]> git.proxmox.com Git - ceph.git/blob - ceph/src/googletest/googlemock/include/gmock/gmock-generated-matchers.h.pump
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / googletest / googlemock / include / gmock / gmock-generated-matchers.h.pump
1 $$ -*- mode: c++; -*-
2 $$ This is a Pump source file. Please use Pump to convert it to
3 $$ gmock-generated-actions.h.
4 $$
5 $var n = 10 $$ The maximum arity we support.
6 $$ }} This line fixes auto-indentation of the following code in Emacs.
7 // Copyright 2008, Google Inc.
8 // All rights reserved.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // * Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above
17 // copyright notice, this list of conditions and the following disclaimer
18 // in the documentation and/or other materials provided with the
19 // distribution.
20 // * Neither the name of Google Inc. nor the names of its
21 // contributors may be used to endorse or promote products derived from
22 // this software without specific prior written permission.
23 //
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35
36 // Google Mock - a framework for writing C++ mock classes.
37 //
38 // This file implements some commonly used variadic matchers.
39
40 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
41 #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
42
43 #include <iterator>
44 #include <sstream>
45 #include <string>
46 #include <vector>
47 #include "gmock/gmock-matchers.h"
48
49 namespace testing {
50 namespace internal {
51
52 $range i 0..n-1
53
54 // The type of the i-th (0-based) field of Tuple.
55 #define GMOCK_FIELD_TYPE_(Tuple, i) \
56 typename ::testing::tuple_element<i, Tuple>::type
57
58 // TupleFields<Tuple, k0, ..., kn> is for selecting fields from a
59 // tuple of type Tuple. It has two members:
60 //
61 // type: a tuple type whose i-th field is the ki-th field of Tuple.
62 // GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple.
63 //
64 // For example, in class TupleFields<tuple<bool, char, int>, 2, 0>, we have:
65 //
66 // type is tuple<int, bool>, and
67 // GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true).
68
69 template <class Tuple$for i [[, int k$i = -1]]>
70 class TupleFields;
71
72 // This generic version is used when there are $n selectors.
73 template <class Tuple$for i [[, int k$i]]>
74 class TupleFields {
75 public:
76 typedef ::testing::tuple<$for i, [[GMOCK_FIELD_TYPE_(Tuple, k$i)]]> type;
77 static type GetSelectedFields(const Tuple& t) {
78 return type($for i, [[get<k$i>(t)]]);
79 }
80 };
81
82 // The following specialization is used for 0 ~ $(n-1) selectors.
83
84 $for i [[
85 $$ }}}
86 $range j 0..i-1
87 $range k 0..n-1
88
89 template <class Tuple$for j [[, int k$j]]>
90 class TupleFields<Tuple, $for k, [[$if k < i [[k$k]] $else [[-1]]]]> {
91 public:
92 typedef ::testing::tuple<$for j, [[GMOCK_FIELD_TYPE_(Tuple, k$j)]]> type;
93 static type GetSelectedFields(const Tuple& $if i==0 [[/* t */]] $else [[t]]) {
94 return type($for j, [[get<k$j>(t)]]);
95 }
96 };
97
98 ]]
99
100 #undef GMOCK_FIELD_TYPE_
101
102 // Implements the Args() matcher.
103
104 $var ks = [[$for i, [[k$i]]]]
105 template <class ArgsTuple$for i [[, int k$i = -1]]>
106 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
107 public:
108 // ArgsTuple may have top-level const or reference modifiers.
109 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(ArgsTuple) RawArgsTuple;
110 typedef typename internal::TupleFields<RawArgsTuple, $ks>::type SelectedArgs;
111 typedef Matcher<const SelectedArgs&> MonomorphicInnerMatcher;
112
113 template <typename InnerMatcher>
114 explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
115 : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
116
117 virtual bool MatchAndExplain(ArgsTuple args,
118 MatchResultListener* listener) const {
119 const SelectedArgs& selected_args = GetSelectedArgs(args);
120 if (!listener->IsInterested())
121 return inner_matcher_.Matches(selected_args);
122
123 PrintIndices(listener->stream());
124 *listener << "are " << PrintToString(selected_args);
125
126 StringMatchResultListener inner_listener;
127 const bool match = inner_matcher_.MatchAndExplain(selected_args,
128 &inner_listener);
129 PrintIfNotEmpty(inner_listener.str(), listener->stream());
130 return match;
131 }
132
133 virtual void DescribeTo(::std::ostream* os) const {
134 *os << "are a tuple ";
135 PrintIndices(os);
136 inner_matcher_.DescribeTo(os);
137 }
138
139 virtual void DescribeNegationTo(::std::ostream* os) const {
140 *os << "are a tuple ";
141 PrintIndices(os);
142 inner_matcher_.DescribeNegationTo(os);
143 }
144
145 private:
146 static SelectedArgs GetSelectedArgs(ArgsTuple args) {
147 return TupleFields<RawArgsTuple, $ks>::GetSelectedFields(args);
148 }
149
150 // Prints the indices of the selected fields.
151 static void PrintIndices(::std::ostream* os) {
152 *os << "whose fields (";
153 const int indices[$n] = { $ks };
154 for (int i = 0; i < $n; i++) {
155 if (indices[i] < 0)
156 break;
157
158 if (i >= 1)
159 *os << ", ";
160
161 *os << "#" << indices[i];
162 }
163 *os << ") ";
164 }
165
166 const MonomorphicInnerMatcher inner_matcher_;
167
168 GTEST_DISALLOW_ASSIGN_(ArgsMatcherImpl);
169 };
170
171 template <class InnerMatcher$for i [[, int k$i = -1]]>
172 class ArgsMatcher {
173 public:
174 explicit ArgsMatcher(const InnerMatcher& inner_matcher)
175 : inner_matcher_(inner_matcher) {}
176
177 template <typename ArgsTuple>
178 operator Matcher<ArgsTuple>() const {
179 return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, $ks>(inner_matcher_));
180 }
181
182 private:
183 const InnerMatcher inner_matcher_;
184
185 GTEST_DISALLOW_ASSIGN_(ArgsMatcher);
186 };
187
188 // A set of metafunctions for computing the result type of AllOf.
189 // AllOf(m1, ..., mN) returns
190 // AllOfResultN<decltype(m1), ..., decltype(mN)>::type.
191
192 // Although AllOf isn't defined for one argument, AllOfResult1 is defined
193 // to simplify the implementation.
194 template <typename M1>
195 struct AllOfResult1 {
196 typedef M1 type;
197 };
198
199 $range i 1..n
200
201 $range i 2..n
202 $for i [[
203 $range j 2..i
204 $var m = i/2
205 $range k 1..m
206 $range t m+1..i
207
208 template <typename M1$for j [[, typename M$j]]>
209 struct AllOfResult$i {
210 typedef BothOfMatcher<
211 typename AllOfResult$m<$for k, [[M$k]]>::type,
212 typename AllOfResult$(i-m)<$for t, [[M$t]]>::type
213 > type;
214 };
215
216 ]]
217
218 // A set of metafunctions for computing the result type of AnyOf.
219 // AnyOf(m1, ..., mN) returns
220 // AnyOfResultN<decltype(m1), ..., decltype(mN)>::type.
221
222 // Although AnyOf isn't defined for one argument, AnyOfResult1 is defined
223 // to simplify the implementation.
224 template <typename M1>
225 struct AnyOfResult1 {
226 typedef M1 type;
227 };
228
229 $range i 1..n
230
231 $range i 2..n
232 $for i [[
233 $range j 2..i
234 $var m = i/2
235 $range k 1..m
236 $range t m+1..i
237
238 template <typename M1$for j [[, typename M$j]]>
239 struct AnyOfResult$i {
240 typedef EitherOfMatcher<
241 typename AnyOfResult$m<$for k, [[M$k]]>::type,
242 typename AnyOfResult$(i-m)<$for t, [[M$t]]>::type
243 > type;
244 };
245
246 ]]
247
248 } // namespace internal
249
250 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
251 // fields of it matches a_matcher. C++ doesn't support default
252 // arguments for function templates, so we have to overload it.
253
254 $range i 0..n
255 $for i [[
256 $range j 1..i
257 template <$for j [[int k$j, ]]typename InnerMatcher>
258 inline internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>
259 Args(const InnerMatcher& matcher) {
260 return internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>(matcher);
261 }
262
263
264 ]]
265 // ElementsAre(e_1, e_2, ... e_n) matches an STL-style container with
266 // n elements, where the i-th element in the container must
267 // match the i-th argument in the list. Each argument of
268 // ElementsAre() can be either a value or a matcher. We support up to
269 // $n arguments.
270 //
271 // The use of DecayArray in the implementation allows ElementsAre()
272 // to accept string literals, whose type is const char[N], but we
273 // want to treat them as const char*.
274 //
275 // NOTE: Since ElementsAre() cares about the order of the elements, it
276 // must not be used with containers whose elements's order is
277 // undefined (e.g. hash_map).
278
279 $range i 0..n
280 $for i [[
281
282 $range j 1..i
283
284 $if i>0 [[
285
286 template <$for j, [[typename T$j]]>
287 ]]
288
289 inline internal::ElementsAreMatcher<
290 ::testing::tuple<
291 $for j, [[
292
293 typename internal::DecayArray<T$j[[]]>::type]]> >
294 ElementsAre($for j, [[const T$j& e$j]]) {
295 typedef ::testing::tuple<
296 $for j, [[
297
298 typename internal::DecayArray<T$j[[]]>::type]]> Args;
299 return internal::ElementsAreMatcher<Args>(Args($for j, [[e$j]]));
300 }
301
302 ]]
303
304 // UnorderedElementsAre(e_1, e_2, ..., e_n) is an ElementsAre extension
305 // that matches n elements in any order. We support up to n=$n arguments.
306
307 $range i 0..n
308 $for i [[
309
310 $range j 1..i
311
312 $if i>0 [[
313
314 template <$for j, [[typename T$j]]>
315 ]]
316
317 inline internal::UnorderedElementsAreMatcher<
318 ::testing::tuple<
319 $for j, [[
320
321 typename internal::DecayArray<T$j[[]]>::type]]> >
322 UnorderedElementsAre($for j, [[const T$j& e$j]]) {
323 typedef ::testing::tuple<
324 $for j, [[
325
326 typename internal::DecayArray<T$j[[]]>::type]]> Args;
327 return internal::UnorderedElementsAreMatcher<Args>(Args($for j, [[e$j]]));
328 }
329
330 ]]
331
332 // AllOf(m1, m2, ..., mk) matches any value that matches all of the given
333 // sub-matchers. AllOf is called fully qualified to prevent ADL from firing.
334
335 $range i 2..n
336 $for i [[
337 $range j 1..i
338 $var m = i/2
339 $range k 1..m
340 $range t m+1..i
341
342 template <$for j, [[typename M$j]]>
343 inline typename internal::AllOfResult$i<$for j, [[M$j]]>::type
344 AllOf($for j, [[M$j m$j]]) {
345 return typename internal::AllOfResult$i<$for j, [[M$j]]>::type(
346 $if m == 1 [[m1]] $else [[::testing::AllOf($for k, [[m$k]])]],
347 $if m+1 == i [[m$i]] $else [[::testing::AllOf($for t, [[m$t]])]]);
348 }
349
350 ]]
351
352 // AnyOf(m1, m2, ..., mk) matches any value that matches any of the given
353 // sub-matchers. AnyOf is called fully qualified to prevent ADL from firing.
354
355 $range i 2..n
356 $for i [[
357 $range j 1..i
358 $var m = i/2
359 $range k 1..m
360 $range t m+1..i
361
362 template <$for j, [[typename M$j]]>
363 inline typename internal::AnyOfResult$i<$for j, [[M$j]]>::type
364 AnyOf($for j, [[M$j m$j]]) {
365 return typename internal::AnyOfResult$i<$for j, [[M$j]]>::type(
366 $if m == 1 [[m1]] $else [[::testing::AnyOf($for k, [[m$k]])]],
367 $if m+1 == i [[m$i]] $else [[::testing::AnyOf($for t, [[m$t]])]]);
368 }
369
370 ]]
371
372 } // namespace testing
373 $$ } // This Pump meta comment fixes auto-indentation in Emacs. It will not
374 $$ // show up in the generated code.
375
376
377 // The MATCHER* family of macros can be used in a namespace scope to
378 // define custom matchers easily.
379 //
380 // Basic Usage
381 // ===========
382 //
383 // The syntax
384 //
385 // MATCHER(name, description_string) { statements; }
386 //
387 // defines a matcher with the given name that executes the statements,
388 // which must return a bool to indicate if the match succeeds. Inside
389 // the statements, you can refer to the value being matched by 'arg',
390 // and refer to its type by 'arg_type'.
391 //
392 // The description string documents what the matcher does, and is used
393 // to generate the failure message when the match fails. Since a
394 // MATCHER() is usually defined in a header file shared by multiple
395 // C++ source files, we require the description to be a C-string
396 // literal to avoid possible side effects. It can be empty, in which
397 // case we'll use the sequence of words in the matcher name as the
398 // description.
399 //
400 // For example:
401 //
402 // MATCHER(IsEven, "") { return (arg % 2) == 0; }
403 //
404 // allows you to write
405 //
406 // // Expects mock_foo.Bar(n) to be called where n is even.
407 // EXPECT_CALL(mock_foo, Bar(IsEven()));
408 //
409 // or,
410 //
411 // // Verifies that the value of some_expression is even.
412 // EXPECT_THAT(some_expression, IsEven());
413 //
414 // If the above assertion fails, it will print something like:
415 //
416 // Value of: some_expression
417 // Expected: is even
418 // Actual: 7
419 //
420 // where the description "is even" is automatically calculated from the
421 // matcher name IsEven.
422 //
423 // Argument Type
424 // =============
425 //
426 // Note that the type of the value being matched (arg_type) is
427 // determined by the context in which you use the matcher and is
428 // supplied to you by the compiler, so you don't need to worry about
429 // declaring it (nor can you). This allows the matcher to be
430 // polymorphic. For example, IsEven() can be used to match any type
431 // where the value of "(arg % 2) == 0" can be implicitly converted to
432 // a bool. In the "Bar(IsEven())" example above, if method Bar()
433 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
434 // 'arg_type' will be unsigned long; and so on.
435 //
436 // Parameterizing Matchers
437 // =======================
438 //
439 // Sometimes you'll want to parameterize the matcher. For that you
440 // can use another macro:
441 //
442 // MATCHER_P(name, param_name, description_string) { statements; }
443 //
444 // For example:
445 //
446 // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
447 //
448 // will allow you to write:
449 //
450 // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
451 //
452 // which may lead to this message (assuming n is 10):
453 //
454 // Value of: Blah("a")
455 // Expected: has absolute value 10
456 // Actual: -9
457 //
458 // Note that both the matcher description and its parameter are
459 // printed, making the message human-friendly.
460 //
461 // In the matcher definition body, you can write 'foo_type' to
462 // reference the type of a parameter named 'foo'. For example, in the
463 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
464 // 'value_type' to refer to the type of 'value'.
465 //
466 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
467 // support multi-parameter matchers.
468 //
469 // Describing Parameterized Matchers
470 // =================================
471 //
472 // The last argument to MATCHER*() is a string-typed expression. The
473 // expression can reference all of the matcher's parameters and a
474 // special bool-typed variable named 'negation'. When 'negation' is
475 // false, the expression should evaluate to the matcher's description;
476 // otherwise it should evaluate to the description of the negation of
477 // the matcher. For example,
478 //
479 // using testing::PrintToString;
480 //
481 // MATCHER_P2(InClosedRange, low, hi,
482 // string(negation ? "is not" : "is") + " in range [" +
483 // PrintToString(low) + ", " + PrintToString(hi) + "]") {
484 // return low <= arg && arg <= hi;
485 // }
486 // ...
487 // EXPECT_THAT(3, InClosedRange(4, 6));
488 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
489 //
490 // would generate two failures that contain the text:
491 //
492 // Expected: is in range [4, 6]
493 // ...
494 // Expected: is not in range [2, 4]
495 //
496 // If you specify "" as the description, the failure message will
497 // contain the sequence of words in the matcher name followed by the
498 // parameter values printed as a tuple. For example,
499 //
500 // MATCHER_P2(InClosedRange, low, hi, "") { ... }
501 // ...
502 // EXPECT_THAT(3, InClosedRange(4, 6));
503 // EXPECT_THAT(3, Not(InClosedRange(2, 4)));
504 //
505 // would generate two failures that contain the text:
506 //
507 // Expected: in closed range (4, 6)
508 // ...
509 // Expected: not (in closed range (2, 4))
510 //
511 // Types of Matcher Parameters
512 // ===========================
513 //
514 // For the purpose of typing, you can view
515 //
516 // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
517 //
518 // as shorthand for
519 //
520 // template <typename p1_type, ..., typename pk_type>
521 // FooMatcherPk<p1_type, ..., pk_type>
522 // Foo(p1_type p1, ..., pk_type pk) { ... }
523 //
524 // When you write Foo(v1, ..., vk), the compiler infers the types of
525 // the parameters v1, ..., and vk for you. If you are not happy with
526 // the result of the type inference, you can specify the types by
527 // explicitly instantiating the template, as in Foo<long, bool>(5,
528 // false). As said earlier, you don't get to (or need to) specify
529 // 'arg_type' as that's determined by the context in which the matcher
530 // is used. You can assign the result of expression Foo(p1, ..., pk)
531 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
532 // can be useful when composing matchers.
533 //
534 // While you can instantiate a matcher template with reference types,
535 // passing the parameters by pointer usually makes your code more
536 // readable. If, however, you still want to pass a parameter by
537 // reference, be aware that in the failure message generated by the
538 // matcher you will see the value of the referenced object but not its
539 // address.
540 //
541 // Explaining Match Results
542 // ========================
543 //
544 // Sometimes the matcher description alone isn't enough to explain why
545 // the match has failed or succeeded. For example, when expecting a
546 // long string, it can be very helpful to also print the diff between
547 // the expected string and the actual one. To achieve that, you can
548 // optionally stream additional information to a special variable
549 // named result_listener, whose type is a pointer to class
550 // MatchResultListener:
551 //
552 // MATCHER_P(EqualsLongString, str, "") {
553 // if (arg == str) return true;
554 //
555 // *result_listener << "the difference: "
556 /// << DiffStrings(str, arg);
557 // return false;
558 // }
559 //
560 // Overloading Matchers
561 // ====================
562 //
563 // You can overload matchers with different numbers of parameters:
564 //
565 // MATCHER_P(Blah, a, description_string1) { ... }
566 // MATCHER_P2(Blah, a, b, description_string2) { ... }
567 //
568 // Caveats
569 // =======
570 //
571 // When defining a new matcher, you should also consider implementing
572 // MatcherInterface or using MakePolymorphicMatcher(). These
573 // approaches require more work than the MATCHER* macros, but also
574 // give you more control on the types of the value being matched and
575 // the matcher parameters, which may leads to better compiler error
576 // messages when the matcher is used wrong. They also allow
577 // overloading matchers based on parameter types (as opposed to just
578 // based on the number of parameters).
579 //
580 // MATCHER*() can only be used in a namespace scope. The reason is
581 // that C++ doesn't yet allow function-local types to be used to
582 // instantiate templates. The up-coming C++0x standard will fix this.
583 // Once that's done, we'll consider supporting using MATCHER*() inside
584 // a function.
585 //
586 // More Information
587 // ================
588 //
589 // To learn more about using these macros, please search for 'MATCHER'
590 // on http://code.google.com/p/googlemock/wiki/CookBook.
591
592 $range i 0..n
593 $for i
594
595 [[
596 $var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]]
597 $else [[MATCHER_P$i]]]]
598 $var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]]
599 $else [[P$i]]]]]]
600 $range j 0..i-1
601 $var template = [[$if i==0 [[]] $else [[
602
603 template <$for j, [[typename p$j##_type]]>\
604 ]]]]
605 $var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
606 $var impl_ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
607 $var impl_inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
608 $var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
609 $var params = [[$for j, [[p$j]]]]
610 $var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
611 $var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
612 $var param_field_decls = [[$for j
613 [[
614
615 p$j##_type p$j;\
616 ]]]]
617 $var param_field_decls2 = [[$for j
618 [[
619
620 p$j##_type p$j;\
621 ]]]]
622
623 #define $macro_name(name$for j [[, p$j]], description)\$template
624 class $class_name {\
625 public:\
626 template <typename arg_type>\
627 class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
628 public:\
629 [[$if i==1 [[explicit ]]]]gmock_Impl($impl_ctor_param_list)\
630 $impl_inits {}\
631 virtual bool MatchAndExplain(\
632 arg_type arg, ::testing::MatchResultListener* result_listener) const;\
633 virtual void DescribeTo(::std::ostream* gmock_os) const {\
634 *gmock_os << FormatDescription(false);\
635 }\
636 virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
637 *gmock_os << FormatDescription(true);\
638 }\$param_field_decls
639 private:\
640 ::testing::internal::string FormatDescription(bool negation) const {\
641 const ::testing::internal::string gmock_description = (description);\
642 if (!gmock_description.empty())\
643 return gmock_description;\
644 return ::testing::internal::FormatMatcherDescription(\
645 negation, #name, \
646 ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
647 ::testing::tuple<$for j, [[p$j##_type]]>($for j, [[p$j]])));\
648 }\
649 GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
650 };\
651 template <typename arg_type>\
652 operator ::testing::Matcher<arg_type>() const {\
653 return ::testing::Matcher<arg_type>(\
654 new gmock_Impl<arg_type>($params));\
655 }\
656 [[$if i==1 [[explicit ]]]]$class_name($ctor_param_list)$inits {\
657 }\$param_field_decls2
658 private:\
659 GTEST_DISALLOW_ASSIGN_($class_name);\
660 };\$template
661 inline $class_name$param_types name($param_types_and_names) {\
662 return $class_name$param_types($params);\
663 }\$template
664 template <typename arg_type>\
665 bool $class_name$param_types::gmock_Impl<arg_type>::MatchAndExplain(\
666 arg_type arg, \
667 ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
668 const
669 ]]
670
671
672 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_