]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/lib/librte_mempool/rte_mempool.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / lib / librte_mempool / rte_mempool.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * Copyright(c) 2016 6WIND S.A.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <stdio.h>
36 #include <string.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39 #include <unistd.h>
40 #include <inttypes.h>
41 #include <errno.h>
42 #include <sys/queue.h>
43 #include <sys/mman.h>
44
45 #include <rte_common.h>
46 #include <rte_log.h>
47 #include <rte_debug.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_malloc.h>
51 #include <rte_atomic.h>
52 #include <rte_launch.h>
53 #include <rte_eal.h>
54 #include <rte_eal_memconfig.h>
55 #include <rte_per_lcore.h>
56 #include <rte_lcore.h>
57 #include <rte_branch_prediction.h>
58 #include <rte_errno.h>
59 #include <rte_string_fns.h>
60 #include <rte_spinlock.h>
61
62 #include "rte_mempool.h"
63
64 TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
65
66 static struct rte_tailq_elem rte_mempool_tailq = {
67 .name = "RTE_MEMPOOL",
68 };
69 EAL_REGISTER_TAILQ(rte_mempool_tailq)
70
71 #define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
72 #define CALC_CACHE_FLUSHTHRESH(c) \
73 ((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
74
75 /*
76 * return the greatest common divisor between a and b (fast algorithm)
77 *
78 */
79 static unsigned get_gcd(unsigned a, unsigned b)
80 {
81 unsigned c;
82
83 if (0 == a)
84 return b;
85 if (0 == b)
86 return a;
87
88 if (a < b) {
89 c = a;
90 a = b;
91 b = c;
92 }
93
94 while (b != 0) {
95 c = a % b;
96 a = b;
97 b = c;
98 }
99
100 return a;
101 }
102
103 /*
104 * Depending on memory configuration, objects addresses are spread
105 * between channels and ranks in RAM: the pool allocator will add
106 * padding between objects. This function return the new size of the
107 * object.
108 */
109 static unsigned optimize_object_size(unsigned obj_size)
110 {
111 unsigned nrank, nchan;
112 unsigned new_obj_size;
113
114 /* get number of channels */
115 nchan = rte_memory_get_nchannel();
116 if (nchan == 0)
117 nchan = 4;
118
119 nrank = rte_memory_get_nrank();
120 if (nrank == 0)
121 nrank = 1;
122
123 /* process new object size */
124 new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
125 while (get_gcd(new_obj_size, nrank * nchan) != 1)
126 new_obj_size++;
127 return new_obj_size * RTE_MEMPOOL_ALIGN;
128 }
129
130 static void
131 mempool_add_elem(struct rte_mempool *mp, void *obj, phys_addr_t physaddr)
132 {
133 struct rte_mempool_objhdr *hdr;
134 struct rte_mempool_objtlr *tlr __rte_unused;
135
136 /* set mempool ptr in header */
137 hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
138 hdr->mp = mp;
139 hdr->physaddr = physaddr;
140 STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
141 mp->populated_size++;
142
143 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
144 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
145 tlr = __mempool_get_trailer(obj);
146 tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
147 #endif
148
149 /* enqueue in ring */
150 rte_mempool_ops_enqueue_bulk(mp, &obj, 1);
151 }
152
153 /* call obj_cb() for each mempool element */
154 uint32_t
155 rte_mempool_obj_iter(struct rte_mempool *mp,
156 rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
157 {
158 struct rte_mempool_objhdr *hdr;
159 void *obj;
160 unsigned n = 0;
161
162 STAILQ_FOREACH(hdr, &mp->elt_list, next) {
163 obj = (char *)hdr + sizeof(*hdr);
164 obj_cb(mp, obj_cb_arg, obj, n);
165 n++;
166 }
167
168 return n;
169 }
170
171 /* call mem_cb() for each mempool memory chunk */
172 uint32_t
173 rte_mempool_mem_iter(struct rte_mempool *mp,
174 rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
175 {
176 struct rte_mempool_memhdr *hdr;
177 unsigned n = 0;
178
179 STAILQ_FOREACH(hdr, &mp->mem_list, next) {
180 mem_cb(mp, mem_cb_arg, hdr, n);
181 n++;
182 }
183
184 return n;
185 }
186
187 /* get the header, trailer and total size of a mempool element. */
188 uint32_t
189 rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
190 struct rte_mempool_objsz *sz)
191 {
192 struct rte_mempool_objsz lsz;
193
194 sz = (sz != NULL) ? sz : &lsz;
195
196 sz->header_size = sizeof(struct rte_mempool_objhdr);
197 if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
198 sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
199 RTE_MEMPOOL_ALIGN);
200
201 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
202 sz->trailer_size = sizeof(struct rte_mempool_objtlr);
203 #else
204 sz->trailer_size = 0;
205 #endif
206
207 /* element size is 8 bytes-aligned at least */
208 sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
209
210 /* expand trailer to next cache line */
211 if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
212 sz->total_size = sz->header_size + sz->elt_size +
213 sz->trailer_size;
214 sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
215 (sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
216 RTE_MEMPOOL_ALIGN_MASK);
217 }
218
219 /*
220 * increase trailer to add padding between objects in order to
221 * spread them across memory channels/ranks
222 */
223 if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
224 unsigned new_size;
225 new_size = optimize_object_size(sz->header_size + sz->elt_size +
226 sz->trailer_size);
227 sz->trailer_size = new_size - sz->header_size - sz->elt_size;
228 }
229
230 /* this is the size of an object, including header and trailer */
231 sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
232
233 return sz->total_size;
234 }
235
236
237 /*
238 * Calculate maximum amount of memory required to store given number of objects.
239 */
240 size_t
241 rte_mempool_xmem_size(uint32_t elt_num, size_t total_elt_sz, uint32_t pg_shift)
242 {
243 size_t obj_per_page, pg_num, pg_sz;
244
245 if (total_elt_sz == 0)
246 return 0;
247
248 if (pg_shift == 0)
249 return total_elt_sz * elt_num;
250
251 pg_sz = (size_t)1 << pg_shift;
252 obj_per_page = pg_sz / total_elt_sz;
253 if (obj_per_page == 0)
254 return RTE_ALIGN_CEIL(total_elt_sz, pg_sz) * elt_num;
255
256 pg_num = (elt_num + obj_per_page - 1) / obj_per_page;
257 return pg_num << pg_shift;
258 }
259
260 /*
261 * Calculate how much memory would be actually required with the
262 * given memory footprint to store required number of elements.
263 */
264 ssize_t
265 rte_mempool_xmem_usage(__rte_unused void *vaddr, uint32_t elt_num,
266 size_t total_elt_sz, const phys_addr_t paddr[], uint32_t pg_num,
267 uint32_t pg_shift)
268 {
269 uint32_t elt_cnt = 0;
270 phys_addr_t start, end;
271 uint32_t paddr_idx;
272 size_t pg_sz = (size_t)1 << pg_shift;
273
274 /* if paddr is NULL, assume contiguous memory */
275 if (paddr == NULL) {
276 start = 0;
277 end = pg_sz * pg_num;
278 paddr_idx = pg_num;
279 } else {
280 start = paddr[0];
281 end = paddr[0] + pg_sz;
282 paddr_idx = 1;
283 }
284 while (elt_cnt < elt_num) {
285
286 if (end - start >= total_elt_sz) {
287 /* enough contiguous memory, add an object */
288 start += total_elt_sz;
289 elt_cnt++;
290 } else if (paddr_idx < pg_num) {
291 /* no room to store one obj, add a page */
292 if (end == paddr[paddr_idx]) {
293 end += pg_sz;
294 } else {
295 start = paddr[paddr_idx];
296 end = paddr[paddr_idx] + pg_sz;
297 }
298 paddr_idx++;
299
300 } else {
301 /* no more page, return how many elements fit */
302 return -(size_t)elt_cnt;
303 }
304 }
305
306 return (size_t)paddr_idx << pg_shift;
307 }
308
309 /* free a memchunk allocated with rte_memzone_reserve() */
310 static void
311 rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
312 void *opaque)
313 {
314 const struct rte_memzone *mz = opaque;
315 rte_memzone_free(mz);
316 }
317
318 /* Free memory chunks used by a mempool. Objects must be in pool */
319 static void
320 rte_mempool_free_memchunks(struct rte_mempool *mp)
321 {
322 struct rte_mempool_memhdr *memhdr;
323 void *elt;
324
325 while (!STAILQ_EMPTY(&mp->elt_list)) {
326 rte_mempool_ops_dequeue_bulk(mp, &elt, 1);
327 (void)elt;
328 STAILQ_REMOVE_HEAD(&mp->elt_list, next);
329 mp->populated_size--;
330 }
331
332 while (!STAILQ_EMPTY(&mp->mem_list)) {
333 memhdr = STAILQ_FIRST(&mp->mem_list);
334 STAILQ_REMOVE_HEAD(&mp->mem_list, next);
335 if (memhdr->free_cb != NULL)
336 memhdr->free_cb(memhdr, memhdr->opaque);
337 rte_free(memhdr);
338 mp->nb_mem_chunks--;
339 }
340 }
341
342 /* Add objects in the pool, using a physically contiguous memory
343 * zone. Return the number of objects added, or a negative value
344 * on error.
345 */
346 int
347 rte_mempool_populate_phys(struct rte_mempool *mp, char *vaddr,
348 phys_addr_t paddr, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
349 void *opaque)
350 {
351 unsigned total_elt_sz;
352 unsigned i = 0;
353 size_t off;
354 struct rte_mempool_memhdr *memhdr;
355 int ret;
356
357 /* create the internal ring if not already done */
358 if ((mp->flags & MEMPOOL_F_POOL_CREATED) == 0) {
359 ret = rte_mempool_ops_alloc(mp);
360 if (ret != 0)
361 return ret;
362 mp->flags |= MEMPOOL_F_POOL_CREATED;
363 }
364
365 /* mempool is already populated */
366 if (mp->populated_size >= mp->size)
367 return -ENOSPC;
368
369 total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
370
371 memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
372 if (memhdr == NULL)
373 return -ENOMEM;
374
375 memhdr->mp = mp;
376 memhdr->addr = vaddr;
377 memhdr->phys_addr = paddr;
378 memhdr->len = len;
379 memhdr->free_cb = free_cb;
380 memhdr->opaque = opaque;
381
382 if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
383 off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
384 else
385 off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_CACHE_LINE_SIZE) - vaddr;
386
387 while (off + total_elt_sz <= len && mp->populated_size < mp->size) {
388 off += mp->header_size;
389 if (paddr == RTE_BAD_PHYS_ADDR)
390 mempool_add_elem(mp, (char *)vaddr + off,
391 RTE_BAD_PHYS_ADDR);
392 else
393 mempool_add_elem(mp, (char *)vaddr + off, paddr + off);
394 off += mp->elt_size + mp->trailer_size;
395 i++;
396 }
397
398 /* not enough room to store one object */
399 if (i == 0)
400 return -EINVAL;
401
402 STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
403 mp->nb_mem_chunks++;
404 return i;
405 }
406
407 /* Add objects in the pool, using a table of physical pages. Return the
408 * number of objects added, or a negative value on error.
409 */
410 int
411 rte_mempool_populate_phys_tab(struct rte_mempool *mp, char *vaddr,
412 const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
413 rte_mempool_memchunk_free_cb_t *free_cb, void *opaque)
414 {
415 uint32_t i, n;
416 int ret, cnt = 0;
417 size_t pg_sz = (size_t)1 << pg_shift;
418
419 /* mempool must not be populated */
420 if (mp->nb_mem_chunks != 0)
421 return -EEXIST;
422
423 if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
424 return rte_mempool_populate_phys(mp, vaddr, RTE_BAD_PHYS_ADDR,
425 pg_num * pg_sz, free_cb, opaque);
426
427 for (i = 0; i < pg_num && mp->populated_size < mp->size; i += n) {
428
429 /* populate with the largest group of contiguous pages */
430 for (n = 1; (i + n) < pg_num &&
431 paddr[i + n - 1] + pg_sz == paddr[i + n]; n++)
432 ;
433
434 ret = rte_mempool_populate_phys(mp, vaddr + i * pg_sz,
435 paddr[i], n * pg_sz, free_cb, opaque);
436 if (ret < 0) {
437 rte_mempool_free_memchunks(mp);
438 return ret;
439 }
440 /* no need to call the free callback for next chunks */
441 free_cb = NULL;
442 cnt += ret;
443 }
444 return cnt;
445 }
446
447 /* Populate the mempool with a virtual area. Return the number of
448 * objects added, or a negative value on error.
449 */
450 int
451 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
452 size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
453 void *opaque)
454 {
455 phys_addr_t paddr;
456 size_t off, phys_len;
457 int ret, cnt = 0;
458
459 /* mempool must not be populated */
460 if (mp->nb_mem_chunks != 0)
461 return -EEXIST;
462 /* address and len must be page-aligned */
463 if (RTE_PTR_ALIGN_CEIL(addr, pg_sz) != addr)
464 return -EINVAL;
465 if (RTE_ALIGN_CEIL(len, pg_sz) != len)
466 return -EINVAL;
467
468 if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
469 return rte_mempool_populate_phys(mp, addr, RTE_BAD_PHYS_ADDR,
470 len, free_cb, opaque);
471
472 for (off = 0; off + pg_sz <= len &&
473 mp->populated_size < mp->size; off += phys_len) {
474
475 paddr = rte_mem_virt2phy(addr + off);
476 /* required for xen_dom0 to get the machine address */
477 paddr = rte_mem_phy2mch(-1, paddr);
478
479 if (paddr == RTE_BAD_PHYS_ADDR) {
480 ret = -EINVAL;
481 goto fail;
482 }
483
484 /* populate with the largest group of contiguous pages */
485 for (phys_len = pg_sz; off + phys_len < len; phys_len += pg_sz) {
486 phys_addr_t paddr_tmp;
487
488 paddr_tmp = rte_mem_virt2phy(addr + off + phys_len);
489 paddr_tmp = rte_mem_phy2mch(-1, paddr_tmp);
490
491 if (paddr_tmp != paddr + phys_len)
492 break;
493 }
494
495 ret = rte_mempool_populate_phys(mp, addr + off, paddr,
496 phys_len, free_cb, opaque);
497 if (ret < 0)
498 goto fail;
499 /* no need to call the free callback for next chunks */
500 free_cb = NULL;
501 cnt += ret;
502 }
503
504 return cnt;
505
506 fail:
507 rte_mempool_free_memchunks(mp);
508 return ret;
509 }
510
511 /* Default function to populate the mempool: allocate memory in memzones,
512 * and populate them. Return the number of objects added, or a negative
513 * value on error.
514 */
515 int
516 rte_mempool_populate_default(struct rte_mempool *mp)
517 {
518 int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
519 char mz_name[RTE_MEMZONE_NAMESIZE];
520 const struct rte_memzone *mz;
521 size_t size, total_elt_sz, align, pg_sz, pg_shift;
522 phys_addr_t paddr;
523 unsigned mz_id, n;
524 int ret;
525
526 /* mempool must not be populated */
527 if (mp->nb_mem_chunks != 0)
528 return -EEXIST;
529
530 if (rte_xen_dom0_supported()) {
531 pg_sz = RTE_PGSIZE_2M;
532 pg_shift = rte_bsf32(pg_sz);
533 align = pg_sz;
534 } else if (rte_eal_has_hugepages()) {
535 pg_shift = 0; /* not needed, zone is physically contiguous */
536 pg_sz = 0;
537 align = RTE_CACHE_LINE_SIZE;
538 } else {
539 pg_sz = getpagesize();
540 pg_shift = rte_bsf32(pg_sz);
541 align = pg_sz;
542 }
543
544 total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
545 for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
546 size = rte_mempool_xmem_size(n, total_elt_sz, pg_shift);
547
548 ret = snprintf(mz_name, sizeof(mz_name),
549 RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
550 if (ret < 0 || ret >= (int)sizeof(mz_name)) {
551 ret = -ENAMETOOLONG;
552 goto fail;
553 }
554
555 mz = rte_memzone_reserve_aligned(mz_name, size,
556 mp->socket_id, mz_flags, align);
557 /* not enough memory, retry with the biggest zone we have */
558 if (mz == NULL)
559 mz = rte_memzone_reserve_aligned(mz_name, 0,
560 mp->socket_id, mz_flags, align);
561 if (mz == NULL) {
562 ret = -rte_errno;
563 goto fail;
564 }
565
566 if (mp->flags & MEMPOOL_F_NO_PHYS_CONTIG)
567 paddr = RTE_BAD_PHYS_ADDR;
568 else
569 paddr = mz->phys_addr;
570
571 if (rte_eal_has_hugepages() && !rte_xen_dom0_supported())
572 ret = rte_mempool_populate_phys(mp, mz->addr,
573 paddr, mz->len,
574 rte_mempool_memchunk_mz_free,
575 (void *)(uintptr_t)mz);
576 else
577 ret = rte_mempool_populate_virt(mp, mz->addr,
578 mz->len, pg_sz,
579 rte_mempool_memchunk_mz_free,
580 (void *)(uintptr_t)mz);
581 if (ret < 0) {
582 rte_memzone_free(mz);
583 goto fail;
584 }
585 }
586
587 return mp->size;
588
589 fail:
590 rte_mempool_free_memchunks(mp);
591 return ret;
592 }
593
594 /* return the memory size required for mempool objects in anonymous mem */
595 static size_t
596 get_anon_size(const struct rte_mempool *mp)
597 {
598 size_t size, total_elt_sz, pg_sz, pg_shift;
599
600 pg_sz = getpagesize();
601 pg_shift = rte_bsf32(pg_sz);
602 total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
603 size = rte_mempool_xmem_size(mp->size, total_elt_sz, pg_shift);
604
605 return size;
606 }
607
608 /* unmap a memory zone mapped by rte_mempool_populate_anon() */
609 static void
610 rte_mempool_memchunk_anon_free(struct rte_mempool_memhdr *memhdr,
611 void *opaque)
612 {
613 munmap(opaque, get_anon_size(memhdr->mp));
614 }
615
616 /* populate the mempool with an anonymous mapping */
617 int
618 rte_mempool_populate_anon(struct rte_mempool *mp)
619 {
620 size_t size;
621 int ret;
622 char *addr;
623
624 /* mempool is already populated, error */
625 if (!STAILQ_EMPTY(&mp->mem_list)) {
626 rte_errno = EINVAL;
627 return 0;
628 }
629
630 /* get chunk of virtually continuous memory */
631 size = get_anon_size(mp);
632 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
633 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
634 if (addr == MAP_FAILED) {
635 rte_errno = errno;
636 return 0;
637 }
638 /* can't use MMAP_LOCKED, it does not exist on BSD */
639 if (mlock(addr, size) < 0) {
640 rte_errno = errno;
641 munmap(addr, size);
642 return 0;
643 }
644
645 ret = rte_mempool_populate_virt(mp, addr, size, getpagesize(),
646 rte_mempool_memchunk_anon_free, addr);
647 if (ret == 0)
648 goto fail;
649
650 return mp->populated_size;
651
652 fail:
653 rte_mempool_free_memchunks(mp);
654 return 0;
655 }
656
657 /* free a mempool */
658 void
659 rte_mempool_free(struct rte_mempool *mp)
660 {
661 struct rte_mempool_list *mempool_list = NULL;
662 struct rte_tailq_entry *te;
663
664 if (mp == NULL)
665 return;
666
667 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
668 rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
669 /* find out tailq entry */
670 TAILQ_FOREACH(te, mempool_list, next) {
671 if (te->data == (void *)mp)
672 break;
673 }
674
675 if (te != NULL) {
676 TAILQ_REMOVE(mempool_list, te, next);
677 rte_free(te);
678 }
679 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
680
681 rte_mempool_free_memchunks(mp);
682 rte_mempool_ops_free(mp);
683 rte_memzone_free(mp->mz);
684 }
685
686 static void
687 mempool_cache_init(struct rte_mempool_cache *cache, uint32_t size)
688 {
689 cache->size = size;
690 cache->flushthresh = CALC_CACHE_FLUSHTHRESH(size);
691 cache->len = 0;
692 }
693
694 /*
695 * Create and initialize a cache for objects that are retrieved from and
696 * returned to an underlying mempool. This structure is identical to the
697 * local_cache[lcore_id] pointed to by the mempool structure.
698 */
699 struct rte_mempool_cache *
700 rte_mempool_cache_create(uint32_t size, int socket_id)
701 {
702 struct rte_mempool_cache *cache;
703
704 if (size == 0 || size > RTE_MEMPOOL_CACHE_MAX_SIZE) {
705 rte_errno = EINVAL;
706 return NULL;
707 }
708
709 cache = rte_zmalloc_socket("MEMPOOL_CACHE", sizeof(*cache),
710 RTE_CACHE_LINE_SIZE, socket_id);
711 if (cache == NULL) {
712 RTE_LOG(ERR, MEMPOOL, "Cannot allocate mempool cache.\n");
713 rte_errno = ENOMEM;
714 return NULL;
715 }
716
717 mempool_cache_init(cache, size);
718
719 return cache;
720 }
721
722 /*
723 * Free a cache. It's the responsibility of the user to make sure that any
724 * remaining objects in the cache are flushed to the corresponding
725 * mempool.
726 */
727 void
728 rte_mempool_cache_free(struct rte_mempool_cache *cache)
729 {
730 rte_free(cache);
731 }
732
733 /* create an empty mempool */
734 struct rte_mempool *
735 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
736 unsigned cache_size, unsigned private_data_size,
737 int socket_id, unsigned flags)
738 {
739 char mz_name[RTE_MEMZONE_NAMESIZE];
740 struct rte_mempool_list *mempool_list;
741 struct rte_mempool *mp = NULL;
742 struct rte_tailq_entry *te = NULL;
743 const struct rte_memzone *mz = NULL;
744 size_t mempool_size;
745 int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
746 struct rte_mempool_objsz objsz;
747 unsigned lcore_id;
748 int ret;
749
750 /* compilation-time checks */
751 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
752 RTE_CACHE_LINE_MASK) != 0);
753 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
754 RTE_CACHE_LINE_MASK) != 0);
755 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
756 RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
757 RTE_CACHE_LINE_MASK) != 0);
758 RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
759 RTE_CACHE_LINE_MASK) != 0);
760 #endif
761
762 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
763
764 /* asked cache too big */
765 if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
766 CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
767 rte_errno = EINVAL;
768 return NULL;
769 }
770
771 /* "no cache align" imply "no spread" */
772 if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
773 flags |= MEMPOOL_F_NO_SPREAD;
774
775 /* calculate mempool object sizes. */
776 if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
777 rte_errno = EINVAL;
778 return NULL;
779 }
780
781 rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);
782
783 /*
784 * reserve a memory zone for this mempool: private data is
785 * cache-aligned
786 */
787 private_data_size = (private_data_size +
788 RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
789
790
791 /* try to allocate tailq entry */
792 te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
793 if (te == NULL) {
794 RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
795 goto exit_unlock;
796 }
797
798 mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
799 mempool_size += private_data_size;
800 mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
801
802 ret = snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
803 if (ret < 0 || ret >= (int)sizeof(mz_name)) {
804 rte_errno = ENAMETOOLONG;
805 goto exit_unlock;
806 }
807
808 mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
809 if (mz == NULL)
810 goto exit_unlock;
811
812 /* init the mempool structure */
813 mp = mz->addr;
814 memset(mp, 0, MEMPOOL_HEADER_SIZE(mp, cache_size));
815 ret = snprintf(mp->name, sizeof(mp->name), "%s", name);
816 if (ret < 0 || ret >= (int)sizeof(mp->name)) {
817 rte_errno = ENAMETOOLONG;
818 goto exit_unlock;
819 }
820 mp->mz = mz;
821 mp->socket_id = socket_id;
822 mp->size = n;
823 mp->flags = flags;
824 mp->socket_id = socket_id;
825 mp->elt_size = objsz.elt_size;
826 mp->header_size = objsz.header_size;
827 mp->trailer_size = objsz.trailer_size;
828 /* Size of default caches, zero means disabled. */
829 mp->cache_size = cache_size;
830 mp->private_data_size = private_data_size;
831 STAILQ_INIT(&mp->elt_list);
832 STAILQ_INIT(&mp->mem_list);
833
834 /*
835 * local_cache pointer is set even if cache_size is zero.
836 * The local_cache points to just past the elt_pa[] array.
837 */
838 mp->local_cache = (struct rte_mempool_cache *)
839 RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
840
841 /* Init all default caches. */
842 if (cache_size != 0) {
843 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
844 mempool_cache_init(&mp->local_cache[lcore_id],
845 cache_size);
846 }
847
848 te->data = mp;
849
850 rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
851 TAILQ_INSERT_TAIL(mempool_list, te, next);
852 rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
853 rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
854
855 return mp;
856
857 exit_unlock:
858 rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
859 rte_free(te);
860 rte_mempool_free(mp);
861 return NULL;
862 }
863
864 /* create the mempool */
865 struct rte_mempool *
866 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
867 unsigned cache_size, unsigned private_data_size,
868 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
869 rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
870 int socket_id, unsigned flags)
871 {
872 struct rte_mempool *mp;
873
874 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
875 private_data_size, socket_id, flags);
876 if (mp == NULL)
877 return NULL;
878
879 /*
880 * Since we have 4 combinations of the SP/SC/MP/MC examine the flags to
881 * set the correct index into the table of ops structs.
882 */
883 if ((flags & MEMPOOL_F_SP_PUT) && (flags & MEMPOOL_F_SC_GET))
884 rte_mempool_set_ops_byname(mp, "ring_sp_sc", NULL);
885 else if (flags & MEMPOOL_F_SP_PUT)
886 rte_mempool_set_ops_byname(mp, "ring_sp_mc", NULL);
887 else if (flags & MEMPOOL_F_SC_GET)
888 rte_mempool_set_ops_byname(mp, "ring_mp_sc", NULL);
889 else
890 rte_mempool_set_ops_byname(mp, "ring_mp_mc", NULL);
891
892 /* call the mempool priv initializer */
893 if (mp_init)
894 mp_init(mp, mp_init_arg);
895
896 if (rte_mempool_populate_default(mp) < 0)
897 goto fail;
898
899 /* call the object initializers */
900 if (obj_init)
901 rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
902
903 return mp;
904
905 fail:
906 rte_mempool_free(mp);
907 return NULL;
908 }
909
910 /*
911 * Create the mempool over already allocated chunk of memory.
912 * That external memory buffer can consists of physically disjoint pages.
913 * Setting vaddr to NULL, makes mempool to fallback to rte_mempool_create()
914 * behavior.
915 */
916 struct rte_mempool *
917 rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
918 unsigned cache_size, unsigned private_data_size,
919 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
920 rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
921 int socket_id, unsigned flags, void *vaddr,
922 const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
923 {
924 struct rte_mempool *mp = NULL;
925 int ret;
926
927 /* no virtual address supplied, use rte_mempool_create() */
928 if (vaddr == NULL)
929 return rte_mempool_create(name, n, elt_size, cache_size,
930 private_data_size, mp_init, mp_init_arg,
931 obj_init, obj_init_arg, socket_id, flags);
932
933 /* check that we have both VA and PA */
934 if (paddr == NULL) {
935 rte_errno = EINVAL;
936 return NULL;
937 }
938
939 /* Check that pg_shift parameter is valid. */
940 if (pg_shift > MEMPOOL_PG_SHIFT_MAX) {
941 rte_errno = EINVAL;
942 return NULL;
943 }
944
945 mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
946 private_data_size, socket_id, flags);
947 if (mp == NULL)
948 return NULL;
949
950 /* call the mempool priv initializer */
951 if (mp_init)
952 mp_init(mp, mp_init_arg);
953
954 ret = rte_mempool_populate_phys_tab(mp, vaddr, paddr, pg_num, pg_shift,
955 NULL, NULL);
956 if (ret < 0 || ret != (int)mp->size)
957 goto fail;
958
959 /* call the object initializers */
960 if (obj_init)
961 rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
962
963 return mp;
964
965 fail:
966 rte_mempool_free(mp);
967 return NULL;
968 }
969
970 /* Return the number of entries in the mempool */
971 unsigned int
972 rte_mempool_avail_count(const struct rte_mempool *mp)
973 {
974 unsigned count;
975 unsigned lcore_id;
976
977 count = rte_mempool_ops_get_count(mp);
978
979 if (mp->cache_size == 0)
980 return count;
981
982 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
983 count += mp->local_cache[lcore_id].len;
984
985 /*
986 * due to race condition (access to len is not locked), the
987 * total can be greater than size... so fix the result
988 */
989 if (count > mp->size)
990 return mp->size;
991 return count;
992 }
993
994 /* return the number of entries allocated from the mempool */
995 unsigned int
996 rte_mempool_in_use_count(const struct rte_mempool *mp)
997 {
998 return mp->size - rte_mempool_avail_count(mp);
999 }
1000
1001 unsigned int
1002 rte_mempool_count(const struct rte_mempool *mp)
1003 {
1004 return rte_mempool_avail_count(mp);
1005 }
1006
1007 /* dump the cache status */
1008 static unsigned
1009 rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
1010 {
1011 unsigned lcore_id;
1012 unsigned count = 0;
1013 unsigned cache_count;
1014
1015 fprintf(f, " internal cache infos:\n");
1016 fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
1017
1018 if (mp->cache_size == 0)
1019 return count;
1020
1021 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1022 cache_count = mp->local_cache[lcore_id].len;
1023 fprintf(f, " cache_count[%u]=%"PRIu32"\n",
1024 lcore_id, cache_count);
1025 count += cache_count;
1026 }
1027 fprintf(f, " total_cache_count=%u\n", count);
1028 return count;
1029 }
1030
1031 #ifndef __INTEL_COMPILER
1032 #pragma GCC diagnostic ignored "-Wcast-qual"
1033 #endif
1034
1035 /* check and update cookies or panic (internal) */
1036 void rte_mempool_check_cookies(const struct rte_mempool *mp,
1037 void * const *obj_table_const, unsigned n, int free)
1038 {
1039 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1040 struct rte_mempool_objhdr *hdr;
1041 struct rte_mempool_objtlr *tlr;
1042 uint64_t cookie;
1043 void *tmp;
1044 void *obj;
1045 void **obj_table;
1046
1047 /* Force to drop the "const" attribute. This is done only when
1048 * DEBUG is enabled */
1049 tmp = (void *) obj_table_const;
1050 obj_table = (void **) tmp;
1051
1052 while (n--) {
1053 obj = obj_table[n];
1054
1055 if (rte_mempool_from_obj(obj) != mp)
1056 rte_panic("MEMPOOL: object is owned by another "
1057 "mempool\n");
1058
1059 hdr = __mempool_get_header(obj);
1060 cookie = hdr->cookie;
1061
1062 if (free == 0) {
1063 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
1064 RTE_LOG(CRIT, MEMPOOL,
1065 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1066 obj, (const void *) mp, cookie);
1067 rte_panic("MEMPOOL: bad header cookie (put)\n");
1068 }
1069 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
1070 } else if (free == 1) {
1071 if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1072 RTE_LOG(CRIT, MEMPOOL,
1073 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1074 obj, (const void *) mp, cookie);
1075 rte_panic("MEMPOOL: bad header cookie (get)\n");
1076 }
1077 hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
1078 } else if (free == 2) {
1079 if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
1080 cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
1081 RTE_LOG(CRIT, MEMPOOL,
1082 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1083 obj, (const void *) mp, cookie);
1084 rte_panic("MEMPOOL: bad header cookie (audit)\n");
1085 }
1086 }
1087 tlr = __mempool_get_trailer(obj);
1088 cookie = tlr->cookie;
1089 if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
1090 RTE_LOG(CRIT, MEMPOOL,
1091 "obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
1092 obj, (const void *) mp, cookie);
1093 rte_panic("MEMPOOL: bad trailer cookie\n");
1094 }
1095 }
1096 #else
1097 RTE_SET_USED(mp);
1098 RTE_SET_USED(obj_table_const);
1099 RTE_SET_USED(n);
1100 RTE_SET_USED(free);
1101 #endif
1102 }
1103
1104 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1105 static void
1106 mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
1107 void *obj, __rte_unused unsigned idx)
1108 {
1109 __mempool_check_cookies(mp, &obj, 1, 2);
1110 }
1111
1112 static void
1113 mempool_audit_cookies(struct rte_mempool *mp)
1114 {
1115 unsigned num;
1116
1117 num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
1118 if (num != mp->size) {
1119 rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
1120 "iterated only over %u elements\n",
1121 mp, mp->size, num);
1122 }
1123 }
1124 #else
1125 #define mempool_audit_cookies(mp) do {} while(0)
1126 #endif
1127
1128 #ifndef __INTEL_COMPILER
1129 #pragma GCC diagnostic error "-Wcast-qual"
1130 #endif
1131
1132 /* check cookies before and after objects */
1133 static void
1134 mempool_audit_cache(const struct rte_mempool *mp)
1135 {
1136 /* check cache size consistency */
1137 unsigned lcore_id;
1138
1139 if (mp->cache_size == 0)
1140 return;
1141
1142 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1143 const struct rte_mempool_cache *cache;
1144 cache = &mp->local_cache[lcore_id];
1145 if (cache->len > cache->flushthresh) {
1146 RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
1147 lcore_id);
1148 rte_panic("MEMPOOL: invalid cache len\n");
1149 }
1150 }
1151 }
1152
1153 /* check the consistency of mempool (size, cookies, ...) */
1154 void
1155 rte_mempool_audit(struct rte_mempool *mp)
1156 {
1157 mempool_audit_cache(mp);
1158 mempool_audit_cookies(mp);
1159
1160 /* For case where mempool DEBUG is not set, and cache size is 0 */
1161 RTE_SET_USED(mp);
1162 }
1163
1164 /* dump the status of the mempool on the console */
1165 void
1166 rte_mempool_dump(FILE *f, struct rte_mempool *mp)
1167 {
1168 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1169 struct rte_mempool_debug_stats sum;
1170 unsigned lcore_id;
1171 #endif
1172 struct rte_mempool_memhdr *memhdr;
1173 unsigned common_count;
1174 unsigned cache_count;
1175 size_t mem_len = 0;
1176
1177 RTE_ASSERT(f != NULL);
1178 RTE_ASSERT(mp != NULL);
1179
1180 fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
1181 fprintf(f, " flags=%x\n", mp->flags);
1182 fprintf(f, " pool=%p\n", mp->pool_data);
1183 fprintf(f, " phys_addr=0x%" PRIx64 "\n", mp->mz->phys_addr);
1184 fprintf(f, " nb_mem_chunks=%u\n", mp->nb_mem_chunks);
1185 fprintf(f, " size=%"PRIu32"\n", mp->size);
1186 fprintf(f, " populated_size=%"PRIu32"\n", mp->populated_size);
1187 fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
1188 fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
1189 fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
1190 fprintf(f, " total_obj_size=%"PRIu32"\n",
1191 mp->header_size + mp->elt_size + mp->trailer_size);
1192
1193 fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
1194
1195 STAILQ_FOREACH(memhdr, &mp->mem_list, next)
1196 mem_len += memhdr->len;
1197 if (mem_len != 0) {
1198 fprintf(f, " avg bytes/object=%#Lf\n",
1199 (long double)mem_len / mp->size);
1200 }
1201
1202 cache_count = rte_mempool_dump_cache(f, mp);
1203 common_count = rte_mempool_ops_get_count(mp);
1204 if ((cache_count + common_count) > mp->size)
1205 common_count = mp->size - cache_count;
1206 fprintf(f, " common_pool_count=%u\n", common_count);
1207
1208 /* sum and dump statistics */
1209 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1210 memset(&sum, 0, sizeof(sum));
1211 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1212 sum.put_bulk += mp->stats[lcore_id].put_bulk;
1213 sum.put_objs += mp->stats[lcore_id].put_objs;
1214 sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
1215 sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
1216 sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
1217 sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
1218 }
1219 fprintf(f, " stats:\n");
1220 fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
1221 fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
1222 fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
1223 fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
1224 fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
1225 fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
1226 #else
1227 fprintf(f, " no statistics available\n");
1228 #endif
1229
1230 rte_mempool_audit(mp);
1231 }
1232
1233 /* dump the status of all mempools on the console */
1234 void
1235 rte_mempool_list_dump(FILE *f)
1236 {
1237 struct rte_mempool *mp = NULL;
1238 struct rte_tailq_entry *te;
1239 struct rte_mempool_list *mempool_list;
1240
1241 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1242
1243 rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1244
1245 TAILQ_FOREACH(te, mempool_list, next) {
1246 mp = (struct rte_mempool *) te->data;
1247 rte_mempool_dump(f, mp);
1248 }
1249
1250 rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1251 }
1252
1253 /* search a mempool from its name */
1254 struct rte_mempool *
1255 rte_mempool_lookup(const char *name)
1256 {
1257 struct rte_mempool *mp = NULL;
1258 struct rte_tailq_entry *te;
1259 struct rte_mempool_list *mempool_list;
1260
1261 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1262
1263 rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1264
1265 TAILQ_FOREACH(te, mempool_list, next) {
1266 mp = (struct rte_mempool *) te->data;
1267 if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
1268 break;
1269 }
1270
1271 rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1272
1273 if (te == NULL) {
1274 rte_errno = ENOENT;
1275 return NULL;
1276 }
1277
1278 return mp;
1279 }
1280
1281 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
1282 void *arg)
1283 {
1284 struct rte_tailq_entry *te = NULL;
1285 struct rte_mempool_list *mempool_list;
1286 void *tmp_te;
1287
1288 mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
1289
1290 rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
1291
1292 TAILQ_FOREACH_SAFE(te, mempool_list, next, tmp_te) {
1293 (*func)((struct rte_mempool *) te->data, arg);
1294 }
1295
1296 rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
1297 }