]> git.proxmox.com Git - ceph.git/blob - ceph/src/dpdk/lib/librte_sched/rte_sched.c
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / dpdk / lib / librte_sched / rte_sched.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <stdio.h>
35 #include <string.h>
36
37 #include <rte_common.h>
38 #include <rte_log.h>
39 #include <rte_memory.h>
40 #include <rte_malloc.h>
41 #include <rte_cycles.h>
42 #include <rte_prefetch.h>
43 #include <rte_branch_prediction.h>
44 #include <rte_mbuf.h>
45
46 #include "rte_sched.h"
47 #include "rte_bitmap.h"
48 #include "rte_sched_common.h"
49 #include "rte_approx.h"
50 #include "rte_reciprocal.h"
51
52 #ifdef __INTEL_COMPILER
53 #pragma warning(disable:2259) /* conversion may lose significant bits */
54 #endif
55
56 #ifdef RTE_SCHED_VECTOR
57 #include <rte_vect.h>
58
59 #if defined(__SSE4__)
60 #define SCHED_VECTOR_SSE4
61 #endif
62
63 #endif
64
65 #define RTE_SCHED_TB_RATE_CONFIG_ERR (1e-7)
66 #define RTE_SCHED_WRR_SHIFT 3
67 #define RTE_SCHED_GRINDER_PCACHE_SIZE (64 / RTE_SCHED_QUEUES_PER_PIPE)
68 #define RTE_SCHED_PIPE_INVALID UINT32_MAX
69 #define RTE_SCHED_BMP_POS_INVALID UINT32_MAX
70
71 /* Scaling for cycles_per_byte calculation
72 * Chosen so that minimum rate is 480 bit/sec
73 */
74 #define RTE_SCHED_TIME_SHIFT 8
75
76 struct rte_sched_subport {
77 /* Token bucket (TB) */
78 uint64_t tb_time; /* time of last update */
79 uint32_t tb_period;
80 uint32_t tb_credits_per_period;
81 uint32_t tb_size;
82 uint32_t tb_credits;
83
84 /* Traffic classes (TCs) */
85 uint64_t tc_time; /* time of next update */
86 uint32_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
87 uint32_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
88 uint32_t tc_period;
89
90 /* TC oversubscription */
91 uint32_t tc_ov_wm;
92 uint32_t tc_ov_wm_min;
93 uint32_t tc_ov_wm_max;
94 uint8_t tc_ov_period_id;
95 uint8_t tc_ov;
96 uint32_t tc_ov_n;
97 double tc_ov_rate;
98
99 /* Statistics */
100 struct rte_sched_subport_stats stats;
101 };
102
103 struct rte_sched_pipe_profile {
104 /* Token bucket (TB) */
105 uint32_t tb_period;
106 uint32_t tb_credits_per_period;
107 uint32_t tb_size;
108
109 /* Pipe traffic classes */
110 uint32_t tc_period;
111 uint32_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
112 uint8_t tc_ov_weight;
113
114 /* Pipe queues */
115 uint8_t wrr_cost[RTE_SCHED_QUEUES_PER_PIPE];
116 };
117
118 struct rte_sched_pipe {
119 /* Token bucket (TB) */
120 uint64_t tb_time; /* time of last update */
121 uint32_t tb_credits;
122
123 /* Pipe profile and flags */
124 uint32_t profile;
125
126 /* Traffic classes (TCs) */
127 uint64_t tc_time; /* time of next update */
128 uint32_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
129
130 /* Weighted Round Robin (WRR) */
131 uint8_t wrr_tokens[RTE_SCHED_QUEUES_PER_PIPE];
132
133 /* TC oversubscription */
134 uint32_t tc_ov_credits;
135 uint8_t tc_ov_period_id;
136 uint8_t reserved[3];
137 } __rte_cache_aligned;
138
139 struct rte_sched_queue {
140 uint16_t qw;
141 uint16_t qr;
142 };
143
144 struct rte_sched_queue_extra {
145 struct rte_sched_queue_stats stats;
146 #ifdef RTE_SCHED_RED
147 struct rte_red red;
148 #endif
149 };
150
151 enum grinder_state {
152 e_GRINDER_PREFETCH_PIPE = 0,
153 e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS,
154 e_GRINDER_PREFETCH_MBUF,
155 e_GRINDER_READ_MBUF
156 };
157
158 /*
159 * Path through the scheduler hierarchy used by the scheduler enqueue
160 * operation to identify the destination queue for the current
161 * packet. Stored in the field pkt.hash.sched of struct rte_mbuf of
162 * each packet, typically written by the classification stage and read
163 * by scheduler enqueue.
164 */
165 struct rte_sched_port_hierarchy {
166 uint16_t queue:2; /**< Queue ID (0 .. 3) */
167 uint16_t traffic_class:2; /**< Traffic class ID (0 .. 3)*/
168 uint32_t color:2; /**< Color */
169 uint16_t unused:10;
170 uint16_t subport; /**< Subport ID */
171 uint32_t pipe; /**< Pipe ID */
172 };
173
174 struct rte_sched_grinder {
175 /* Pipe cache */
176 uint16_t pcache_qmask[RTE_SCHED_GRINDER_PCACHE_SIZE];
177 uint32_t pcache_qindex[RTE_SCHED_GRINDER_PCACHE_SIZE];
178 uint32_t pcache_w;
179 uint32_t pcache_r;
180
181 /* Current pipe */
182 enum grinder_state state;
183 uint32_t productive;
184 uint32_t pindex;
185 struct rte_sched_subport *subport;
186 struct rte_sched_pipe *pipe;
187 struct rte_sched_pipe_profile *pipe_params;
188
189 /* TC cache */
190 uint8_t tccache_qmask[4];
191 uint32_t tccache_qindex[4];
192 uint32_t tccache_w;
193 uint32_t tccache_r;
194
195 /* Current TC */
196 uint32_t tc_index;
197 struct rte_sched_queue *queue[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
198 struct rte_mbuf **qbase[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
199 uint32_t qindex[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
200 uint16_t qsize;
201 uint32_t qmask;
202 uint32_t qpos;
203 struct rte_mbuf *pkt;
204
205 /* WRR */
206 uint16_t wrr_tokens[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
207 uint16_t wrr_mask[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
208 uint8_t wrr_cost[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
209 };
210
211 struct rte_sched_port {
212 /* User parameters */
213 uint32_t n_subports_per_port;
214 uint32_t n_pipes_per_subport;
215 uint32_t rate;
216 uint32_t mtu;
217 uint32_t frame_overhead;
218 uint16_t qsize[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
219 uint32_t n_pipe_profiles;
220 uint32_t pipe_tc3_rate_max;
221 #ifdef RTE_SCHED_RED
222 struct rte_red_config red_config[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE][e_RTE_METER_COLORS];
223 #endif
224
225 /* Timing */
226 uint64_t time_cpu_cycles; /* Current CPU time measured in CPU cyles */
227 uint64_t time_cpu_bytes; /* Current CPU time measured in bytes */
228 uint64_t time; /* Current NIC TX time measured in bytes */
229 struct rte_reciprocal inv_cycles_per_byte; /* CPU cycles per byte */
230
231 /* Scheduling loop detection */
232 uint32_t pipe_loop;
233 uint32_t pipe_exhaustion;
234
235 /* Bitmap */
236 struct rte_bitmap *bmp;
237 uint32_t grinder_base_bmp_pos[RTE_SCHED_PORT_N_GRINDERS] __rte_aligned_16;
238
239 /* Grinders */
240 struct rte_sched_grinder grinder[RTE_SCHED_PORT_N_GRINDERS];
241 uint32_t busy_grinders;
242 struct rte_mbuf **pkts_out;
243 uint32_t n_pkts_out;
244
245 /* Queue base calculation */
246 uint32_t qsize_add[RTE_SCHED_QUEUES_PER_PIPE];
247 uint32_t qsize_sum;
248
249 /* Large data structures */
250 struct rte_sched_subport *subport;
251 struct rte_sched_pipe *pipe;
252 struct rte_sched_queue *queue;
253 struct rte_sched_queue_extra *queue_extra;
254 struct rte_sched_pipe_profile *pipe_profiles;
255 uint8_t *bmp_array;
256 struct rte_mbuf **queue_array;
257 uint8_t memory[0] __rte_cache_aligned;
258 } __rte_cache_aligned;
259
260 enum rte_sched_port_array {
261 e_RTE_SCHED_PORT_ARRAY_SUBPORT = 0,
262 e_RTE_SCHED_PORT_ARRAY_PIPE,
263 e_RTE_SCHED_PORT_ARRAY_QUEUE,
264 e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA,
265 e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES,
266 e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY,
267 e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY,
268 e_RTE_SCHED_PORT_ARRAY_TOTAL,
269 };
270
271 #ifdef RTE_SCHED_COLLECT_STATS
272
273 static inline uint32_t
274 rte_sched_port_queues_per_subport(struct rte_sched_port *port)
275 {
276 return RTE_SCHED_QUEUES_PER_PIPE * port->n_pipes_per_subport;
277 }
278
279 #endif
280
281 static inline uint32_t
282 rte_sched_port_queues_per_port(struct rte_sched_port *port)
283 {
284 return RTE_SCHED_QUEUES_PER_PIPE * port->n_pipes_per_subport * port->n_subports_per_port;
285 }
286
287 static inline struct rte_mbuf **
288 rte_sched_port_qbase(struct rte_sched_port *port, uint32_t qindex)
289 {
290 uint32_t pindex = qindex >> 4;
291 uint32_t qpos = qindex & 0xF;
292
293 return (port->queue_array + pindex *
294 port->qsize_sum + port->qsize_add[qpos]);
295 }
296
297 static inline uint16_t
298 rte_sched_port_qsize(struct rte_sched_port *port, uint32_t qindex)
299 {
300 uint32_t tc = (qindex >> 2) & 0x3;
301
302 return port->qsize[tc];
303 }
304
305 static int
306 rte_sched_port_check_params(struct rte_sched_port_params *params)
307 {
308 uint32_t i, j;
309
310 if (params == NULL)
311 return -1;
312
313 /* socket */
314 if ((params->socket < 0) || (params->socket >= RTE_MAX_NUMA_NODES))
315 return -3;
316
317 /* rate */
318 if (params->rate == 0)
319 return -4;
320
321 /* mtu */
322 if (params->mtu == 0)
323 return -5;
324
325 /* n_subports_per_port: non-zero, limited to 16 bits, power of 2 */
326 if (params->n_subports_per_port == 0 ||
327 params->n_subports_per_port > 1u << 16 ||
328 !rte_is_power_of_2(params->n_subports_per_port))
329 return -6;
330
331 /* n_pipes_per_subport: non-zero, power of 2 */
332 if (params->n_pipes_per_subport == 0 ||
333 !rte_is_power_of_2(params->n_pipes_per_subport))
334 return -7;
335
336 /* qsize: non-zero, power of 2,
337 * no bigger than 32K (due to 16-bit read/write pointers)
338 */
339 for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
340 uint16_t qsize = params->qsize[i];
341
342 if (qsize == 0 || !rte_is_power_of_2(qsize))
343 return -8;
344 }
345
346 /* pipe_profiles and n_pipe_profiles */
347 if (params->pipe_profiles == NULL ||
348 params->n_pipe_profiles == 0 ||
349 params->n_pipe_profiles > RTE_SCHED_PIPE_PROFILES_PER_PORT)
350 return -9;
351
352 for (i = 0; i < params->n_pipe_profiles; i++) {
353 struct rte_sched_pipe_params *p = params->pipe_profiles + i;
354
355 /* TB rate: non-zero, not greater than port rate */
356 if (p->tb_rate == 0 || p->tb_rate > params->rate)
357 return -10;
358
359 /* TB size: non-zero */
360 if (p->tb_size == 0)
361 return -11;
362
363 /* TC rate: non-zero, less than pipe rate */
364 for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) {
365 if (p->tc_rate[j] == 0 || p->tc_rate[j] > p->tb_rate)
366 return -12;
367 }
368
369 /* TC period: non-zero */
370 if (p->tc_period == 0)
371 return -13;
372
373 #ifdef RTE_SCHED_SUBPORT_TC_OV
374 /* TC3 oversubscription weight: non-zero */
375 if (p->tc_ov_weight == 0)
376 return -14;
377 #endif
378
379 /* Queue WRR weights: non-zero */
380 for (j = 0; j < RTE_SCHED_QUEUES_PER_PIPE; j++) {
381 if (p->wrr_weights[j] == 0)
382 return -15;
383 }
384 }
385
386 return 0;
387 }
388
389 static uint32_t
390 rte_sched_port_get_array_base(struct rte_sched_port_params *params, enum rte_sched_port_array array)
391 {
392 uint32_t n_subports_per_port = params->n_subports_per_port;
393 uint32_t n_pipes_per_subport = params->n_pipes_per_subport;
394 uint32_t n_pipes_per_port = n_pipes_per_subport * n_subports_per_port;
395 uint32_t n_queues_per_port = RTE_SCHED_QUEUES_PER_PIPE * n_pipes_per_subport * n_subports_per_port;
396
397 uint32_t size_subport = n_subports_per_port * sizeof(struct rte_sched_subport);
398 uint32_t size_pipe = n_pipes_per_port * sizeof(struct rte_sched_pipe);
399 uint32_t size_queue = n_queues_per_port * sizeof(struct rte_sched_queue);
400 uint32_t size_queue_extra
401 = n_queues_per_port * sizeof(struct rte_sched_queue_extra);
402 uint32_t size_pipe_profiles
403 = RTE_SCHED_PIPE_PROFILES_PER_PORT * sizeof(struct rte_sched_pipe_profile);
404 uint32_t size_bmp_array = rte_bitmap_get_memory_footprint(n_queues_per_port);
405 uint32_t size_per_pipe_queue_array, size_queue_array;
406
407 uint32_t base, i;
408
409 size_per_pipe_queue_array = 0;
410 for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
411 size_per_pipe_queue_array += RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS
412 * params->qsize[i] * sizeof(struct rte_mbuf *);
413 }
414 size_queue_array = n_pipes_per_port * size_per_pipe_queue_array;
415
416 base = 0;
417
418 if (array == e_RTE_SCHED_PORT_ARRAY_SUBPORT)
419 return base;
420 base += RTE_CACHE_LINE_ROUNDUP(size_subport);
421
422 if (array == e_RTE_SCHED_PORT_ARRAY_PIPE)
423 return base;
424 base += RTE_CACHE_LINE_ROUNDUP(size_pipe);
425
426 if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE)
427 return base;
428 base += RTE_CACHE_LINE_ROUNDUP(size_queue);
429
430 if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA)
431 return base;
432 base += RTE_CACHE_LINE_ROUNDUP(size_queue_extra);
433
434 if (array == e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES)
435 return base;
436 base += RTE_CACHE_LINE_ROUNDUP(size_pipe_profiles);
437
438 if (array == e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY)
439 return base;
440 base += RTE_CACHE_LINE_ROUNDUP(size_bmp_array);
441
442 if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY)
443 return base;
444 base += RTE_CACHE_LINE_ROUNDUP(size_queue_array);
445
446 return base;
447 }
448
449 uint32_t
450 rte_sched_port_get_memory_footprint(struct rte_sched_port_params *params)
451 {
452 uint32_t size0, size1;
453 int status;
454
455 status = rte_sched_port_check_params(params);
456 if (status != 0) {
457 RTE_LOG(NOTICE, SCHED,
458 "Port scheduler params check failed (%d)\n", status);
459
460 return 0;
461 }
462
463 size0 = sizeof(struct rte_sched_port);
464 size1 = rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_TOTAL);
465
466 return size0 + size1;
467 }
468
469 static void
470 rte_sched_port_config_qsize(struct rte_sched_port *port)
471 {
472 /* TC 0 */
473 port->qsize_add[0] = 0;
474 port->qsize_add[1] = port->qsize_add[0] + port->qsize[0];
475 port->qsize_add[2] = port->qsize_add[1] + port->qsize[0];
476 port->qsize_add[3] = port->qsize_add[2] + port->qsize[0];
477
478 /* TC 1 */
479 port->qsize_add[4] = port->qsize_add[3] + port->qsize[0];
480 port->qsize_add[5] = port->qsize_add[4] + port->qsize[1];
481 port->qsize_add[6] = port->qsize_add[5] + port->qsize[1];
482 port->qsize_add[7] = port->qsize_add[6] + port->qsize[1];
483
484 /* TC 2 */
485 port->qsize_add[8] = port->qsize_add[7] + port->qsize[1];
486 port->qsize_add[9] = port->qsize_add[8] + port->qsize[2];
487 port->qsize_add[10] = port->qsize_add[9] + port->qsize[2];
488 port->qsize_add[11] = port->qsize_add[10] + port->qsize[2];
489
490 /* TC 3 */
491 port->qsize_add[12] = port->qsize_add[11] + port->qsize[2];
492 port->qsize_add[13] = port->qsize_add[12] + port->qsize[3];
493 port->qsize_add[14] = port->qsize_add[13] + port->qsize[3];
494 port->qsize_add[15] = port->qsize_add[14] + port->qsize[3];
495
496 port->qsize_sum = port->qsize_add[15] + port->qsize[3];
497 }
498
499 static void
500 rte_sched_port_log_pipe_profile(struct rte_sched_port *port, uint32_t i)
501 {
502 struct rte_sched_pipe_profile *p = port->pipe_profiles + i;
503
504 RTE_LOG(DEBUG, SCHED, "Low level config for pipe profile %u:\n"
505 " Token bucket: period = %u, credits per period = %u, size = %u\n"
506 " Traffic classes: period = %u, credits per period = [%u, %u, %u, %u]\n"
507 " Traffic class 3 oversubscription: weight = %hhu\n"
508 " WRR cost: [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu]\n",
509 i,
510
511 /* Token bucket */
512 p->tb_period,
513 p->tb_credits_per_period,
514 p->tb_size,
515
516 /* Traffic classes */
517 p->tc_period,
518 p->tc_credits_per_period[0],
519 p->tc_credits_per_period[1],
520 p->tc_credits_per_period[2],
521 p->tc_credits_per_period[3],
522
523 /* Traffic class 3 oversubscription */
524 p->tc_ov_weight,
525
526 /* WRR */
527 p->wrr_cost[ 0], p->wrr_cost[ 1], p->wrr_cost[ 2], p->wrr_cost[ 3],
528 p->wrr_cost[ 4], p->wrr_cost[ 5], p->wrr_cost[ 6], p->wrr_cost[ 7],
529 p->wrr_cost[ 8], p->wrr_cost[ 9], p->wrr_cost[10], p->wrr_cost[11],
530 p->wrr_cost[12], p->wrr_cost[13], p->wrr_cost[14], p->wrr_cost[15]);
531 }
532
533 static inline uint64_t
534 rte_sched_time_ms_to_bytes(uint32_t time_ms, uint32_t rate)
535 {
536 uint64_t time = time_ms;
537
538 time = (time * rate) / 1000;
539
540 return time;
541 }
542
543 static void
544 rte_sched_port_config_pipe_profile_table(struct rte_sched_port *port, struct rte_sched_port_params *params)
545 {
546 uint32_t i, j;
547
548 for (i = 0; i < port->n_pipe_profiles; i++) {
549 struct rte_sched_pipe_params *src = params->pipe_profiles + i;
550 struct rte_sched_pipe_profile *dst = port->pipe_profiles + i;
551
552 /* Token Bucket */
553 if (src->tb_rate == params->rate) {
554 dst->tb_credits_per_period = 1;
555 dst->tb_period = 1;
556 } else {
557 double tb_rate = (double) src->tb_rate
558 / (double) params->rate;
559 double d = RTE_SCHED_TB_RATE_CONFIG_ERR;
560
561 rte_approx(tb_rate, d,
562 &dst->tb_credits_per_period, &dst->tb_period);
563 }
564 dst->tb_size = src->tb_size;
565
566 /* Traffic Classes */
567 dst->tc_period = rte_sched_time_ms_to_bytes(src->tc_period,
568 params->rate);
569
570 for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++)
571 dst->tc_credits_per_period[j]
572 = rte_sched_time_ms_to_bytes(src->tc_period,
573 src->tc_rate[j]);
574
575 #ifdef RTE_SCHED_SUBPORT_TC_OV
576 dst->tc_ov_weight = src->tc_ov_weight;
577 #endif
578
579 /* WRR */
580 for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) {
581 uint32_t wrr_cost[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
582 uint32_t lcd, lcd1, lcd2;
583 uint32_t qindex;
584
585 qindex = j * RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS;
586
587 wrr_cost[0] = src->wrr_weights[qindex];
588 wrr_cost[1] = src->wrr_weights[qindex + 1];
589 wrr_cost[2] = src->wrr_weights[qindex + 2];
590 wrr_cost[3] = src->wrr_weights[qindex + 3];
591
592 lcd1 = rte_get_lcd(wrr_cost[0], wrr_cost[1]);
593 lcd2 = rte_get_lcd(wrr_cost[2], wrr_cost[3]);
594 lcd = rte_get_lcd(lcd1, lcd2);
595
596 wrr_cost[0] = lcd / wrr_cost[0];
597 wrr_cost[1] = lcd / wrr_cost[1];
598 wrr_cost[2] = lcd / wrr_cost[2];
599 wrr_cost[3] = lcd / wrr_cost[3];
600
601 dst->wrr_cost[qindex] = (uint8_t) wrr_cost[0];
602 dst->wrr_cost[qindex + 1] = (uint8_t) wrr_cost[1];
603 dst->wrr_cost[qindex + 2] = (uint8_t) wrr_cost[2];
604 dst->wrr_cost[qindex + 3] = (uint8_t) wrr_cost[3];
605 }
606
607 rte_sched_port_log_pipe_profile(port, i);
608 }
609
610 port->pipe_tc3_rate_max = 0;
611 for (i = 0; i < port->n_pipe_profiles; i++) {
612 struct rte_sched_pipe_params *src = params->pipe_profiles + i;
613 uint32_t pipe_tc3_rate = src->tc_rate[3];
614
615 if (port->pipe_tc3_rate_max < pipe_tc3_rate)
616 port->pipe_tc3_rate_max = pipe_tc3_rate;
617 }
618 }
619
620 struct rte_sched_port *
621 rte_sched_port_config(struct rte_sched_port_params *params)
622 {
623 struct rte_sched_port *port = NULL;
624 uint32_t mem_size, bmp_mem_size, n_queues_per_port, i, cycles_per_byte;
625
626 /* Check user parameters. Determine the amount of memory to allocate */
627 mem_size = rte_sched_port_get_memory_footprint(params);
628 if (mem_size == 0)
629 return NULL;
630
631 /* Allocate memory to store the data structures */
632 port = rte_zmalloc("qos_params", mem_size, RTE_CACHE_LINE_SIZE);
633 if (port == NULL)
634 return NULL;
635
636 /* compile time checks */
637 RTE_BUILD_BUG_ON(RTE_SCHED_PORT_N_GRINDERS == 0);
638 RTE_BUILD_BUG_ON(RTE_SCHED_PORT_N_GRINDERS & (RTE_SCHED_PORT_N_GRINDERS - 1));
639
640 /* User parameters */
641 port->n_subports_per_port = params->n_subports_per_port;
642 port->n_pipes_per_subport = params->n_pipes_per_subport;
643 port->rate = params->rate;
644 port->mtu = params->mtu + params->frame_overhead;
645 port->frame_overhead = params->frame_overhead;
646 memcpy(port->qsize, params->qsize, sizeof(params->qsize));
647 port->n_pipe_profiles = params->n_pipe_profiles;
648
649 #ifdef RTE_SCHED_RED
650 for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
651 uint32_t j;
652
653 for (j = 0; j < e_RTE_METER_COLORS; j++) {
654 /* if min/max are both zero, then RED is disabled */
655 if ((params->red_params[i][j].min_th |
656 params->red_params[i][j].max_th) == 0) {
657 continue;
658 }
659
660 if (rte_red_config_init(&port->red_config[i][j],
661 params->red_params[i][j].wq_log2,
662 params->red_params[i][j].min_th,
663 params->red_params[i][j].max_th,
664 params->red_params[i][j].maxp_inv) != 0) {
665 return NULL;
666 }
667 }
668 }
669 #endif
670
671 /* Timing */
672 port->time_cpu_cycles = rte_get_tsc_cycles();
673 port->time_cpu_bytes = 0;
674 port->time = 0;
675
676 cycles_per_byte = (rte_get_tsc_hz() << RTE_SCHED_TIME_SHIFT)
677 / params->rate;
678 port->inv_cycles_per_byte = rte_reciprocal_value(cycles_per_byte);
679
680 /* Scheduling loop detection */
681 port->pipe_loop = RTE_SCHED_PIPE_INVALID;
682 port->pipe_exhaustion = 0;
683
684 /* Grinders */
685 port->busy_grinders = 0;
686 port->pkts_out = NULL;
687 port->n_pkts_out = 0;
688
689 /* Queue base calculation */
690 rte_sched_port_config_qsize(port);
691
692 /* Large data structures */
693 port->subport = (struct rte_sched_subport *)
694 (port->memory + rte_sched_port_get_array_base(params,
695 e_RTE_SCHED_PORT_ARRAY_SUBPORT));
696 port->pipe = (struct rte_sched_pipe *)
697 (port->memory + rte_sched_port_get_array_base(params,
698 e_RTE_SCHED_PORT_ARRAY_PIPE));
699 port->queue = (struct rte_sched_queue *)
700 (port->memory + rte_sched_port_get_array_base(params,
701 e_RTE_SCHED_PORT_ARRAY_QUEUE));
702 port->queue_extra = (struct rte_sched_queue_extra *)
703 (port->memory + rte_sched_port_get_array_base(params,
704 e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA));
705 port->pipe_profiles = (struct rte_sched_pipe_profile *)
706 (port->memory + rte_sched_port_get_array_base(params,
707 e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES));
708 port->bmp_array = port->memory
709 + rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY);
710 port->queue_array = (struct rte_mbuf **)
711 (port->memory + rte_sched_port_get_array_base(params,
712 e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY));
713
714 /* Pipe profile table */
715 rte_sched_port_config_pipe_profile_table(port, params);
716
717 /* Bitmap */
718 n_queues_per_port = rte_sched_port_queues_per_port(port);
719 bmp_mem_size = rte_bitmap_get_memory_footprint(n_queues_per_port);
720 port->bmp = rte_bitmap_init(n_queues_per_port, port->bmp_array,
721 bmp_mem_size);
722 if (port->bmp == NULL) {
723 RTE_LOG(ERR, SCHED, "Bitmap init error\n");
724 return NULL;
725 }
726
727 for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i++)
728 port->grinder_base_bmp_pos[i] = RTE_SCHED_PIPE_INVALID;
729
730
731 return port;
732 }
733
734 void
735 rte_sched_port_free(struct rte_sched_port *port)
736 {
737 uint32_t qindex;
738 uint32_t n_queues_per_port = rte_sched_port_queues_per_port(port);
739
740 /* Check user parameters */
741 if (port == NULL)
742 return;
743
744 /* Free enqueued mbufs */
745 for (qindex = 0; qindex < n_queues_per_port; qindex++) {
746 struct rte_mbuf **mbufs = rte_sched_port_qbase(port, qindex);
747 uint16_t qsize = rte_sched_port_qsize(port, qindex);
748 struct rte_sched_queue *queue = port->queue + qindex;
749 uint16_t qr = queue->qr & (qsize - 1);
750 uint16_t qw = queue->qw & (qsize - 1);
751
752 for (; qr != qw; qr = (qr + 1) & (qsize - 1))
753 rte_pktmbuf_free(mbufs[qr]);
754 }
755
756 rte_bitmap_free(port->bmp);
757 rte_free(port);
758 }
759
760 static void
761 rte_sched_port_log_subport_config(struct rte_sched_port *port, uint32_t i)
762 {
763 struct rte_sched_subport *s = port->subport + i;
764
765 RTE_LOG(DEBUG, SCHED, "Low level config for subport %u:\n"
766 " Token bucket: period = %u, credits per period = %u, size = %u\n"
767 " Traffic classes: period = %u, credits per period = [%u, %u, %u, %u]\n"
768 " Traffic class 3 oversubscription: wm min = %u, wm max = %u\n",
769 i,
770
771 /* Token bucket */
772 s->tb_period,
773 s->tb_credits_per_period,
774 s->tb_size,
775
776 /* Traffic classes */
777 s->tc_period,
778 s->tc_credits_per_period[0],
779 s->tc_credits_per_period[1],
780 s->tc_credits_per_period[2],
781 s->tc_credits_per_period[3],
782
783 /* Traffic class 3 oversubscription */
784 s->tc_ov_wm_min,
785 s->tc_ov_wm_max);
786 }
787
788 int
789 rte_sched_subport_config(struct rte_sched_port *port,
790 uint32_t subport_id,
791 struct rte_sched_subport_params *params)
792 {
793 struct rte_sched_subport *s;
794 uint32_t i;
795
796 /* Check user parameters */
797 if (port == NULL ||
798 subport_id >= port->n_subports_per_port ||
799 params == NULL)
800 return -1;
801
802 if (params->tb_rate == 0 || params->tb_rate > port->rate)
803 return -2;
804
805 if (params->tb_size == 0)
806 return -3;
807
808 for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
809 if (params->tc_rate[i] == 0 ||
810 params->tc_rate[i] > params->tb_rate)
811 return -4;
812 }
813
814 if (params->tc_period == 0)
815 return -5;
816
817 s = port->subport + subport_id;
818
819 /* Token Bucket (TB) */
820 if (params->tb_rate == port->rate) {
821 s->tb_credits_per_period = 1;
822 s->tb_period = 1;
823 } else {
824 double tb_rate = ((double) params->tb_rate) / ((double) port->rate);
825 double d = RTE_SCHED_TB_RATE_CONFIG_ERR;
826
827 rte_approx(tb_rate, d, &s->tb_credits_per_period, &s->tb_period);
828 }
829
830 s->tb_size = params->tb_size;
831 s->tb_time = port->time;
832 s->tb_credits = s->tb_size / 2;
833
834 /* Traffic Classes (TCs) */
835 s->tc_period = rte_sched_time_ms_to_bytes(params->tc_period, port->rate);
836 for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
837 s->tc_credits_per_period[i]
838 = rte_sched_time_ms_to_bytes(params->tc_period,
839 params->tc_rate[i]);
840 }
841 s->tc_time = port->time + s->tc_period;
842 for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++)
843 s->tc_credits[i] = s->tc_credits_per_period[i];
844
845 #ifdef RTE_SCHED_SUBPORT_TC_OV
846 /* TC oversubscription */
847 s->tc_ov_wm_min = port->mtu;
848 s->tc_ov_wm_max = rte_sched_time_ms_to_bytes(params->tc_period,
849 port->pipe_tc3_rate_max);
850 s->tc_ov_wm = s->tc_ov_wm_max;
851 s->tc_ov_period_id = 0;
852 s->tc_ov = 0;
853 s->tc_ov_n = 0;
854 s->tc_ov_rate = 0;
855 #endif
856
857 rte_sched_port_log_subport_config(port, subport_id);
858
859 return 0;
860 }
861
862 int
863 rte_sched_pipe_config(struct rte_sched_port *port,
864 uint32_t subport_id,
865 uint32_t pipe_id,
866 int32_t pipe_profile)
867 {
868 struct rte_sched_subport *s;
869 struct rte_sched_pipe *p;
870 struct rte_sched_pipe_profile *params;
871 uint32_t deactivate, profile, i;
872
873 /* Check user parameters */
874 profile = (uint32_t) pipe_profile;
875 deactivate = (pipe_profile < 0);
876
877 if (port == NULL ||
878 subport_id >= port->n_subports_per_port ||
879 pipe_id >= port->n_pipes_per_subport ||
880 (!deactivate && profile >= port->n_pipe_profiles))
881 return -1;
882
883
884 /* Check that subport configuration is valid */
885 s = port->subport + subport_id;
886 if (s->tb_period == 0)
887 return -2;
888
889 p = port->pipe + (subport_id * port->n_pipes_per_subport + pipe_id);
890
891 /* Handle the case when pipe already has a valid configuration */
892 if (p->tb_time) {
893 params = port->pipe_profiles + p->profile;
894
895 #ifdef RTE_SCHED_SUBPORT_TC_OV
896 double subport_tc3_rate = (double) s->tc_credits_per_period[3]
897 / (double) s->tc_period;
898 double pipe_tc3_rate = (double) params->tc_credits_per_period[3]
899 / (double) params->tc_period;
900 uint32_t tc3_ov = s->tc_ov;
901
902 /* Unplug pipe from its subport */
903 s->tc_ov_n -= params->tc_ov_weight;
904 s->tc_ov_rate -= pipe_tc3_rate;
905 s->tc_ov = s->tc_ov_rate > subport_tc3_rate;
906
907 if (s->tc_ov != tc3_ov) {
908 RTE_LOG(DEBUG, SCHED,
909 "Subport %u TC3 oversubscription is OFF (%.4lf >= %.4lf)\n",
910 subport_id, subport_tc3_rate, s->tc_ov_rate);
911 }
912 #endif
913
914 /* Reset the pipe */
915 memset(p, 0, sizeof(struct rte_sched_pipe));
916 }
917
918 if (deactivate)
919 return 0;
920
921 /* Apply the new pipe configuration */
922 p->profile = profile;
923 params = port->pipe_profiles + p->profile;
924
925 /* Token Bucket (TB) */
926 p->tb_time = port->time;
927 p->tb_credits = params->tb_size / 2;
928
929 /* Traffic Classes (TCs) */
930 p->tc_time = port->time + params->tc_period;
931 for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++)
932 p->tc_credits[i] = params->tc_credits_per_period[i];
933
934 #ifdef RTE_SCHED_SUBPORT_TC_OV
935 {
936 /* Subport TC3 oversubscription */
937 double subport_tc3_rate = (double) s->tc_credits_per_period[3]
938 / (double) s->tc_period;
939 double pipe_tc3_rate = (double) params->tc_credits_per_period[3]
940 / (double) params->tc_period;
941 uint32_t tc3_ov = s->tc_ov;
942
943 s->tc_ov_n += params->tc_ov_weight;
944 s->tc_ov_rate += pipe_tc3_rate;
945 s->tc_ov = s->tc_ov_rate > subport_tc3_rate;
946
947 if (s->tc_ov != tc3_ov) {
948 RTE_LOG(DEBUG, SCHED,
949 "Subport %u TC3 oversubscription is ON (%.4lf < %.4lf)\n",
950 subport_id, subport_tc3_rate, s->tc_ov_rate);
951 }
952 p->tc_ov_period_id = s->tc_ov_period_id;
953 p->tc_ov_credits = s->tc_ov_wm;
954 }
955 #endif
956
957 return 0;
958 }
959
960 void
961 rte_sched_port_pkt_write(struct rte_mbuf *pkt,
962 uint32_t subport, uint32_t pipe, uint32_t traffic_class,
963 uint32_t queue, enum rte_meter_color color)
964 {
965 struct rte_sched_port_hierarchy *sched
966 = (struct rte_sched_port_hierarchy *) &pkt->hash.sched;
967
968 RTE_BUILD_BUG_ON(sizeof(*sched) > sizeof(pkt->hash.sched));
969
970 sched->color = (uint32_t) color;
971 sched->subport = subport;
972 sched->pipe = pipe;
973 sched->traffic_class = traffic_class;
974 sched->queue = queue;
975 }
976
977 void
978 rte_sched_port_pkt_read_tree_path(const struct rte_mbuf *pkt,
979 uint32_t *subport, uint32_t *pipe,
980 uint32_t *traffic_class, uint32_t *queue)
981 {
982 const struct rte_sched_port_hierarchy *sched
983 = (const struct rte_sched_port_hierarchy *) &pkt->hash.sched;
984
985 *subport = sched->subport;
986 *pipe = sched->pipe;
987 *traffic_class = sched->traffic_class;
988 *queue = sched->queue;
989 }
990
991 enum rte_meter_color
992 rte_sched_port_pkt_read_color(const struct rte_mbuf *pkt)
993 {
994 const struct rte_sched_port_hierarchy *sched
995 = (const struct rte_sched_port_hierarchy *) &pkt->hash.sched;
996
997 return (enum rte_meter_color) sched->color;
998 }
999
1000 int
1001 rte_sched_subport_read_stats(struct rte_sched_port *port,
1002 uint32_t subport_id,
1003 struct rte_sched_subport_stats *stats,
1004 uint32_t *tc_ov)
1005 {
1006 struct rte_sched_subport *s;
1007
1008 /* Check user parameters */
1009 if (port == NULL || subport_id >= port->n_subports_per_port ||
1010 stats == NULL || tc_ov == NULL)
1011 return -1;
1012
1013 s = port->subport + subport_id;
1014
1015 /* Copy subport stats and clear */
1016 memcpy(stats, &s->stats, sizeof(struct rte_sched_subport_stats));
1017 memset(&s->stats, 0, sizeof(struct rte_sched_subport_stats));
1018
1019 /* Subport TC ovesubscription status */
1020 *tc_ov = s->tc_ov;
1021
1022 return 0;
1023 }
1024
1025 int
1026 rte_sched_queue_read_stats(struct rte_sched_port *port,
1027 uint32_t queue_id,
1028 struct rte_sched_queue_stats *stats,
1029 uint16_t *qlen)
1030 {
1031 struct rte_sched_queue *q;
1032 struct rte_sched_queue_extra *qe;
1033
1034 /* Check user parameters */
1035 if ((port == NULL) ||
1036 (queue_id >= rte_sched_port_queues_per_port(port)) ||
1037 (stats == NULL) ||
1038 (qlen == NULL)) {
1039 return -1;
1040 }
1041 q = port->queue + queue_id;
1042 qe = port->queue_extra + queue_id;
1043
1044 /* Copy queue stats and clear */
1045 memcpy(stats, &qe->stats, sizeof(struct rte_sched_queue_stats));
1046 memset(&qe->stats, 0, sizeof(struct rte_sched_queue_stats));
1047
1048 /* Queue length */
1049 *qlen = q->qw - q->qr;
1050
1051 return 0;
1052 }
1053
1054 static inline uint32_t
1055 rte_sched_port_qindex(struct rte_sched_port *port, uint32_t subport, uint32_t pipe, uint32_t traffic_class, uint32_t queue)
1056 {
1057 uint32_t result;
1058
1059 result = subport * port->n_pipes_per_subport + pipe;
1060 result = result * RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE + traffic_class;
1061 result = result * RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS + queue;
1062
1063 return result;
1064 }
1065
1066 #ifdef RTE_SCHED_DEBUG
1067
1068 static inline int
1069 rte_sched_port_queue_is_empty(struct rte_sched_port *port, uint32_t qindex)
1070 {
1071 struct rte_sched_queue *queue = port->queue + qindex;
1072
1073 return queue->qr == queue->qw;
1074 }
1075
1076 #endif /* RTE_SCHED_DEBUG */
1077
1078 #ifdef RTE_SCHED_COLLECT_STATS
1079
1080 static inline void
1081 rte_sched_port_update_subport_stats(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt)
1082 {
1083 struct rte_sched_subport *s = port->subport + (qindex / rte_sched_port_queues_per_subport(port));
1084 uint32_t tc_index = (qindex >> 2) & 0x3;
1085 uint32_t pkt_len = pkt->pkt_len;
1086
1087 s->stats.n_pkts_tc[tc_index] += 1;
1088 s->stats.n_bytes_tc[tc_index] += pkt_len;
1089 }
1090
1091 #ifdef RTE_SCHED_RED
1092 static inline void
1093 rte_sched_port_update_subport_stats_on_drop(struct rte_sched_port *port,
1094 uint32_t qindex,
1095 struct rte_mbuf *pkt, uint32_t red)
1096 #else
1097 static inline void
1098 rte_sched_port_update_subport_stats_on_drop(struct rte_sched_port *port,
1099 uint32_t qindex,
1100 struct rte_mbuf *pkt, __rte_unused uint32_t red)
1101 #endif
1102 {
1103 struct rte_sched_subport *s = port->subport + (qindex / rte_sched_port_queues_per_subport(port));
1104 uint32_t tc_index = (qindex >> 2) & 0x3;
1105 uint32_t pkt_len = pkt->pkt_len;
1106
1107 s->stats.n_pkts_tc_dropped[tc_index] += 1;
1108 s->stats.n_bytes_tc_dropped[tc_index] += pkt_len;
1109 #ifdef RTE_SCHED_RED
1110 s->stats.n_pkts_red_dropped[tc_index] += red;
1111 #endif
1112 }
1113
1114 static inline void
1115 rte_sched_port_update_queue_stats(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt)
1116 {
1117 struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
1118 uint32_t pkt_len = pkt->pkt_len;
1119
1120 qe->stats.n_pkts += 1;
1121 qe->stats.n_bytes += pkt_len;
1122 }
1123
1124 #ifdef RTE_SCHED_RED
1125 static inline void
1126 rte_sched_port_update_queue_stats_on_drop(struct rte_sched_port *port,
1127 uint32_t qindex,
1128 struct rte_mbuf *pkt, uint32_t red)
1129 #else
1130 static inline void
1131 rte_sched_port_update_queue_stats_on_drop(struct rte_sched_port *port,
1132 uint32_t qindex,
1133 struct rte_mbuf *pkt, __rte_unused uint32_t red)
1134 #endif
1135 {
1136 struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
1137 uint32_t pkt_len = pkt->pkt_len;
1138
1139 qe->stats.n_pkts_dropped += 1;
1140 qe->stats.n_bytes_dropped += pkt_len;
1141 #ifdef RTE_SCHED_RED
1142 qe->stats.n_pkts_red_dropped += red;
1143 #endif
1144 }
1145
1146 #endif /* RTE_SCHED_COLLECT_STATS */
1147
1148 #ifdef RTE_SCHED_RED
1149
1150 static inline int
1151 rte_sched_port_red_drop(struct rte_sched_port *port, struct rte_mbuf *pkt, uint32_t qindex, uint16_t qlen)
1152 {
1153 struct rte_sched_queue_extra *qe;
1154 struct rte_red_config *red_cfg;
1155 struct rte_red *red;
1156 uint32_t tc_index;
1157 enum rte_meter_color color;
1158
1159 tc_index = (qindex >> 2) & 0x3;
1160 color = rte_sched_port_pkt_read_color(pkt);
1161 red_cfg = &port->red_config[tc_index][color];
1162
1163 if ((red_cfg->min_th | red_cfg->max_th) == 0)
1164 return 0;
1165
1166 qe = port->queue_extra + qindex;
1167 red = &qe->red;
1168
1169 return rte_red_enqueue(red_cfg, red, qlen, port->time);
1170 }
1171
1172 static inline void
1173 rte_sched_port_set_queue_empty_timestamp(struct rte_sched_port *port, uint32_t qindex)
1174 {
1175 struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
1176 struct rte_red *red = &qe->red;
1177
1178 rte_red_mark_queue_empty(red, port->time);
1179 }
1180
1181 #else
1182
1183 #define rte_sched_port_red_drop(port, pkt, qindex, qlen) 0
1184
1185 #define rte_sched_port_set_queue_empty_timestamp(port, qindex)
1186
1187 #endif /* RTE_SCHED_RED */
1188
1189 #ifdef RTE_SCHED_DEBUG
1190
1191 static inline void
1192 debug_check_queue_slab(struct rte_sched_port *port, uint32_t bmp_pos,
1193 uint64_t bmp_slab)
1194 {
1195 uint64_t mask;
1196 uint32_t i, panic;
1197
1198 if (bmp_slab == 0)
1199 rte_panic("Empty slab at position %u\n", bmp_pos);
1200
1201 panic = 0;
1202 for (i = 0, mask = 1; i < 64; i++, mask <<= 1) {
1203 if (mask & bmp_slab) {
1204 if (rte_sched_port_queue_is_empty(port, bmp_pos + i)) {
1205 printf("Queue %u (slab offset %u) is empty\n", bmp_pos + i, i);
1206 panic = 1;
1207 }
1208 }
1209 }
1210
1211 if (panic)
1212 rte_panic("Empty queues in slab 0x%" PRIx64 "starting at position %u\n",
1213 bmp_slab, bmp_pos);
1214 }
1215
1216 #endif /* RTE_SCHED_DEBUG */
1217
1218 static inline uint32_t
1219 rte_sched_port_enqueue_qptrs_prefetch0(struct rte_sched_port *port,
1220 struct rte_mbuf *pkt)
1221 {
1222 struct rte_sched_queue *q;
1223 #ifdef RTE_SCHED_COLLECT_STATS
1224 struct rte_sched_queue_extra *qe;
1225 #endif
1226 uint32_t subport, pipe, traffic_class, queue, qindex;
1227
1228 rte_sched_port_pkt_read_tree_path(pkt, &subport, &pipe, &traffic_class, &queue);
1229
1230 qindex = rte_sched_port_qindex(port, subport, pipe, traffic_class, queue);
1231 q = port->queue + qindex;
1232 rte_prefetch0(q);
1233 #ifdef RTE_SCHED_COLLECT_STATS
1234 qe = port->queue_extra + qindex;
1235 rte_prefetch0(qe);
1236 #endif
1237
1238 return qindex;
1239 }
1240
1241 static inline void
1242 rte_sched_port_enqueue_qwa_prefetch0(struct rte_sched_port *port,
1243 uint32_t qindex, struct rte_mbuf **qbase)
1244 {
1245 struct rte_sched_queue *q;
1246 struct rte_mbuf **q_qw;
1247 uint16_t qsize;
1248
1249 q = port->queue + qindex;
1250 qsize = rte_sched_port_qsize(port, qindex);
1251 q_qw = qbase + (q->qw & (qsize - 1));
1252
1253 rte_prefetch0(q_qw);
1254 rte_bitmap_prefetch0(port->bmp, qindex);
1255 }
1256
1257 static inline int
1258 rte_sched_port_enqueue_qwa(struct rte_sched_port *port, uint32_t qindex,
1259 struct rte_mbuf **qbase, struct rte_mbuf *pkt)
1260 {
1261 struct rte_sched_queue *q;
1262 uint16_t qsize;
1263 uint16_t qlen;
1264
1265 q = port->queue + qindex;
1266 qsize = rte_sched_port_qsize(port, qindex);
1267 qlen = q->qw - q->qr;
1268
1269 /* Drop the packet (and update drop stats) when queue is full */
1270 if (unlikely(rte_sched_port_red_drop(port, pkt, qindex, qlen) ||
1271 (qlen >= qsize))) {
1272 rte_pktmbuf_free(pkt);
1273 #ifdef RTE_SCHED_COLLECT_STATS
1274 rte_sched_port_update_subport_stats_on_drop(port, qindex, pkt,
1275 qlen < qsize);
1276 rte_sched_port_update_queue_stats_on_drop(port, qindex, pkt,
1277 qlen < qsize);
1278 #endif
1279 return 0;
1280 }
1281
1282 /* Enqueue packet */
1283 qbase[q->qw & (qsize - 1)] = pkt;
1284 q->qw++;
1285
1286 /* Activate queue in the port bitmap */
1287 rte_bitmap_set(port->bmp, qindex);
1288
1289 /* Statistics */
1290 #ifdef RTE_SCHED_COLLECT_STATS
1291 rte_sched_port_update_subport_stats(port, qindex, pkt);
1292 rte_sched_port_update_queue_stats(port, qindex, pkt);
1293 #endif
1294
1295 return 1;
1296 }
1297
1298
1299 /*
1300 * The enqueue function implements a 4-level pipeline with each stage
1301 * processing two different packets. The purpose of using a pipeline
1302 * is to hide the latency of prefetching the data structures. The
1303 * naming convention is presented in the diagram below:
1304 *
1305 * p00 _______ p10 _______ p20 _______ p30 _______
1306 * ----->| |----->| |----->| |----->| |----->
1307 * | 0 | | 1 | | 2 | | 3 |
1308 * ----->|_______|----->|_______|----->|_______|----->|_______|----->
1309 * p01 p11 p21 p31
1310 *
1311 */
1312 int
1313 rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts,
1314 uint32_t n_pkts)
1315 {
1316 struct rte_mbuf *pkt00, *pkt01, *pkt10, *pkt11, *pkt20, *pkt21,
1317 *pkt30, *pkt31, *pkt_last;
1318 struct rte_mbuf **q00_base, **q01_base, **q10_base, **q11_base,
1319 **q20_base, **q21_base, **q30_base, **q31_base, **q_last_base;
1320 uint32_t q00, q01, q10, q11, q20, q21, q30, q31, q_last;
1321 uint32_t r00, r01, r10, r11, r20, r21, r30, r31, r_last;
1322 uint32_t result, i;
1323
1324 result = 0;
1325
1326 /*
1327 * Less then 6 input packets available, which is not enough to
1328 * feed the pipeline
1329 */
1330 if (unlikely(n_pkts < 6)) {
1331 struct rte_mbuf **q_base[5];
1332 uint32_t q[5];
1333
1334 /* Prefetch the mbuf structure of each packet */
1335 for (i = 0; i < n_pkts; i++)
1336 rte_prefetch0(pkts[i]);
1337
1338 /* Prefetch the queue structure for each queue */
1339 for (i = 0; i < n_pkts; i++)
1340 q[i] = rte_sched_port_enqueue_qptrs_prefetch0(port,
1341 pkts[i]);
1342
1343 /* Prefetch the write pointer location of each queue */
1344 for (i = 0; i < n_pkts; i++) {
1345 q_base[i] = rte_sched_port_qbase(port, q[i]);
1346 rte_sched_port_enqueue_qwa_prefetch0(port, q[i],
1347 q_base[i]);
1348 }
1349
1350 /* Write each packet to its queue */
1351 for (i = 0; i < n_pkts; i++)
1352 result += rte_sched_port_enqueue_qwa(port, q[i],
1353 q_base[i], pkts[i]);
1354
1355 return result;
1356 }
1357
1358 /* Feed the first 3 stages of the pipeline (6 packets needed) */
1359 pkt20 = pkts[0];
1360 pkt21 = pkts[1];
1361 rte_prefetch0(pkt20);
1362 rte_prefetch0(pkt21);
1363
1364 pkt10 = pkts[2];
1365 pkt11 = pkts[3];
1366 rte_prefetch0(pkt10);
1367 rte_prefetch0(pkt11);
1368
1369 q20 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt20);
1370 q21 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt21);
1371
1372 pkt00 = pkts[4];
1373 pkt01 = pkts[5];
1374 rte_prefetch0(pkt00);
1375 rte_prefetch0(pkt01);
1376
1377 q10 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt10);
1378 q11 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt11);
1379
1380 q20_base = rte_sched_port_qbase(port, q20);
1381 q21_base = rte_sched_port_qbase(port, q21);
1382 rte_sched_port_enqueue_qwa_prefetch0(port, q20, q20_base);
1383 rte_sched_port_enqueue_qwa_prefetch0(port, q21, q21_base);
1384
1385 /* Run the pipeline */
1386 for (i = 6; i < (n_pkts & (~1)); i += 2) {
1387 /* Propagate stage inputs */
1388 pkt30 = pkt20;
1389 pkt31 = pkt21;
1390 pkt20 = pkt10;
1391 pkt21 = pkt11;
1392 pkt10 = pkt00;
1393 pkt11 = pkt01;
1394 q30 = q20;
1395 q31 = q21;
1396 q20 = q10;
1397 q21 = q11;
1398 q30_base = q20_base;
1399 q31_base = q21_base;
1400
1401 /* Stage 0: Get packets in */
1402 pkt00 = pkts[i];
1403 pkt01 = pkts[i + 1];
1404 rte_prefetch0(pkt00);
1405 rte_prefetch0(pkt01);
1406
1407 /* Stage 1: Prefetch queue structure storing queue pointers */
1408 q10 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt10);
1409 q11 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt11);
1410
1411 /* Stage 2: Prefetch queue write location */
1412 q20_base = rte_sched_port_qbase(port, q20);
1413 q21_base = rte_sched_port_qbase(port, q21);
1414 rte_sched_port_enqueue_qwa_prefetch0(port, q20, q20_base);
1415 rte_sched_port_enqueue_qwa_prefetch0(port, q21, q21_base);
1416
1417 /* Stage 3: Write packet to queue and activate queue */
1418 r30 = rte_sched_port_enqueue_qwa(port, q30, q30_base, pkt30);
1419 r31 = rte_sched_port_enqueue_qwa(port, q31, q31_base, pkt31);
1420 result += r30 + r31;
1421 }
1422
1423 /*
1424 * Drain the pipeline (exactly 6 packets).
1425 * Handle the last packet in the case
1426 * of an odd number of input packets.
1427 */
1428 pkt_last = pkts[n_pkts - 1];
1429 rte_prefetch0(pkt_last);
1430
1431 q00 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt00);
1432 q01 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt01);
1433
1434 q10_base = rte_sched_port_qbase(port, q10);
1435 q11_base = rte_sched_port_qbase(port, q11);
1436 rte_sched_port_enqueue_qwa_prefetch0(port, q10, q10_base);
1437 rte_sched_port_enqueue_qwa_prefetch0(port, q11, q11_base);
1438
1439 r20 = rte_sched_port_enqueue_qwa(port, q20, q20_base, pkt20);
1440 r21 = rte_sched_port_enqueue_qwa(port, q21, q21_base, pkt21);
1441 result += r20 + r21;
1442
1443 q_last = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt_last);
1444
1445 q00_base = rte_sched_port_qbase(port, q00);
1446 q01_base = rte_sched_port_qbase(port, q01);
1447 rte_sched_port_enqueue_qwa_prefetch0(port, q00, q00_base);
1448 rte_sched_port_enqueue_qwa_prefetch0(port, q01, q01_base);
1449
1450 r10 = rte_sched_port_enqueue_qwa(port, q10, q10_base, pkt10);
1451 r11 = rte_sched_port_enqueue_qwa(port, q11, q11_base, pkt11);
1452 result += r10 + r11;
1453
1454 q_last_base = rte_sched_port_qbase(port, q_last);
1455 rte_sched_port_enqueue_qwa_prefetch0(port, q_last, q_last_base);
1456
1457 r00 = rte_sched_port_enqueue_qwa(port, q00, q00_base, pkt00);
1458 r01 = rte_sched_port_enqueue_qwa(port, q01, q01_base, pkt01);
1459 result += r00 + r01;
1460
1461 if (n_pkts & 1) {
1462 r_last = rte_sched_port_enqueue_qwa(port, q_last, q_last_base, pkt_last);
1463 result += r_last;
1464 }
1465
1466 return result;
1467 }
1468
1469 #ifndef RTE_SCHED_SUBPORT_TC_OV
1470
1471 static inline void
1472 grinder_credits_update(struct rte_sched_port *port, uint32_t pos)
1473 {
1474 struct rte_sched_grinder *grinder = port->grinder + pos;
1475 struct rte_sched_subport *subport = grinder->subport;
1476 struct rte_sched_pipe *pipe = grinder->pipe;
1477 struct rte_sched_pipe_profile *params = grinder->pipe_params;
1478 uint64_t n_periods;
1479
1480 /* Subport TB */
1481 n_periods = (port->time - subport->tb_time) / subport->tb_period;
1482 subport->tb_credits += n_periods * subport->tb_credits_per_period;
1483 subport->tb_credits = rte_sched_min_val_2_u32(subport->tb_credits, subport->tb_size);
1484 subport->tb_time += n_periods * subport->tb_period;
1485
1486 /* Pipe TB */
1487 n_periods = (port->time - pipe->tb_time) / params->tb_period;
1488 pipe->tb_credits += n_periods * params->tb_credits_per_period;
1489 pipe->tb_credits = rte_sched_min_val_2_u32(pipe->tb_credits, params->tb_size);
1490 pipe->tb_time += n_periods * params->tb_period;
1491
1492 /* Subport TCs */
1493 if (unlikely(port->time >= subport->tc_time)) {
1494 subport->tc_credits[0] = subport->tc_credits_per_period[0];
1495 subport->tc_credits[1] = subport->tc_credits_per_period[1];
1496 subport->tc_credits[2] = subport->tc_credits_per_period[2];
1497 subport->tc_credits[3] = subport->tc_credits_per_period[3];
1498 subport->tc_time = port->time + subport->tc_period;
1499 }
1500
1501 /* Pipe TCs */
1502 if (unlikely(port->time >= pipe->tc_time)) {
1503 pipe->tc_credits[0] = params->tc_credits_per_period[0];
1504 pipe->tc_credits[1] = params->tc_credits_per_period[1];
1505 pipe->tc_credits[2] = params->tc_credits_per_period[2];
1506 pipe->tc_credits[3] = params->tc_credits_per_period[3];
1507 pipe->tc_time = port->time + params->tc_period;
1508 }
1509 }
1510
1511 #else
1512
1513 static inline uint32_t
1514 grinder_tc_ov_credits_update(struct rte_sched_port *port, uint32_t pos)
1515 {
1516 struct rte_sched_grinder *grinder = port->grinder + pos;
1517 struct rte_sched_subport *subport = grinder->subport;
1518 uint32_t tc_ov_consumption[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
1519 uint32_t tc_ov_consumption_max;
1520 uint32_t tc_ov_wm = subport->tc_ov_wm;
1521
1522 if (subport->tc_ov == 0)
1523 return subport->tc_ov_wm_max;
1524
1525 tc_ov_consumption[0] = subport->tc_credits_per_period[0] - subport->tc_credits[0];
1526 tc_ov_consumption[1] = subport->tc_credits_per_period[1] - subport->tc_credits[1];
1527 tc_ov_consumption[2] = subport->tc_credits_per_period[2] - subport->tc_credits[2];
1528 tc_ov_consumption[3] = subport->tc_credits_per_period[3] - subport->tc_credits[3];
1529
1530 tc_ov_consumption_max = subport->tc_credits_per_period[3] -
1531 (tc_ov_consumption[0] + tc_ov_consumption[1] + tc_ov_consumption[2]);
1532
1533 if (tc_ov_consumption[3] > (tc_ov_consumption_max - port->mtu)) {
1534 tc_ov_wm -= tc_ov_wm >> 7;
1535 if (tc_ov_wm < subport->tc_ov_wm_min)
1536 tc_ov_wm = subport->tc_ov_wm_min;
1537
1538 return tc_ov_wm;
1539 }
1540
1541 tc_ov_wm += (tc_ov_wm >> 7) + 1;
1542 if (tc_ov_wm > subport->tc_ov_wm_max)
1543 tc_ov_wm = subport->tc_ov_wm_max;
1544
1545 return tc_ov_wm;
1546 }
1547
1548 static inline void
1549 grinder_credits_update(struct rte_sched_port *port, uint32_t pos)
1550 {
1551 struct rte_sched_grinder *grinder = port->grinder + pos;
1552 struct rte_sched_subport *subport = grinder->subport;
1553 struct rte_sched_pipe *pipe = grinder->pipe;
1554 struct rte_sched_pipe_profile *params = grinder->pipe_params;
1555 uint64_t n_periods;
1556
1557 /* Subport TB */
1558 n_periods = (port->time - subport->tb_time) / subport->tb_period;
1559 subport->tb_credits += n_periods * subport->tb_credits_per_period;
1560 subport->tb_credits = rte_sched_min_val_2_u32(subport->tb_credits, subport->tb_size);
1561 subport->tb_time += n_periods * subport->tb_period;
1562
1563 /* Pipe TB */
1564 n_periods = (port->time - pipe->tb_time) / params->tb_period;
1565 pipe->tb_credits += n_periods * params->tb_credits_per_period;
1566 pipe->tb_credits = rte_sched_min_val_2_u32(pipe->tb_credits, params->tb_size);
1567 pipe->tb_time += n_periods * params->tb_period;
1568
1569 /* Subport TCs */
1570 if (unlikely(port->time >= subport->tc_time)) {
1571 subport->tc_ov_wm = grinder_tc_ov_credits_update(port, pos);
1572
1573 subport->tc_credits[0] = subport->tc_credits_per_period[0];
1574 subport->tc_credits[1] = subport->tc_credits_per_period[1];
1575 subport->tc_credits[2] = subport->tc_credits_per_period[2];
1576 subport->tc_credits[3] = subport->tc_credits_per_period[3];
1577
1578 subport->tc_time = port->time + subport->tc_period;
1579 subport->tc_ov_period_id++;
1580 }
1581
1582 /* Pipe TCs */
1583 if (unlikely(port->time >= pipe->tc_time)) {
1584 pipe->tc_credits[0] = params->tc_credits_per_period[0];
1585 pipe->tc_credits[1] = params->tc_credits_per_period[1];
1586 pipe->tc_credits[2] = params->tc_credits_per_period[2];
1587 pipe->tc_credits[3] = params->tc_credits_per_period[3];
1588 pipe->tc_time = port->time + params->tc_period;
1589 }
1590
1591 /* Pipe TCs - Oversubscription */
1592 if (unlikely(pipe->tc_ov_period_id != subport->tc_ov_period_id)) {
1593 pipe->tc_ov_credits = subport->tc_ov_wm * params->tc_ov_weight;
1594
1595 pipe->tc_ov_period_id = subport->tc_ov_period_id;
1596 }
1597 }
1598
1599 #endif /* RTE_SCHED_TS_CREDITS_UPDATE, RTE_SCHED_SUBPORT_TC_OV */
1600
1601
1602 #ifndef RTE_SCHED_SUBPORT_TC_OV
1603
1604 static inline int
1605 grinder_credits_check(struct rte_sched_port *port, uint32_t pos)
1606 {
1607 struct rte_sched_grinder *grinder = port->grinder + pos;
1608 struct rte_sched_subport *subport = grinder->subport;
1609 struct rte_sched_pipe *pipe = grinder->pipe;
1610 struct rte_mbuf *pkt = grinder->pkt;
1611 uint32_t tc_index = grinder->tc_index;
1612 uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
1613 uint32_t subport_tb_credits = subport->tb_credits;
1614 uint32_t subport_tc_credits = subport->tc_credits[tc_index];
1615 uint32_t pipe_tb_credits = pipe->tb_credits;
1616 uint32_t pipe_tc_credits = pipe->tc_credits[tc_index];
1617 int enough_credits;
1618
1619 /* Check queue credits */
1620 enough_credits = (pkt_len <= subport_tb_credits) &&
1621 (pkt_len <= subport_tc_credits) &&
1622 (pkt_len <= pipe_tb_credits) &&
1623 (pkt_len <= pipe_tc_credits);
1624
1625 if (!enough_credits)
1626 return 0;
1627
1628 /* Update port credits */
1629 subport->tb_credits -= pkt_len;
1630 subport->tc_credits[tc_index] -= pkt_len;
1631 pipe->tb_credits -= pkt_len;
1632 pipe->tc_credits[tc_index] -= pkt_len;
1633
1634 return 1;
1635 }
1636
1637 #else
1638
1639 static inline int
1640 grinder_credits_check(struct rte_sched_port *port, uint32_t pos)
1641 {
1642 struct rte_sched_grinder *grinder = port->grinder + pos;
1643 struct rte_sched_subport *subport = grinder->subport;
1644 struct rte_sched_pipe *pipe = grinder->pipe;
1645 struct rte_mbuf *pkt = grinder->pkt;
1646 uint32_t tc_index = grinder->tc_index;
1647 uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
1648 uint32_t subport_tb_credits = subport->tb_credits;
1649 uint32_t subport_tc_credits = subport->tc_credits[tc_index];
1650 uint32_t pipe_tb_credits = pipe->tb_credits;
1651 uint32_t pipe_tc_credits = pipe->tc_credits[tc_index];
1652 uint32_t pipe_tc_ov_mask1[] = {UINT32_MAX, UINT32_MAX, UINT32_MAX, pipe->tc_ov_credits};
1653 uint32_t pipe_tc_ov_mask2[] = {0, 0, 0, UINT32_MAX};
1654 uint32_t pipe_tc_ov_credits = pipe_tc_ov_mask1[tc_index];
1655 int enough_credits;
1656
1657 /* Check pipe and subport credits */
1658 enough_credits = (pkt_len <= subport_tb_credits) &&
1659 (pkt_len <= subport_tc_credits) &&
1660 (pkt_len <= pipe_tb_credits) &&
1661 (pkt_len <= pipe_tc_credits) &&
1662 (pkt_len <= pipe_tc_ov_credits);
1663
1664 if (!enough_credits)
1665 return 0;
1666
1667 /* Update pipe and subport credits */
1668 subport->tb_credits -= pkt_len;
1669 subport->tc_credits[tc_index] -= pkt_len;
1670 pipe->tb_credits -= pkt_len;
1671 pipe->tc_credits[tc_index] -= pkt_len;
1672 pipe->tc_ov_credits -= pipe_tc_ov_mask2[tc_index] & pkt_len;
1673
1674 return 1;
1675 }
1676
1677 #endif /* RTE_SCHED_SUBPORT_TC_OV */
1678
1679
1680 static inline int
1681 grinder_schedule(struct rte_sched_port *port, uint32_t pos)
1682 {
1683 struct rte_sched_grinder *grinder = port->grinder + pos;
1684 struct rte_sched_queue *queue = grinder->queue[grinder->qpos];
1685 struct rte_mbuf *pkt = grinder->pkt;
1686 uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
1687
1688 if (!grinder_credits_check(port, pos))
1689 return 0;
1690
1691 /* Advance port time */
1692 port->time += pkt_len;
1693
1694 /* Send packet */
1695 port->pkts_out[port->n_pkts_out++] = pkt;
1696 queue->qr++;
1697 grinder->wrr_tokens[grinder->qpos] += pkt_len * grinder->wrr_cost[grinder->qpos];
1698 if (queue->qr == queue->qw) {
1699 uint32_t qindex = grinder->qindex[grinder->qpos];
1700
1701 rte_bitmap_clear(port->bmp, qindex);
1702 grinder->qmask &= ~(1 << grinder->qpos);
1703 grinder->wrr_mask[grinder->qpos] = 0;
1704 rte_sched_port_set_queue_empty_timestamp(port, qindex);
1705 }
1706
1707 /* Reset pipe loop detection */
1708 port->pipe_loop = RTE_SCHED_PIPE_INVALID;
1709 grinder->productive = 1;
1710
1711 return 1;
1712 }
1713
1714 #ifdef SCHED_VECTOR_SSE4
1715
1716 static inline int
1717 grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe)
1718 {
1719 __m128i index = _mm_set1_epi32(base_pipe);
1720 __m128i pipes = _mm_load_si128((__m128i *)port->grinder_base_bmp_pos);
1721 __m128i res = _mm_cmpeq_epi32(pipes, index);
1722
1723 pipes = _mm_load_si128((__m128i *)(port->grinder_base_bmp_pos + 4));
1724 pipes = _mm_cmpeq_epi32(pipes, index);
1725 res = _mm_or_si128(res, pipes);
1726
1727 if (_mm_testz_si128(res, res))
1728 return 0;
1729
1730 return 1;
1731 }
1732
1733 #else
1734
1735 static inline int
1736 grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe)
1737 {
1738 uint32_t i;
1739
1740 for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i++) {
1741 if (port->grinder_base_bmp_pos[i] == base_pipe)
1742 return 1;
1743 }
1744
1745 return 0;
1746 }
1747
1748 #endif /* RTE_SCHED_OPTIMIZATIONS */
1749
1750 static inline void
1751 grinder_pcache_populate(struct rte_sched_port *port, uint32_t pos, uint32_t bmp_pos, uint64_t bmp_slab)
1752 {
1753 struct rte_sched_grinder *grinder = port->grinder + pos;
1754 uint16_t w[4];
1755
1756 grinder->pcache_w = 0;
1757 grinder->pcache_r = 0;
1758
1759 w[0] = (uint16_t) bmp_slab;
1760 w[1] = (uint16_t) (bmp_slab >> 16);
1761 w[2] = (uint16_t) (bmp_slab >> 32);
1762 w[3] = (uint16_t) (bmp_slab >> 48);
1763
1764 grinder->pcache_qmask[grinder->pcache_w] = w[0];
1765 grinder->pcache_qindex[grinder->pcache_w] = bmp_pos;
1766 grinder->pcache_w += (w[0] != 0);
1767
1768 grinder->pcache_qmask[grinder->pcache_w] = w[1];
1769 grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 16;
1770 grinder->pcache_w += (w[1] != 0);
1771
1772 grinder->pcache_qmask[grinder->pcache_w] = w[2];
1773 grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 32;
1774 grinder->pcache_w += (w[2] != 0);
1775
1776 grinder->pcache_qmask[grinder->pcache_w] = w[3];
1777 grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 48;
1778 grinder->pcache_w += (w[3] != 0);
1779 }
1780
1781 static inline void
1782 grinder_tccache_populate(struct rte_sched_port *port, uint32_t pos, uint32_t qindex, uint16_t qmask)
1783 {
1784 struct rte_sched_grinder *grinder = port->grinder + pos;
1785 uint8_t b[4];
1786
1787 grinder->tccache_w = 0;
1788 grinder->tccache_r = 0;
1789
1790 b[0] = (uint8_t) (qmask & 0xF);
1791 b[1] = (uint8_t) ((qmask >> 4) & 0xF);
1792 b[2] = (uint8_t) ((qmask >> 8) & 0xF);
1793 b[3] = (uint8_t) ((qmask >> 12) & 0xF);
1794
1795 grinder->tccache_qmask[grinder->tccache_w] = b[0];
1796 grinder->tccache_qindex[grinder->tccache_w] = qindex;
1797 grinder->tccache_w += (b[0] != 0);
1798
1799 grinder->tccache_qmask[grinder->tccache_w] = b[1];
1800 grinder->tccache_qindex[grinder->tccache_w] = qindex + 4;
1801 grinder->tccache_w += (b[1] != 0);
1802
1803 grinder->tccache_qmask[grinder->tccache_w] = b[2];
1804 grinder->tccache_qindex[grinder->tccache_w] = qindex + 8;
1805 grinder->tccache_w += (b[2] != 0);
1806
1807 grinder->tccache_qmask[grinder->tccache_w] = b[3];
1808 grinder->tccache_qindex[grinder->tccache_w] = qindex + 12;
1809 grinder->tccache_w += (b[3] != 0);
1810 }
1811
1812 static inline int
1813 grinder_next_tc(struct rte_sched_port *port, uint32_t pos)
1814 {
1815 struct rte_sched_grinder *grinder = port->grinder + pos;
1816 struct rte_mbuf **qbase;
1817 uint32_t qindex;
1818 uint16_t qsize;
1819
1820 if (grinder->tccache_r == grinder->tccache_w)
1821 return 0;
1822
1823 qindex = grinder->tccache_qindex[grinder->tccache_r];
1824 qbase = rte_sched_port_qbase(port, qindex);
1825 qsize = rte_sched_port_qsize(port, qindex);
1826
1827 grinder->tc_index = (qindex >> 2) & 0x3;
1828 grinder->qmask = grinder->tccache_qmask[grinder->tccache_r];
1829 grinder->qsize = qsize;
1830
1831 grinder->qindex[0] = qindex;
1832 grinder->qindex[1] = qindex + 1;
1833 grinder->qindex[2] = qindex + 2;
1834 grinder->qindex[3] = qindex + 3;
1835
1836 grinder->queue[0] = port->queue + qindex;
1837 grinder->queue[1] = port->queue + qindex + 1;
1838 grinder->queue[2] = port->queue + qindex + 2;
1839 grinder->queue[3] = port->queue + qindex + 3;
1840
1841 grinder->qbase[0] = qbase;
1842 grinder->qbase[1] = qbase + qsize;
1843 grinder->qbase[2] = qbase + 2 * qsize;
1844 grinder->qbase[3] = qbase + 3 * qsize;
1845
1846 grinder->tccache_r++;
1847 return 1;
1848 }
1849
1850 static inline int
1851 grinder_next_pipe(struct rte_sched_port *port, uint32_t pos)
1852 {
1853 struct rte_sched_grinder *grinder = port->grinder + pos;
1854 uint32_t pipe_qindex;
1855 uint16_t pipe_qmask;
1856
1857 if (grinder->pcache_r < grinder->pcache_w) {
1858 pipe_qmask = grinder->pcache_qmask[grinder->pcache_r];
1859 pipe_qindex = grinder->pcache_qindex[grinder->pcache_r];
1860 grinder->pcache_r++;
1861 } else {
1862 uint64_t bmp_slab = 0;
1863 uint32_t bmp_pos = 0;
1864
1865 /* Get another non-empty pipe group */
1866 if (unlikely(rte_bitmap_scan(port->bmp, &bmp_pos, &bmp_slab) <= 0))
1867 return 0;
1868
1869 #ifdef RTE_SCHED_DEBUG
1870 debug_check_queue_slab(port, bmp_pos, bmp_slab);
1871 #endif
1872
1873 /* Return if pipe group already in one of the other grinders */
1874 port->grinder_base_bmp_pos[pos] = RTE_SCHED_BMP_POS_INVALID;
1875 if (unlikely(grinder_pipe_exists(port, bmp_pos)))
1876 return 0;
1877
1878 port->grinder_base_bmp_pos[pos] = bmp_pos;
1879
1880 /* Install new pipe group into grinder's pipe cache */
1881 grinder_pcache_populate(port, pos, bmp_pos, bmp_slab);
1882
1883 pipe_qmask = grinder->pcache_qmask[0];
1884 pipe_qindex = grinder->pcache_qindex[0];
1885 grinder->pcache_r = 1;
1886 }
1887
1888 /* Install new pipe in the grinder */
1889 grinder->pindex = pipe_qindex >> 4;
1890 grinder->subport = port->subport + (grinder->pindex / port->n_pipes_per_subport);
1891 grinder->pipe = port->pipe + grinder->pindex;
1892 grinder->pipe_params = NULL; /* to be set after the pipe structure is prefetched */
1893 grinder->productive = 0;
1894
1895 grinder_tccache_populate(port, pos, pipe_qindex, pipe_qmask);
1896 grinder_next_tc(port, pos);
1897
1898 /* Check for pipe exhaustion */
1899 if (grinder->pindex == port->pipe_loop) {
1900 port->pipe_exhaustion = 1;
1901 port->pipe_loop = RTE_SCHED_PIPE_INVALID;
1902 }
1903
1904 return 1;
1905 }
1906
1907
1908 static inline void
1909 grinder_wrr_load(struct rte_sched_port *port, uint32_t pos)
1910 {
1911 struct rte_sched_grinder *grinder = port->grinder + pos;
1912 struct rte_sched_pipe *pipe = grinder->pipe;
1913 struct rte_sched_pipe_profile *pipe_params = grinder->pipe_params;
1914 uint32_t tc_index = grinder->tc_index;
1915 uint32_t qmask = grinder->qmask;
1916 uint32_t qindex;
1917
1918 qindex = tc_index * 4;
1919
1920 grinder->wrr_tokens[0] = ((uint16_t) pipe->wrr_tokens[qindex]) << RTE_SCHED_WRR_SHIFT;
1921 grinder->wrr_tokens[1] = ((uint16_t) pipe->wrr_tokens[qindex + 1]) << RTE_SCHED_WRR_SHIFT;
1922 grinder->wrr_tokens[2] = ((uint16_t) pipe->wrr_tokens[qindex + 2]) << RTE_SCHED_WRR_SHIFT;
1923 grinder->wrr_tokens[3] = ((uint16_t) pipe->wrr_tokens[qindex + 3]) << RTE_SCHED_WRR_SHIFT;
1924
1925 grinder->wrr_mask[0] = (qmask & 0x1) * 0xFFFF;
1926 grinder->wrr_mask[1] = ((qmask >> 1) & 0x1) * 0xFFFF;
1927 grinder->wrr_mask[2] = ((qmask >> 2) & 0x1) * 0xFFFF;
1928 grinder->wrr_mask[3] = ((qmask >> 3) & 0x1) * 0xFFFF;
1929
1930 grinder->wrr_cost[0] = pipe_params->wrr_cost[qindex];
1931 grinder->wrr_cost[1] = pipe_params->wrr_cost[qindex + 1];
1932 grinder->wrr_cost[2] = pipe_params->wrr_cost[qindex + 2];
1933 grinder->wrr_cost[3] = pipe_params->wrr_cost[qindex + 3];
1934 }
1935
1936 static inline void
1937 grinder_wrr_store(struct rte_sched_port *port, uint32_t pos)
1938 {
1939 struct rte_sched_grinder *grinder = port->grinder + pos;
1940 struct rte_sched_pipe *pipe = grinder->pipe;
1941 uint32_t tc_index = grinder->tc_index;
1942 uint32_t qindex;
1943
1944 qindex = tc_index * 4;
1945
1946 pipe->wrr_tokens[qindex] = (grinder->wrr_tokens[0] & grinder->wrr_mask[0])
1947 >> RTE_SCHED_WRR_SHIFT;
1948 pipe->wrr_tokens[qindex + 1] = (grinder->wrr_tokens[1] & grinder->wrr_mask[1])
1949 >> RTE_SCHED_WRR_SHIFT;
1950 pipe->wrr_tokens[qindex + 2] = (grinder->wrr_tokens[2] & grinder->wrr_mask[2])
1951 >> RTE_SCHED_WRR_SHIFT;
1952 pipe->wrr_tokens[qindex + 3] = (grinder->wrr_tokens[3] & grinder->wrr_mask[3])
1953 >> RTE_SCHED_WRR_SHIFT;
1954 }
1955
1956 static inline void
1957 grinder_wrr(struct rte_sched_port *port, uint32_t pos)
1958 {
1959 struct rte_sched_grinder *grinder = port->grinder + pos;
1960 uint16_t wrr_tokens_min;
1961
1962 grinder->wrr_tokens[0] |= ~grinder->wrr_mask[0];
1963 grinder->wrr_tokens[1] |= ~grinder->wrr_mask[1];
1964 grinder->wrr_tokens[2] |= ~grinder->wrr_mask[2];
1965 grinder->wrr_tokens[3] |= ~grinder->wrr_mask[3];
1966
1967 grinder->qpos = rte_min_pos_4_u16(grinder->wrr_tokens);
1968 wrr_tokens_min = grinder->wrr_tokens[grinder->qpos];
1969
1970 grinder->wrr_tokens[0] -= wrr_tokens_min;
1971 grinder->wrr_tokens[1] -= wrr_tokens_min;
1972 grinder->wrr_tokens[2] -= wrr_tokens_min;
1973 grinder->wrr_tokens[3] -= wrr_tokens_min;
1974 }
1975
1976
1977 #define grinder_evict(port, pos)
1978
1979 static inline void
1980 grinder_prefetch_pipe(struct rte_sched_port *port, uint32_t pos)
1981 {
1982 struct rte_sched_grinder *grinder = port->grinder + pos;
1983
1984 rte_prefetch0(grinder->pipe);
1985 rte_prefetch0(grinder->queue[0]);
1986 }
1987
1988 static inline void
1989 grinder_prefetch_tc_queue_arrays(struct rte_sched_port *port, uint32_t pos)
1990 {
1991 struct rte_sched_grinder *grinder = port->grinder + pos;
1992 uint16_t qsize, qr[4];
1993
1994 qsize = grinder->qsize;
1995 qr[0] = grinder->queue[0]->qr & (qsize - 1);
1996 qr[1] = grinder->queue[1]->qr & (qsize - 1);
1997 qr[2] = grinder->queue[2]->qr & (qsize - 1);
1998 qr[3] = grinder->queue[3]->qr & (qsize - 1);
1999
2000 rte_prefetch0(grinder->qbase[0] + qr[0]);
2001 rte_prefetch0(grinder->qbase[1] + qr[1]);
2002
2003 grinder_wrr_load(port, pos);
2004 grinder_wrr(port, pos);
2005
2006 rte_prefetch0(grinder->qbase[2] + qr[2]);
2007 rte_prefetch0(grinder->qbase[3] + qr[3]);
2008 }
2009
2010 static inline void
2011 grinder_prefetch_mbuf(struct rte_sched_port *port, uint32_t pos)
2012 {
2013 struct rte_sched_grinder *grinder = port->grinder + pos;
2014 uint32_t qpos = grinder->qpos;
2015 struct rte_mbuf **qbase = grinder->qbase[qpos];
2016 uint16_t qsize = grinder->qsize;
2017 uint16_t qr = grinder->queue[qpos]->qr & (qsize - 1);
2018
2019 grinder->pkt = qbase[qr];
2020 rte_prefetch0(grinder->pkt);
2021
2022 if (unlikely((qr & 0x7) == 7)) {
2023 uint16_t qr_next = (grinder->queue[qpos]->qr + 1) & (qsize - 1);
2024
2025 rte_prefetch0(qbase + qr_next);
2026 }
2027 }
2028
2029 static inline uint32_t
2030 grinder_handle(struct rte_sched_port *port, uint32_t pos)
2031 {
2032 struct rte_sched_grinder *grinder = port->grinder + pos;
2033
2034 switch (grinder->state) {
2035 case e_GRINDER_PREFETCH_PIPE:
2036 {
2037 if (grinder_next_pipe(port, pos)) {
2038 grinder_prefetch_pipe(port, pos);
2039 port->busy_grinders++;
2040
2041 grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS;
2042 return 0;
2043 }
2044
2045 return 0;
2046 }
2047
2048 case e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS:
2049 {
2050 struct rte_sched_pipe *pipe = grinder->pipe;
2051
2052 grinder->pipe_params = port->pipe_profiles + pipe->profile;
2053 grinder_prefetch_tc_queue_arrays(port, pos);
2054 grinder_credits_update(port, pos);
2055
2056 grinder->state = e_GRINDER_PREFETCH_MBUF;
2057 return 0;
2058 }
2059
2060 case e_GRINDER_PREFETCH_MBUF:
2061 {
2062 grinder_prefetch_mbuf(port, pos);
2063
2064 grinder->state = e_GRINDER_READ_MBUF;
2065 return 0;
2066 }
2067
2068 case e_GRINDER_READ_MBUF:
2069 {
2070 uint32_t result = 0;
2071
2072 result = grinder_schedule(port, pos);
2073
2074 /* Look for next packet within the same TC */
2075 if (result && grinder->qmask) {
2076 grinder_wrr(port, pos);
2077 grinder_prefetch_mbuf(port, pos);
2078
2079 return 1;
2080 }
2081 grinder_wrr_store(port, pos);
2082
2083 /* Look for another active TC within same pipe */
2084 if (grinder_next_tc(port, pos)) {
2085 grinder_prefetch_tc_queue_arrays(port, pos);
2086
2087 grinder->state = e_GRINDER_PREFETCH_MBUF;
2088 return result;
2089 }
2090
2091 if (grinder->productive == 0 &&
2092 port->pipe_loop == RTE_SCHED_PIPE_INVALID)
2093 port->pipe_loop = grinder->pindex;
2094
2095 grinder_evict(port, pos);
2096
2097 /* Look for another active pipe */
2098 if (grinder_next_pipe(port, pos)) {
2099 grinder_prefetch_pipe(port, pos);
2100
2101 grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS;
2102 return result;
2103 }
2104
2105 /* No active pipe found */
2106 port->busy_grinders--;
2107
2108 grinder->state = e_GRINDER_PREFETCH_PIPE;
2109 return result;
2110 }
2111
2112 default:
2113 rte_panic("Algorithmic error (invalid state)\n");
2114 return 0;
2115 }
2116 }
2117
2118 static inline void
2119 rte_sched_port_time_resync(struct rte_sched_port *port)
2120 {
2121 uint64_t cycles = rte_get_tsc_cycles();
2122 uint64_t cycles_diff = cycles - port->time_cpu_cycles;
2123 uint64_t bytes_diff;
2124
2125 /* Compute elapsed time in bytes */
2126 bytes_diff = rte_reciprocal_divide(cycles_diff << RTE_SCHED_TIME_SHIFT,
2127 port->inv_cycles_per_byte);
2128
2129 /* Advance port time */
2130 port->time_cpu_cycles = cycles;
2131 port->time_cpu_bytes += bytes_diff;
2132 if (port->time < port->time_cpu_bytes)
2133 port->time = port->time_cpu_bytes;
2134
2135 /* Reset pipe loop detection */
2136 port->pipe_loop = RTE_SCHED_PIPE_INVALID;
2137 }
2138
2139 static inline int
2140 rte_sched_port_exceptions(struct rte_sched_port *port, int second_pass)
2141 {
2142 int exceptions;
2143
2144 /* Check if any exception flag is set */
2145 exceptions = (second_pass && port->busy_grinders == 0) ||
2146 (port->pipe_exhaustion == 1);
2147
2148 /* Clear exception flags */
2149 port->pipe_exhaustion = 0;
2150
2151 return exceptions;
2152 }
2153
2154 int
2155 rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts)
2156 {
2157 uint32_t i, count;
2158
2159 port->pkts_out = pkts;
2160 port->n_pkts_out = 0;
2161
2162 rte_sched_port_time_resync(port);
2163
2164 /* Take each queue in the grinder one step further */
2165 for (i = 0, count = 0; ; i++) {
2166 count += grinder_handle(port, i & (RTE_SCHED_PORT_N_GRINDERS - 1));
2167 if ((count == n_pkts) ||
2168 rte_sched_port_exceptions(port, i >= RTE_SCHED_PORT_N_GRINDERS)) {
2169 break;
2170 }
2171 }
2172
2173 return count;
2174 }