]> git.proxmox.com Git - ceph.git/blob - ceph/src/googletest/googletest/src/gtest-port.cc
import 15.2.0 Octopus source
[ceph.git] / ceph / src / googletest / googletest / src / gtest-port.cc
1 // Copyright 2008, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31 #include "gtest/internal/gtest-port.h"
32
33 #include <limits.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <cstdint>
38 #include <fstream>
39 #include <memory>
40
41 #if GTEST_OS_WINDOWS
42 # include <windows.h>
43 # include <io.h>
44 # include <sys/stat.h>
45 # include <map> // Used in ThreadLocal.
46 # ifdef _MSC_VER
47 # include <crtdbg.h>
48 # endif // _MSC_VER
49 #else
50 # include <unistd.h>
51 #endif // GTEST_OS_WINDOWS
52
53 #if GTEST_OS_MAC
54 # include <mach/mach_init.h>
55 # include <mach/task.h>
56 # include <mach/vm_map.h>
57 #endif // GTEST_OS_MAC
58
59 #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
60 GTEST_OS_NETBSD || GTEST_OS_OPENBSD
61 # include <sys/sysctl.h>
62 # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
63 # include <sys/user.h>
64 # endif
65 #endif
66
67 #if GTEST_OS_QNX
68 # include <devctl.h>
69 # include <fcntl.h>
70 # include <sys/procfs.h>
71 #endif // GTEST_OS_QNX
72
73 #if GTEST_OS_AIX
74 # include <procinfo.h>
75 # include <sys/types.h>
76 #endif // GTEST_OS_AIX
77
78 #if GTEST_OS_FUCHSIA
79 # include <zircon/process.h>
80 # include <zircon/syscalls.h>
81 #endif // GTEST_OS_FUCHSIA
82
83 #include "gtest/gtest-spi.h"
84 #include "gtest/gtest-message.h"
85 #include "gtest/internal/gtest-internal.h"
86 #include "gtest/internal/gtest-string.h"
87 #include "src/gtest-internal-inl.h"
88
89 namespace testing {
90 namespace internal {
91
92 #if defined(_MSC_VER) || defined(__BORLANDC__)
93 // MSVC and C++Builder do not provide a definition of STDERR_FILENO.
94 const int kStdOutFileno = 1;
95 const int kStdErrFileno = 2;
96 #else
97 const int kStdOutFileno = STDOUT_FILENO;
98 const int kStdErrFileno = STDERR_FILENO;
99 #endif // _MSC_VER
100
101 #if GTEST_OS_LINUX
102
103 namespace {
104 template <typename T>
105 T ReadProcFileField(const std::string& filename, int field) {
106 std::string dummy;
107 std::ifstream file(filename.c_str());
108 while (field-- > 0) {
109 file >> dummy;
110 }
111 T output = 0;
112 file >> output;
113 return output;
114 }
115 } // namespace
116
117 // Returns the number of active threads, or 0 when there is an error.
118 size_t GetThreadCount() {
119 const std::string filename =
120 (Message() << "/proc/" << getpid() << "/stat").GetString();
121 return ReadProcFileField<size_t>(filename, 19);
122 }
123
124 #elif GTEST_OS_MAC
125
126 size_t GetThreadCount() {
127 const task_t task = mach_task_self();
128 mach_msg_type_number_t thread_count;
129 thread_act_array_t thread_list;
130 const kern_return_t status = task_threads(task, &thread_list, &thread_count);
131 if (status == KERN_SUCCESS) {
132 // task_threads allocates resources in thread_list and we need to free them
133 // to avoid leaks.
134 vm_deallocate(task,
135 reinterpret_cast<vm_address_t>(thread_list),
136 sizeof(thread_t) * thread_count);
137 return static_cast<size_t>(thread_count);
138 } else {
139 return 0;
140 }
141 }
142
143 #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
144 GTEST_OS_NETBSD
145
146 #if GTEST_OS_NETBSD
147 #undef KERN_PROC
148 #define KERN_PROC KERN_PROC2
149 #define kinfo_proc kinfo_proc2
150 #endif
151
152 #if GTEST_OS_DRAGONFLY
153 #define KP_NLWP(kp) (kp.kp_nthreads)
154 #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
155 #define KP_NLWP(kp) (kp.ki_numthreads)
156 #elif GTEST_OS_NETBSD
157 #define KP_NLWP(kp) (kp.p_nlwps)
158 #endif
159
160 // Returns the number of threads running in the process, or 0 to indicate that
161 // we cannot detect it.
162 size_t GetThreadCount() {
163 int mib[] = {
164 CTL_KERN,
165 KERN_PROC,
166 KERN_PROC_PID,
167 getpid(),
168 #if GTEST_OS_NETBSD
169 sizeof(struct kinfo_proc),
170 1,
171 #endif
172 };
173 u_int miblen = sizeof(mib) / sizeof(mib[0]);
174 struct kinfo_proc info;
175 size_t size = sizeof(info);
176 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
177 return 0;
178 }
179 return static_cast<size_t>(KP_NLWP(info));
180 }
181 #elif GTEST_OS_OPENBSD
182
183 // Returns the number of threads running in the process, or 0 to indicate that
184 // we cannot detect it.
185 size_t GetThreadCount() {
186 int mib[] = {
187 CTL_KERN,
188 KERN_PROC,
189 KERN_PROC_PID | KERN_PROC_SHOW_THREADS,
190 getpid(),
191 sizeof(struct kinfo_proc),
192 0,
193 };
194 u_int miblen = sizeof(mib) / sizeof(mib[0]);
195
196 // get number of structs
197 size_t size;
198 if (sysctl(mib, miblen, NULL, &size, NULL, 0)) {
199 return 0;
200 }
201 mib[5] = size / mib[4];
202
203 // populate array of structs
204 struct kinfo_proc info[mib[5]];
205 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
206 return 0;
207 }
208
209 // exclude empty members
210 int nthreads = 0;
211 for (int i = 0; i < size / mib[4]; i++) {
212 if (info[i].p_tid != -1)
213 nthreads++;
214 }
215 return nthreads;
216 }
217
218 #elif GTEST_OS_QNX
219
220 // Returns the number of threads running in the process, or 0 to indicate that
221 // we cannot detect it.
222 size_t GetThreadCount() {
223 const int fd = open("/proc/self/as", O_RDONLY);
224 if (fd < 0) {
225 return 0;
226 }
227 procfs_info process_info;
228 const int status =
229 devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr);
230 close(fd);
231 if (status == EOK) {
232 return static_cast<size_t>(process_info.num_threads);
233 } else {
234 return 0;
235 }
236 }
237
238 #elif GTEST_OS_AIX
239
240 size_t GetThreadCount() {
241 struct procentry64 entry;
242 pid_t pid = getpid();
243 int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1);
244 if (status == 1) {
245 return entry.pi_thcount;
246 } else {
247 return 0;
248 }
249 }
250
251 #elif GTEST_OS_FUCHSIA
252
253 size_t GetThreadCount() {
254 int dummy_buffer;
255 size_t avail;
256 zx_status_t status = zx_object_get_info(
257 zx_process_self(),
258 ZX_INFO_PROCESS_THREADS,
259 &dummy_buffer,
260 0,
261 nullptr,
262 &avail);
263 if (status == ZX_OK) {
264 return avail;
265 } else {
266 return 0;
267 }
268 }
269
270 #else
271
272 size_t GetThreadCount() {
273 // There's no portable way to detect the number of threads, so we just
274 // return 0 to indicate that we cannot detect it.
275 return 0;
276 }
277
278 #endif // GTEST_OS_LINUX
279
280 #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
281
282 void SleepMilliseconds(int n) {
283 ::Sleep(static_cast<DWORD>(n));
284 }
285
286 AutoHandle::AutoHandle()
287 : handle_(INVALID_HANDLE_VALUE) {}
288
289 AutoHandle::AutoHandle(Handle handle)
290 : handle_(handle) {}
291
292 AutoHandle::~AutoHandle() {
293 Reset();
294 }
295
296 AutoHandle::Handle AutoHandle::Get() const {
297 return handle_;
298 }
299
300 void AutoHandle::Reset() {
301 Reset(INVALID_HANDLE_VALUE);
302 }
303
304 void AutoHandle::Reset(HANDLE handle) {
305 // Resetting with the same handle we already own is invalid.
306 if (handle_ != handle) {
307 if (IsCloseable()) {
308 ::CloseHandle(handle_);
309 }
310 handle_ = handle;
311 } else {
312 GTEST_CHECK_(!IsCloseable())
313 << "Resetting a valid handle to itself is likely a programmer error "
314 "and thus not allowed.";
315 }
316 }
317
318 bool AutoHandle::IsCloseable() const {
319 // Different Windows APIs may use either of these values to represent an
320 // invalid handle.
321 return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE;
322 }
323
324 Notification::Notification()
325 : event_(::CreateEvent(nullptr, // Default security attributes.
326 TRUE, // Do not reset automatically.
327 FALSE, // Initially unset.
328 nullptr)) { // Anonymous event.
329 GTEST_CHECK_(event_.Get() != nullptr);
330 }
331
332 void Notification::Notify() {
333 GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
334 }
335
336 void Notification::WaitForNotification() {
337 GTEST_CHECK_(
338 ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
339 }
340
341 Mutex::Mutex()
342 : owner_thread_id_(0),
343 type_(kDynamic),
344 critical_section_init_phase_(0),
345 critical_section_(new CRITICAL_SECTION) {
346 ::InitializeCriticalSection(critical_section_);
347 }
348
349 Mutex::~Mutex() {
350 // Static mutexes are leaked intentionally. It is not thread-safe to try
351 // to clean them up.
352 if (type_ == kDynamic) {
353 ::DeleteCriticalSection(critical_section_);
354 delete critical_section_;
355 critical_section_ = nullptr;
356 }
357 }
358
359 void Mutex::Lock() {
360 ThreadSafeLazyInit();
361 ::EnterCriticalSection(critical_section_);
362 owner_thread_id_ = ::GetCurrentThreadId();
363 }
364
365 void Mutex::Unlock() {
366 ThreadSafeLazyInit();
367 // We don't protect writing to owner_thread_id_ here, as it's the
368 // caller's responsibility to ensure that the current thread holds the
369 // mutex when this is called.
370 owner_thread_id_ = 0;
371 ::LeaveCriticalSection(critical_section_);
372 }
373
374 // Does nothing if the current thread holds the mutex. Otherwise, crashes
375 // with high probability.
376 void Mutex::AssertHeld() {
377 ThreadSafeLazyInit();
378 GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
379 << "The current thread is not holding the mutex @" << this;
380 }
381
382 namespace {
383
384 #ifdef _MSC_VER
385 // Use the RAII idiom to flag mem allocs that are intentionally never
386 // deallocated. The motivation is to silence the false positive mem leaks
387 // that are reported by the debug version of MS's CRT which can only detect
388 // if an alloc is missing a matching deallocation.
389 // Example:
390 // MemoryIsNotDeallocated memory_is_not_deallocated;
391 // critical_section_ = new CRITICAL_SECTION;
392 //
393 class MemoryIsNotDeallocated
394 {
395 public:
396 MemoryIsNotDeallocated() : old_crtdbg_flag_(0) {
397 old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
398 // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT
399 // doesn't report mem leak if there's no matching deallocation.
400 _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF);
401 }
402
403 ~MemoryIsNotDeallocated() {
404 // Restore the original _CRTDBG_ALLOC_MEM_DF flag
405 _CrtSetDbgFlag(old_crtdbg_flag_);
406 }
407
408 private:
409 int old_crtdbg_flag_;
410
411 GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated);
412 };
413 #endif // _MSC_VER
414
415 } // namespace
416
417 // Initializes owner_thread_id_ and critical_section_ in static mutexes.
418 void Mutex::ThreadSafeLazyInit() {
419 // Dynamic mutexes are initialized in the constructor.
420 if (type_ == kStatic) {
421 switch (
422 ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
423 case 0:
424 // If critical_section_init_phase_ was 0 before the exchange, we
425 // are the first to test it and need to perform the initialization.
426 owner_thread_id_ = 0;
427 {
428 // Use RAII to flag that following mem alloc is never deallocated.
429 #ifdef _MSC_VER
430 MemoryIsNotDeallocated memory_is_not_deallocated;
431 #endif // _MSC_VER
432 critical_section_ = new CRITICAL_SECTION;
433 }
434 ::InitializeCriticalSection(critical_section_);
435 // Updates the critical_section_init_phase_ to 2 to signal
436 // initialization complete.
437 GTEST_CHECK_(::InterlockedCompareExchange(
438 &critical_section_init_phase_, 2L, 1L) ==
439 1L);
440 break;
441 case 1:
442 // Somebody else is already initializing the mutex; spin until they
443 // are done.
444 while (::InterlockedCompareExchange(&critical_section_init_phase_,
445 2L,
446 2L) != 2L) {
447 // Possibly yields the rest of the thread's time slice to other
448 // threads.
449 ::Sleep(0);
450 }
451 break;
452
453 case 2:
454 break; // The mutex is already initialized and ready for use.
455
456 default:
457 GTEST_CHECK_(false)
458 << "Unexpected value of critical_section_init_phase_ "
459 << "while initializing a static mutex.";
460 }
461 }
462 }
463
464 namespace {
465
466 class ThreadWithParamSupport : public ThreadWithParamBase {
467 public:
468 static HANDLE CreateThread(Runnable* runnable,
469 Notification* thread_can_start) {
470 ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
471 DWORD thread_id;
472 HANDLE thread_handle = ::CreateThread(
473 nullptr, // Default security.
474 0, // Default stack size.
475 &ThreadWithParamSupport::ThreadMain,
476 param, // Parameter to ThreadMainStatic
477 0x0, // Default creation flags.
478 &thread_id); // Need a valid pointer for the call to work under Win98.
479 GTEST_CHECK_(thread_handle != nullptr)
480 << "CreateThread failed with error " << ::GetLastError() << ".";
481 if (thread_handle == nullptr) {
482 delete param;
483 }
484 return thread_handle;
485 }
486
487 private:
488 struct ThreadMainParam {
489 ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
490 : runnable_(runnable),
491 thread_can_start_(thread_can_start) {
492 }
493 std::unique_ptr<Runnable> runnable_;
494 // Does not own.
495 Notification* thread_can_start_;
496 };
497
498 static DWORD WINAPI ThreadMain(void* ptr) {
499 // Transfers ownership.
500 std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
501 if (param->thread_can_start_ != nullptr)
502 param->thread_can_start_->WaitForNotification();
503 param->runnable_->Run();
504 return 0;
505 }
506
507 // Prohibit instantiation.
508 ThreadWithParamSupport();
509
510 GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
511 };
512
513 } // namespace
514
515 ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
516 Notification* thread_can_start)
517 : thread_(ThreadWithParamSupport::CreateThread(runnable,
518 thread_can_start)) {
519 }
520
521 ThreadWithParamBase::~ThreadWithParamBase() {
522 Join();
523 }
524
525 void ThreadWithParamBase::Join() {
526 GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
527 << "Failed to join the thread with error " << ::GetLastError() << ".";
528 }
529
530 // Maps a thread to a set of ThreadIdToThreadLocals that have values
531 // instantiated on that thread and notifies them when the thread exits. A
532 // ThreadLocal instance is expected to persist until all threads it has
533 // values on have terminated.
534 class ThreadLocalRegistryImpl {
535 public:
536 // Registers thread_local_instance as having value on the current thread.
537 // Returns a value that can be used to identify the thread from other threads.
538 static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
539 const ThreadLocalBase* thread_local_instance) {
540 #ifdef _MSC_VER
541 MemoryIsNotDeallocated memory_is_not_deallocated;
542 #endif // _MSC_VER
543 DWORD current_thread = ::GetCurrentThreadId();
544 MutexLock lock(&mutex_);
545 ThreadIdToThreadLocals* const thread_to_thread_locals =
546 GetThreadLocalsMapLocked();
547 ThreadIdToThreadLocals::iterator thread_local_pos =
548 thread_to_thread_locals->find(current_thread);
549 if (thread_local_pos == thread_to_thread_locals->end()) {
550 thread_local_pos = thread_to_thread_locals->insert(
551 std::make_pair(current_thread, ThreadLocalValues())).first;
552 StartWatcherThreadFor(current_thread);
553 }
554 ThreadLocalValues& thread_local_values = thread_local_pos->second;
555 ThreadLocalValues::iterator value_pos =
556 thread_local_values.find(thread_local_instance);
557 if (value_pos == thread_local_values.end()) {
558 value_pos =
559 thread_local_values
560 .insert(std::make_pair(
561 thread_local_instance,
562 std::shared_ptr<ThreadLocalValueHolderBase>(
563 thread_local_instance->NewValueForCurrentThread())))
564 .first;
565 }
566 return value_pos->second.get();
567 }
568
569 static void OnThreadLocalDestroyed(
570 const ThreadLocalBase* thread_local_instance) {
571 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
572 // Clean up the ThreadLocalValues data structure while holding the lock, but
573 // defer the destruction of the ThreadLocalValueHolderBases.
574 {
575 MutexLock lock(&mutex_);
576 ThreadIdToThreadLocals* const thread_to_thread_locals =
577 GetThreadLocalsMapLocked();
578 for (ThreadIdToThreadLocals::iterator it =
579 thread_to_thread_locals->begin();
580 it != thread_to_thread_locals->end();
581 ++it) {
582 ThreadLocalValues& thread_local_values = it->second;
583 ThreadLocalValues::iterator value_pos =
584 thread_local_values.find(thread_local_instance);
585 if (value_pos != thread_local_values.end()) {
586 value_holders.push_back(value_pos->second);
587 thread_local_values.erase(value_pos);
588 // This 'if' can only be successful at most once, so theoretically we
589 // could break out of the loop here, but we don't bother doing so.
590 }
591 }
592 }
593 // Outside the lock, let the destructor for 'value_holders' deallocate the
594 // ThreadLocalValueHolderBases.
595 }
596
597 static void OnThreadExit(DWORD thread_id) {
598 GTEST_CHECK_(thread_id != 0) << ::GetLastError();
599 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
600 // Clean up the ThreadIdToThreadLocals data structure while holding the
601 // lock, but defer the destruction of the ThreadLocalValueHolderBases.
602 {
603 MutexLock lock(&mutex_);
604 ThreadIdToThreadLocals* const thread_to_thread_locals =
605 GetThreadLocalsMapLocked();
606 ThreadIdToThreadLocals::iterator thread_local_pos =
607 thread_to_thread_locals->find(thread_id);
608 if (thread_local_pos != thread_to_thread_locals->end()) {
609 ThreadLocalValues& thread_local_values = thread_local_pos->second;
610 for (ThreadLocalValues::iterator value_pos =
611 thread_local_values.begin();
612 value_pos != thread_local_values.end();
613 ++value_pos) {
614 value_holders.push_back(value_pos->second);
615 }
616 thread_to_thread_locals->erase(thread_local_pos);
617 }
618 }
619 // Outside the lock, let the destructor for 'value_holders' deallocate the
620 // ThreadLocalValueHolderBases.
621 }
622
623 private:
624 // In a particular thread, maps a ThreadLocal object to its value.
625 typedef std::map<const ThreadLocalBase*,
626 std::shared_ptr<ThreadLocalValueHolderBase> >
627 ThreadLocalValues;
628 // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
629 // thread's ID.
630 typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
631
632 // Holds the thread id and thread handle that we pass from
633 // StartWatcherThreadFor to WatcherThreadFunc.
634 typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
635
636 static void StartWatcherThreadFor(DWORD thread_id) {
637 // The returned handle will be kept in thread_map and closed by
638 // watcher_thread in WatcherThreadFunc.
639 HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
640 FALSE,
641 thread_id);
642 GTEST_CHECK_(thread != nullptr);
643 // We need to pass a valid thread ID pointer into CreateThread for it
644 // to work correctly under Win98.
645 DWORD watcher_thread_id;
646 HANDLE watcher_thread = ::CreateThread(
647 nullptr, // Default security.
648 0, // Default stack size
649 &ThreadLocalRegistryImpl::WatcherThreadFunc,
650 reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
651 CREATE_SUSPENDED, &watcher_thread_id);
652 GTEST_CHECK_(watcher_thread != nullptr);
653 // Give the watcher thread the same priority as ours to avoid being
654 // blocked by it.
655 ::SetThreadPriority(watcher_thread,
656 ::GetThreadPriority(::GetCurrentThread()));
657 ::ResumeThread(watcher_thread);
658 ::CloseHandle(watcher_thread);
659 }
660
661 // Monitors exit from a given thread and notifies those
662 // ThreadIdToThreadLocals about thread termination.
663 static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
664 const ThreadIdAndHandle* tah =
665 reinterpret_cast<const ThreadIdAndHandle*>(param);
666 GTEST_CHECK_(
667 ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
668 OnThreadExit(tah->first);
669 ::CloseHandle(tah->second);
670 delete tah;
671 return 0;
672 }
673
674 // Returns map of thread local instances.
675 static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
676 mutex_.AssertHeld();
677 #ifdef _MSC_VER
678 MemoryIsNotDeallocated memory_is_not_deallocated;
679 #endif // _MSC_VER
680 static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals();
681 return map;
682 }
683
684 // Protects access to GetThreadLocalsMapLocked() and its return value.
685 static Mutex mutex_;
686 // Protects access to GetThreadMapLocked() and its return value.
687 static Mutex thread_map_mutex_;
688 };
689
690 Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
691 Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
692
693 ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
694 const ThreadLocalBase* thread_local_instance) {
695 return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
696 thread_local_instance);
697 }
698
699 void ThreadLocalRegistry::OnThreadLocalDestroyed(
700 const ThreadLocalBase* thread_local_instance) {
701 ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
702 }
703
704 #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
705
706 #if GTEST_USES_POSIX_RE
707
708 // Implements RE. Currently only needed for death tests.
709
710 RE::~RE() {
711 if (is_valid_) {
712 // regfree'ing an invalid regex might crash because the content
713 // of the regex is undefined. Since the regex's are essentially
714 // the same, one cannot be valid (or invalid) without the other
715 // being so too.
716 regfree(&partial_regex_);
717 regfree(&full_regex_);
718 }
719 free(const_cast<char*>(pattern_));
720 }
721
722 // Returns true if and only if regular expression re matches the entire str.
723 bool RE::FullMatch(const char* str, const RE& re) {
724 if (!re.is_valid_) return false;
725
726 regmatch_t match;
727 return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
728 }
729
730 // Returns true if and only if regular expression re matches a substring of
731 // str (including str itself).
732 bool RE::PartialMatch(const char* str, const RE& re) {
733 if (!re.is_valid_) return false;
734
735 regmatch_t match;
736 return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
737 }
738
739 // Initializes an RE from its string representation.
740 void RE::Init(const char* regex) {
741 pattern_ = posix::StrDup(regex);
742
743 // Reserves enough bytes to hold the regular expression used for a
744 // full match.
745 const size_t full_regex_len = strlen(regex) + 10;
746 char* const full_pattern = new char[full_regex_len];
747
748 snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
749 is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
750 // We want to call regcomp(&partial_regex_, ...) even if the
751 // previous expression returns false. Otherwise partial_regex_ may
752 // not be properly initialized can may cause trouble when it's
753 // freed.
754 //
755 // Some implementation of POSIX regex (e.g. on at least some
756 // versions of Cygwin) doesn't accept the empty string as a valid
757 // regex. We change it to an equivalent form "()" to be safe.
758 if (is_valid_) {
759 const char* const partial_regex = (*regex == '\0') ? "()" : regex;
760 is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
761 }
762 EXPECT_TRUE(is_valid_)
763 << "Regular expression \"" << regex
764 << "\" is not a valid POSIX Extended regular expression.";
765
766 delete[] full_pattern;
767 }
768
769 #elif GTEST_USES_SIMPLE_RE
770
771 // Returns true if and only if ch appears anywhere in str (excluding the
772 // terminating '\0' character).
773 bool IsInSet(char ch, const char* str) {
774 return ch != '\0' && strchr(str, ch) != nullptr;
775 }
776
777 // Returns true if and only if ch belongs to the given classification.
778 // Unlike similar functions in <ctype.h>, these aren't affected by the
779 // current locale.
780 bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
781 bool IsAsciiPunct(char ch) {
782 return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
783 }
784 bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
785 bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
786 bool IsAsciiWordChar(char ch) {
787 return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
788 ('0' <= ch && ch <= '9') || ch == '_';
789 }
790
791 // Returns true if and only if "\\c" is a supported escape sequence.
792 bool IsValidEscape(char c) {
793 return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
794 }
795
796 // Returns true if and only if the given atom (specified by escaped and
797 // pattern) matches ch. The result is undefined if the atom is invalid.
798 bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
799 if (escaped) { // "\\p" where p is pattern_char.
800 switch (pattern_char) {
801 case 'd': return IsAsciiDigit(ch);
802 case 'D': return !IsAsciiDigit(ch);
803 case 'f': return ch == '\f';
804 case 'n': return ch == '\n';
805 case 'r': return ch == '\r';
806 case 's': return IsAsciiWhiteSpace(ch);
807 case 'S': return !IsAsciiWhiteSpace(ch);
808 case 't': return ch == '\t';
809 case 'v': return ch == '\v';
810 case 'w': return IsAsciiWordChar(ch);
811 case 'W': return !IsAsciiWordChar(ch);
812 }
813 return IsAsciiPunct(pattern_char) && pattern_char == ch;
814 }
815
816 return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
817 }
818
819 // Helper function used by ValidateRegex() to format error messages.
820 static std::string FormatRegexSyntaxError(const char* regex, int index) {
821 return (Message() << "Syntax error at index " << index
822 << " in simple regular expression \"" << regex << "\": ").GetString();
823 }
824
825 // Generates non-fatal failures and returns false if regex is invalid;
826 // otherwise returns true.
827 bool ValidateRegex(const char* regex) {
828 if (regex == nullptr) {
829 ADD_FAILURE() << "NULL is not a valid simple regular expression.";
830 return false;
831 }
832
833 bool is_valid = true;
834
835 // True if and only if ?, *, or + can follow the previous atom.
836 bool prev_repeatable = false;
837 for (int i = 0; regex[i]; i++) {
838 if (regex[i] == '\\') { // An escape sequence
839 i++;
840 if (regex[i] == '\0') {
841 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
842 << "'\\' cannot appear at the end.";
843 return false;
844 }
845
846 if (!IsValidEscape(regex[i])) {
847 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
848 << "invalid escape sequence \"\\" << regex[i] << "\".";
849 is_valid = false;
850 }
851 prev_repeatable = true;
852 } else { // Not an escape sequence.
853 const char ch = regex[i];
854
855 if (ch == '^' && i > 0) {
856 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
857 << "'^' can only appear at the beginning.";
858 is_valid = false;
859 } else if (ch == '$' && regex[i + 1] != '\0') {
860 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
861 << "'$' can only appear at the end.";
862 is_valid = false;
863 } else if (IsInSet(ch, "()[]{}|")) {
864 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
865 << "'" << ch << "' is unsupported.";
866 is_valid = false;
867 } else if (IsRepeat(ch) && !prev_repeatable) {
868 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
869 << "'" << ch << "' can only follow a repeatable token.";
870 is_valid = false;
871 }
872
873 prev_repeatable = !IsInSet(ch, "^$?*+");
874 }
875 }
876
877 return is_valid;
878 }
879
880 // Matches a repeated regex atom followed by a valid simple regular
881 // expression. The regex atom is defined as c if escaped is false,
882 // or \c otherwise. repeat is the repetition meta character (?, *,
883 // or +). The behavior is undefined if str contains too many
884 // characters to be indexable by size_t, in which case the test will
885 // probably time out anyway. We are fine with this limitation as
886 // std::string has it too.
887 bool MatchRepetitionAndRegexAtHead(
888 bool escaped, char c, char repeat, const char* regex,
889 const char* str) {
890 const size_t min_count = (repeat == '+') ? 1 : 0;
891 const size_t max_count = (repeat == '?') ? 1 :
892 static_cast<size_t>(-1) - 1;
893 // We cannot call numeric_limits::max() as it conflicts with the
894 // max() macro on Windows.
895
896 for (size_t i = 0; i <= max_count; ++i) {
897 // We know that the atom matches each of the first i characters in str.
898 if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
899 // We have enough matches at the head, and the tail matches too.
900 // Since we only care about *whether* the pattern matches str
901 // (as opposed to *how* it matches), there is no need to find a
902 // greedy match.
903 return true;
904 }
905 if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
906 return false;
907 }
908 return false;
909 }
910
911 // Returns true if and only if regex matches a prefix of str. regex must
912 // be a valid simple regular expression and not start with "^", or the
913 // result is undefined.
914 bool MatchRegexAtHead(const char* regex, const char* str) {
915 if (*regex == '\0') // An empty regex matches a prefix of anything.
916 return true;
917
918 // "$" only matches the end of a string. Note that regex being
919 // valid guarantees that there's nothing after "$" in it.
920 if (*regex == '$')
921 return *str == '\0';
922
923 // Is the first thing in regex an escape sequence?
924 const bool escaped = *regex == '\\';
925 if (escaped)
926 ++regex;
927 if (IsRepeat(regex[1])) {
928 // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
929 // here's an indirect recursion. It terminates as the regex gets
930 // shorter in each recursion.
931 return MatchRepetitionAndRegexAtHead(
932 escaped, regex[0], regex[1], regex + 2, str);
933 } else {
934 // regex isn't empty, isn't "$", and doesn't start with a
935 // repetition. We match the first atom of regex with the first
936 // character of str and recurse.
937 return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
938 MatchRegexAtHead(regex + 1, str + 1);
939 }
940 }
941
942 // Returns true if and only if regex matches any substring of str. regex must
943 // be a valid simple regular expression, or the result is undefined.
944 //
945 // The algorithm is recursive, but the recursion depth doesn't exceed
946 // the regex length, so we won't need to worry about running out of
947 // stack space normally. In rare cases the time complexity can be
948 // exponential with respect to the regex length + the string length,
949 // but usually it's must faster (often close to linear).
950 bool MatchRegexAnywhere(const char* regex, const char* str) {
951 if (regex == nullptr || str == nullptr) return false;
952
953 if (*regex == '^')
954 return MatchRegexAtHead(regex + 1, str);
955
956 // A successful match can be anywhere in str.
957 do {
958 if (MatchRegexAtHead(regex, str))
959 return true;
960 } while (*str++ != '\0');
961 return false;
962 }
963
964 // Implements the RE class.
965
966 RE::~RE() {
967 free(const_cast<char*>(pattern_));
968 free(const_cast<char*>(full_pattern_));
969 }
970
971 // Returns true if and only if regular expression re matches the entire str.
972 bool RE::FullMatch(const char* str, const RE& re) {
973 return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
974 }
975
976 // Returns true if and only if regular expression re matches a substring of
977 // str (including str itself).
978 bool RE::PartialMatch(const char* str, const RE& re) {
979 return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
980 }
981
982 // Initializes an RE from its string representation.
983 void RE::Init(const char* regex) {
984 pattern_ = full_pattern_ = nullptr;
985 if (regex != nullptr) {
986 pattern_ = posix::StrDup(regex);
987 }
988
989 is_valid_ = ValidateRegex(regex);
990 if (!is_valid_) {
991 // No need to calculate the full pattern when the regex is invalid.
992 return;
993 }
994
995 const size_t len = strlen(regex);
996 // Reserves enough bytes to hold the regular expression used for a
997 // full match: we need space to prepend a '^', append a '$', and
998 // terminate the string with '\0'.
999 char* buffer = static_cast<char*>(malloc(len + 3));
1000 full_pattern_ = buffer;
1001
1002 if (*regex != '^')
1003 *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'.
1004
1005 // We don't use snprintf or strncpy, as they trigger a warning when
1006 // compiled with VC++ 8.0.
1007 memcpy(buffer, regex, len);
1008 buffer += len;
1009
1010 if (len == 0 || regex[len - 1] != '$')
1011 *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'.
1012
1013 *buffer = '\0';
1014 }
1015
1016 #endif // GTEST_USES_POSIX_RE
1017
1018 const char kUnknownFile[] = "unknown file";
1019
1020 // Formats a source file path and a line number as they would appear
1021 // in an error message from the compiler used to compile this code.
1022 GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
1023 const std::string file_name(file == nullptr ? kUnknownFile : file);
1024
1025 if (line < 0) {
1026 return file_name + ":";
1027 }
1028 #ifdef _MSC_VER
1029 return file_name + "(" + StreamableToString(line) + "):";
1030 #else
1031 return file_name + ":" + StreamableToString(line) + ":";
1032 #endif // _MSC_VER
1033 }
1034
1035 // Formats a file location for compiler-independent XML output.
1036 // Although this function is not platform dependent, we put it next to
1037 // FormatFileLocation in order to contrast the two functions.
1038 // Note that FormatCompilerIndependentFileLocation() does NOT append colon
1039 // to the file location it produces, unlike FormatFileLocation().
1040 GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
1041 const char* file, int line) {
1042 const std::string file_name(file == nullptr ? kUnknownFile : file);
1043
1044 if (line < 0)
1045 return file_name;
1046 else
1047 return file_name + ":" + StreamableToString(line);
1048 }
1049
1050 GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
1051 : severity_(severity) {
1052 const char* const marker =
1053 severity == GTEST_INFO ? "[ INFO ]" :
1054 severity == GTEST_WARNING ? "[WARNING]" :
1055 severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]";
1056 GetStream() << ::std::endl << marker << " "
1057 << FormatFileLocation(file, line).c_str() << ": ";
1058 }
1059
1060 // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
1061 GTestLog::~GTestLog() {
1062 GetStream() << ::std::endl;
1063 if (severity_ == GTEST_FATAL) {
1064 fflush(stderr);
1065 posix::Abort();
1066 }
1067 }
1068
1069 // Disable Microsoft deprecation warnings for POSIX functions called from
1070 // this class (creat, dup, dup2, and close)
1071 GTEST_DISABLE_MSC_DEPRECATED_PUSH_()
1072
1073 #if GTEST_HAS_STREAM_REDIRECTION
1074
1075 // Object that captures an output stream (stdout/stderr).
1076 class CapturedStream {
1077 public:
1078 // The ctor redirects the stream to a temporary file.
1079 explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
1080 # if GTEST_OS_WINDOWS
1081 char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT
1082 char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT
1083
1084 ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
1085 const UINT success = ::GetTempFileNameA(temp_dir_path,
1086 "gtest_redir",
1087 0, // Generate unique file name.
1088 temp_file_path);
1089 GTEST_CHECK_(success != 0)
1090 << "Unable to create a temporary file in " << temp_dir_path;
1091 const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
1092 GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
1093 << temp_file_path;
1094 filename_ = temp_file_path;
1095 # else
1096 // There's no guarantee that a test has write access to the current
1097 // directory, so we create the temporary file in the /tmp directory
1098 // instead. We use /tmp on most systems, and /sdcard on Android.
1099 // That's because Android doesn't have /tmp.
1100 # if GTEST_OS_LINUX_ANDROID
1101 // Note: Android applications are expected to call the framework's
1102 // Context.getExternalStorageDirectory() method through JNI to get
1103 // the location of the world-writable SD Card directory. However,
1104 // this requires a Context handle, which cannot be retrieved
1105 // globally from native code. Doing so also precludes running the
1106 // code as part of a regular standalone executable, which doesn't
1107 // run in a Dalvik process (e.g. when running it through 'adb shell').
1108 //
1109 // The location /data/local/tmp is directly accessible from native code.
1110 // '/sdcard' and other variants cannot be relied on, as they are not
1111 // guaranteed to be mounted, or may have a delay in mounting.
1112 char name_template[] = "/data/local/tmp/gtest_captured_stream.XXXXXX";
1113 # else
1114 char name_template[] = "/tmp/captured_stream.XXXXXX";
1115 # endif // GTEST_OS_LINUX_ANDROID
1116 const int captured_fd = mkstemp(name_template);
1117 if (captured_fd == -1) {
1118 GTEST_LOG_(WARNING)
1119 << "Failed to create tmp file " << name_template
1120 << " for test; does the test have access to the /tmp directory?";
1121 }
1122 filename_ = name_template;
1123 # endif // GTEST_OS_WINDOWS
1124 fflush(nullptr);
1125 dup2(captured_fd, fd_);
1126 close(captured_fd);
1127 }
1128
1129 ~CapturedStream() {
1130 remove(filename_.c_str());
1131 }
1132
1133 std::string GetCapturedString() {
1134 if (uncaptured_fd_ != -1) {
1135 // Restores the original stream.
1136 fflush(nullptr);
1137 dup2(uncaptured_fd_, fd_);
1138 close(uncaptured_fd_);
1139 uncaptured_fd_ = -1;
1140 }
1141
1142 FILE* const file = posix::FOpen(filename_.c_str(), "r");
1143 if (file == nullptr) {
1144 GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_
1145 << " for capturing stream.";
1146 }
1147 const std::string content = ReadEntireFile(file);
1148 posix::FClose(file);
1149 return content;
1150 }
1151
1152 private:
1153 const int fd_; // A stream to capture.
1154 int uncaptured_fd_;
1155 // Name of the temporary file holding the stderr output.
1156 ::std::string filename_;
1157
1158 GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
1159 };
1160
1161 GTEST_DISABLE_MSC_DEPRECATED_POP_()
1162
1163 static CapturedStream* g_captured_stderr = nullptr;
1164 static CapturedStream* g_captured_stdout = nullptr;
1165
1166 // Starts capturing an output stream (stdout/stderr).
1167 static void CaptureStream(int fd, const char* stream_name,
1168 CapturedStream** stream) {
1169 if (*stream != nullptr) {
1170 GTEST_LOG_(FATAL) << "Only one " << stream_name
1171 << " capturer can exist at a time.";
1172 }
1173 *stream = new CapturedStream(fd);
1174 }
1175
1176 // Stops capturing the output stream and returns the captured string.
1177 static std::string GetCapturedStream(CapturedStream** captured_stream) {
1178 const std::string content = (*captured_stream)->GetCapturedString();
1179
1180 delete *captured_stream;
1181 *captured_stream = nullptr;
1182
1183 return content;
1184 }
1185
1186 // Starts capturing stdout.
1187 void CaptureStdout() {
1188 CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
1189 }
1190
1191 // Starts capturing stderr.
1192 void CaptureStderr() {
1193 CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
1194 }
1195
1196 // Stops capturing stdout and returns the captured string.
1197 std::string GetCapturedStdout() {
1198 return GetCapturedStream(&g_captured_stdout);
1199 }
1200
1201 // Stops capturing stderr and returns the captured string.
1202 std::string GetCapturedStderr() {
1203 return GetCapturedStream(&g_captured_stderr);
1204 }
1205
1206 #endif // GTEST_HAS_STREAM_REDIRECTION
1207
1208
1209
1210
1211
1212 size_t GetFileSize(FILE* file) {
1213 fseek(file, 0, SEEK_END);
1214 return static_cast<size_t>(ftell(file));
1215 }
1216
1217 std::string ReadEntireFile(FILE* file) {
1218 const size_t file_size = GetFileSize(file);
1219 char* const buffer = new char[file_size];
1220
1221 size_t bytes_last_read = 0; // # of bytes read in the last fread()
1222 size_t bytes_read = 0; // # of bytes read so far
1223
1224 fseek(file, 0, SEEK_SET);
1225
1226 // Keeps reading the file until we cannot read further or the
1227 // pre-determined file size is reached.
1228 do {
1229 bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
1230 bytes_read += bytes_last_read;
1231 } while (bytes_last_read > 0 && bytes_read < file_size);
1232
1233 const std::string content(buffer, bytes_read);
1234 delete[] buffer;
1235
1236 return content;
1237 }
1238
1239 #if GTEST_HAS_DEATH_TEST
1240 static const std::vector<std::string>* g_injected_test_argvs =
1241 nullptr; // Owned.
1242
1243 std::vector<std::string> GetInjectableArgvs() {
1244 if (g_injected_test_argvs != nullptr) {
1245 return *g_injected_test_argvs;
1246 }
1247 return GetArgvs();
1248 }
1249
1250 void SetInjectableArgvs(const std::vector<std::string>* new_argvs) {
1251 if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs;
1252 g_injected_test_argvs = new_argvs;
1253 }
1254
1255 void SetInjectableArgvs(const std::vector<std::string>& new_argvs) {
1256 SetInjectableArgvs(
1257 new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
1258 }
1259
1260 void ClearInjectableArgvs() {
1261 delete g_injected_test_argvs;
1262 g_injected_test_argvs = nullptr;
1263 }
1264 #endif // GTEST_HAS_DEATH_TEST
1265
1266 #if GTEST_OS_WINDOWS_MOBILE
1267 namespace posix {
1268 void Abort() {
1269 DebugBreak();
1270 TerminateProcess(GetCurrentProcess(), 1);
1271 }
1272 } // namespace posix
1273 #endif // GTEST_OS_WINDOWS_MOBILE
1274
1275 // Returns the name of the environment variable corresponding to the
1276 // given flag. For example, FlagToEnvVar("foo") will return
1277 // "GTEST_FOO" in the open-source version.
1278 static std::string FlagToEnvVar(const char* flag) {
1279 const std::string full_flag =
1280 (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
1281
1282 Message env_var;
1283 for (size_t i = 0; i != full_flag.length(); i++) {
1284 env_var << ToUpper(full_flag.c_str()[i]);
1285 }
1286
1287 return env_var.GetString();
1288 }
1289
1290 // Parses 'str' for a 32-bit signed integer. If successful, writes
1291 // the result to *value and returns true; otherwise leaves *value
1292 // unchanged and returns false.
1293 bool ParseInt32(const Message& src_text, const char* str, int32_t* value) {
1294 // Parses the environment variable as a decimal integer.
1295 char* end = nullptr;
1296 const long long_value = strtol(str, &end, 10); // NOLINT
1297
1298 // Has strtol() consumed all characters in the string?
1299 if (*end != '\0') {
1300 // No - an invalid character was encountered.
1301 Message msg;
1302 msg << "WARNING: " << src_text
1303 << " is expected to be a 32-bit integer, but actually"
1304 << " has value \"" << str << "\".\n";
1305 printf("%s", msg.GetString().c_str());
1306 fflush(stdout);
1307 return false;
1308 }
1309
1310 // Is the parsed value in the range of an int32_t?
1311 const auto result = static_cast<int32_t>(long_value);
1312 if (long_value == LONG_MAX || long_value == LONG_MIN ||
1313 // The parsed value overflows as a long. (strtol() returns
1314 // LONG_MAX or LONG_MIN when the input overflows.)
1315 result != long_value
1316 // The parsed value overflows as an int32_t.
1317 ) {
1318 Message msg;
1319 msg << "WARNING: " << src_text
1320 << " is expected to be a 32-bit integer, but actually"
1321 << " has value " << str << ", which overflows.\n";
1322 printf("%s", msg.GetString().c_str());
1323 fflush(stdout);
1324 return false;
1325 }
1326
1327 *value = result;
1328 return true;
1329 }
1330
1331 // Reads and returns the Boolean environment variable corresponding to
1332 // the given flag; if it's not set, returns default_value.
1333 //
1334 // The value is considered true if and only if it's not "0".
1335 bool BoolFromGTestEnv(const char* flag, bool default_value) {
1336 #if defined(GTEST_GET_BOOL_FROM_ENV_)
1337 return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
1338 #else
1339 const std::string env_var = FlagToEnvVar(flag);
1340 const char* const string_value = posix::GetEnv(env_var.c_str());
1341 return string_value == nullptr ? default_value
1342 : strcmp(string_value, "0") != 0;
1343 #endif // defined(GTEST_GET_BOOL_FROM_ENV_)
1344 }
1345
1346 // Reads and returns a 32-bit integer stored in the environment
1347 // variable corresponding to the given flag; if it isn't set or
1348 // doesn't represent a valid 32-bit integer, returns default_value.
1349 int32_t Int32FromGTestEnv(const char* flag, int32_t default_value) {
1350 #if defined(GTEST_GET_INT32_FROM_ENV_)
1351 return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
1352 #else
1353 const std::string env_var = FlagToEnvVar(flag);
1354 const char* const string_value = posix::GetEnv(env_var.c_str());
1355 if (string_value == nullptr) {
1356 // The environment variable is not set.
1357 return default_value;
1358 }
1359
1360 int32_t result = default_value;
1361 if (!ParseInt32(Message() << "Environment variable " << env_var,
1362 string_value, &result)) {
1363 printf("The default value %s is used.\n",
1364 (Message() << default_value).GetString().c_str());
1365 fflush(stdout);
1366 return default_value;
1367 }
1368
1369 return result;
1370 #endif // defined(GTEST_GET_INT32_FROM_ENV_)
1371 }
1372
1373 // As a special case for the 'output' flag, if GTEST_OUTPUT is not
1374 // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
1375 // system. The value of XML_OUTPUT_FILE is a filename without the
1376 // "xml:" prefix of GTEST_OUTPUT.
1377 // Note that this is meant to be called at the call site so it does
1378 // not check that the flag is 'output'
1379 // In essence this checks an env variable called XML_OUTPUT_FILE
1380 // and if it is set we prepend "xml:" to its value, if it not set we return ""
1381 std::string OutputFlagAlsoCheckEnvVar(){
1382 std::string default_value_for_output_flag = "";
1383 const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE");
1384 if (nullptr != xml_output_file_env) {
1385 default_value_for_output_flag = std::string("xml:") + xml_output_file_env;
1386 }
1387 return default_value_for_output_flag;
1388 }
1389
1390 // Reads and returns the string environment variable corresponding to
1391 // the given flag; if it's not set, returns default_value.
1392 const char* StringFromGTestEnv(const char* flag, const char* default_value) {
1393 #if defined(GTEST_GET_STRING_FROM_ENV_)
1394 return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
1395 #else
1396 const std::string env_var = FlagToEnvVar(flag);
1397 const char* const value = posix::GetEnv(env_var.c_str());
1398 return value == nullptr ? default_value : value;
1399 #endif // defined(GTEST_GET_STRING_FROM_ENV_)
1400 }
1401
1402 } // namespace internal
1403 } // namespace testing