]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/lib/librte_sched/rte_bitmap.h
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / lib / librte_sched / rte_bitmap.h
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #ifndef __INCLUDE_RTE_BITMAP_H__
35 #define __INCLUDE_RTE_BITMAP_H__
36
37 #ifdef __cplusplus
38 extern "C" {
39 #endif
40
41 /**
42 * @file
43 * RTE Bitmap
44 *
45 * The bitmap component provides a mechanism to manage large arrays of bits
46 * through bit get/set/clear and bit array scan operations.
47 *
48 * The bitmap scan operation is optimized for 64-bit CPUs using 64/128 byte cache
49 * lines. The bitmap is hierarchically organized using two arrays (array1 and
50 * array2), with each bit in array1 being associated with a full cache line
51 * (512/1024 bits) of bitmap bits, which are stored in array2: the bit in array1
52 * is set only when there is at least one bit set within its associated array2
53 * bits, otherwise the bit in array1 is cleared. The read and write operations
54 * for array1 and array2 are always done in slabs of 64 bits.
55 *
56 * This bitmap is not thread safe. For lock free operation on a specific bitmap
57 * instance, a single writer thread performing bit set/clear operations is
58 * allowed, only the writer thread can do bitmap scan operations, while there
59 * can be several reader threads performing bit get operations in parallel with
60 * the writer thread. When the use of locking primitives is acceptable, the
61 * serialization of the bit set/clear and bitmap scan operations needs to be
62 * enforced by the caller, while the bit get operation does not require locking
63 * the bitmap.
64 *
65 ***/
66
67 #include <string.h>
68 #include <rte_common.h>
69 #include <rte_debug.h>
70 #include <rte_memory.h>
71 #include <rte_branch_prediction.h>
72 #include <rte_prefetch.h>
73
74 #ifndef RTE_BITMAP_OPTIMIZATIONS
75 #define RTE_BITMAP_OPTIMIZATIONS 1
76 #endif
77
78 /* Slab */
79 #define RTE_BITMAP_SLAB_BIT_SIZE 64
80 #define RTE_BITMAP_SLAB_BIT_SIZE_LOG2 6
81 #define RTE_BITMAP_SLAB_BIT_MASK (RTE_BITMAP_SLAB_BIT_SIZE - 1)
82
83 /* Cache line (CL) */
84 #define RTE_BITMAP_CL_BIT_SIZE (RTE_CACHE_LINE_SIZE * 8)
85 #define RTE_BITMAP_CL_BIT_SIZE_LOG2 (RTE_CACHE_LINE_SIZE_LOG2 + 3)
86 #define RTE_BITMAP_CL_BIT_MASK (RTE_BITMAP_CL_BIT_SIZE - 1)
87
88 #define RTE_BITMAP_CL_SLAB_SIZE (RTE_BITMAP_CL_BIT_SIZE / RTE_BITMAP_SLAB_BIT_SIZE)
89 #define RTE_BITMAP_CL_SLAB_SIZE_LOG2 (RTE_BITMAP_CL_BIT_SIZE_LOG2 - RTE_BITMAP_SLAB_BIT_SIZE_LOG2)
90 #define RTE_BITMAP_CL_SLAB_MASK (RTE_BITMAP_CL_SLAB_SIZE - 1)
91
92 /** Bitmap data structure */
93 struct rte_bitmap {
94 /* Context for array1 and array2 */
95 uint64_t *array1; /**< Bitmap array1 */
96 uint64_t *array2; /**< Bitmap array2 */
97 uint32_t array1_size; /**< Number of 64-bit slabs in array1 that are actually used */
98 uint32_t array2_size; /**< Number of 64-bit slabs in array2 */
99
100 /* Context for the "scan next" operation */
101 uint32_t index1; /**< Bitmap scan: Index of current array1 slab */
102 uint32_t offset1; /**< Bitmap scan: Offset of current bit within current array1 slab */
103 uint32_t index2; /**< Bitmap scan: Index of current array2 slab */
104 uint32_t go2; /**< Bitmap scan: Go/stop condition for current array2 cache line */
105
106 /* Storage space for array1 and array2 */
107 uint8_t memory[];
108 };
109
110 static inline void
111 __rte_bitmap_index1_inc(struct rte_bitmap *bmp)
112 {
113 bmp->index1 = (bmp->index1 + 1) & (bmp->array1_size - 1);
114 }
115
116 static inline uint64_t
117 __rte_bitmap_mask1_get(struct rte_bitmap *bmp)
118 {
119 return (~1lu) << bmp->offset1;
120 }
121
122 static inline void
123 __rte_bitmap_index2_set(struct rte_bitmap *bmp)
124 {
125 bmp->index2 = (((bmp->index1 << RTE_BITMAP_SLAB_BIT_SIZE_LOG2) + bmp->offset1) << RTE_BITMAP_CL_SLAB_SIZE_LOG2);
126 }
127
128 #if RTE_BITMAP_OPTIMIZATIONS
129
130 static inline int
131 rte_bsf64(uint64_t slab, uint32_t *pos)
132 {
133 if (likely(slab == 0)) {
134 return 0;
135 }
136
137 *pos = __builtin_ctzll(slab);
138 return 1;
139 }
140
141 #else
142
143 static inline int
144 rte_bsf64(uint64_t slab, uint32_t *pos)
145 {
146 uint64_t mask;
147 uint32_t i;
148
149 if (likely(slab == 0)) {
150 return 0;
151 }
152
153 for (i = 0, mask = 1; i < RTE_BITMAP_SLAB_BIT_SIZE; i ++, mask <<= 1) {
154 if (unlikely(slab & mask)) {
155 *pos = i;
156 return 1;
157 }
158 }
159
160 return 0;
161 }
162
163 #endif
164
165 static inline uint32_t
166 __rte_bitmap_get_memory_footprint(uint32_t n_bits,
167 uint32_t *array1_byte_offset, uint32_t *array1_slabs,
168 uint32_t *array2_byte_offset, uint32_t *array2_slabs)
169 {
170 uint32_t n_slabs_context, n_slabs_array1, n_cache_lines_context_and_array1;
171 uint32_t n_cache_lines_array2;
172 uint32_t n_bytes_total;
173
174 n_cache_lines_array2 = (n_bits + RTE_BITMAP_CL_BIT_SIZE - 1) / RTE_BITMAP_CL_BIT_SIZE;
175 n_slabs_array1 = (n_cache_lines_array2 + RTE_BITMAP_SLAB_BIT_SIZE - 1) / RTE_BITMAP_SLAB_BIT_SIZE;
176 n_slabs_array1 = rte_align32pow2(n_slabs_array1);
177 n_slabs_context = (sizeof(struct rte_bitmap) + (RTE_BITMAP_SLAB_BIT_SIZE / 8) - 1) / (RTE_BITMAP_SLAB_BIT_SIZE / 8);
178 n_cache_lines_context_and_array1 = (n_slabs_context + n_slabs_array1 + RTE_BITMAP_CL_SLAB_SIZE - 1) / RTE_BITMAP_CL_SLAB_SIZE;
179 n_bytes_total = (n_cache_lines_context_and_array1 + n_cache_lines_array2) * RTE_CACHE_LINE_SIZE;
180
181 if (array1_byte_offset) {
182 *array1_byte_offset = n_slabs_context * (RTE_BITMAP_SLAB_BIT_SIZE / 8);
183 }
184 if (array1_slabs) {
185 *array1_slabs = n_slabs_array1;
186 }
187 if (array2_byte_offset) {
188 *array2_byte_offset = n_cache_lines_context_and_array1 * RTE_CACHE_LINE_SIZE;
189 }
190 if (array2_slabs) {
191 *array2_slabs = n_cache_lines_array2 * RTE_BITMAP_CL_SLAB_SIZE;
192 }
193
194 return n_bytes_total;
195 }
196
197 static inline void
198 __rte_bitmap_scan_init(struct rte_bitmap *bmp)
199 {
200 bmp->index1 = bmp->array1_size - 1;
201 bmp->offset1 = RTE_BITMAP_SLAB_BIT_SIZE - 1;
202 __rte_bitmap_index2_set(bmp);
203 bmp->index2 += RTE_BITMAP_CL_SLAB_SIZE;
204
205 bmp->go2 = 0;
206 }
207
208 /**
209 * Bitmap memory footprint calculation
210 *
211 * @param n_bits
212 * Number of bits in the bitmap
213 * @return
214 * Bitmap memory footprint measured in bytes on success, 0 on error
215 */
216 static inline uint32_t
217 rte_bitmap_get_memory_footprint(uint32_t n_bits) {
218 /* Check input arguments */
219 if (n_bits == 0) {
220 return 0;
221 }
222
223 return __rte_bitmap_get_memory_footprint(n_bits, NULL, NULL, NULL, NULL);
224 }
225
226 /**
227 * Bitmap initialization
228 *
229 * @param mem_size
230 * Minimum expected size of bitmap.
231 * @param mem
232 * Base address of array1 and array2.
233 * @param n_bits
234 * Number of pre-allocated bits in array2. Must be non-zero and multiple of 512.
235 * @return
236 * Handle to bitmap instance.
237 */
238 static inline struct rte_bitmap *
239 rte_bitmap_init(uint32_t n_bits, uint8_t *mem, uint32_t mem_size)
240 {
241 struct rte_bitmap *bmp;
242 uint32_t array1_byte_offset, array1_slabs, array2_byte_offset, array2_slabs;
243 uint32_t size;
244
245 /* Check input arguments */
246 if (n_bits == 0) {
247 return NULL;
248 }
249
250 if ((mem == NULL) || (((uintptr_t) mem) & RTE_CACHE_LINE_MASK)) {
251 return NULL;
252 }
253
254 size = __rte_bitmap_get_memory_footprint(n_bits,
255 &array1_byte_offset, &array1_slabs,
256 &array2_byte_offset, &array2_slabs);
257 if (size < mem_size) {
258 return NULL;
259 }
260
261 /* Setup bitmap */
262 memset(mem, 0, size);
263 bmp = (struct rte_bitmap *) mem;
264
265 bmp->array1 = (uint64_t *) &mem[array1_byte_offset];
266 bmp->array1_size = array1_slabs;
267 bmp->array2 = (uint64_t *) &mem[array2_byte_offset];
268 bmp->array2_size = array2_slabs;
269
270 __rte_bitmap_scan_init(bmp);
271
272 return bmp;
273 }
274
275 /**
276 * Bitmap free
277 *
278 * @param bmp
279 * Handle to bitmap instance
280 * @return
281 * 0 upon success, error code otherwise
282 */
283 static inline int
284 rte_bitmap_free(struct rte_bitmap *bmp)
285 {
286 /* Check input arguments */
287 if (bmp == NULL) {
288 return -1;
289 }
290
291 return 0;
292 }
293
294 /**
295 * Bitmap reset
296 *
297 * @param bmp
298 * Handle to bitmap instance
299 */
300 static inline void
301 rte_bitmap_reset(struct rte_bitmap *bmp)
302 {
303 memset(bmp->array1, 0, bmp->array1_size * sizeof(uint64_t));
304 memset(bmp->array2, 0, bmp->array2_size * sizeof(uint64_t));
305 __rte_bitmap_scan_init(bmp);
306 }
307
308 /**
309 * Bitmap location prefetch into CPU L1 cache
310 *
311 * @param bmp
312 * Handle to bitmap instance
313 * @param pos
314 * Bit position
315 * @return
316 * 0 upon success, error code otherwise
317 */
318 static inline void
319 rte_bitmap_prefetch0(struct rte_bitmap *bmp, uint32_t pos)
320 {
321 uint64_t *slab2;
322 uint32_t index2;
323
324 index2 = pos >> RTE_BITMAP_SLAB_BIT_SIZE_LOG2;
325 slab2 = bmp->array2 + index2;
326 rte_prefetch0((void *) slab2);
327 }
328
329 /**
330 * Bitmap bit get
331 *
332 * @param bmp
333 * Handle to bitmap instance
334 * @param pos
335 * Bit position
336 * @return
337 * 0 when bit is cleared, non-zero when bit is set
338 */
339 static inline uint64_t
340 rte_bitmap_get(struct rte_bitmap *bmp, uint32_t pos)
341 {
342 uint64_t *slab2;
343 uint32_t index2, offset2;
344
345 index2 = pos >> RTE_BITMAP_SLAB_BIT_SIZE_LOG2;
346 offset2 = pos & RTE_BITMAP_SLAB_BIT_MASK;
347 slab2 = bmp->array2 + index2;
348 return (*slab2) & (1lu << offset2);
349 }
350
351 /**
352 * Bitmap bit set
353 *
354 * @param bmp
355 * Handle to bitmap instance
356 * @param pos
357 * Bit position
358 */
359 static inline void
360 rte_bitmap_set(struct rte_bitmap *bmp, uint32_t pos)
361 {
362 uint64_t *slab1, *slab2;
363 uint32_t index1, index2, offset1, offset2;
364
365 /* Set bit in array2 slab and set bit in array1 slab */
366 index2 = pos >> RTE_BITMAP_SLAB_BIT_SIZE_LOG2;
367 offset2 = pos & RTE_BITMAP_SLAB_BIT_MASK;
368 index1 = pos >> (RTE_BITMAP_SLAB_BIT_SIZE_LOG2 + RTE_BITMAP_CL_BIT_SIZE_LOG2);
369 offset1 = (pos >> RTE_BITMAP_CL_BIT_SIZE_LOG2) & RTE_BITMAP_SLAB_BIT_MASK;
370 slab2 = bmp->array2 + index2;
371 slab1 = bmp->array1 + index1;
372
373 *slab2 |= 1lu << offset2;
374 *slab1 |= 1lu << offset1;
375 }
376
377 /**
378 * Bitmap slab set
379 *
380 * @param bmp
381 * Handle to bitmap instance
382 * @param pos
383 * Bit position identifying the array2 slab
384 * @param slab
385 * Value to be assigned to the 64-bit slab in array2
386 */
387 static inline void
388 rte_bitmap_set_slab(struct rte_bitmap *bmp, uint32_t pos, uint64_t slab)
389 {
390 uint64_t *slab1, *slab2;
391 uint32_t index1, index2, offset1;
392
393 /* Set bits in array2 slab and set bit in array1 slab */
394 index2 = pos >> RTE_BITMAP_SLAB_BIT_SIZE_LOG2;
395 index1 = pos >> (RTE_BITMAP_SLAB_BIT_SIZE_LOG2 + RTE_BITMAP_CL_BIT_SIZE_LOG2);
396 offset1 = (pos >> RTE_BITMAP_CL_BIT_SIZE_LOG2) & RTE_BITMAP_SLAB_BIT_MASK;
397 slab2 = bmp->array2 + index2;
398 slab1 = bmp->array1 + index1;
399
400 *slab2 |= slab;
401 *slab1 |= 1lu << offset1;
402 }
403
404 static inline uint64_t
405 __rte_bitmap_line_not_empty(uint64_t *slab2)
406 {
407 uint64_t v1, v2, v3, v4;
408
409 v1 = slab2[0] | slab2[1];
410 v2 = slab2[2] | slab2[3];
411 v3 = slab2[4] | slab2[5];
412 v4 = slab2[6] | slab2[7];
413 v1 |= v2;
414 v3 |= v4;
415
416 return v1 | v3;
417 }
418
419 /**
420 * Bitmap bit clear
421 *
422 * @param bmp
423 * Handle to bitmap instance
424 * @param pos
425 * Bit position
426 */
427 static inline void
428 rte_bitmap_clear(struct rte_bitmap *bmp, uint32_t pos)
429 {
430 uint64_t *slab1, *slab2;
431 uint32_t index1, index2, offset1, offset2;
432
433 /* Clear bit in array2 slab */
434 index2 = pos >> RTE_BITMAP_SLAB_BIT_SIZE_LOG2;
435 offset2 = pos & RTE_BITMAP_SLAB_BIT_MASK;
436 slab2 = bmp->array2 + index2;
437
438 /* Return if array2 slab is not all-zeros */
439 *slab2 &= ~(1lu << offset2);
440 if (*slab2){
441 return;
442 }
443
444 /* Check the entire cache line of array2 for all-zeros */
445 index2 &= ~ RTE_BITMAP_CL_SLAB_MASK;
446 slab2 = bmp->array2 + index2;
447 if (__rte_bitmap_line_not_empty(slab2)) {
448 return;
449 }
450
451 /* The array2 cache line is all-zeros, so clear bit in array1 slab */
452 index1 = pos >> (RTE_BITMAP_SLAB_BIT_SIZE_LOG2 + RTE_BITMAP_CL_BIT_SIZE_LOG2);
453 offset1 = (pos >> RTE_BITMAP_CL_BIT_SIZE_LOG2) & RTE_BITMAP_SLAB_BIT_MASK;
454 slab1 = bmp->array1 + index1;
455 *slab1 &= ~(1lu << offset1);
456
457 return;
458 }
459
460 static inline int
461 __rte_bitmap_scan_search(struct rte_bitmap *bmp)
462 {
463 uint64_t value1;
464 uint32_t i;
465
466 /* Check current array1 slab */
467 value1 = bmp->array1[bmp->index1];
468 value1 &= __rte_bitmap_mask1_get(bmp);
469
470 if (rte_bsf64(value1, &bmp->offset1)) {
471 return 1;
472 }
473
474 __rte_bitmap_index1_inc(bmp);
475 bmp->offset1 = 0;
476
477 /* Look for another array1 slab */
478 for (i = 0; i < bmp->array1_size; i ++, __rte_bitmap_index1_inc(bmp)) {
479 value1 = bmp->array1[bmp->index1];
480
481 if (rte_bsf64(value1, &bmp->offset1)) {
482 return 1;
483 }
484 }
485
486 return 0;
487 }
488
489 static inline void
490 __rte_bitmap_scan_read_init(struct rte_bitmap *bmp)
491 {
492 __rte_bitmap_index2_set(bmp);
493 bmp->go2 = 1;
494 rte_prefetch1((void *)(bmp->array2 + bmp->index2 + 8));
495 }
496
497 static inline int
498 __rte_bitmap_scan_read(struct rte_bitmap *bmp, uint32_t *pos, uint64_t *slab)
499 {
500 uint64_t *slab2;
501
502 slab2 = bmp->array2 + bmp->index2;
503 for ( ; bmp->go2 ; bmp->index2 ++, slab2 ++, bmp->go2 = bmp->index2 & RTE_BITMAP_CL_SLAB_MASK) {
504 if (*slab2) {
505 *pos = bmp->index2 << RTE_BITMAP_SLAB_BIT_SIZE_LOG2;
506 *slab = *slab2;
507
508 bmp->index2 ++;
509 slab2 ++;
510 bmp->go2 = bmp->index2 & RTE_BITMAP_CL_SLAB_MASK;
511 return 1;
512 }
513 }
514
515 return 0;
516 }
517
518 /**
519 * Bitmap scan (with automatic wrap-around)
520 *
521 * @param bmp
522 * Handle to bitmap instance
523 * @param pos
524 * When function call returns 1, pos contains the position of the next set
525 * bit, otherwise not modified
526 * @param slab
527 * When function call returns 1, slab contains the value of the entire 64-bit
528 * slab where the bit indicated by pos is located. Slabs are always 64-bit
529 * aligned, so the position of the first bit of the slab (this bit is not
530 * necessarily set) is pos / 64. Once a slab has been returned by the bitmap
531 * scan operation, the internal pointers of the bitmap are updated to point
532 * after this slab, so the same slab will not be returned again if it
533 * contains more than one bit which is set. When function call returns 0,
534 * slab is not modified.
535 * @return
536 * 0 if there is no bit set in the bitmap, 1 otherwise
537 */
538 static inline int
539 rte_bitmap_scan(struct rte_bitmap *bmp, uint32_t *pos, uint64_t *slab)
540 {
541 /* Return data from current array2 line if available */
542 if (__rte_bitmap_scan_read(bmp, pos, slab)) {
543 return 1;
544 }
545
546 /* Look for non-empty array2 line */
547 if (__rte_bitmap_scan_search(bmp)) {
548 __rte_bitmap_scan_read_init(bmp);
549 __rte_bitmap_scan_read(bmp, pos, slab);
550 return 1;
551 }
552
553 /* Empty bitmap */
554 return 0;
555 }
556
557 #ifdef __cplusplus
558 }
559 #endif
560
561 #endif /* __INCLUDE_RTE_BITMAP_H__ */