]> git.proxmox.com Git - ceph.git/blob - ceph/src/jaegertracing/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb/src/third_party/lua-5.3.6/src/ltable.c
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / jaegertracing / opentelemetry-cpp / third_party / prometheus-cpp / 3rdparty / civetweb / src / third_party / lua-5.3.6 / src / ltable.c
1 /*
2 ** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $
3 ** Lua tables (hash)
4 ** See Copyright Notice in lua.h
5 */
6
7 #define ltable_c
8 #define LUA_CORE
9
10 #include "lprefix.h"
11
12
13 /*
14 ** Implementation of tables (aka arrays, objects, or hash tables).
15 ** Tables keep its elements in two parts: an array part and a hash part.
16 ** Non-negative integer keys are all candidates to be kept in the array
17 ** part. The actual size of the array is the largest 'n' such that
18 ** more than half the slots between 1 and n are in use.
19 ** Hash uses a mix of chained scatter table with Brent's variation.
20 ** A main invariant of these tables is that, if an element is not
21 ** in its main position (i.e. the 'original' position that its hash gives
22 ** to it), then the colliding element is in its own main position.
23 ** Hence even when the load factor reaches 100%, performance remains good.
24 */
25
26 #include <math.h>
27 #include <limits.h>
28
29 #include "lua.h"
30
31 #include "ldebug.h"
32 #include "ldo.h"
33 #include "lgc.h"
34 #include "lmem.h"
35 #include "lobject.h"
36 #include "lstate.h"
37 #include "lstring.h"
38 #include "ltable.h"
39 #include "lvm.h"
40
41
42 /*
43 ** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
44 ** the largest integer such that MAXASIZE fits in an unsigned int.
45 */
46 #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
47 #define MAXASIZE (1u << MAXABITS)
48
49 /*
50 ** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
51 ** integer such that 2^MAXHBITS fits in a signed int. (Note that the
52 ** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
53 ** fits comfortably in an unsigned int.)
54 */
55 #define MAXHBITS (MAXABITS - 1)
56
57
58 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
59
60 #define hashstr(t,str) hashpow2(t, (str)->hash)
61 #define hashboolean(t,p) hashpow2(t, p)
62 #define hashint(t,i) hashpow2(t, i)
63
64
65 /*
66 ** for some types, it is better to avoid modulus by power of 2, as
67 ** they tend to have many 2 factors.
68 */
69 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
70
71
72 #define hashpointer(t,p) hashmod(t, point2uint(p))
73
74
75 #define dummynode (&dummynode_)
76
77 static const Node dummynode_ = {
78 {NILCONSTANT}, /* value */
79 {{NILCONSTANT, 0}} /* key */
80 };
81
82
83 /*
84 ** Hash for floating-point numbers.
85 ** The main computation should be just
86 ** n = frexp(n, &i); return (n * INT_MAX) + i
87 ** but there are some numerical subtleties.
88 ** In a two-complement representation, INT_MAX does not has an exact
89 ** representation as a float, but INT_MIN does; because the absolute
90 ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
91 ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
92 ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
93 ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
94 ** INT_MIN.
95 */
96 #if !defined(l_hashfloat)
97 static int l_hashfloat (lua_Number n) {
98 int i;
99 lua_Integer ni;
100 n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
101 if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
102 lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
103 return 0;
104 }
105 else { /* normal case */
106 unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
107 return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
108 }
109 }
110 #endif
111
112
113 /*
114 ** returns the 'main' position of an element in a table (that is, the index
115 ** of its hash value)
116 */
117 static Node *mainposition (const Table *t, const TValue *key) {
118 switch (ttype(key)) {
119 case LUA_TNUMINT:
120 return hashint(t, ivalue(key));
121 case LUA_TNUMFLT:
122 return hashmod(t, l_hashfloat(fltvalue(key)));
123 case LUA_TSHRSTR:
124 return hashstr(t, tsvalue(key));
125 case LUA_TLNGSTR:
126 return hashpow2(t, luaS_hashlongstr(tsvalue(key)));
127 case LUA_TBOOLEAN:
128 return hashboolean(t, bvalue(key));
129 case LUA_TLIGHTUSERDATA:
130 return hashpointer(t, pvalue(key));
131 case LUA_TLCF:
132 return hashpointer(t, fvalue(key));
133 default:
134 lua_assert(!ttisdeadkey(key));
135 return hashpointer(t, gcvalue(key));
136 }
137 }
138
139
140 /*
141 ** returns the index for 'key' if 'key' is an appropriate key to live in
142 ** the array part of the table, 0 otherwise.
143 */
144 static unsigned int arrayindex (const TValue *key) {
145 if (ttisinteger(key)) {
146 lua_Integer k = ivalue(key);
147 if (0 < k && (lua_Unsigned)k <= MAXASIZE)
148 return cast(unsigned int, k); /* 'key' is an appropriate array index */
149 }
150 return 0; /* 'key' did not match some condition */
151 }
152
153
154 /*
155 ** returns the index of a 'key' for table traversals. First goes all
156 ** elements in the array part, then elements in the hash part. The
157 ** beginning of a traversal is signaled by 0.
158 */
159 static unsigned int findindex (lua_State *L, Table *t, StkId key) {
160 unsigned int i;
161 if (ttisnil(key)) return 0; /* first iteration */
162 i = arrayindex(key);
163 if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */
164 return i; /* yes; that's the index */
165 else {
166 int nx;
167 Node *n = mainposition(t, key);
168 for (;;) { /* check whether 'key' is somewhere in the chain */
169 /* key may be dead already, but it is ok to use it in 'next' */
170 if (luaV_rawequalobj(gkey(n), key) ||
171 (ttisdeadkey(gkey(n)) && iscollectable(key) &&
172 deadvalue(gkey(n)) == gcvalue(key))) {
173 i = cast_int(n - gnode(t, 0)); /* key index in hash table */
174 /* hash elements are numbered after array ones */
175 return (i + 1) + t->sizearray;
176 }
177 nx = gnext(n);
178 if (nx == 0)
179 luaG_runerror(L, "invalid key to 'next'"); /* key not found */
180 else n += nx;
181 }
182 }
183 }
184
185
186 int luaH_next (lua_State *L, Table *t, StkId key) {
187 unsigned int i = findindex(L, t, key); /* find original element */
188 for (; i < t->sizearray; i++) { /* try first array part */
189 if (!ttisnil(&t->array[i])) { /* a non-nil value? */
190 setivalue(key, i + 1);
191 setobj2s(L, key+1, &t->array[i]);
192 return 1;
193 }
194 }
195 for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */
196 if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */
197 setobj2s(L, key, gkey(gnode(t, i)));
198 setobj2s(L, key+1, gval(gnode(t, i)));
199 return 1;
200 }
201 }
202 return 0; /* no more elements */
203 }
204
205
206 /*
207 ** {=============================================================
208 ** Rehash
209 ** ==============================================================
210 */
211
212 /*
213 ** Compute the optimal size for the array part of table 't'. 'nums' is a
214 ** "count array" where 'nums[i]' is the number of integers in the table
215 ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
216 ** integer keys in the table and leaves with the number of keys that
217 ** will go to the array part; return the optimal size.
218 */
219 static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
220 int i;
221 unsigned int twotoi; /* 2^i (candidate for optimal size) */
222 unsigned int a = 0; /* number of elements smaller than 2^i */
223 unsigned int na = 0; /* number of elements to go to array part */
224 unsigned int optimal = 0; /* optimal size for array part */
225 /* loop while keys can fill more than half of total size */
226 for (i = 0, twotoi = 1;
227 twotoi > 0 && *pna > twotoi / 2;
228 i++, twotoi *= 2) {
229 if (nums[i] > 0) {
230 a += nums[i];
231 if (a > twotoi/2) { /* more than half elements present? */
232 optimal = twotoi; /* optimal size (till now) */
233 na = a; /* all elements up to 'optimal' will go to array part */
234 }
235 }
236 }
237 lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
238 *pna = na;
239 return optimal;
240 }
241
242
243 static int countint (const TValue *key, unsigned int *nums) {
244 unsigned int k = arrayindex(key);
245 if (k != 0) { /* is 'key' an appropriate array index? */
246 nums[luaO_ceillog2(k)]++; /* count as such */
247 return 1;
248 }
249 else
250 return 0;
251 }
252
253
254 /*
255 ** Count keys in array part of table 't': Fill 'nums[i]' with
256 ** number of keys that will go into corresponding slice and return
257 ** total number of non-nil keys.
258 */
259 static unsigned int numusearray (const Table *t, unsigned int *nums) {
260 int lg;
261 unsigned int ttlg; /* 2^lg */
262 unsigned int ause = 0; /* summation of 'nums' */
263 unsigned int i = 1; /* count to traverse all array keys */
264 /* traverse each slice */
265 for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
266 unsigned int lc = 0; /* counter */
267 unsigned int lim = ttlg;
268 if (lim > t->sizearray) {
269 lim = t->sizearray; /* adjust upper limit */
270 if (i > lim)
271 break; /* no more elements to count */
272 }
273 /* count elements in range (2^(lg - 1), 2^lg] */
274 for (; i <= lim; i++) {
275 if (!ttisnil(&t->array[i-1]))
276 lc++;
277 }
278 nums[lg] += lc;
279 ause += lc;
280 }
281 return ause;
282 }
283
284
285 static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
286 int totaluse = 0; /* total number of elements */
287 int ause = 0; /* elements added to 'nums' (can go to array part) */
288 int i = sizenode(t);
289 while (i--) {
290 Node *n = &t->node[i];
291 if (!ttisnil(gval(n))) {
292 ause += countint(gkey(n), nums);
293 totaluse++;
294 }
295 }
296 *pna += ause;
297 return totaluse;
298 }
299
300
301 static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
302 unsigned int i;
303 luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
304 for (i=t->sizearray; i<size; i++)
305 setnilvalue(&t->array[i]);
306 t->sizearray = size;
307 }
308
309
310 static void setnodevector (lua_State *L, Table *t, unsigned int size) {
311 if (size == 0) { /* no elements to hash part? */
312 t->node = cast(Node *, dummynode); /* use common 'dummynode' */
313 t->lsizenode = 0;
314 t->lastfree = NULL; /* signal that it is using dummy node */
315 }
316 else {
317 int i;
318 int lsize = luaO_ceillog2(size);
319 if (lsize > MAXHBITS)
320 luaG_runerror(L, "table overflow");
321 size = twoto(lsize);
322 t->node = luaM_newvector(L, size, Node);
323 for (i = 0; i < (int)size; i++) {
324 Node *n = gnode(t, i);
325 gnext(n) = 0;
326 setnilvalue(wgkey(n));
327 setnilvalue(gval(n));
328 }
329 t->lsizenode = cast_byte(lsize);
330 t->lastfree = gnode(t, size); /* all positions are free */
331 }
332 }
333
334
335 typedef struct {
336 Table *t;
337 unsigned int nhsize;
338 } AuxsetnodeT;
339
340
341 static void auxsetnode (lua_State *L, void *ud) {
342 AuxsetnodeT *asn = cast(AuxsetnodeT *, ud);
343 setnodevector(L, asn->t, asn->nhsize);
344 }
345
346
347 void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
348 unsigned int nhsize) {
349 unsigned int i;
350 int j;
351 AuxsetnodeT asn;
352 unsigned int oldasize = t->sizearray;
353 int oldhsize = allocsizenode(t);
354 Node *nold = t->node; /* save old hash ... */
355 if (nasize > oldasize) /* array part must grow? */
356 setarrayvector(L, t, nasize);
357 /* create new hash part with appropriate size */
358 asn.t = t; asn.nhsize = nhsize;
359 if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) { /* mem. error? */
360 setarrayvector(L, t, oldasize); /* array back to its original size */
361 luaD_throw(L, LUA_ERRMEM); /* rethrow memory error */
362 }
363 if (nasize < oldasize) { /* array part must shrink? */
364 t->sizearray = nasize;
365 /* re-insert elements from vanishing slice */
366 for (i=nasize; i<oldasize; i++) {
367 if (!ttisnil(&t->array[i]))
368 luaH_setint(L, t, i + 1, &t->array[i]);
369 }
370 /* shrink array */
371 luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
372 }
373 /* re-insert elements from hash part */
374 for (j = oldhsize - 1; j >= 0; j--) {
375 Node *old = nold + j;
376 if (!ttisnil(gval(old))) {
377 /* doesn't need barrier/invalidate cache, as entry was
378 already present in the table */
379 setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
380 }
381 }
382 if (oldhsize > 0) /* not the dummy node? */
383 luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */
384 }
385
386
387 void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
388 int nsize = allocsizenode(t);
389 luaH_resize(L, t, nasize, nsize);
390 }
391
392 /*
393 ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
394 */
395 static void rehash (lua_State *L, Table *t, const TValue *ek) {
396 unsigned int asize; /* optimal size for array part */
397 unsigned int na; /* number of keys in the array part */
398 unsigned int nums[MAXABITS + 1];
399 int i;
400 int totaluse;
401 for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
402 na = numusearray(t, nums); /* count keys in array part */
403 totaluse = na; /* all those keys are integer keys */
404 totaluse += numusehash(t, nums, &na); /* count keys in hash part */
405 /* count extra key */
406 na += countint(ek, nums);
407 totaluse++;
408 /* compute new size for array part */
409 asize = computesizes(nums, &na);
410 /* resize the table to new computed sizes */
411 luaH_resize(L, t, asize, totaluse - na);
412 }
413
414
415
416 /*
417 ** }=============================================================
418 */
419
420
421 Table *luaH_new (lua_State *L) {
422 GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
423 Table *t = gco2t(o);
424 t->metatable = NULL;
425 t->flags = cast_byte(~0);
426 t->array = NULL;
427 t->sizearray = 0;
428 setnodevector(L, t, 0);
429 return t;
430 }
431
432
433 void luaH_free (lua_State *L, Table *t) {
434 if (!isdummy(t))
435 luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
436 luaM_freearray(L, t->array, t->sizearray);
437 luaM_free(L, t);
438 }
439
440
441 static Node *getfreepos (Table *t) {
442 if (!isdummy(t)) {
443 while (t->lastfree > t->node) {
444 t->lastfree--;
445 if (ttisnil(gkey(t->lastfree)))
446 return t->lastfree;
447 }
448 }
449 return NULL; /* could not find a free place */
450 }
451
452
453
454 /*
455 ** inserts a new key into a hash table; first, check whether key's main
456 ** position is free. If not, check whether colliding node is in its main
457 ** position or not: if it is not, move colliding node to an empty place and
458 ** put new key in its main position; otherwise (colliding node is in its main
459 ** position), new key goes to an empty position.
460 */
461 TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
462 Node *mp;
463 TValue aux;
464 if (ttisnil(key)) luaG_runerror(L, "table index is nil");
465 else if (ttisfloat(key)) {
466 lua_Integer k;
467 if (luaV_tointeger(key, &k, 0)) { /* does index fit in an integer? */
468 setivalue(&aux, k);
469 key = &aux; /* insert it as an integer */
470 }
471 else if (luai_numisnan(fltvalue(key)))
472 luaG_runerror(L, "table index is NaN");
473 }
474 mp = mainposition(t, key);
475 if (!ttisnil(gval(mp)) || isdummy(t)) { /* main position is taken? */
476 Node *othern;
477 Node *f = getfreepos(t); /* get a free place */
478 if (f == NULL) { /* cannot find a free place? */
479 rehash(L, t, key); /* grow table */
480 /* whatever called 'newkey' takes care of TM cache */
481 return luaH_set(L, t, key); /* insert key into grown table */
482 }
483 lua_assert(!isdummy(t));
484 othern = mainposition(t, gkey(mp));
485 if (othern != mp) { /* is colliding node out of its main position? */
486 /* yes; move colliding node into free position */
487 while (othern + gnext(othern) != mp) /* find previous */
488 othern += gnext(othern);
489 gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
490 *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
491 if (gnext(mp) != 0) {
492 gnext(f) += cast_int(mp - f); /* correct 'next' */
493 gnext(mp) = 0; /* now 'mp' is free */
494 }
495 setnilvalue(gval(mp));
496 }
497 else { /* colliding node is in its own main position */
498 /* new node will go into free position */
499 if (gnext(mp) != 0)
500 gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
501 else lua_assert(gnext(f) == 0);
502 gnext(mp) = cast_int(f - mp);
503 mp = f;
504 }
505 }
506 setnodekey(L, &mp->i_key, key);
507 luaC_barrierback(L, t, key);
508 lua_assert(ttisnil(gval(mp)));
509 return gval(mp);
510 }
511
512
513 /*
514 ** search function for integers
515 */
516 const TValue *luaH_getint (Table *t, lua_Integer key) {
517 /* (1 <= key && key <= t->sizearray) */
518 if (l_castS2U(key) - 1 < t->sizearray)
519 return &t->array[key - 1];
520 else {
521 Node *n = hashint(t, key);
522 for (;;) { /* check whether 'key' is somewhere in the chain */
523 if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
524 return gval(n); /* that's it */
525 else {
526 int nx = gnext(n);
527 if (nx == 0) break;
528 n += nx;
529 }
530 }
531 return luaO_nilobject;
532 }
533 }
534
535
536 /*
537 ** search function for short strings
538 */
539 const TValue *luaH_getshortstr (Table *t, TString *key) {
540 Node *n = hashstr(t, key);
541 lua_assert(key->tt == LUA_TSHRSTR);
542 for (;;) { /* check whether 'key' is somewhere in the chain */
543 const TValue *k = gkey(n);
544 if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
545 return gval(n); /* that's it */
546 else {
547 int nx = gnext(n);
548 if (nx == 0)
549 return luaO_nilobject; /* not found */
550 n += nx;
551 }
552 }
553 }
554
555
556 /*
557 ** "Generic" get version. (Not that generic: not valid for integers,
558 ** which may be in array part, nor for floats with integral values.)
559 */
560 static const TValue *getgeneric (Table *t, const TValue *key) {
561 Node *n = mainposition(t, key);
562 for (;;) { /* check whether 'key' is somewhere in the chain */
563 if (luaV_rawequalobj(gkey(n), key))
564 return gval(n); /* that's it */
565 else {
566 int nx = gnext(n);
567 if (nx == 0)
568 return luaO_nilobject; /* not found */
569 n += nx;
570 }
571 }
572 }
573
574
575 const TValue *luaH_getstr (Table *t, TString *key) {
576 if (key->tt == LUA_TSHRSTR)
577 return luaH_getshortstr(t, key);
578 else { /* for long strings, use generic case */
579 TValue ko;
580 setsvalue(cast(lua_State *, NULL), &ko, key);
581 return getgeneric(t, &ko);
582 }
583 }
584
585
586 /*
587 ** main search function
588 */
589 const TValue *luaH_get (Table *t, const TValue *key) {
590 switch (ttype(key)) {
591 case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
592 case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
593 case LUA_TNIL: return luaO_nilobject;
594 case LUA_TNUMFLT: {
595 lua_Integer k;
596 if (luaV_tointeger(key, &k, 0)) /* index is int? */
597 return luaH_getint(t, k); /* use specialized version */
598 /* else... */
599 } /* FALLTHROUGH */
600 default:
601 return getgeneric(t, key);
602 }
603 }
604
605
606 /*
607 ** beware: when using this function you probably need to check a GC
608 ** barrier and invalidate the TM cache.
609 */
610 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
611 const TValue *p = luaH_get(t, key);
612 if (p != luaO_nilobject)
613 return cast(TValue *, p);
614 else return luaH_newkey(L, t, key);
615 }
616
617
618 void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
619 const TValue *p = luaH_getint(t, key);
620 TValue *cell;
621 if (p != luaO_nilobject)
622 cell = cast(TValue *, p);
623 else {
624 TValue k;
625 setivalue(&k, key);
626 cell = luaH_newkey(L, t, &k);
627 }
628 setobj2t(L, cell, value);
629 }
630
631
632 static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) {
633 lua_Unsigned i = j; /* i is zero or a present index */
634 j++;
635 /* find 'i' and 'j' such that i is present and j is not */
636 while (!ttisnil(luaH_getint(t, j))) {
637 i = j;
638 if (j > l_castS2U(LUA_MAXINTEGER) / 2) { /* overflow? */
639 /* table was built with bad purposes: resort to linear search */
640 i = 1;
641 while (!ttisnil(luaH_getint(t, i))) i++;
642 return i - 1;
643 }
644 j *= 2;
645 }
646 /* now do a binary search between them */
647 while (j - i > 1) {
648 lua_Unsigned m = (i+j)/2;
649 if (ttisnil(luaH_getint(t, m))) j = m;
650 else i = m;
651 }
652 return i;
653 }
654
655
656 /*
657 ** Try to find a boundary in table 't'. A 'boundary' is an integer index
658 ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
659 */
660 lua_Unsigned luaH_getn (Table *t) {
661 unsigned int j = t->sizearray;
662 if (j > 0 && ttisnil(&t->array[j - 1])) {
663 /* there is a boundary in the array part: (binary) search for it */
664 unsigned int i = 0;
665 while (j - i > 1) {
666 unsigned int m = (i+j)/2;
667 if (ttisnil(&t->array[m - 1])) j = m;
668 else i = m;
669 }
670 return i;
671 }
672 /* else must find a boundary in hash part */
673 else if (isdummy(t)) /* hash part is empty? */
674 return j; /* that is easy... */
675 else return unbound_search(t, j);
676 }
677
678
679
680 #if defined(LUA_DEBUG)
681
682 Node *luaH_mainposition (const Table *t, const TValue *key) {
683 return mainposition(t, key);
684 }
685
686 int luaH_isdummy (const Table *t) { return isdummy(t); }
687
688 #endif