_SFF_10GBE_COMP_CODES,
954 &comp_codes_10g);
955
956 if (status == IXGBE_ERR_SWFW_SYNC ||
957 status == IXGBE_ERR_I2C ||
958 status == IXGBE_ERR_SFP_NOT_PRESENT)
959 goto err_read_i2c_eeprom;
960 status = hw->phy.ops.read_i2c_eeprom(hw,
961 IXGBE_SFF_CABLE_TECHNOLOGY,
962 &cable_tech);
963
964 if (status == IXGBE_ERR_SWFW_SYNC ||
965 status == IXGBE_ERR_I2C ||
966 status == IXGBE_ERR_SFP_NOT_PRESENT)
967 goto err_read_i2c_eeprom;
968
969 /* ID Module
970 * =========
971 * 0 SFP_DA_CU
972 * 1 SFP_SR
973 * 2 SFP_LR
974 * 3 SFP_DA_CORE0 - 82599-specific
975 * 4 SFP_DA_CORE1 - 82599-specific
976 * 5 SFP_SR/LR_CORE0 - 82599-specific
977 * 6 SFP_SR/LR_CORE1 - 82599-specific
978 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
979 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
980 * 9 SFP_1g_cu_CORE0 - 82599-specific
981 * 10 SFP_1g_cu_CORE1 - 82599-specific
982 * 11 SFP_1g_sx_CORE0 - 82599-specific
983 * 12 SFP_1g_sx_CORE1 - 82599-specific
984 */
985 if (hw->mac.type == ixgbe_mac_82598EB) {
986 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
987 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
988 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
989 hw->phy.sfp_type = ixgbe_sfp_type_sr;
990 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
991 hw->phy.sfp_type = ixgbe_sfp_type_lr;
992 else
993 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
994 } else if (hw->mac.type == ixgbe_mac_82599EB) {
995 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
996 if (hw->bus.lan_id == 0)
997 hw->phy.sfp_type =
998 ixgbe_sfp_type_da_cu_core0;
999 else
1000 hw->phy.sfp_type =
1001 ixgbe_sfp_type_da_cu_core1;
1002 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1003 hw->phy.ops.read_i2c_eeprom(
1004 hw, IXGBE_SFF_CABLE_SPEC_COMP,
1005 &cable_spec);
1006 if (cable_spec &
1007 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1008 if (hw->bus.lan_id == 0)
1009 hw->phy.sfp_type =
1010 ixgbe_sfp_type_da_act_lmt_core0;
1011 else
1012 hw->phy.sfp_type =
1013 ixgbe_sfp_type_da_act_lmt_core1;
1014 } else {
1015 hw->phy.sfp_type =
1016 ixgbe_sfp_type_unknown;
1017 }
1018 } else if (comp_codes_10g &
1019 (IXGBE_SFF_10GBASESR_CAPABLE |
1020 IXGBE_SFF_10GBASELR_CAPABLE)) {
1021 if (hw->bus.lan_id == 0)
1022 hw->phy.sfp_type =
1023 ixgbe_sfp_type_srlr_core0;
1024 else
1025 hw->phy.sfp_type =
1026 ixgbe_sfp_type_srlr_core1;
1027 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1028 if (hw->bus.lan_id == 0)
1029 hw->phy.sfp_type =
1030 ixgbe_sfp_type_1g_cu_core0;
1031 else
1032 hw->phy.sfp_type =
1033 ixgbe_sfp_type_1g_cu_core1;
1034 } else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1035 if (hw->bus.lan_id == 0)
1036 hw->phy.sfp_type =
1037 ixgbe_sfp_type_1g_sx_core0;
1038 else
1039 hw->phy.sfp_type =
1040 ixgbe_sfp_type_1g_sx_core1;
1041 } else {
1042 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1043 }
1044 }
1045
1046 if (hw->phy.sfp_type != stored_sfp_type)
1047 hw->phy.sfp_setup_needed = true;
1048
1049 /* Determine if the SFP+ PHY is dual speed or not. */
1050 hw->phy.multispeed_fiber = false;
1051 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1052 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1053 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1054 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1055 hw->phy.multispeed_fiber = true;
1056
1057 /* Determine PHY vendor */
1058 if (hw->phy.type != ixgbe_phy_nl) {
1059 hw->phy.id = identifier;
1060 status = hw->phy.ops.read_i2c_eeprom(hw,
1061 IXGBE_SFF_VENDOR_OUI_BYTE0,
1062 &oui_bytes[0]);
1063
1064 if (status == IXGBE_ERR_SWFW_SYNC ||
1065 status == IXGBE_ERR_I2C ||
1066 status == IXGBE_ERR_SFP_NOT_PRESENT)
1067 goto err_read_i2c_eeprom;
1068
1069 status = hw->phy.ops.read_i2c_eeprom(hw,
1070 IXGBE_SFF_VENDOR_OUI_BYTE1,
1071 &oui_bytes[1]);
1072
1073 if (status == IXGBE_ERR_SWFW_SYNC ||
1074 status == IXGBE_ERR_I2C ||
1075 status == IXGBE_ERR_SFP_NOT_PRESENT)
1076 goto err_read_i2c_eeprom;
1077
1078 status = hw->phy.ops.read_i2c_eeprom(hw,
1079 IXGBE_SFF_VENDOR_OUI_BYTE2,
1080 &oui_bytes[2]);
1081
1082 if (status == IXGBE_ERR_SWFW_SYNC ||
1083 status == IXGBE_ERR_I2C ||
1084 status == IXGBE_ERR_SFP_NOT_PRESENT)
1085 goto err_read_i2c_eeprom;
1086
1087 vendor_oui =
1088 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1089 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1090 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1091
1092 switch (vendor_oui) {
1093 case IXGBE_SFF_VENDOR_OUI_TYCO:
1094 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1095 hw->phy.type =
1096 ixgbe_phy_sfp_passive_tyco;
1097 break;
1098 case IXGBE_SFF_VENDOR_OUI_FTL:
1099 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1100 hw->phy.type = ixgbe_phy_sfp_ftl_active;
1101 else
1102 hw->phy.type = ixgbe_phy_sfp_ftl;
1103 break;
1104 case IXGBE_SFF_VENDOR_OUI_AVAGO:
1105 hw->phy.type = ixgbe_phy_sfp_avago;
1106 break;
1107 case IXGBE_SFF_VENDOR_OUI_INTEL:
1108 hw->phy.type = ixgbe_phy_sfp_intel;
1109 break;
1110 default:
1111 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1112 hw->phy.type =
1113 ixgbe_phy_sfp_passive_unknown;
1114 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1115 hw->phy.type =
1116 ixgbe_phy_sfp_active_unknown;
1117 else
1118 hw->phy.type = ixgbe_phy_sfp_unknown;
1119 break;
1120 }
1121 }
1122
1123 /* Allow any DA cable vendor */
1124 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1125 IXGBE_SFF_DA_ACTIVE_CABLE)) {
1126 status = 0;
1127 goto out;
1128 }
1129
1130 /* Verify supported 1G SFP modules */
1131 if (comp_codes_10g == 0 &&
1132 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1133 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1134 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1135 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1136 hw->phy.type = ixgbe_phy_sfp_unsupported;
1137 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1138 goto out;
1139 }
1140
1141 /* Anything else 82598-based is supported */
1142 if (hw->mac.type == ixgbe_mac_82598EB) {
1143 status = 0;
1144 goto out;
1145 }
1146
1147 ixgbe_get_device_caps(hw, &enforce_sfp);
1148 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1149 !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
1150 (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1) ||
1151 (hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0) ||
1152 (hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1))) {
1153 /* Make sure we're a supported PHY type */
1154 if (hw->phy.type == ixgbe_phy_sfp_intel) {
1155 status = 0;
1156 } else {
1157 if (hw->allow_unsupported_sfp == true) {
1158 EWARN(hw, "WARNING: Intel (R) Network "
1159 "Connections are quality tested "
1160 "using Intel (R) Ethernet Optics."
1161 " Using untested modules is not "
1162 "supported and may cause unstable"
1163 " operation or damage to the "
1164 "module or the adapter. Intel "
1165 "Corporation is not responsible "
1166 "for any harm caused by using "
1167 "untested modules.\n", status);
1168 status = 0;
1169 } else {
1170 hw_dbg(hw, "SFP+ module not supported\n");
1171 hw->phy.type =
1172 ixgbe_phy_sfp_unsupported;
1173 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1174 }
1175 }
1176 } else {
1177 status = 0;
1178 }
1179 }
1180
1181 out:
1182 return status;
1183
1184 err_read_i2c_eeprom:
1185 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1186 if (hw->phy.type != ixgbe_phy_nl) {
1187 hw->phy.id = 0;
1188 hw->phy.type = ixgbe_phy_unknown;
1189 }
1190 return IXGBE_ERR_SFP_NOT_PRESENT;
1191 }
1192
1193 /**
1194 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1195 * @hw: pointer to hardware structure
1196 *
1197 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1198 **/
1199 s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1200 {
1201 s32 status = 0;
1202
1203 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1204 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1205 status = IXGBE_ERR_SFP_NOT_PRESENT;
1206 }
1207
1208 return status;
1209 }
1210
1211
1212 /**
1213 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1214 * @hw: pointer to hardware structure
1215 * @list_offset: offset to the SFP ID list
1216 * @data_offset: offset to the SFP data block
1217 *
1218 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1219 * so it returns the offsets to the phy init sequence block.
1220 **/
1221 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1222 u16 *list_offset,
1223 u16 *data_offset)
1224 {
1225 u16 sfp_id;
1226 u16 sfp_type = hw->phy.sfp_type;
1227
1228 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1229 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1230
1231 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1232 return IXGBE_ERR_SFP_NOT_PRESENT;
1233
1234 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1235 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1236 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1237
1238 /*
1239 * Limiting active cables and 1G Phys must be initialized as
1240 * SR modules
1241 */
1242 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1243 sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1244 sfp_type == ixgbe_sfp_type_1g_sx_core0)
1245 sfp_type = ixgbe_sfp_type_srlr_core0;
1246 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1247 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1248 sfp_type == ixgbe_sfp_type_1g_sx_core1)
1249 sfp_type = ixgbe_sfp_type_srlr_core1;
1250
1251 /* Read offset to PHY init contents */
1252 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
1253
1254 if ((!*list_offset) || (*list_offset == 0xFFFF))
1255 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1256
1257 /* Shift offset to first ID word */
1258 (*list_offset)++;
1259
1260 /*
1261 * Find the matching SFP ID in the EEPROM
1262 * and program the init sequence
1263 */
1264 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
1265
1266 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1267 if (sfp_id == sfp_type) {
1268 (*list_offset)++;
1269 hw->eeprom.ops.read(hw, *list_offset, data_offset);
1270 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1271 hw_dbg(hw, "SFP+ module not supported\n");
1272 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1273 } else {
1274 break;
1275 }
1276 } else {
1277 (*list_offset) += 2;
1278 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1279 return IXGBE_ERR_PHY;
1280 }
1281 }
1282
1283 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1284 hw_dbg(hw, "No matching SFP+ module found\n");
1285 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1286 }
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1293 * @hw: pointer to hardware structure
1294 * @byte_offset: EEPROM byte offset to read
1295 * @eeprom_data: value read
1296 *
1297 * Performs byte read operation to SFP module's EEPROM over I2C interface.
1298 **/
1299 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1300 u8 *eeprom_data)
1301 {
1302 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1303 IXGBE_I2C_EEPROM_DEV_ADDR,
1304 eeprom_data);
1305 }
1306
1307 /**
1308 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1309 * @hw: pointer to hardware structure
1310 * @byte_offset: EEPROM byte offset to write
1311 * @eeprom_data: value to write
1312 *
1313 * Performs byte write operation to SFP module's EEPROM over I2C interface.
1314 **/
1315 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1316 u8 eeprom_data)
1317 {
1318 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1319 IXGBE_I2C_EEPROM_DEV_ADDR,
1320 eeprom_data);
1321 }
1322
1323 /**
1324 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1325 * @hw: pointer to hardware structure
1326 * @byte_offset: byte offset to read
1327 * @data: value read
1328 *
1329 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1330 * a specified device address.
1331 **/
1332 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1333 u8 dev_addr, u8 *data)
1334 {
1335 s32 status = 0;
1336 u32 max_retry = 10;
1337 u32 retry = 0;
1338 u16 swfw_mask = 0;
1339 bool nack = 1;
1340 *data = 0;
1341
1342 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1343 swfw_mask = IXGBE_GSSR_PHY1_SM;
1344 else
1345 swfw_mask = IXGBE_GSSR_PHY0_SM;
1346
1347 do {
1348 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
1349 != 0) {
1350 status = IXGBE_ERR_SWFW_SYNC;
1351 goto read_byte_out;
1352 }
1353
1354 ixgbe_i2c_start(hw);
1355
1356 /* Device Address and write indication */
1357 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1358 if (status != 0)
1359 goto fail;
1360
1361 status = ixgbe_get_i2c_ack(hw);
1362 if (status != 0)
1363 goto fail;
1364
1365 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1366 if (status != 0)
1367 goto fail;
1368
1369 status = ixgbe_get_i2c_ack(hw);
1370 if (status != 0)
1371 goto fail;
1372
1373 ixgbe_i2c_start(hw);
1374
1375 /* Device Address and read indication */
1376 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1377 if (status != 0)
1378 goto fail;
1379
1380 status = ixgbe_get_i2c_ack(hw);
1381 if (status != 0)
1382 goto fail;
1383
1384 status = ixgbe_clock_in_i2c_byte(hw, data);
1385 if (status != 0)
1386 goto fail;
1387
1388 status = ixgbe_clock_out_i2c_bit(hw, nack);
1389 if (status != 0)
1390 goto fail;
1391
1392 ixgbe_i2c_stop(hw);
1393 break;
1394
1395 fail:
1396 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1397 msleep(100);
1398 ixgbe_i2c_bus_clear(hw);
1399 retry++;
1400 if (retry < max_retry)
1401 hw_dbg(hw, "I2C byte read error - Retrying.\n");
1402 else
1403 hw_dbg(hw, "I2C byte read error.\n");
1404
1405 } while (retry < max_retry);
1406
1407 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1408
1409 read_byte_out:
1410 return status;
1411 }
1412
1413 /**
1414 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1415 * @hw: pointer to hardware structure
1416 * @byte_offset: byte offset to write
1417 * @data: value to write
1418 *
1419 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1420 * a specified device address.
1421 **/
1422 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1423 u8 dev_addr, u8 data)
1424 {
1425 s32 status = 0;
1426 u32 max_retry = 1;
1427 u32 retry = 0;
1428 u16 swfw_mask = 0;
1429
1430 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1431 swfw_mask = IXGBE_GSSR_PHY1_SM;
1432 else
1433 swfw_mask = IXGBE_GSSR_PHY0_SM;
1434
1435 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != 0) {
1436 status = IXGBE_ERR_SWFW_SYNC;
1437 goto write_byte_out;
1438 }
1439
1440 do {
1441 ixgbe_i2c_start(hw);
1442
1443 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1444 if (status != 0)
1445 goto fail;
1446
1447 status = ixgbe_get_i2c_ack(hw);
1448 if (status != 0)
1449 goto fail;
1450
1451 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1452 if (status != 0)
1453 goto fail;
1454
1455 status = ixgbe_get_i2c_ack(hw);
1456 if (status != 0)
1457 goto fail;
1458
1459 status = ixgbe_clock_out_i2c_byte(hw, data);
1460 if (status != 0)
1461 goto fail;
1462
1463 status = ixgbe_get_i2c_ack(hw);
1464 if (status != 0)
1465 goto fail;
1466
1467 ixgbe_i2c_stop(hw);
1468 break;
1469
1470 fail:
1471 ixgbe_i2c_bus_clear(hw);
1472 retry++;
1473 if (retry < max_retry)
1474 hw_dbg(hw, "I2C byte write error - Retrying.\n");
1475 else
1476 hw_dbg(hw, "I2C byte write error.\n");
1477 } while (retry < max_retry);
1478
1479 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1480
1481 write_byte_out:
1482 return status;
1483 }
1484
1485 /**
1486 * ixgbe_i2c_start - Sets I2C start condition
1487 * @hw: pointer to hardware structure
1488 *
1489 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1490 **/
1491 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1492 {
1493 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1494
1495 /* Start condition must begin with data and clock high */
1496 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1497 ixgbe_raise_i2c_clk(hw, &i2cctl);
1498
1499 /* Setup time for start condition (4.7us) */
1500 udelay(IXGBE_I2C_T_SU_STA);
1501
1502 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1503
1504 /* Hold time for start condition (4us) */
1505 udelay(IXGBE_I2C_T_HD_STA);
1506
1507 ixgbe_lower_i2c_clk(hw, &i2cctl);
1508
1509 /* Minimum low period of clock is 4.7 us */
1510 udelay(IXGBE_I2C_T_LOW);
1511
1512 }
1513
1514 /**
1515 * ixgbe_i2c_stop - Sets I2C stop condition
1516 * @hw: pointer to hardware structure
1517 *
1518 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1519 **/
1520 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1521 {
1522 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1523
1524 /* Stop condition must begin with data low and clock high */
1525 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1526 ixgbe_raise_i2c_clk(hw, &i2cctl);
1527
1528 /* Setup time for stop condition (4us) */
1529 udelay(IXGBE_I2C_T_SU_STO);
1530
1531 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1532
1533 /* bus free time between stop and start (4.7us)*/
1534 udelay(IXGBE_I2C_T_BUF);
1535 }
1536
1537 /**
1538 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1539 * @hw: pointer to hardware structure
1540 * @data: data byte to clock in
1541 *
1542 * Clocks in one byte data via I2C data/clock
1543 **/
1544 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1545 {
1546 s32 i;
1547 bool bit = 0;
1548
1549 for (i = 7; i >= 0; i--) {
1550 ixgbe_clock_in_i2c_bit(hw, &bit);
1551 *data |= bit << i;
1552 }
1553
1554 return 0;
1555 }
1556
1557 /**
1558 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1559 * @hw: pointer to hardware structure
1560 * @data: data byte clocked out
1561 *
1562 * Clocks out one byte data via I2C data/clock
1563 **/
1564 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1565 {
1566 s32 status = 0;
1567 s32 i;
1568 u32 i2cctl;
1569 bool bit = 0;
1570
1571 for (i = 7; i >= 0; i--) {
1572 bit = (data >> i) & 0x1;
1573 status = ixgbe_clock_out_i2c_bit(hw, bit);
1574
1575 if (status != 0)
1576 break;
1577 }
1578
1579 /* Release SDA line (set high) */
1580 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1581 i2cctl |= IXGBE_I2C_DATA_OUT;
1582 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1583 IXGBE_WRITE_FLUSH(hw);
1584
1585 return status;
1586 }
1587
1588 /**
1589 * ixgbe_get_i2c_ack - Polls for I2C ACK
1590 * @hw: pointer to hardware structure
1591 *
1592 * Clocks in/out one bit via I2C data/clock
1593 **/
1594 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1595 {
1596 s32 status = 0;
1597 u32 i = 0;
1598 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1599 u32 timeout = 10;
1600 bool ack = 1;
1601
1602 ixgbe_raise_i2c_clk(hw, &i2cctl);
1603
1604
1605 /* Minimum high period of clock is 4us */
1606 udelay(IXGBE_I2C_T_HIGH);
1607
1608 /* Poll for ACK. Note that ACK in I2C spec is
1609 * transition from 1 to 0 */
1610 for (i = 0; i < timeout; i++) {
1611 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1612 ack = ixgbe_get_i2c_data(&i2cctl);
1613
1614 udelay(1);
1615 if (ack == 0)
1616 break;
1617 }
1618
1619 if (ack == 1) {
1620 hw_dbg(hw, "I2C ack was not received.\n");
1621 status = IXGBE_ERR_I2C;
1622 }
1623
1624 ixgbe_lower_i2c_clk(hw, &i2cctl);
1625
1626 /* Minimum low period of clock is 4.7 us */
1627 udelay(IXGBE_I2C_T_LOW);
1628
1629 return status;
1630 }
1631
1632 /**
1633 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1634 * @hw: pointer to hardware structure
1635 * @data: read data value
1636 *
1637 * Clocks in one bit via I2C data/clock
1638 **/
1639 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1640 {
1641 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1642
1643 ixgbe_raise_i2c_clk(hw, &i2cctl);
1644
1645 /* Minimum high period of clock is 4us */
1646 udelay(IXGBE_I2C_T_HIGH);
1647
1648 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1649 *data = ixgbe_get_i2c_data(&i2cctl);
1650
1651 ixgbe_lower_i2c_clk(hw, &i2cctl);
1652
1653 /* Minimum low period of clock is 4.7 us */
1654 udelay(IXGBE_I2C_T_LOW);
1655
1656 return 0;
1657 }
1658
1659 /**
1660 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1661 * @hw: pointer to hardware structure
1662 * @data: data value to write
1663 *
1664 * Clocks out one bit via I2C data/clock
1665 **/
1666 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1667 {
1668 s32 status;
1669 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1670
1671 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1672 if (status == 0) {
1673 ixgbe_raise_i2c_clk(hw, &i2cctl);
1674
1675 /* Minimum high period of clock is 4us */
1676 udelay(IXGBE_I2C_T_HIGH);
1677
1678 ixgbe_lower_i2c_clk(hw, &i2cctl);
1679
1680 /* Minimum low period of clock is 4.7 us.
1681 * This also takes care of the data hold time.
1682 */
1683 udelay(IXGBE_I2C_T_LOW);
1684 } else {
1685 status = IXGBE_ERR_I2C;
1686 hw_dbg(hw, "I2C data was not set to %X\n", data);
1687 }
1688
1689 return status;
1690 }
1691 /**
1692 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1693 * @hw: pointer to hardware structure
1694 * @i2cctl: Current value of I2CCTL register
1695 *
1696 * Raises the I2C clock line '0'->'1'
1697 **/
1698 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1699 {
1700 u32 i = 0;
1701 u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
1702 u32 i2cctl_r = 0;
1703
1704 for (i = 0; i < timeout; i++) {
1705 *i2cctl |= IXGBE_I2C_CLK_OUT;
1706
1707 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1708 IXGBE_WRITE_FLUSH(hw);
1709 /* SCL rise time (1000ns) */
1710 udelay(IXGBE_I2C_T_RISE);
1711
1712 i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1713 if (i2cctl_r & IXGBE_I2C_CLK_IN)
1714 break;
1715 }
1716 }
1717
1718 /**
1719 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1720 * @hw: pointer to hardware structure
1721 * @i2cctl: Current value of I2CCTL register
1722 *
1723 * Lowers the I2C clock line '1'->'0'
1724 **/
1725 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1726 {
1727
1728 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1729
1730 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1731 IXGBE_WRITE_FLUSH(hw);
1732
1733 /* SCL fall time (300ns) */
1734 udelay(IXGBE_I2C_T_FALL);
1735 }
1736
1737 /**
1738 * ixgbe_set_i2c_data - Sets the I2C data bit
1739 * @hw: pointer to hardware structure
1740 * @i2cctl: Current value of I2CCTL register
1741 * @data: I2C data value (0 or 1) to set
1742 *
1743 * Sets the I2C data bit
1744 **/
1745 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1746 {
1747 s32 status = 0;
1748
1749 if (data)
1750 *i2cctl |= IXGBE_I2C_DATA_OUT;
1751 else
1752 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1753
1754 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1755 IXGBE_WRITE_FLUSH(hw);
1756
1757 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1758 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1759
1760 /* Verify data was set correctly */
1761 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1762 if (data != ixgbe_get_i2c_data(i2cctl)) {
1763 status = IXGBE_ERR_I2C;
1764 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1765 }
1766
1767 return status;
1768 }
1769
1770 /**
1771 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1772 * @hw: pointer to hardware structure
1773 * @i2cctl: Current value of I2CCTL register
1774 *
1775 * Returns the I2C data bit value
1776 **/
1777 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1778 {
1779 bool data;
1780
1781 if (*i2cctl & IXGBE_I2C_DATA_IN)
1782 data = 1;
1783 else
1784 data = 0;
1785
1786 return data;
1787 }
1788
1789 /**
1790 * ixgbe_i2c_bus_clear - Clears the I2C bus
1791 * @hw: pointer to hardware structure
1792 *
1793 * Clears the I2C bus by sending nine clock pulses.
1794 * Used when data line is stuck low.
1795 **/
1796 void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1797 {
1798 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1799 u32 i;
1800
1801 ixgbe_i2c_start(hw);
1802
1803 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1804
1805 for (i = 0; i < 9; i++) {
1806 ixgbe_raise_i2c_clk(hw, &i2cctl);
1807
1808 /* Min high period of clock is 4us */
1809 udelay(IXGBE_I2C_T_HIGH);
1810
1811 ixgbe_lower_i2c_clk(hw, &i2cctl);
1812
1813 /* Min low period of clock is 4.7us*/
1814 udelay(IXGBE_I2C_T_LOW);
1815 }
1816
1817 ixgbe_i2c_start(hw);
1818
1819 /* Put the i2c bus back to default state */
1820 ixgbe_i2c_stop(hw);
1821 }
1822
1823 /**
1824 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
1825 * @hw: pointer to hardware structure
1826 *
1827 * Checks if the LASI temp alarm status was triggered due to overtemp
1828 **/
1829 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1830 {
1831 s32 status = 0;
1832 u16 phy_data = 0;
1833
1834 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1835 goto out;
1836
1837 /* Check that the LASI temp alarm status was triggered */
1838 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1839 IXGBE_MDIO_PMA_PMD_DEV_TYPE, &phy_data);
1840
1841 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1842 goto out;
1843
1844 status = IXGBE_ERR_OVERTEMP;
1845 out:
1846 return status;
1847 }