]> git.proxmox.com Git - ceph.git/blob - ceph/src/googletest/googletest/include/gtest/internal/gtest-internal.h
update source to Ceph Pacific 16.2.2
[ceph.git] / ceph / src / googletest / googletest / include / gtest / internal / gtest-internal.h
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test. They are subject to change without notice.
34
35 // GOOGLETEST_CM0001 DO NOT DELETE
36
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40 #include "gtest/internal/gtest-port.h"
41
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif // GTEST_OS_LINUX
48
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52
53 #include <ctype.h>
54 #include <float.h>
55 #include <string.h>
56 #include <cstdint>
57 #include <iomanip>
58 #include <limits>
59 #include <map>
60 #include <set>
61 #include <string>
62 #include <type_traits>
63 #include <vector>
64
65 #include "gtest/gtest-message.h"
66 #include "gtest/internal/gtest-filepath.h"
67 #include "gtest/internal/gtest-string.h"
68 #include "gtest/internal/gtest-type-util.h"
69
70 // Due to C++ preprocessor weirdness, we need double indirection to
71 // concatenate two tokens when one of them is __LINE__. Writing
72 //
73 // foo ## __LINE__
74 //
75 // will result in the token foo__LINE__, instead of foo followed by
76 // the current line number. For more details, see
77 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
78 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
79 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
80
81 // Stringifies its argument.
82 // Work around a bug in visual studio which doesn't accept code like this:
83 //
84 // #define GTEST_STRINGIFY_(name) #name
85 // #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
86 // MACRO(, x, y)
87 //
88 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
89 // This is allowed by the spec.
90 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
91 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
92
93 namespace proto2 {
94 class MessageLite;
95 }
96
97 namespace testing {
98
99 // Forward declarations.
100
101 class AssertionResult; // Result of an assertion.
102 class Message; // Represents a failure message.
103 class Test; // Represents a test.
104 class TestInfo; // Information about a test.
105 class TestPartResult; // Result of a test part.
106 class UnitTest; // A collection of test suites.
107
108 template <typename T>
109 ::std::string PrintToString(const T& value);
110
111 namespace internal {
112
113 struct TraceInfo; // Information about a trace point.
114 class TestInfoImpl; // Opaque implementation of TestInfo
115 class UnitTestImpl; // Opaque implementation of UnitTest
116
117 // The text used in failure messages to indicate the start of the
118 // stack trace.
119 GTEST_API_ extern const char kStackTraceMarker[];
120
121 // An IgnoredValue object can be implicitly constructed from ANY value.
122 class IgnoredValue {
123 struct Sink {};
124 public:
125 // This constructor template allows any value to be implicitly
126 // converted to IgnoredValue. The object has no data member and
127 // doesn't try to remember anything about the argument. We
128 // deliberately omit the 'explicit' keyword in order to allow the
129 // conversion to be implicit.
130 // Disable the conversion if T already has a magical conversion operator.
131 // Otherwise we get ambiguity.
132 template <typename T,
133 typename std::enable_if<!std::is_convertible<T, Sink>::value,
134 int>::type = 0>
135 IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
136 };
137
138 // Appends the user-supplied message to the Google-Test-generated message.
139 GTEST_API_ std::string AppendUserMessage(
140 const std::string& gtest_msg, const Message& user_msg);
141
142 #if GTEST_HAS_EXCEPTIONS
143
144 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
145 /* an exported class was derived from a class that was not exported */)
146
147 // This exception is thrown by (and only by) a failed Google Test
148 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
149 // are enabled). We derive it from std::runtime_error, which is for
150 // errors presumably detectable only at run time. Since
151 // std::runtime_error inherits from std::exception, many testing
152 // frameworks know how to extract and print the message inside it.
153 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
154 public:
155 explicit GoogleTestFailureException(const TestPartResult& failure);
156 };
157
158 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275
159
160 #endif // GTEST_HAS_EXCEPTIONS
161
162 namespace edit_distance {
163 // Returns the optimal edits to go from 'left' to 'right'.
164 // All edits cost the same, with replace having lower priority than
165 // add/remove.
166 // Simple implementation of the Wagner-Fischer algorithm.
167 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
168 enum EditType { kMatch, kAdd, kRemove, kReplace };
169 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
170 const std::vector<size_t>& left, const std::vector<size_t>& right);
171
172 // Same as above, but the input is represented as strings.
173 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
174 const std::vector<std::string>& left,
175 const std::vector<std::string>& right);
176
177 // Create a diff of the input strings in Unified diff format.
178 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
179 const std::vector<std::string>& right,
180 size_t context = 2);
181
182 } // namespace edit_distance
183
184 // Calculate the diff between 'left' and 'right' and return it in unified diff
185 // format.
186 // If not null, stores in 'total_line_count' the total number of lines found
187 // in left + right.
188 GTEST_API_ std::string DiffStrings(const std::string& left,
189 const std::string& right,
190 size_t* total_line_count);
191
192 // Constructs and returns the message for an equality assertion
193 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
194 //
195 // The first four parameters are the expressions used in the assertion
196 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
197 // where foo is 5 and bar is 6, we have:
198 //
199 // expected_expression: "foo"
200 // actual_expression: "bar"
201 // expected_value: "5"
202 // actual_value: "6"
203 //
204 // The ignoring_case parameter is true if and only if the assertion is a
205 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
206 // be inserted into the message.
207 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
208 const char* actual_expression,
209 const std::string& expected_value,
210 const std::string& actual_value,
211 bool ignoring_case);
212
213 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
214 GTEST_API_ std::string GetBoolAssertionFailureMessage(
215 const AssertionResult& assertion_result,
216 const char* expression_text,
217 const char* actual_predicate_value,
218 const char* expected_predicate_value);
219
220 // This template class represents an IEEE floating-point number
221 // (either single-precision or double-precision, depending on the
222 // template parameters).
223 //
224 // The purpose of this class is to do more sophisticated number
225 // comparison. (Due to round-off error, etc, it's very unlikely that
226 // two floating-points will be equal exactly. Hence a naive
227 // comparison by the == operation often doesn't work.)
228 //
229 // Format of IEEE floating-point:
230 //
231 // The most-significant bit being the leftmost, an IEEE
232 // floating-point looks like
233 //
234 // sign_bit exponent_bits fraction_bits
235 //
236 // Here, sign_bit is a single bit that designates the sign of the
237 // number.
238 //
239 // For float, there are 8 exponent bits and 23 fraction bits.
240 //
241 // For double, there are 11 exponent bits and 52 fraction bits.
242 //
243 // More details can be found at
244 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
245 //
246 // Template parameter:
247 //
248 // RawType: the raw floating-point type (either float or double)
249 template <typename RawType>
250 class FloatingPoint {
251 public:
252 // Defines the unsigned integer type that has the same size as the
253 // floating point number.
254 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
255
256 // Constants.
257
258 // # of bits in a number.
259 static const size_t kBitCount = 8*sizeof(RawType);
260
261 // # of fraction bits in a number.
262 static const size_t kFractionBitCount =
263 std::numeric_limits<RawType>::digits - 1;
264
265 // # of exponent bits in a number.
266 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
267
268 // The mask for the sign bit.
269 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
270
271 // The mask for the fraction bits.
272 static const Bits kFractionBitMask =
273 ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
274
275 // The mask for the exponent bits.
276 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
277
278 // How many ULP's (Units in the Last Place) we want to tolerate when
279 // comparing two numbers. The larger the value, the more error we
280 // allow. A 0 value means that two numbers must be exactly the same
281 // to be considered equal.
282 //
283 // The maximum error of a single floating-point operation is 0.5
284 // units in the last place. On Intel CPU's, all floating-point
285 // calculations are done with 80-bit precision, while double has 64
286 // bits. Therefore, 4 should be enough for ordinary use.
287 //
288 // See the following article for more details on ULP:
289 // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
290 static const uint32_t kMaxUlps = 4;
291
292 // Constructs a FloatingPoint from a raw floating-point number.
293 //
294 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
295 // around may change its bits, although the new value is guaranteed
296 // to be also a NAN. Therefore, don't expect this constructor to
297 // preserve the bits in x when x is a NAN.
298 explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
299
300 // Static methods
301
302 // Reinterprets a bit pattern as a floating-point number.
303 //
304 // This function is needed to test the AlmostEquals() method.
305 static RawType ReinterpretBits(const Bits bits) {
306 FloatingPoint fp(0);
307 fp.u_.bits_ = bits;
308 return fp.u_.value_;
309 }
310
311 // Returns the floating-point number that represent positive infinity.
312 static RawType Infinity() {
313 return ReinterpretBits(kExponentBitMask);
314 }
315
316 // Returns the maximum representable finite floating-point number.
317 static RawType Max();
318
319 // Non-static methods
320
321 // Returns the bits that represents this number.
322 const Bits &bits() const { return u_.bits_; }
323
324 // Returns the exponent bits of this number.
325 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
326
327 // Returns the fraction bits of this number.
328 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
329
330 // Returns the sign bit of this number.
331 Bits sign_bit() const { return kSignBitMask & u_.bits_; }
332
333 // Returns true if and only if this is NAN (not a number).
334 bool is_nan() const {
335 // It's a NAN if the exponent bits are all ones and the fraction
336 // bits are not entirely zeros.
337 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
338 }
339
340 // Returns true if and only if this number is at most kMaxUlps ULP's away
341 // from rhs. In particular, this function:
342 //
343 // - returns false if either number is (or both are) NAN.
344 // - treats really large numbers as almost equal to infinity.
345 // - thinks +0.0 and -0.0 are 0 DLP's apart.
346 bool AlmostEquals(const FloatingPoint& rhs) const {
347 // The IEEE standard says that any comparison operation involving
348 // a NAN must return false.
349 if (is_nan() || rhs.is_nan()) return false;
350
351 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
352 <= kMaxUlps;
353 }
354
355 private:
356 // The data type used to store the actual floating-point number.
357 union FloatingPointUnion {
358 RawType value_; // The raw floating-point number.
359 Bits bits_; // The bits that represent the number.
360 };
361
362 // Converts an integer from the sign-and-magnitude representation to
363 // the biased representation. More precisely, let N be 2 to the
364 // power of (kBitCount - 1), an integer x is represented by the
365 // unsigned number x + N.
366 //
367 // For instance,
368 //
369 // -N + 1 (the most negative number representable using
370 // sign-and-magnitude) is represented by 1;
371 // 0 is represented by N; and
372 // N - 1 (the biggest number representable using
373 // sign-and-magnitude) is represented by 2N - 1.
374 //
375 // Read http://en.wikipedia.org/wiki/Signed_number_representations
376 // for more details on signed number representations.
377 static Bits SignAndMagnitudeToBiased(const Bits &sam) {
378 if (kSignBitMask & sam) {
379 // sam represents a negative number.
380 return ~sam + 1;
381 } else {
382 // sam represents a positive number.
383 return kSignBitMask | sam;
384 }
385 }
386
387 // Given two numbers in the sign-and-magnitude representation,
388 // returns the distance between them as an unsigned number.
389 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
390 const Bits &sam2) {
391 const Bits biased1 = SignAndMagnitudeToBiased(sam1);
392 const Bits biased2 = SignAndMagnitudeToBiased(sam2);
393 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
394 }
395
396 FloatingPointUnion u_;
397 };
398
399 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
400 // macro defined by <windows.h>.
401 template <>
402 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
403 template <>
404 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
405
406 // Typedefs the instances of the FloatingPoint template class that we
407 // care to use.
408 typedef FloatingPoint<float> Float;
409 typedef FloatingPoint<double> Double;
410
411 // In order to catch the mistake of putting tests that use different
412 // test fixture classes in the same test suite, we need to assign
413 // unique IDs to fixture classes and compare them. The TypeId type is
414 // used to hold such IDs. The user should treat TypeId as an opaque
415 // type: the only operation allowed on TypeId values is to compare
416 // them for equality using the == operator.
417 typedef const void* TypeId;
418
419 template <typename T>
420 class TypeIdHelper {
421 public:
422 // dummy_ must not have a const type. Otherwise an overly eager
423 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
424 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
425 static bool dummy_;
426 };
427
428 template <typename T>
429 bool TypeIdHelper<T>::dummy_ = false;
430
431 // GetTypeId<T>() returns the ID of type T. Different values will be
432 // returned for different types. Calling the function twice with the
433 // same type argument is guaranteed to return the same ID.
434 template <typename T>
435 TypeId GetTypeId() {
436 // The compiler is required to allocate a different
437 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
438 // the template. Therefore, the address of dummy_ is guaranteed to
439 // be unique.
440 return &(TypeIdHelper<T>::dummy_);
441 }
442
443 // Returns the type ID of ::testing::Test. Always call this instead
444 // of GetTypeId< ::testing::Test>() to get the type ID of
445 // ::testing::Test, as the latter may give the wrong result due to a
446 // suspected linker bug when compiling Google Test as a Mac OS X
447 // framework.
448 GTEST_API_ TypeId GetTestTypeId();
449
450 // Defines the abstract factory interface that creates instances
451 // of a Test object.
452 class TestFactoryBase {
453 public:
454 virtual ~TestFactoryBase() {}
455
456 // Creates a test instance to run. The instance is both created and destroyed
457 // within TestInfoImpl::Run()
458 virtual Test* CreateTest() = 0;
459
460 protected:
461 TestFactoryBase() {}
462
463 private:
464 GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
465 };
466
467 // This class provides implementation of TeastFactoryBase interface.
468 // It is used in TEST and TEST_F macros.
469 template <class TestClass>
470 class TestFactoryImpl : public TestFactoryBase {
471 public:
472 Test* CreateTest() override { return new TestClass; }
473 };
474
475 #if GTEST_OS_WINDOWS
476
477 // Predicate-formatters for implementing the HRESULT checking macros
478 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
479 // We pass a long instead of HRESULT to avoid causing an
480 // include dependency for the HRESULT type.
481 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
482 long hr); // NOLINT
483 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
484 long hr); // NOLINT
485
486 #endif // GTEST_OS_WINDOWS
487
488 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
489 using SetUpTestSuiteFunc = void (*)();
490 using TearDownTestSuiteFunc = void (*)();
491
492 struct CodeLocation {
493 CodeLocation(const std::string& a_file, int a_line)
494 : file(a_file), line(a_line) {}
495
496 std::string file;
497 int line;
498 };
499
500 // Helper to identify which setup function for TestCase / TestSuite to call.
501 // Only one function is allowed, either TestCase or TestSute but not both.
502
503 // Utility functions to help SuiteApiResolver
504 using SetUpTearDownSuiteFuncType = void (*)();
505
506 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
507 SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
508 return a == def ? nullptr : a;
509 }
510
511 template <typename T>
512 // Note that SuiteApiResolver inherits from T because
513 // SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
514 // SuiteApiResolver can access them.
515 struct SuiteApiResolver : T {
516 // testing::Test is only forward declared at this point. So we make it a
517 // dependend class for the compiler to be OK with it.
518 using Test =
519 typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
520
521 static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
522 int line_num) {
523 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
524 SetUpTearDownSuiteFuncType test_case_fp =
525 GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
526 SetUpTearDownSuiteFuncType test_suite_fp =
527 GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
528
529 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
530 << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
531 "make sure there is only one present at "
532 << filename << ":" << line_num;
533
534 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
535 #else
536 (void)(filename);
537 (void)(line_num);
538 return &T::SetUpTestSuite;
539 #endif
540 }
541
542 static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
543 int line_num) {
544 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
545 SetUpTearDownSuiteFuncType test_case_fp =
546 GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
547 SetUpTearDownSuiteFuncType test_suite_fp =
548 GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
549
550 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
551 << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
552 " please make sure there is only one present at"
553 << filename << ":" << line_num;
554
555 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
556 #else
557 (void)(filename);
558 (void)(line_num);
559 return &T::TearDownTestSuite;
560 #endif
561 }
562 };
563
564 // Creates a new TestInfo object and registers it with Google Test;
565 // returns the created object.
566 //
567 // Arguments:
568 //
569 // test_suite_name: name of the test suite
570 // name: name of the test
571 // type_param: the name of the test's type parameter, or NULL if
572 // this is not a typed or a type-parameterized test.
573 // value_param: text representation of the test's value parameter,
574 // or NULL if this is not a type-parameterized test.
575 // code_location: code location where the test is defined
576 // fixture_class_id: ID of the test fixture class
577 // set_up_tc: pointer to the function that sets up the test suite
578 // tear_down_tc: pointer to the function that tears down the test suite
579 // factory: pointer to the factory that creates a test object.
580 // The newly created TestInfo instance will assume
581 // ownership of the factory object.
582 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
583 const char* test_suite_name, const char* name, const char* type_param,
584 const char* value_param, CodeLocation code_location,
585 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
586 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
587
588 // If *pstr starts with the given prefix, modifies *pstr to be right
589 // past the prefix and returns true; otherwise leaves *pstr unchanged
590 // and returns false. None of pstr, *pstr, and prefix can be NULL.
591 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
592
593 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
594
595 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
596 /* class A needs to have dll-interface to be used by clients of class B */)
597
598 // State of the definition of a type-parameterized test suite.
599 class GTEST_API_ TypedTestSuitePState {
600 public:
601 TypedTestSuitePState() : registered_(false) {}
602
603 // Adds the given test name to defined_test_names_ and return true
604 // if the test suite hasn't been registered; otherwise aborts the
605 // program.
606 bool AddTestName(const char* file, int line, const char* case_name,
607 const char* test_name) {
608 if (registered_) {
609 fprintf(stderr,
610 "%s Test %s must be defined before "
611 "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
612 FormatFileLocation(file, line).c_str(), test_name, case_name);
613 fflush(stderr);
614 posix::Abort();
615 }
616 registered_tests_.insert(
617 ::std::make_pair(test_name, CodeLocation(file, line)));
618 return true;
619 }
620
621 bool TestExists(const std::string& test_name) const {
622 return registered_tests_.count(test_name) > 0;
623 }
624
625 const CodeLocation& GetCodeLocation(const std::string& test_name) const {
626 RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
627 GTEST_CHECK_(it != registered_tests_.end());
628 return it->second;
629 }
630
631 // Verifies that registered_tests match the test names in
632 // defined_test_names_; returns registered_tests if successful, or
633 // aborts the program otherwise.
634 const char* VerifyRegisteredTestNames(const char* test_suite_name,
635 const char* file, int line,
636 const char* registered_tests);
637
638 private:
639 typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
640
641 bool registered_;
642 RegisteredTestsMap registered_tests_;
643 };
644
645 // Legacy API is deprecated but still available
646 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
647 using TypedTestCasePState = TypedTestSuitePState;
648 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
649
650 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
651
652 // Skips to the first non-space char after the first comma in 'str';
653 // returns NULL if no comma is found in 'str'.
654 inline const char* SkipComma(const char* str) {
655 const char* comma = strchr(str, ',');
656 if (comma == nullptr) {
657 return nullptr;
658 }
659 while (IsSpace(*(++comma))) {}
660 return comma;
661 }
662
663 // Returns the prefix of 'str' before the first comma in it; returns
664 // the entire string if it contains no comma.
665 inline std::string GetPrefixUntilComma(const char* str) {
666 const char* comma = strchr(str, ',');
667 return comma == nullptr ? str : std::string(str, comma);
668 }
669
670 // Splits a given string on a given delimiter, populating a given
671 // vector with the fields.
672 void SplitString(const ::std::string& str, char delimiter,
673 ::std::vector< ::std::string>* dest);
674
675 // The default argument to the template below for the case when the user does
676 // not provide a name generator.
677 struct DefaultNameGenerator {
678 template <typename T>
679 static std::string GetName(int i) {
680 return StreamableToString(i);
681 }
682 };
683
684 template <typename Provided = DefaultNameGenerator>
685 struct NameGeneratorSelector {
686 typedef Provided type;
687 };
688
689 template <typename NameGenerator>
690 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
691
692 template <typename NameGenerator, typename Types>
693 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
694 result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
695 GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
696 i + 1);
697 }
698
699 template <typename NameGenerator, typename Types>
700 std::vector<std::string> GenerateNames() {
701 std::vector<std::string> result;
702 GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
703 return result;
704 }
705
706 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
707 // registers a list of type-parameterized tests with Google Test. The
708 // return value is insignificant - we just need to return something
709 // such that we can call this function in a namespace scope.
710 //
711 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
712 // template parameter. It's defined in gtest-type-util.h.
713 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
714 class TypeParameterizedTest {
715 public:
716 // 'index' is the index of the test in the type list 'Types'
717 // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
718 // Types). Valid values for 'index' are [0, N - 1] where N is the
719 // length of Types.
720 static bool Register(const char* prefix, const CodeLocation& code_location,
721 const char* case_name, const char* test_names, int index,
722 const std::vector<std::string>& type_names =
723 GenerateNames<DefaultNameGenerator, Types>()) {
724 typedef typename Types::Head Type;
725 typedef Fixture<Type> FixtureClass;
726 typedef typename GTEST_BIND_(TestSel, Type) TestClass;
727
728 // First, registers the first type-parameterized test in the type
729 // list.
730 MakeAndRegisterTestInfo(
731 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
732 "/" + type_names[static_cast<size_t>(index)])
733 .c_str(),
734 StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
735 GetTypeName<Type>().c_str(),
736 nullptr, // No value parameter.
737 code_location, GetTypeId<FixtureClass>(),
738 SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
739 code_location.file.c_str(), code_location.line),
740 SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
741 code_location.file.c_str(), code_location.line),
742 new TestFactoryImpl<TestClass>);
743
744 // Next, recurses (at compile time) with the tail of the type list.
745 return TypeParameterizedTest<Fixture, TestSel,
746 typename Types::Tail>::Register(prefix,
747 code_location,
748 case_name,
749 test_names,
750 index + 1,
751 type_names);
752 }
753 };
754
755 // The base case for the compile time recursion.
756 template <GTEST_TEMPLATE_ Fixture, class TestSel>
757 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
758 public:
759 static bool Register(const char* /*prefix*/, const CodeLocation&,
760 const char* /*case_name*/, const char* /*test_names*/,
761 int /*index*/,
762 const std::vector<std::string>& =
763 std::vector<std::string>() /*type_names*/) {
764 return true;
765 }
766 };
767
768 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
769 CodeLocation code_location);
770 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
771 const char* case_name);
772
773 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
774 // registers *all combinations* of 'Tests' and 'Types' with Google
775 // Test. The return value is insignificant - we just need to return
776 // something such that we can call this function in a namespace scope.
777 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
778 class TypeParameterizedTestSuite {
779 public:
780 static bool Register(const char* prefix, CodeLocation code_location,
781 const TypedTestSuitePState* state, const char* case_name,
782 const char* test_names,
783 const std::vector<std::string>& type_names =
784 GenerateNames<DefaultNameGenerator, Types>()) {
785 RegisterTypeParameterizedTestSuiteInstantiation(case_name);
786 std::string test_name = StripTrailingSpaces(
787 GetPrefixUntilComma(test_names));
788 if (!state->TestExists(test_name)) {
789 fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
790 case_name, test_name.c_str(),
791 FormatFileLocation(code_location.file.c_str(),
792 code_location.line).c_str());
793 fflush(stderr);
794 posix::Abort();
795 }
796 const CodeLocation& test_location = state->GetCodeLocation(test_name);
797
798 typedef typename Tests::Head Head;
799
800 // First, register the first test in 'Test' for each type in 'Types'.
801 TypeParameterizedTest<Fixture, Head, Types>::Register(
802 prefix, test_location, case_name, test_names, 0, type_names);
803
804 // Next, recurses (at compile time) with the tail of the test list.
805 return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
806 Types>::Register(prefix, code_location,
807 state, case_name,
808 SkipComma(test_names),
809 type_names);
810 }
811 };
812
813 // The base case for the compile time recursion.
814 template <GTEST_TEMPLATE_ Fixture, typename Types>
815 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
816 public:
817 static bool Register(const char* /*prefix*/, const CodeLocation&,
818 const TypedTestSuitePState* /*state*/,
819 const char* /*case_name*/, const char* /*test_names*/,
820 const std::vector<std::string>& =
821 std::vector<std::string>() /*type_names*/) {
822 return true;
823 }
824 };
825
826 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
827
828 // Returns the current OS stack trace as an std::string.
829 //
830 // The maximum number of stack frames to be included is specified by
831 // the gtest_stack_trace_depth flag. The skip_count parameter
832 // specifies the number of top frames to be skipped, which doesn't
833 // count against the number of frames to be included.
834 //
835 // For example, if Foo() calls Bar(), which in turn calls
836 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
837 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
838 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
839 UnitTest* unit_test, int skip_count);
840
841 // Helpers for suppressing warnings on unreachable code or constant
842 // condition.
843
844 // Always returns true.
845 GTEST_API_ bool AlwaysTrue();
846
847 // Always returns false.
848 inline bool AlwaysFalse() { return !AlwaysTrue(); }
849
850 // Helper for suppressing false warning from Clang on a const char*
851 // variable declared in a conditional expression always being NULL in
852 // the else branch.
853 struct GTEST_API_ ConstCharPtr {
854 ConstCharPtr(const char* str) : value(str) {}
855 operator bool() const { return true; }
856 const char* value;
857 };
858
859 // Helper for declaring std::string within 'if' statement
860 // in pre C++17 build environment.
861 struct TrueWithString {
862 TrueWithString() = default;
863 explicit TrueWithString(const char* str) : value(str) {}
864 explicit TrueWithString(const std::string& str) : value(str) {}
865 explicit operator bool() const { return true; }
866 std::string value;
867 };
868
869 // A simple Linear Congruential Generator for generating random
870 // numbers with a uniform distribution. Unlike rand() and srand(), it
871 // doesn't use global state (and therefore can't interfere with user
872 // code). Unlike rand_r(), it's portable. An LCG isn't very random,
873 // but it's good enough for our purposes.
874 class GTEST_API_ Random {
875 public:
876 static const uint32_t kMaxRange = 1u << 31;
877
878 explicit Random(uint32_t seed) : state_(seed) {}
879
880 void Reseed(uint32_t seed) { state_ = seed; }
881
882 // Generates a random number from [0, range). Crashes if 'range' is
883 // 0 or greater than kMaxRange.
884 uint32_t Generate(uint32_t range);
885
886 private:
887 uint32_t state_;
888 GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
889 };
890
891 // Turns const U&, U&, const U, and U all into U.
892 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
893 typename std::remove_const<typename std::remove_reference<T>::type>::type
894
895 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
896 // that's true if and only if T has methods DebugString() and ShortDebugString()
897 // that return std::string.
898 template <typename T>
899 class HasDebugStringAndShortDebugString {
900 private:
901 template <typename C>
902 static constexpr auto CheckDebugString(C*) -> typename std::is_same<
903 std::string, decltype(std::declval<const C>().DebugString())>::type;
904 template <typename>
905 static constexpr std::false_type CheckDebugString(...);
906
907 template <typename C>
908 static constexpr auto CheckShortDebugString(C*) -> typename std::is_same<
909 std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
910 template <typename>
911 static constexpr std::false_type CheckShortDebugString(...);
912
913 using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
914 using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
915
916 public:
917 static constexpr bool value =
918 HasDebugStringType::value && HasShortDebugStringType::value;
919 };
920
921 template <typename T>
922 constexpr bool HasDebugStringAndShortDebugString<T>::value;
923
924 // When the compiler sees expression IsContainerTest<C>(0), if C is an
925 // STL-style container class, the first overload of IsContainerTest
926 // will be viable (since both C::iterator* and C::const_iterator* are
927 // valid types and NULL can be implicitly converted to them). It will
928 // be picked over the second overload as 'int' is a perfect match for
929 // the type of argument 0. If C::iterator or C::const_iterator is not
930 // a valid type, the first overload is not viable, and the second
931 // overload will be picked. Therefore, we can determine whether C is
932 // a container class by checking the type of IsContainerTest<C>(0).
933 // The value of the expression is insignificant.
934 //
935 // In C++11 mode we check the existence of a const_iterator and that an
936 // iterator is properly implemented for the container.
937 //
938 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
939 // The reason is that C++ injects the name of a class as a member of the
940 // class itself (e.g. you can refer to class iterator as either
941 // 'iterator' or 'iterator::iterator'). If we look for C::iterator
942 // only, for example, we would mistakenly think that a class named
943 // iterator is an STL container.
944 //
945 // Also note that the simpler approach of overloading
946 // IsContainerTest(typename C::const_iterator*) and
947 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
948 typedef int IsContainer;
949 template <class C,
950 class Iterator = decltype(::std::declval<const C&>().begin()),
951 class = decltype(::std::declval<const C&>().end()),
952 class = decltype(++::std::declval<Iterator&>()),
953 class = decltype(*::std::declval<Iterator>()),
954 class = typename C::const_iterator>
955 IsContainer IsContainerTest(int /* dummy */) {
956 return 0;
957 }
958
959 typedef char IsNotContainer;
960 template <class C>
961 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
962
963 // Trait to detect whether a type T is a hash table.
964 // The heuristic used is that the type contains an inner type `hasher` and does
965 // not contain an inner type `reverse_iterator`.
966 // If the container is iterable in reverse, then order might actually matter.
967 template <typename T>
968 struct IsHashTable {
969 private:
970 template <typename U>
971 static char test(typename U::hasher*, typename U::reverse_iterator*);
972 template <typename U>
973 static int test(typename U::hasher*, ...);
974 template <typename U>
975 static char test(...);
976
977 public:
978 static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
979 };
980
981 template <typename T>
982 const bool IsHashTable<T>::value;
983
984 template <typename C,
985 bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
986 struct IsRecursiveContainerImpl;
987
988 template <typename C>
989 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
990
991 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
992 // obey the same inconsistencies as the IsContainerTest, namely check if
993 // something is a container is relying on only const_iterator in C++11 and
994 // is relying on both const_iterator and iterator otherwise
995 template <typename C>
996 struct IsRecursiveContainerImpl<C, true> {
997 using value_type = decltype(*std::declval<typename C::const_iterator>());
998 using type =
999 std::is_same<typename std::remove_const<
1000 typename std::remove_reference<value_type>::type>::type,
1001 C>;
1002 };
1003
1004 // IsRecursiveContainer<Type> is a unary compile-time predicate that
1005 // evaluates whether C is a recursive container type. A recursive container
1006 // type is a container type whose value_type is equal to the container type
1007 // itself. An example for a recursive container type is
1008 // boost::filesystem::path, whose iterator has a value_type that is equal to
1009 // boost::filesystem::path.
1010 template <typename C>
1011 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
1012
1013 // Utilities for native arrays.
1014
1015 // ArrayEq() compares two k-dimensional native arrays using the
1016 // elements' operator==, where k can be any integer >= 0. When k is
1017 // 0, ArrayEq() degenerates into comparing a single pair of values.
1018
1019 template <typename T, typename U>
1020 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1021
1022 // This generic version is used when k is 0.
1023 template <typename T, typename U>
1024 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
1025
1026 // This overload is used when k >= 1.
1027 template <typename T, typename U, size_t N>
1028 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
1029 return internal::ArrayEq(lhs, N, rhs);
1030 }
1031
1032 // This helper reduces code bloat. If we instead put its logic inside
1033 // the previous ArrayEq() function, arrays with different sizes would
1034 // lead to different copies of the template code.
1035 template <typename T, typename U>
1036 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1037 for (size_t i = 0; i != size; i++) {
1038 if (!internal::ArrayEq(lhs[i], rhs[i]))
1039 return false;
1040 }
1041 return true;
1042 }
1043
1044 // Finds the first element in the iterator range [begin, end) that
1045 // equals elem. Element may be a native array type itself.
1046 template <typename Iter, typename Element>
1047 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1048 for (Iter it = begin; it != end; ++it) {
1049 if (internal::ArrayEq(*it, elem))
1050 return it;
1051 }
1052 return end;
1053 }
1054
1055 // CopyArray() copies a k-dimensional native array using the elements'
1056 // operator=, where k can be any integer >= 0. When k is 0,
1057 // CopyArray() degenerates into copying a single value.
1058
1059 template <typename T, typename U>
1060 void CopyArray(const T* from, size_t size, U* to);
1061
1062 // This generic version is used when k is 0.
1063 template <typename T, typename U>
1064 inline void CopyArray(const T& from, U* to) { *to = from; }
1065
1066 // This overload is used when k >= 1.
1067 template <typename T, typename U, size_t N>
1068 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1069 internal::CopyArray(from, N, *to);
1070 }
1071
1072 // This helper reduces code bloat. If we instead put its logic inside
1073 // the previous CopyArray() function, arrays with different sizes
1074 // would lead to different copies of the template code.
1075 template <typename T, typename U>
1076 void CopyArray(const T* from, size_t size, U* to) {
1077 for (size_t i = 0; i != size; i++) {
1078 internal::CopyArray(from[i], to + i);
1079 }
1080 }
1081
1082 // The relation between an NativeArray object (see below) and the
1083 // native array it represents.
1084 // We use 2 different structs to allow non-copyable types to be used, as long
1085 // as RelationToSourceReference() is passed.
1086 struct RelationToSourceReference {};
1087 struct RelationToSourceCopy {};
1088
1089 // Adapts a native array to a read-only STL-style container. Instead
1090 // of the complete STL container concept, this adaptor only implements
1091 // members useful for Google Mock's container matchers. New members
1092 // should be added as needed. To simplify the implementation, we only
1093 // support Element being a raw type (i.e. having no top-level const or
1094 // reference modifier). It's the client's responsibility to satisfy
1095 // this requirement. Element can be an array type itself (hence
1096 // multi-dimensional arrays are supported).
1097 template <typename Element>
1098 class NativeArray {
1099 public:
1100 // STL-style container typedefs.
1101 typedef Element value_type;
1102 typedef Element* iterator;
1103 typedef const Element* const_iterator;
1104
1105 // Constructs from a native array. References the source.
1106 NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1107 InitRef(array, count);
1108 }
1109
1110 // Constructs from a native array. Copies the source.
1111 NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1112 InitCopy(array, count);
1113 }
1114
1115 // Copy constructor.
1116 NativeArray(const NativeArray& rhs) {
1117 (this->*rhs.clone_)(rhs.array_, rhs.size_);
1118 }
1119
1120 ~NativeArray() {
1121 if (clone_ != &NativeArray::InitRef)
1122 delete[] array_;
1123 }
1124
1125 // STL-style container methods.
1126 size_t size() const { return size_; }
1127 const_iterator begin() const { return array_; }
1128 const_iterator end() const { return array_ + size_; }
1129 bool operator==(const NativeArray& rhs) const {
1130 return size() == rhs.size() &&
1131 ArrayEq(begin(), size(), rhs.begin());
1132 }
1133
1134 private:
1135 static_assert(!std::is_const<Element>::value, "Type must not be const");
1136 static_assert(!std::is_reference<Element>::value,
1137 "Type must not be a reference");
1138
1139 // Initializes this object with a copy of the input.
1140 void InitCopy(const Element* array, size_t a_size) {
1141 Element* const copy = new Element[a_size];
1142 CopyArray(array, a_size, copy);
1143 array_ = copy;
1144 size_ = a_size;
1145 clone_ = &NativeArray::InitCopy;
1146 }
1147
1148 // Initializes this object with a reference of the input.
1149 void InitRef(const Element* array, size_t a_size) {
1150 array_ = array;
1151 size_ = a_size;
1152 clone_ = &NativeArray::InitRef;
1153 }
1154
1155 const Element* array_;
1156 size_t size_;
1157 void (NativeArray::*clone_)(const Element*, size_t);
1158 };
1159
1160 // Backport of std::index_sequence.
1161 template <size_t... Is>
1162 struct IndexSequence {
1163 using type = IndexSequence;
1164 };
1165
1166 // Double the IndexSequence, and one if plus_one is true.
1167 template <bool plus_one, typename T, size_t sizeofT>
1168 struct DoubleSequence;
1169 template <size_t... I, size_t sizeofT>
1170 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1171 using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1172 };
1173 template <size_t... I, size_t sizeofT>
1174 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1175 using type = IndexSequence<I..., (sizeofT + I)...>;
1176 };
1177
1178 // Backport of std::make_index_sequence.
1179 // It uses O(ln(N)) instantiation depth.
1180 template <size_t N>
1181 struct MakeIndexSequenceImpl
1182 : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1183 N / 2>::type {};
1184
1185 template <>
1186 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1187
1188 template <size_t N>
1189 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1190
1191 template <typename... T>
1192 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1193
1194 template <size_t>
1195 struct Ignore {
1196 Ignore(...); // NOLINT
1197 };
1198
1199 template <typename>
1200 struct ElemFromListImpl;
1201 template <size_t... I>
1202 struct ElemFromListImpl<IndexSequence<I...>> {
1203 // We make Ignore a template to solve a problem with MSVC.
1204 // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1205 // MSVC doesn't understand how to deal with that pack expansion.
1206 // Use `0 * I` to have a single instantiation of Ignore.
1207 template <typename R>
1208 static R Apply(Ignore<0 * I>..., R (*)(), ...);
1209 };
1210
1211 template <size_t N, typename... T>
1212 struct ElemFromList {
1213 using type =
1214 decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1215 static_cast<T (*)()>(nullptr)...));
1216 };
1217
1218 struct FlatTupleConstructTag {};
1219
1220 template <typename... T>
1221 class FlatTuple;
1222
1223 template <typename Derived, size_t I>
1224 struct FlatTupleElemBase;
1225
1226 template <typename... T, size_t I>
1227 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1228 using value_type = typename ElemFromList<I, T...>::type;
1229 FlatTupleElemBase() = default;
1230 template <typename Arg>
1231 explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1232 : value(std::forward<Arg>(t)) {}
1233 value_type value;
1234 };
1235
1236 template <typename Derived, typename Idx>
1237 struct FlatTupleBase;
1238
1239 template <size_t... Idx, typename... T>
1240 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1241 : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1242 using Indices = IndexSequence<Idx...>;
1243 FlatTupleBase() = default;
1244 template <typename... Args>
1245 explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1246 : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1247 std::forward<Args>(args))... {}
1248
1249 template <size_t I>
1250 const typename ElemFromList<I, T...>::type& Get() const {
1251 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1252 }
1253
1254 template <size_t I>
1255 typename ElemFromList<I, T...>::type& Get() {
1256 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1257 }
1258
1259 template <typename F>
1260 auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1261 return std::forward<F>(f)(Get<Idx>()...);
1262 }
1263
1264 template <typename F>
1265 auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1266 return std::forward<F>(f)(Get<Idx>()...);
1267 }
1268 };
1269
1270 // Analog to std::tuple but with different tradeoffs.
1271 // This class minimizes the template instantiation depth, thus allowing more
1272 // elements than std::tuple would. std::tuple has been seen to require an
1273 // instantiation depth of more than 10x the number of elements in some
1274 // implementations.
1275 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1276 // regardless of T...
1277 // MakeIndexSequence, on the other hand, it is recursive but with an
1278 // instantiation depth of O(ln(N)).
1279 template <typename... T>
1280 class FlatTuple
1281 : private FlatTupleBase<FlatTuple<T...>,
1282 typename MakeIndexSequence<sizeof...(T)>::type> {
1283 using Indices = typename FlatTupleBase<
1284 FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1285
1286 public:
1287 FlatTuple() = default;
1288 template <typename... Args>
1289 explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1290 : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1291
1292 using FlatTuple::FlatTupleBase::Apply;
1293 using FlatTuple::FlatTupleBase::Get;
1294 };
1295
1296 // Utility functions to be called with static_assert to induce deprecation
1297 // warnings.
1298 GTEST_INTERNAL_DEPRECATED(
1299 "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1300 "INSTANTIATE_TEST_SUITE_P")
1301 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1302
1303 GTEST_INTERNAL_DEPRECATED(
1304 "TYPED_TEST_CASE_P is deprecated, please use "
1305 "TYPED_TEST_SUITE_P")
1306 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1307
1308 GTEST_INTERNAL_DEPRECATED(
1309 "TYPED_TEST_CASE is deprecated, please use "
1310 "TYPED_TEST_SUITE")
1311 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1312
1313 GTEST_INTERNAL_DEPRECATED(
1314 "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1315 "REGISTER_TYPED_TEST_SUITE_P")
1316 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1317
1318 GTEST_INTERNAL_DEPRECATED(
1319 "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1320 "INSTANTIATE_TYPED_TEST_SUITE_P")
1321 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1322
1323 } // namespace internal
1324 } // namespace testing
1325
1326 namespace std {
1327 // Some standard library implementations use `struct tuple_size` and some use
1328 // `class tuple_size`. Clang warns about the mismatch.
1329 // https://reviews.llvm.org/D55466
1330 #ifdef __clang__
1331 #pragma clang diagnostic push
1332 #pragma clang diagnostic ignored "-Wmismatched-tags"
1333 #endif
1334 template <typename... Ts>
1335 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1336 : std::integral_constant<size_t, sizeof...(Ts)> {};
1337 #ifdef __clang__
1338 #pragma clang diagnostic pop
1339 #endif
1340 } // namespace std
1341
1342 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1343 ::testing::internal::AssertHelper(result_type, file, line, message) \
1344 = ::testing::Message()
1345
1346 #define GTEST_MESSAGE_(message, result_type) \
1347 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1348
1349 #define GTEST_FATAL_FAILURE_(message) \
1350 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1351
1352 #define GTEST_NONFATAL_FAILURE_(message) \
1353 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1354
1355 #define GTEST_SUCCESS_(message) \
1356 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1357
1358 #define GTEST_SKIP_(message) \
1359 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1360
1361 // Suppress MSVC warning 4072 (unreachable code) for the code following
1362 // statement if it returns or throws (or doesn't return or throw in some
1363 // situations).
1364 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1365 // "else" from attaching to our "if".
1366 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1367 if (::testing::internal::AlwaysTrue()) { \
1368 statement; \
1369 } else /* NOLINT */ \
1370 static_assert(true, "") // User must have a semicolon after expansion.
1371
1372 #if GTEST_HAS_EXCEPTIONS
1373
1374 namespace testing {
1375 namespace internal {
1376
1377 class NeverThrown {
1378 public:
1379 const char* what() const noexcept {
1380 return "this exception should never be thrown";
1381 }
1382 };
1383
1384 } // namespace internal
1385 } // namespace testing
1386
1387 #if GTEST_HAS_RTTI
1388
1389 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1390
1391 #else // GTEST_HAS_RTTI
1392
1393 #define GTEST_EXCEPTION_TYPE_(e) \
1394 std::string { "an std::exception-derived error" }
1395
1396 #endif // GTEST_HAS_RTTI
1397
1398 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1399 catch (typename std::conditional< \
1400 std::is_same<typename std::remove_cv<typename std::remove_reference< \
1401 expected_exception>::type>::type, \
1402 std::exception>::value, \
1403 const ::testing::internal::NeverThrown&, const std::exception&>::type \
1404 e) { \
1405 gtest_msg.value = "Expected: " #statement \
1406 " throws an exception of type " #expected_exception \
1407 ".\n Actual: it throws "; \
1408 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1409 gtest_msg.value += " with description \""; \
1410 gtest_msg.value += e.what(); \
1411 gtest_msg.value += "\"."; \
1412 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1413 }
1414
1415 #else // GTEST_HAS_EXCEPTIONS
1416
1417 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1418
1419 #endif // GTEST_HAS_EXCEPTIONS
1420
1421 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1422 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1423 if (::testing::internal::TrueWithString gtest_msg{}) { \
1424 bool gtest_caught_expected = false; \
1425 try { \
1426 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1427 } catch (expected_exception const&) { \
1428 gtest_caught_expected = true; \
1429 } \
1430 GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1431 catch (...) { \
1432 gtest_msg.value = "Expected: " #statement \
1433 " throws an exception of type " #expected_exception \
1434 ".\n Actual: it throws a different type."; \
1435 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1436 } \
1437 if (!gtest_caught_expected) { \
1438 gtest_msg.value = "Expected: " #statement \
1439 " throws an exception of type " #expected_exception \
1440 ".\n Actual: it throws nothing."; \
1441 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1442 } \
1443 } else /*NOLINT*/ \
1444 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \
1445 : fail(gtest_msg.value.c_str())
1446
1447 #if GTEST_HAS_EXCEPTIONS
1448
1449 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1450 catch (std::exception const& e) { \
1451 gtest_msg.value = "it throws "; \
1452 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1453 gtest_msg.value += " with description \""; \
1454 gtest_msg.value += e.what(); \
1455 gtest_msg.value += "\"."; \
1456 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1457 }
1458
1459 #else // GTEST_HAS_EXCEPTIONS
1460
1461 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1462
1463 #endif // GTEST_HAS_EXCEPTIONS
1464
1465 #define GTEST_TEST_NO_THROW_(statement, fail) \
1466 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1467 if (::testing::internal::TrueWithString gtest_msg{}) { \
1468 try { \
1469 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1470 } \
1471 GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1472 catch (...) { \
1473 gtest_msg.value = "it throws."; \
1474 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1475 } \
1476 } else \
1477 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1478 fail(("Expected: " #statement " doesn't throw an exception.\n" \
1479 " Actual: " + gtest_msg.value).c_str())
1480
1481 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1482 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1483 if (::testing::internal::AlwaysTrue()) { \
1484 bool gtest_caught_any = false; \
1485 try { \
1486 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1487 } \
1488 catch (...) { \
1489 gtest_caught_any = true; \
1490 } \
1491 if (!gtest_caught_any) { \
1492 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1493 } \
1494 } else \
1495 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1496 fail("Expected: " #statement " throws an exception.\n" \
1497 " Actual: it doesn't.")
1498
1499
1500 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1501 // either a boolean expression or an AssertionResult. text is a textual
1502 // represenation of expression as it was passed into the EXPECT_TRUE.
1503 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1504 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1505 if (const ::testing::AssertionResult gtest_ar_ = \
1506 ::testing::AssertionResult(expression)) \
1507 ; \
1508 else \
1509 fail(::testing::internal::GetBoolAssertionFailureMessage(\
1510 gtest_ar_, text, #actual, #expected).c_str())
1511
1512 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1513 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1514 if (::testing::internal::AlwaysTrue()) { \
1515 ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1516 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1517 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1518 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1519 } \
1520 } else \
1521 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1522 fail("Expected: " #statement " doesn't generate new fatal " \
1523 "failures in the current thread.\n" \
1524 " Actual: it does.")
1525
1526 // Expands to the name of the class that implements the given test.
1527 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1528 test_suite_name##_##test_name##_Test
1529
1530 // Helper macro for defining tests.
1531 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
1532 static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \
1533 "test_suite_name must not be empty"); \
1534 static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \
1535 "test_name must not be empty"); \
1536 class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1537 : public parent_class { \
1538 public: \
1539 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \
1540 ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
1541 GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \
1542 test_name)); \
1543 GTEST_DISALLOW_MOVE_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \
1544 test_name)); \
1545 \
1546 private: \
1547 void TestBody() override; \
1548 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
1549 }; \
1550 \
1551 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1552 test_name)::test_info_ = \
1553 ::testing::internal::MakeAndRegisterTestInfo( \
1554 #test_suite_name, #test_name, nullptr, nullptr, \
1555 ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1556 ::testing::internal::SuiteApiResolver< \
1557 parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
1558 ::testing::internal::SuiteApiResolver< \
1559 parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
1560 new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
1561 test_suite_name, test_name)>); \
1562 void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1563
1564 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_