]> git.proxmox.com Git - ceph.git/blob - ceph/src/msg/async/ProtocolV2.cc
import ceph 16.2.7
[ceph.git] / ceph / src / msg / async / ProtocolV2.cc
1 // -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
2 // vim: ts=8 sw=2 smarttab
3
4 #include <type_traits>
5
6 #include "ProtocolV2.h"
7 #include "AsyncMessenger.h"
8
9 #include "common/EventTrace.h"
10 #include "common/ceph_crypto.h"
11 #include "common/errno.h"
12 #include "include/random.h"
13 #include "auth/AuthClient.h"
14 #include "auth/AuthServer.h"
15
16 #define dout_subsys ceph_subsys_ms
17 #undef dout_prefix
18 #define dout_prefix _conn_prefix(_dout)
19 std::ostream &ProtocolV2::_conn_prefix(std::ostream *_dout) {
20 return *_dout << "--2- " << messenger->get_myaddrs() << " >> "
21 << *connection->peer_addrs << " conn(" << connection << " "
22 << this
23 << " " << ceph_con_mode_name(auth_meta->con_mode)
24 << " :" << connection->port
25 << " s=" << get_state_name(state) << " pgs=" << peer_global_seq
26 << " cs=" << connect_seq << " l=" << connection->policy.lossy
27 << " rev1=" << HAVE_MSGR2_FEATURE(peer_supported_features,
28 REVISION_1)
29 << " rx=" << session_stream_handlers.rx.get()
30 << " tx=" << session_stream_handlers.tx.get()
31 << ").";
32 }
33
34 using namespace ceph::msgr::v2;
35
36 using CtPtr = Ct<ProtocolV2> *;
37 using CtRef = Ct<ProtocolV2> &;
38
39 void ProtocolV2::run_continuation(CtPtr pcontinuation) {
40 if (pcontinuation) {
41 run_continuation(*pcontinuation);
42 }
43 }
44
45 void ProtocolV2::run_continuation(CtRef continuation) {
46 try {
47 CONTINUATION_RUN(continuation)
48 } catch (const ceph::buffer::error &e) {
49 lderr(cct) << __func__ << " failed decoding of frame header: " << e.what()
50 << dendl;
51 _fault();
52 } catch (const ceph::crypto::onwire::MsgAuthError &e) {
53 lderr(cct) << __func__ << " " << e.what() << dendl;
54 _fault();
55 } catch (const DecryptionError &) {
56 lderr(cct) << __func__ << " failed to decrypt frame payload" << dendl;
57 }
58 }
59
60 #define WRITE(B, D, C) write(D, CONTINUATION(C), B)
61
62 #define READ(L, C) read(CONTINUATION(C), ceph::buffer::ptr_node::create(ceph::buffer::create(L)))
63
64 #define READ_RXBUF(B, C) read(CONTINUATION(C), B)
65
66 #ifdef UNIT_TESTS_BUILT
67
68 #define INTERCEPT(S) { \
69 if(connection->interceptor) { \
70 auto a = connection->interceptor->intercept(connection, (S)); \
71 if (a == Interceptor::ACTION::FAIL) { \
72 return _fault(); \
73 } else if (a == Interceptor::ACTION::STOP) { \
74 stop(); \
75 connection->dispatch_queue->queue_reset(connection); \
76 return nullptr; \
77 }}}
78
79 #else
80 #define INTERCEPT(S)
81 #endif
82
83 ProtocolV2::ProtocolV2(AsyncConnection *connection)
84 : Protocol(2, connection),
85 state(NONE),
86 peer_supported_features(0),
87 client_cookie(0),
88 server_cookie(0),
89 global_seq(0),
90 connect_seq(0),
91 peer_global_seq(0),
92 message_seq(0),
93 reconnecting(false),
94 replacing(false),
95 can_write(false),
96 bannerExchangeCallback(nullptr),
97 tx_frame_asm(&session_stream_handlers, false),
98 rx_frame_asm(&session_stream_handlers, false),
99 next_tag(static_cast<Tag>(0)),
100 keepalive(false) {
101 }
102
103 ProtocolV2::~ProtocolV2() {
104 }
105
106 void ProtocolV2::connect() {
107 ldout(cct, 1) << __func__ << dendl;
108 state = START_CONNECT;
109 pre_auth.enabled = true;
110 }
111
112 void ProtocolV2::accept() {
113 ldout(cct, 1) << __func__ << dendl;
114 state = START_ACCEPT;
115 }
116
117 bool ProtocolV2::is_connected() { return can_write; }
118
119 /*
120 * Tears down the message queues, and removes them from the
121 * DispatchQueue Must hold write_lock prior to calling.
122 */
123 void ProtocolV2::discard_out_queue() {
124 ldout(cct, 10) << __func__ << " started" << dendl;
125
126 for (auto p = sent.begin(); p != sent.end(); ++p) {
127 ldout(cct, 20) << __func__ << " discard " << *p << dendl;
128 (*p)->put();
129 }
130 sent.clear();
131 for (auto& [ prio, entries ] : out_queue) {
132 static_cast<void>(prio);
133 for (auto& entry : entries) {
134 ldout(cct, 20) << __func__ << " discard " << *entry.m << dendl;
135 entry.m->put();
136 }
137 }
138 out_queue.clear();
139 write_in_progress = false;
140 }
141
142 void ProtocolV2::reset_session() {
143 ldout(cct, 1) << __func__ << dendl;
144
145 std::lock_guard<std::mutex> l(connection->write_lock);
146 if (connection->delay_state) {
147 connection->delay_state->discard();
148 }
149
150 connection->dispatch_queue->discard_queue(connection->conn_id);
151 discard_out_queue();
152 connection->outgoing_bl.clear();
153
154 connection->dispatch_queue->queue_remote_reset(connection);
155
156 out_seq = 0;
157 in_seq = 0;
158 client_cookie = 0;
159 server_cookie = 0;
160 connect_seq = 0;
161 peer_global_seq = 0;
162 message_seq = 0;
163 ack_left = 0;
164 can_write = false;
165 }
166
167 void ProtocolV2::stop() {
168 ldout(cct, 1) << __func__ << dendl;
169 if (state == CLOSED) {
170 return;
171 }
172
173 if (connection->delay_state) connection->delay_state->flush();
174
175 std::lock_guard<std::mutex> l(connection->write_lock);
176
177 reset_recv_state();
178 discard_out_queue();
179
180 connection->_stop();
181
182 can_write = false;
183 state = CLOSED;
184 }
185
186 void ProtocolV2::fault() { _fault(); }
187
188 void ProtocolV2::requeue_sent() {
189 write_in_progress = false;
190 if (sent.empty()) {
191 return;
192 }
193
194 auto& rq = out_queue[CEPH_MSG_PRIO_HIGHEST];
195 out_seq -= sent.size();
196 while (!sent.empty()) {
197 Message *m = sent.back();
198 sent.pop_back();
199 ldout(cct, 5) << __func__ << " requeueing message m=" << m
200 << " seq=" << m->get_seq() << " type=" << m->get_type() << " "
201 << *m << dendl;
202 m->clear_payload();
203 rq.emplace_front(out_queue_entry_t{false, m});
204 }
205 }
206
207 uint64_t ProtocolV2::discard_requeued_up_to(uint64_t out_seq, uint64_t seq) {
208 ldout(cct, 10) << __func__ << " " << seq << dendl;
209 std::lock_guard<std::mutex> l(connection->write_lock);
210 if (out_queue.count(CEPH_MSG_PRIO_HIGHEST) == 0) {
211 return seq;
212 }
213 auto& rq = out_queue[CEPH_MSG_PRIO_HIGHEST];
214 uint64_t count = out_seq;
215 while (!rq.empty()) {
216 Message* const m = rq.front().m;
217 if (m->get_seq() == 0 || m->get_seq() > seq) break;
218 ldout(cct, 5) << __func__ << " discarding message m=" << m
219 << " seq=" << m->get_seq() << " ack_seq=" << seq << " "
220 << *m << dendl;
221 m->put();
222 rq.pop_front();
223 count++;
224 }
225 if (rq.empty()) out_queue.erase(CEPH_MSG_PRIO_HIGHEST);
226 return count;
227 }
228
229 void ProtocolV2::reset_security() {
230 ldout(cct, 5) << __func__ << dendl;
231
232 auth_meta.reset(new AuthConnectionMeta);
233 session_stream_handlers.rx.reset(nullptr);
234 session_stream_handlers.tx.reset(nullptr);
235 pre_auth.rxbuf.clear();
236 pre_auth.txbuf.clear();
237 }
238
239 // it's expected the `write_lock` is held while calling this method.
240 void ProtocolV2::reset_recv_state() {
241 ldout(cct, 5) << __func__ << dendl;
242
243 if (!connection->center->in_thread()) {
244 // execute in the same thread that uses the rx/tx handlers. We need
245 // to do the warp because holding `write_lock` is not enough as
246 // `write_event()` unlocks it just before calling `write_message()`.
247 // `submit_to()` here is NOT blocking.
248 connection->center->submit_to(connection->center->get_id(), [this] {
249 ldout(cct, 5) << "reset_recv_state (warped) reseting crypto handlers"
250 << dendl;
251 // Possibly unnecessary. See the comment in `deactivate_existing`.
252 std::lock_guard<std::mutex> l(connection->lock);
253 std::lock_guard<std::mutex> wl(connection->write_lock);
254 reset_security();
255 }, /* always_async = */true);
256 } else {
257 reset_security();
258 }
259
260 // clean read and write callbacks
261 connection->pendingReadLen.reset();
262 connection->writeCallback.reset();
263
264 next_tag = static_cast<Tag>(0);
265
266 reset_throttle();
267 }
268
269 size_t ProtocolV2::get_current_msg_size() const {
270 ceph_assert(rx_frame_asm.get_num_segments() > 0);
271 size_t sum = 0;
272 // we don't include SegmentIndex::Msg::HEADER.
273 for (size_t i = 1; i < rx_frame_asm.get_num_segments(); i++) {
274 sum += rx_frame_asm.get_segment_logical_len(i);
275 }
276 return sum;
277 }
278
279 void ProtocolV2::reset_throttle() {
280 if (state > THROTTLE_MESSAGE && state <= THROTTLE_DONE &&
281 connection->policy.throttler_messages) {
282 ldout(cct, 10) << __func__ << " releasing " << 1
283 << " message to policy throttler "
284 << connection->policy.throttler_messages->get_current()
285 << "/" << connection->policy.throttler_messages->get_max()
286 << dendl;
287 connection->policy.throttler_messages->put();
288 }
289 if (state > THROTTLE_BYTES && state <= THROTTLE_DONE) {
290 if (connection->policy.throttler_bytes) {
291 const size_t cur_msg_size = get_current_msg_size();
292 ldout(cct, 10) << __func__ << " releasing " << cur_msg_size
293 << " bytes to policy throttler "
294 << connection->policy.throttler_bytes->get_current() << "/"
295 << connection->policy.throttler_bytes->get_max() << dendl;
296 connection->policy.throttler_bytes->put(cur_msg_size);
297 }
298 }
299 if (state > THROTTLE_DISPATCH_QUEUE && state <= THROTTLE_DONE) {
300 const size_t cur_msg_size = get_current_msg_size();
301 ldout(cct, 10)
302 << __func__ << " releasing " << cur_msg_size
303 << " bytes to dispatch_queue throttler "
304 << connection->dispatch_queue->dispatch_throttler.get_current() << "/"
305 << connection->dispatch_queue->dispatch_throttler.get_max() << dendl;
306 connection->dispatch_queue->dispatch_throttle_release(cur_msg_size);
307 }
308 }
309
310 CtPtr ProtocolV2::_fault() {
311 ldout(cct, 10) << __func__ << dendl;
312
313 if (state == CLOSED || state == NONE) {
314 ldout(cct, 10) << __func__ << " connection is already closed" << dendl;
315 return nullptr;
316 }
317
318 if (connection->policy.lossy &&
319 !(state >= START_CONNECT && state <= SESSION_RECONNECTING)) {
320 ldout(cct, 2) << __func__ << " on lossy channel, failing" << dendl;
321 stop();
322 connection->dispatch_queue->queue_reset(connection);
323 return nullptr;
324 }
325
326 connection->write_lock.lock();
327
328 can_write = false;
329 // requeue sent items
330 requeue_sent();
331
332 if (out_queue.empty() && state >= START_ACCEPT &&
333 state <= SESSION_ACCEPTING && !replacing) {
334 ldout(cct, 2) << __func__ << " with nothing to send and in the half "
335 << " accept state just closed" << dendl;
336 connection->write_lock.unlock();
337 stop();
338 connection->dispatch_queue->queue_reset(connection);
339 return nullptr;
340 }
341
342 replacing = false;
343 connection->fault();
344 reset_recv_state();
345
346 reconnecting = false;
347
348 if (connection->policy.standby && out_queue.empty() && !keepalive &&
349 state != WAIT) {
350 ldout(cct, 1) << __func__ << " with nothing to send, going to standby"
351 << dendl;
352 state = STANDBY;
353 connection->write_lock.unlock();
354 return nullptr;
355 }
356 if (connection->policy.server) {
357 ldout(cct, 1) << __func__ << " server, going to standby, even though i have stuff queued" << dendl;
358 state = STANDBY;
359 connection->write_lock.unlock();
360 return nullptr;
361 }
362
363 connection->write_lock.unlock();
364
365 if (!(state >= START_CONNECT && state <= SESSION_RECONNECTING) &&
366 state != WAIT &&
367 state != SESSION_ACCEPTING /* due to connection race */) {
368 // policy maybe empty when state is in accept
369 if (connection->policy.server) {
370 ldout(cct, 1) << __func__ << " server, going to standby" << dendl;
371 state = STANDBY;
372 } else {
373 ldout(cct, 1) << __func__ << " initiating reconnect" << dendl;
374 connect_seq++;
375 global_seq = messenger->get_global_seq();
376 state = START_CONNECT;
377 pre_auth.enabled = true;
378 connection->state = AsyncConnection::STATE_CONNECTING;
379 }
380 backoff = utime_t();
381 connection->center->dispatch_event_external(connection->read_handler);
382 } else {
383 if (state == WAIT) {
384 backoff.set_from_double(cct->_conf->ms_max_backoff);
385 } else if (backoff == utime_t()) {
386 backoff.set_from_double(cct->_conf->ms_initial_backoff);
387 } else {
388 backoff += backoff;
389 if (backoff > cct->_conf->ms_max_backoff)
390 backoff.set_from_double(cct->_conf->ms_max_backoff);
391 }
392
393 if (server_cookie) {
394 connect_seq++;
395 }
396
397 global_seq = messenger->get_global_seq();
398 state = START_CONNECT;
399 pre_auth.enabled = true;
400 connection->state = AsyncConnection::STATE_CONNECTING;
401 ldout(cct, 1) << __func__ << " waiting " << backoff << dendl;
402 // woke up again;
403 connection->register_time_events.insert(
404 connection->center->create_time_event(backoff.to_nsec() / 1000,
405 connection->wakeup_handler));
406 }
407 return nullptr;
408 }
409
410 void ProtocolV2::prepare_send_message(uint64_t features,
411 Message *m) {
412 ldout(cct, 20) << __func__ << " m=" << *m << dendl;
413
414 // associate message with Connection (for benefit of encode_payload)
415 ldout(cct, 20) << __func__ << (m->empty_payload() ? " encoding features " : " half-reencoding features ")
416 << features << " " << m << " " << *m << dendl;
417
418 // encode and copy out of *m
419 m->encode(features, 0);
420 }
421
422 void ProtocolV2::send_message(Message *m) {
423 uint64_t f = connection->get_features();
424
425 // TODO: Currently not all messages supports reencode like MOSDMap, so here
426 // only let fast dispatch support messages prepare message
427 const bool can_fast_prepare = messenger->ms_can_fast_dispatch(m);
428 if (can_fast_prepare) {
429 prepare_send_message(f, m);
430 }
431
432 std::lock_guard<std::mutex> l(connection->write_lock);
433 bool is_prepared = can_fast_prepare;
434 // "features" changes will change the payload encoding
435 if (can_fast_prepare && (!can_write || connection->get_features() != f)) {
436 // ensure the correctness of message encoding
437 m->clear_payload();
438 is_prepared = false;
439 ldout(cct, 10) << __func__ << " clear encoded buffer previous " << f
440 << " != " << connection->get_features() << dendl;
441 }
442 if (state == CLOSED) {
443 ldout(cct, 10) << __func__ << " connection closed."
444 << " Drop message " << m << dendl;
445 m->put();
446 } else {
447 ldout(cct, 5) << __func__ << " enqueueing message m=" << m
448 << " type=" << m->get_type() << " " << *m << dendl;
449 m->queue_start = ceph::mono_clock::now();
450 m->trace.event("async enqueueing message");
451 out_queue[m->get_priority()].emplace_back(
452 out_queue_entry_t{is_prepared, m});
453 ldout(cct, 15) << __func__ << " inline write is denied, reschedule m=" << m
454 << dendl;
455 if (((!replacing && can_write) || state == STANDBY) && !write_in_progress) {
456 write_in_progress = true;
457 connection->center->dispatch_event_external(connection->write_handler);
458 }
459 }
460 }
461
462 void ProtocolV2::send_keepalive() {
463 ldout(cct, 10) << __func__ << dendl;
464 std::lock_guard<std::mutex> l(connection->write_lock);
465 if (state != CLOSED) {
466 keepalive = true;
467 connection->center->dispatch_event_external(connection->write_handler);
468 }
469 }
470
471 void ProtocolV2::read_event() {
472 ldout(cct, 20) << __func__ << dendl;
473
474 switch (state) {
475 case START_CONNECT:
476 run_continuation(CONTINUATION(start_client_banner_exchange));
477 break;
478 case START_ACCEPT:
479 run_continuation(CONTINUATION(start_server_banner_exchange));
480 break;
481 case READY:
482 run_continuation(CONTINUATION(read_frame));
483 break;
484 case THROTTLE_MESSAGE:
485 run_continuation(CONTINUATION(throttle_message));
486 break;
487 case THROTTLE_BYTES:
488 run_continuation(CONTINUATION(throttle_bytes));
489 break;
490 case THROTTLE_DISPATCH_QUEUE:
491 run_continuation(CONTINUATION(throttle_dispatch_queue));
492 break;
493 default:
494 break;
495 }
496 }
497
498 ProtocolV2::out_queue_entry_t ProtocolV2::_get_next_outgoing() {
499 out_queue_entry_t out_entry;
500
501 if (!out_queue.empty()) {
502 auto it = out_queue.rbegin();
503 auto& entries = it->second;
504 ceph_assert(!entries.empty());
505 out_entry = entries.front();
506 entries.pop_front();
507 if (entries.empty()) {
508 out_queue.erase(it->first);
509 }
510 }
511 return out_entry;
512 }
513
514 ssize_t ProtocolV2::write_message(Message *m, bool more) {
515 FUNCTRACE(cct);
516 ceph_assert(connection->center->in_thread());
517 m->set_seq(++out_seq);
518
519 connection->lock.lock();
520 uint64_t ack_seq = in_seq;
521 ack_left = 0;
522 connection->lock.unlock();
523
524 ceph_msg_header &header = m->get_header();
525 ceph_msg_footer &footer = m->get_footer();
526
527 ceph_msg_header2 header2{header.seq, header.tid,
528 header.type, header.priority,
529 header.version,
530 init_le32(0), header.data_off,
531 init_le64(ack_seq),
532 footer.flags, header.compat_version,
533 header.reserved};
534
535 auto message = MessageFrame::Encode(
536 header2,
537 m->get_payload(),
538 m->get_middle(),
539 m->get_data());
540 if (!append_frame(message)) {
541 m->put();
542 return -EILSEQ;
543 }
544
545 ldout(cct, 5) << __func__ << " sending message m=" << m
546 << " seq=" << m->get_seq() << " " << *m << dendl;
547
548 m->trace.event("async writing message");
549 ldout(cct, 20) << __func__ << " sending m=" << m << " seq=" << m->get_seq()
550 << " src=" << entity_name_t(messenger->get_myname())
551 << " off=" << header2.data_off
552 << dendl;
553 ssize_t total_send_size = connection->outgoing_bl.length();
554 ssize_t rc = connection->_try_send(more);
555 if (rc < 0) {
556 ldout(cct, 1) << __func__ << " error sending " << m << ", "
557 << cpp_strerror(rc) << dendl;
558 } else {
559 connection->logger->inc(
560 l_msgr_send_bytes, total_send_size - connection->outgoing_bl.length());
561 ldout(cct, 10) << __func__ << " sending " << m
562 << (rc ? " continuely." : " done.") << dendl;
563 }
564
565 #if defined(WITH_EVENTTRACE)
566 if (m->get_type() == CEPH_MSG_OSD_OP)
567 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OP_END", false);
568 else if (m->get_type() == CEPH_MSG_OSD_OPREPLY)
569 OID_EVENT_TRACE_WITH_MSG(m, "SEND_MSG_OSD_OPREPLY_END", false);
570 #endif
571 m->put();
572
573 return rc;
574 }
575
576 template <class F>
577 bool ProtocolV2::append_frame(F& frame) {
578 ceph::bufferlist bl;
579 try {
580 bl = frame.get_buffer(tx_frame_asm);
581 } catch (ceph::crypto::onwire::TxHandlerError &e) {
582 ldout(cct, 1) << __func__ << " " << e.what() << dendl;
583 return false;
584 }
585
586 ldout(cct, 25) << __func__ << " assembled frame " << bl.length()
587 << " bytes " << tx_frame_asm << dendl;
588 connection->outgoing_bl.append(bl);
589 return true;
590 }
591
592 void ProtocolV2::handle_message_ack(uint64_t seq) {
593 if (connection->policy.lossy) { // lossy connections don't keep sent messages
594 return;
595 }
596
597 ldout(cct, 15) << __func__ << " seq=" << seq << dendl;
598
599 // trim sent list
600 static const int max_pending = 128;
601 int i = 0;
602 Message *pending[max_pending];
603 auto now = ceph::mono_clock::now();
604 connection->write_lock.lock();
605 while (!sent.empty() && sent.front()->get_seq() <= seq && i < max_pending) {
606 Message *m = sent.front();
607 sent.pop_front();
608 pending[i++] = m;
609 ldout(cct, 10) << __func__ << " got ack seq " << seq
610 << " >= " << m->get_seq() << " on " << m << " " << *m
611 << dendl;
612 }
613 connection->write_lock.unlock();
614 connection->logger->tinc(l_msgr_handle_ack_lat, ceph::mono_clock::now() - now);
615 for (int k = 0; k < i; k++) {
616 pending[k]->put();
617 }
618 }
619
620 void ProtocolV2::write_event() {
621 ldout(cct, 10) << __func__ << dendl;
622 ssize_t r = 0;
623
624 connection->write_lock.lock();
625 if (can_write) {
626 if (keepalive) {
627 ldout(cct, 10) << __func__ << " appending keepalive" << dendl;
628 auto keepalive_frame = KeepAliveFrame::Encode();
629 if (!append_frame(keepalive_frame)) {
630 connection->write_lock.unlock();
631 connection->lock.lock();
632 fault();
633 connection->lock.unlock();
634 return;
635 }
636 keepalive = false;
637 }
638
639 auto start = ceph::mono_clock::now();
640 bool more;
641 do {
642 const auto out_entry = _get_next_outgoing();
643 if (!out_entry.m) {
644 break;
645 }
646
647 if (!connection->policy.lossy) {
648 // put on sent list
649 sent.push_back(out_entry.m);
650 out_entry.m->get();
651 }
652 more = !out_queue.empty();
653 connection->write_lock.unlock();
654
655 // send_message or requeue messages may not encode message
656 if (!out_entry.is_prepared) {
657 prepare_send_message(connection->get_features(), out_entry.m);
658 }
659
660 if (out_entry.m->queue_start != ceph::mono_time()) {
661 connection->logger->tinc(l_msgr_send_messages_queue_lat,
662 ceph::mono_clock::now() -
663 out_entry.m->queue_start);
664 }
665
666 r = write_message(out_entry.m, more);
667
668 connection->write_lock.lock();
669 if (r == 0) {
670 ;
671 } else if (r < 0) {
672 ldout(cct, 1) << __func__ << " send msg failed" << dendl;
673 break;
674 } else if (r > 0) {
675 // Outbound message in-progress, thread will be re-awoken
676 // when the outbound socket is writeable again
677 break;
678 }
679 } while (can_write);
680 write_in_progress = false;
681
682 // if r > 0 mean data still lefted, so no need _try_send.
683 if (r == 0) {
684 uint64_t left = ack_left;
685 if (left) {
686 ldout(cct, 10) << __func__ << " try send msg ack, acked " << left
687 << " messages" << dendl;
688 auto ack_frame = AckFrame::Encode(in_seq);
689 if (append_frame(ack_frame)) {
690 ack_left -= left;
691 left = ack_left;
692 r = connection->_try_send(left);
693 } else {
694 r = -EILSEQ;
695 }
696 } else if (is_queued()) {
697 r = connection->_try_send();
698 }
699 }
700 connection->write_lock.unlock();
701
702 connection->logger->tinc(l_msgr_running_send_time,
703 ceph::mono_clock::now() - start);
704 if (r < 0) {
705 ldout(cct, 1) << __func__ << " send msg failed" << dendl;
706 connection->lock.lock();
707 fault();
708 connection->lock.unlock();
709 return;
710 }
711 } else {
712 write_in_progress = false;
713 connection->write_lock.unlock();
714 connection->lock.lock();
715 connection->write_lock.lock();
716 if (state == STANDBY && !connection->policy.server && is_queued()) {
717 ldout(cct, 10) << __func__ << " policy.server is false" << dendl;
718 if (server_cookie) { // only increment connect_seq if there is a session
719 connect_seq++;
720 }
721 connection->_connect();
722 } else if (connection->cs && state != NONE && state != CLOSED &&
723 state != START_CONNECT) {
724 r = connection->_try_send();
725 if (r < 0) {
726 ldout(cct, 1) << __func__ << " send outcoming bl failed" << dendl;
727 connection->write_lock.unlock();
728 fault();
729 connection->lock.unlock();
730 return;
731 }
732 }
733 connection->write_lock.unlock();
734 connection->lock.unlock();
735 }
736 }
737
738 bool ProtocolV2::is_queued() {
739 return !out_queue.empty() || connection->is_queued();
740 }
741
742 CtPtr ProtocolV2::read(CONTINUATION_RXBPTR_TYPE<ProtocolV2> &next,
743 rx_buffer_t &&buffer) {
744 const auto len = buffer->length();
745 const auto buf = buffer->c_str();
746 next.node = std::move(buffer);
747 ssize_t r = connection->read(len, buf,
748 [&next, this](char *buffer, int r) {
749 if (unlikely(pre_auth.enabled) && r >= 0) {
750 pre_auth.rxbuf.append(*next.node);
751 ceph_assert(!cct->_conf->ms_die_on_bug ||
752 pre_auth.rxbuf.length() < 20000000);
753 }
754 next.r = r;
755 run_continuation(next);
756 });
757 if (r <= 0) {
758 // error or done synchronously
759 if (unlikely(pre_auth.enabled) && r == 0) {
760 pre_auth.rxbuf.append(*next.node);
761 ceph_assert(!cct->_conf->ms_die_on_bug ||
762 pre_auth.rxbuf.length() < 20000000);
763 }
764 next.r = r;
765 return &next;
766 }
767
768 return nullptr;
769 }
770
771 template <class F>
772 CtPtr ProtocolV2::write(const std::string &desc,
773 CONTINUATION_TYPE<ProtocolV2> &next,
774 F &frame) {
775 ceph::bufferlist bl;
776 try {
777 bl = frame.get_buffer(tx_frame_asm);
778 } catch (ceph::crypto::onwire::TxHandlerError &e) {
779 ldout(cct, 1) << __func__ << " " << e.what() << dendl;
780 return _fault();
781 }
782
783 ldout(cct, 25) << __func__ << " assembled frame " << bl.length()
784 << " bytes " << tx_frame_asm << dendl;
785 return write(desc, next, bl);
786 }
787
788 CtPtr ProtocolV2::write(const std::string &desc,
789 CONTINUATION_TYPE<ProtocolV2> &next,
790 ceph::bufferlist &buffer) {
791 if (unlikely(pre_auth.enabled)) {
792 pre_auth.txbuf.append(buffer);
793 ceph_assert(!cct->_conf->ms_die_on_bug ||
794 pre_auth.txbuf.length() < 20000000);
795 }
796
797 ssize_t r =
798 connection->write(buffer, [&next, desc, this](int r) {
799 if (r < 0) {
800 ldout(cct, 1) << __func__ << " " << desc << " write failed r=" << r
801 << " (" << cpp_strerror(r) << ")" << dendl;
802 connection->inject_delay();
803 _fault();
804 }
805 run_continuation(next);
806 });
807
808 if (r < 0) {
809 ldout(cct, 1) << __func__ << " " << desc << " write failed r=" << r
810 << " (" << cpp_strerror(r) << ")" << dendl;
811 return _fault();
812 } else if (r == 0) {
813 next.setParams();
814 return &next;
815 }
816
817 return nullptr;
818 }
819
820 CtPtr ProtocolV2::_banner_exchange(CtRef callback) {
821 ldout(cct, 20) << __func__ << dendl;
822 bannerExchangeCallback = &callback;
823
824 ceph::bufferlist banner_payload;
825 using ceph::encode;
826 encode((uint64_t)CEPH_MSGR2_SUPPORTED_FEATURES, banner_payload, 0);
827 encode((uint64_t)CEPH_MSGR2_REQUIRED_FEATURES, banner_payload, 0);
828
829 ceph::bufferlist bl;
830 bl.append(CEPH_BANNER_V2_PREFIX, strlen(CEPH_BANNER_V2_PREFIX));
831 encode((uint16_t)banner_payload.length(), bl, 0);
832 bl.claim_append(banner_payload);
833
834 INTERCEPT(state == BANNER_CONNECTING ? 3 : 4);
835
836 return WRITE(bl, "banner", _wait_for_peer_banner);
837 }
838
839 CtPtr ProtocolV2::_wait_for_peer_banner() {
840 unsigned banner_len = strlen(CEPH_BANNER_V2_PREFIX) + sizeof(ceph_le16);
841 return READ(banner_len, _handle_peer_banner);
842 }
843
844 CtPtr ProtocolV2::_handle_peer_banner(rx_buffer_t &&buffer, int r) {
845 ldout(cct, 20) << __func__ << " r=" << r << dendl;
846
847 if (r < 0) {
848 ldout(cct, 1) << __func__ << " read peer banner failed r=" << r << " ("
849 << cpp_strerror(r) << ")" << dendl;
850 return _fault();
851 }
852
853 unsigned banner_prefix_len = strlen(CEPH_BANNER_V2_PREFIX);
854
855 if (memcmp(buffer->c_str(), CEPH_BANNER_V2_PREFIX, banner_prefix_len)) {
856 if (memcmp(buffer->c_str(), CEPH_BANNER, strlen(CEPH_BANNER)) == 0) {
857 lderr(cct) << __func__ << " peer " << *connection->peer_addrs
858 << " is using msgr V1 protocol" << dendl;
859 return _fault();
860 }
861 ldout(cct, 1) << __func__ << " accept peer sent bad banner" << dendl;
862 return _fault();
863 }
864
865 uint16_t payload_len;
866 ceph::bufferlist bl;
867 buffer->set_offset(banner_prefix_len);
868 buffer->set_length(sizeof(ceph_le16));
869 bl.push_back(std::move(buffer));
870 auto ti = bl.cbegin();
871 using ceph::decode;
872 try {
873 decode(payload_len, ti);
874 } catch (const ceph::buffer::error &e) {
875 lderr(cct) << __func__ << " decode banner payload len failed " << dendl;
876 return _fault();
877 }
878
879 INTERCEPT(state == BANNER_CONNECTING ? 5 : 6);
880
881 return READ(payload_len, _handle_peer_banner_payload);
882 }
883
884 CtPtr ProtocolV2::_handle_peer_banner_payload(rx_buffer_t &&buffer, int r) {
885 ldout(cct, 20) << __func__ << " r=" << r << dendl;
886
887 if (r < 0) {
888 ldout(cct, 1) << __func__ << " read peer banner payload failed r=" << r
889 << " (" << cpp_strerror(r) << ")" << dendl;
890 return _fault();
891 }
892
893 uint64_t peer_supported_features;
894 uint64_t peer_required_features;
895
896 ceph::bufferlist bl;
897 using ceph::decode;
898 bl.push_back(std::move(buffer));
899 auto ti = bl.cbegin();
900 try {
901 decode(peer_supported_features, ti);
902 decode(peer_required_features, ti);
903 } catch (const ceph::buffer::error &e) {
904 lderr(cct) << __func__ << " decode banner payload failed " << dendl;
905 return _fault();
906 }
907
908 ldout(cct, 1) << __func__ << " supported=" << std::hex
909 << peer_supported_features << " required=" << std::hex
910 << peer_required_features << std::dec << dendl;
911
912 // Check feature bit compatibility
913
914 uint64_t supported_features = CEPH_MSGR2_SUPPORTED_FEATURES;
915 uint64_t required_features = CEPH_MSGR2_REQUIRED_FEATURES;
916
917 if ((required_features & peer_supported_features) != required_features) {
918 ldout(cct, 1) << __func__ << " peer does not support all required features"
919 << " required=" << std::hex << required_features
920 << " supported=" << std::hex << peer_supported_features
921 << std::dec << dendl;
922 stop();
923 connection->dispatch_queue->queue_reset(connection);
924 return nullptr;
925 }
926 if ((supported_features & peer_required_features) != peer_required_features) {
927 ldout(cct, 1) << __func__ << " we do not support all peer required features"
928 << " required=" << std::hex << peer_required_features
929 << " supported=" << supported_features << std::dec << dendl;
930 stop();
931 connection->dispatch_queue->queue_reset(connection);
932 return nullptr;
933 }
934
935 this->peer_supported_features = peer_supported_features;
936 if (peer_required_features == 0) {
937 this->connection_features = msgr2_required;
938 }
939
940 // if the peer supports msgr2.1, switch to it
941 bool is_rev1 = HAVE_MSGR2_FEATURE(peer_supported_features, REVISION_1);
942 tx_frame_asm.set_is_rev1(is_rev1);
943 rx_frame_asm.set_is_rev1(is_rev1);
944
945 if (state == BANNER_CONNECTING) {
946 state = HELLO_CONNECTING;
947 }
948 else {
949 ceph_assert(state == BANNER_ACCEPTING);
950 state = HELLO_ACCEPTING;
951 }
952
953 auto hello = HelloFrame::Encode(messenger->get_mytype(),
954 connection->target_addr);
955
956 INTERCEPT(state == HELLO_CONNECTING ? 7 : 8);
957
958 return WRITE(hello, "hello frame", read_frame);
959 }
960
961 CtPtr ProtocolV2::handle_hello(ceph::bufferlist &payload)
962 {
963 ldout(cct, 20) << __func__
964 << " payload.length()=" << payload.length() << dendl;
965
966 if (state != HELLO_CONNECTING && state != HELLO_ACCEPTING) {
967 lderr(cct) << __func__ << " not in hello exchange state!" << dendl;
968 return _fault();
969 }
970
971 auto hello = HelloFrame::Decode(payload);
972
973 ldout(cct, 5) << __func__ << " received hello:"
974 << " peer_type=" << (int)hello.entity_type()
975 << " peer_addr_for_me=" << hello.peer_addr() << dendl;
976
977 sockaddr_storage ss;
978 socklen_t len = sizeof(ss);
979 getsockname(connection->cs.fd(), (sockaddr *)&ss, &len);
980 ldout(cct, 5) << __func__ << " getsockname says I am " << (sockaddr *)&ss
981 << " when talking to " << connection->target_addr << dendl;
982
983 if (connection->get_peer_type() == -1) {
984 connection->set_peer_type(hello.entity_type());
985
986 ceph_assert(state == HELLO_ACCEPTING);
987 connection->policy = messenger->get_policy(hello.entity_type());
988 ldout(cct, 10) << __func__ << " accept of host_type "
989 << (int)hello.entity_type()
990 << ", policy.lossy=" << connection->policy.lossy
991 << " policy.server=" << connection->policy.server
992 << " policy.standby=" << connection->policy.standby
993 << " policy.resetcheck=" << connection->policy.resetcheck
994 << dendl;
995 } else {
996 ceph_assert(state == HELLO_CONNECTING);
997 if (connection->get_peer_type() != hello.entity_type()) {
998 ldout(cct, 1) << __func__ << " connection peer type does not match what"
999 << " peer advertises " << connection->get_peer_type()
1000 << " != " << (int)hello.entity_type() << dendl;
1001 stop();
1002 connection->dispatch_queue->queue_reset(connection);
1003 return nullptr;
1004 }
1005 }
1006
1007 if (messenger->get_myaddrs().empty() ||
1008 messenger->get_myaddrs().front().is_blank_ip()) {
1009 entity_addr_t a;
1010 if (cct->_conf->ms_learn_addr_from_peer) {
1011 ldout(cct, 1) << __func__ << " peer " << connection->target_addr
1012 << " says I am " << hello.peer_addr() << " (socket says "
1013 << (sockaddr*)&ss << ")" << dendl;
1014 a = hello.peer_addr();
1015 } else {
1016 ldout(cct, 1) << __func__ << " socket to " << connection->target_addr
1017 << " says I am " << (sockaddr*)&ss
1018 << " (peer says " << hello.peer_addr() << ")" << dendl;
1019 a.set_sockaddr((sockaddr *)&ss);
1020 }
1021 a.set_type(entity_addr_t::TYPE_MSGR2); // anything but NONE; learned_addr ignores this
1022 a.set_port(0);
1023 connection->lock.unlock();
1024 messenger->learned_addr(a);
1025 if (cct->_conf->ms_inject_internal_delays &&
1026 cct->_conf->ms_inject_socket_failures) {
1027 if (rand() % cct->_conf->ms_inject_socket_failures == 0) {
1028 ldout(cct, 10) << __func__ << " sleep for "
1029 << cct->_conf->ms_inject_internal_delays << dendl;
1030 utime_t t;
1031 t.set_from_double(cct->_conf->ms_inject_internal_delays);
1032 t.sleep();
1033 }
1034 }
1035 connection->lock.lock();
1036 if (state != HELLO_CONNECTING) {
1037 ldout(cct, 1) << __func__
1038 << " state changed while learned_addr, mark_down or "
1039 << " replacing must be happened just now" << dendl;
1040 return nullptr;
1041 }
1042 }
1043
1044
1045
1046 CtPtr callback;
1047 callback = bannerExchangeCallback;
1048 bannerExchangeCallback = nullptr;
1049 ceph_assert(callback);
1050 return callback;
1051 }
1052
1053 CtPtr ProtocolV2::read_frame() {
1054 if (state == CLOSED) {
1055 return nullptr;
1056 }
1057
1058 ldout(cct, 20) << __func__ << dendl;
1059 rx_preamble.clear();
1060 rx_epilogue.clear();
1061 rx_segments_data.clear();
1062
1063 return READ(rx_frame_asm.get_preamble_onwire_len(),
1064 handle_read_frame_preamble_main);
1065 }
1066
1067 CtPtr ProtocolV2::handle_read_frame_preamble_main(rx_buffer_t &&buffer, int r) {
1068 ldout(cct, 20) << __func__ << " r=" << r << dendl;
1069
1070 if (r < 0) {
1071 ldout(cct, 1) << __func__ << " read frame preamble failed r=" << r
1072 << " (" << cpp_strerror(r) << ")" << dendl;
1073 return _fault();
1074 }
1075
1076 rx_preamble.push_back(std::move(buffer));
1077
1078 ldout(cct, 30) << __func__ << " preamble\n";
1079 rx_preamble.hexdump(*_dout);
1080 *_dout << dendl;
1081
1082 try {
1083 next_tag = rx_frame_asm.disassemble_preamble(rx_preamble);
1084 } catch (FrameError& e) {
1085 ldout(cct, 1) << __func__ << " " << e.what() << dendl;
1086 return _fault();
1087 } catch (ceph::crypto::onwire::MsgAuthError&) {
1088 ldout(cct, 1) << __func__ << "bad auth tag" << dendl;
1089 return _fault();
1090 }
1091
1092 ldout(cct, 25) << __func__ << " disassembled preamble " << rx_frame_asm
1093 << dendl;
1094
1095 if (session_stream_handlers.rx) {
1096 ldout(cct, 30) << __func__ << " preamble after decrypt\n";
1097 rx_preamble.hexdump(*_dout);
1098 *_dout << dendl;
1099 }
1100
1101 // does it need throttle?
1102 if (next_tag == Tag::MESSAGE) {
1103 if (state != READY) {
1104 lderr(cct) << __func__ << " not in ready state!" << dendl;
1105 return _fault();
1106 }
1107 recv_stamp = ceph_clock_now();
1108 state = THROTTLE_MESSAGE;
1109 return CONTINUE(throttle_message);
1110 } else {
1111 return read_frame_segment();
1112 }
1113 }
1114
1115 CtPtr ProtocolV2::handle_read_frame_dispatch() {
1116 ldout(cct, 10) << __func__
1117 << " tag=" << static_cast<uint32_t>(next_tag) << dendl;
1118
1119 switch (next_tag) {
1120 case Tag::HELLO:
1121 case Tag::AUTH_REQUEST:
1122 case Tag::AUTH_BAD_METHOD:
1123 case Tag::AUTH_REPLY_MORE:
1124 case Tag::AUTH_REQUEST_MORE:
1125 case Tag::AUTH_DONE:
1126 case Tag::AUTH_SIGNATURE:
1127 case Tag::CLIENT_IDENT:
1128 case Tag::SERVER_IDENT:
1129 case Tag::IDENT_MISSING_FEATURES:
1130 case Tag::SESSION_RECONNECT:
1131 case Tag::SESSION_RESET:
1132 case Tag::SESSION_RETRY:
1133 case Tag::SESSION_RETRY_GLOBAL:
1134 case Tag::SESSION_RECONNECT_OK:
1135 case Tag::KEEPALIVE2:
1136 case Tag::KEEPALIVE2_ACK:
1137 case Tag::ACK:
1138 case Tag::WAIT:
1139 return handle_frame_payload();
1140 case Tag::MESSAGE:
1141 return handle_message();
1142 default: {
1143 lderr(cct) << __func__
1144 << " received unknown tag=" << static_cast<uint32_t>(next_tag)
1145 << dendl;
1146 return _fault();
1147 }
1148 }
1149
1150 return nullptr;
1151 }
1152
1153 CtPtr ProtocolV2::read_frame_segment() {
1154 size_t seg_idx = rx_segments_data.size();
1155 ldout(cct, 20) << __func__ << " seg_idx=" << seg_idx << dendl;
1156 rx_segments_data.emplace_back();
1157
1158 uint32_t onwire_len = rx_frame_asm.get_segment_onwire_len(seg_idx);
1159 if (onwire_len == 0) {
1160 return _handle_read_frame_segment();
1161 }
1162
1163 rx_buffer_t rx_buffer;
1164 uint16_t align = rx_frame_asm.get_segment_align(seg_idx);
1165 try {
1166 rx_buffer = ceph::buffer::ptr_node::create(ceph::buffer::create_aligned(
1167 onwire_len, align));
1168 } catch (const ceph::buffer::bad_alloc&) {
1169 // Catching because of potential issues with satisfying alignment.
1170 ldout(cct, 1) << __func__ << " can't allocate aligned rx_buffer"
1171 << " len=" << onwire_len
1172 << " align=" << align
1173 << dendl;
1174 return _fault();
1175 }
1176
1177 return READ_RXBUF(std::move(rx_buffer), handle_read_frame_segment);
1178 }
1179
1180 CtPtr ProtocolV2::handle_read_frame_segment(rx_buffer_t &&rx_buffer, int r) {
1181 ldout(cct, 20) << __func__ << " r=" << r << dendl;
1182
1183 if (r < 0) {
1184 ldout(cct, 1) << __func__ << " read frame segment failed r=" << r << " ("
1185 << cpp_strerror(r) << ")" << dendl;
1186 return _fault();
1187 }
1188
1189 rx_segments_data.back().push_back(std::move(rx_buffer));
1190 return _handle_read_frame_segment();
1191 }
1192
1193 CtPtr ProtocolV2::_handle_read_frame_segment() {
1194 if (rx_segments_data.size() == rx_frame_asm.get_num_segments()) {
1195 // OK, all segments planned to read are read. Can go with epilogue.
1196 uint32_t epilogue_onwire_len = rx_frame_asm.get_epilogue_onwire_len();
1197 if (epilogue_onwire_len == 0) {
1198 return _handle_read_frame_epilogue_main();
1199 }
1200 return READ(epilogue_onwire_len, handle_read_frame_epilogue_main);
1201 }
1202 // TODO: for makeshift only. This will be more generic and throttled
1203 return read_frame_segment();
1204 }
1205
1206 CtPtr ProtocolV2::handle_frame_payload() {
1207 ceph_assert(!rx_segments_data.empty());
1208 auto& payload = rx_segments_data.back();
1209
1210 ldout(cct, 30) << __func__ << "\n";
1211 payload.hexdump(*_dout);
1212 *_dout << dendl;
1213
1214 switch (next_tag) {
1215 case Tag::HELLO:
1216 return handle_hello(payload);
1217 case Tag::AUTH_REQUEST:
1218 return handle_auth_request(payload);
1219 case Tag::AUTH_BAD_METHOD:
1220 return handle_auth_bad_method(payload);
1221 case Tag::AUTH_REPLY_MORE:
1222 return handle_auth_reply_more(payload);
1223 case Tag::AUTH_REQUEST_MORE:
1224 return handle_auth_request_more(payload);
1225 case Tag::AUTH_DONE:
1226 return handle_auth_done(payload);
1227 case Tag::AUTH_SIGNATURE:
1228 return handle_auth_signature(payload);
1229 case Tag::CLIENT_IDENT:
1230 return handle_client_ident(payload);
1231 case Tag::SERVER_IDENT:
1232 return handle_server_ident(payload);
1233 case Tag::IDENT_MISSING_FEATURES:
1234 return handle_ident_missing_features(payload);
1235 case Tag::SESSION_RECONNECT:
1236 return handle_reconnect(payload);
1237 case Tag::SESSION_RESET:
1238 return handle_session_reset(payload);
1239 case Tag::SESSION_RETRY:
1240 return handle_session_retry(payload);
1241 case Tag::SESSION_RETRY_GLOBAL:
1242 return handle_session_retry_global(payload);
1243 case Tag::SESSION_RECONNECT_OK:
1244 return handle_reconnect_ok(payload);
1245 case Tag::KEEPALIVE2:
1246 return handle_keepalive2(payload);
1247 case Tag::KEEPALIVE2_ACK:
1248 return handle_keepalive2_ack(payload);
1249 case Tag::ACK:
1250 return handle_message_ack(payload);
1251 case Tag::WAIT:
1252 return handle_wait(payload);
1253 default:
1254 ceph_abort();
1255 }
1256 return nullptr;
1257 }
1258
1259 CtPtr ProtocolV2::ready() {
1260 ldout(cct, 25) << __func__ << dendl;
1261
1262 reconnecting = false;
1263 replacing = false;
1264
1265 // make sure no pending tick timer
1266 if (connection->last_tick_id) {
1267 connection->center->delete_time_event(connection->last_tick_id);
1268 }
1269 connection->last_tick_id = connection->center->create_time_event(
1270 connection->inactive_timeout_us, connection->tick_handler);
1271
1272 {
1273 std::lock_guard<std::mutex> l(connection->write_lock);
1274 can_write = true;
1275 if (!out_queue.empty()) {
1276 connection->center->dispatch_event_external(connection->write_handler);
1277 }
1278 }
1279
1280 connection->maybe_start_delay_thread();
1281
1282 state = READY;
1283 ldout(cct, 1) << __func__ << " entity=" << peer_name << " client_cookie="
1284 << std::hex << client_cookie << " server_cookie="
1285 << server_cookie << std::dec << " in_seq=" << in_seq
1286 << " out_seq=" << out_seq << dendl;
1287
1288 INTERCEPT(15);
1289
1290 return CONTINUE(read_frame);
1291 }
1292
1293 CtPtr ProtocolV2::handle_read_frame_epilogue_main(rx_buffer_t &&buffer, int r)
1294 {
1295 ldout(cct, 20) << __func__ << " r=" << r << dendl;
1296
1297 if (r < 0) {
1298 ldout(cct, 1) << __func__ << " read frame epilogue failed r=" << r
1299 << " (" << cpp_strerror(r) << ")" << dendl;
1300 return _fault();
1301 }
1302
1303 rx_epilogue.push_back(std::move(buffer));
1304 return _handle_read_frame_epilogue_main();
1305 }
1306
1307 CtPtr ProtocolV2::_handle_read_frame_epilogue_main() {
1308 bool aborted;
1309 try {
1310 rx_frame_asm.disassemble_first_segment(rx_preamble, rx_segments_data[0]);
1311 aborted = !rx_frame_asm.disassemble_remaining_segments(
1312 rx_segments_data.data(), rx_epilogue);
1313 } catch (FrameError& e) {
1314 ldout(cct, 1) << __func__ << " " << e.what() << dendl;
1315 return _fault();
1316 } catch (ceph::crypto::onwire::MsgAuthError&) {
1317 ldout(cct, 1) << __func__ << "bad auth tag" << dendl;
1318 return _fault();
1319 }
1320
1321 // we do have a mechanism that allows transmitter to start sending message
1322 // and abort after putting entire data field on wire. This will be used by
1323 // the kernel client to avoid unnecessary buffering.
1324 if (aborted) {
1325 reset_throttle();
1326 state = READY;
1327 return CONTINUE(read_frame);
1328 }
1329 return handle_read_frame_dispatch();
1330 }
1331
1332 CtPtr ProtocolV2::handle_message() {
1333 ldout(cct, 20) << __func__ << dendl;
1334 ceph_assert(state == THROTTLE_DONE);
1335
1336 const size_t cur_msg_size = get_current_msg_size();
1337 auto msg_frame = MessageFrame::Decode(rx_segments_data);
1338
1339 // XXX: paranoid copy just to avoid oops
1340 ceph_msg_header2 current_header = msg_frame.header();
1341
1342 ldout(cct, 5) << __func__
1343 << " got " << msg_frame.front_len()
1344 << " + " << msg_frame.middle_len()
1345 << " + " << msg_frame.data_len()
1346 << " byte message."
1347 << " envelope type=" << current_header.type
1348 << " src " << peer_name
1349 << " off " << current_header.data_off
1350 << dendl;
1351
1352 INTERCEPT(16);
1353 ceph_msg_header header{current_header.seq,
1354 current_header.tid,
1355 current_header.type,
1356 current_header.priority,
1357 current_header.version,
1358 init_le32(msg_frame.front_len()),
1359 init_le32(msg_frame.middle_len()),
1360 init_le32(msg_frame.data_len()),
1361 current_header.data_off,
1362 peer_name,
1363 current_header.compat_version,
1364 current_header.reserved,
1365 init_le32(0)};
1366 ceph_msg_footer footer{init_le32(0), init_le32(0),
1367 init_le32(0), init_le64(0), current_header.flags};
1368
1369 Message *message = decode_message(cct, 0, header, footer,
1370 msg_frame.front(),
1371 msg_frame.middle(),
1372 msg_frame.data(),
1373 connection);
1374 if (!message) {
1375 ldout(cct, 1) << __func__ << " decode message failed " << dendl;
1376 return _fault();
1377 } else {
1378 state = READ_MESSAGE_COMPLETE;
1379 }
1380
1381 INTERCEPT(17);
1382
1383 message->set_byte_throttler(connection->policy.throttler_bytes);
1384 message->set_message_throttler(connection->policy.throttler_messages);
1385
1386 // store reservation size in message, so we don't get confused
1387 // by messages entering the dispatch queue through other paths.
1388 message->set_dispatch_throttle_size(cur_msg_size);
1389
1390 message->set_recv_stamp(recv_stamp);
1391 message->set_throttle_stamp(throttle_stamp);
1392 message->set_recv_complete_stamp(ceph_clock_now());
1393
1394 // check received seq#. if it is old, drop the message.
1395 // note that incoming messages may skip ahead. this is convenient for the
1396 // client side queueing because messages can't be renumbered, but the (kernel)
1397 // client will occasionally pull a message out of the sent queue to send
1398 // elsewhere. in that case it doesn't matter if we "got" it or not.
1399 uint64_t cur_seq = in_seq;
1400 if (message->get_seq() <= cur_seq) {
1401 ldout(cct, 0) << __func__ << " got old message " << message->get_seq()
1402 << " <= " << cur_seq << " " << message << " " << *message
1403 << ", discarding" << dendl;
1404 message->put();
1405 if (connection->has_feature(CEPH_FEATURE_RECONNECT_SEQ) &&
1406 cct->_conf->ms_die_on_old_message) {
1407 ceph_assert(0 == "old msgs despite reconnect_seq feature");
1408 }
1409 return nullptr;
1410 }
1411 if (message->get_seq() > cur_seq + 1) {
1412 ldout(cct, 0) << __func__ << " missed message? skipped from seq "
1413 << cur_seq << " to " << message->get_seq() << dendl;
1414 if (cct->_conf->ms_die_on_skipped_message) {
1415 ceph_assert(0 == "skipped incoming seq");
1416 }
1417 }
1418
1419 #if defined(WITH_EVENTTRACE)
1420 if (message->get_type() == CEPH_MSG_OSD_OP ||
1421 message->get_type() == CEPH_MSG_OSD_OPREPLY) {
1422 utime_t ltt_processed_stamp = ceph_clock_now();
1423 double usecs_elapsed =
1424 (ltt_processed_stamp.to_nsec() - recv_stamp.to_nsec()) / 1000;
1425 ostringstream buf;
1426 if (message->get_type() == CEPH_MSG_OSD_OP)
1427 OID_ELAPSED_WITH_MSG(message, usecs_elapsed, "TIME_TO_DECODE_OSD_OP",
1428 false);
1429 else
1430 OID_ELAPSED_WITH_MSG(message, usecs_elapsed, "TIME_TO_DECODE_OSD_OPREPLY",
1431 false);
1432 }
1433 #endif
1434
1435 // note last received message.
1436 in_seq = message->get_seq();
1437 ldout(cct, 5) << __func__ << " received message m=" << message
1438 << " seq=" << message->get_seq()
1439 << " from=" << message->get_source() << " type=" << header.type
1440 << " " << *message << dendl;
1441
1442 bool need_dispatch_writer = false;
1443 if (!connection->policy.lossy) {
1444 ack_left++;
1445 need_dispatch_writer = true;
1446 }
1447
1448 state = READY;
1449
1450 ceph::mono_time fast_dispatch_time;
1451
1452 if (connection->is_blackhole()) {
1453 ldout(cct, 10) << __func__ << " blackhole " << *message << dendl;
1454 message->put();
1455 goto out;
1456 }
1457
1458 connection->logger->inc(l_msgr_recv_messages);
1459 connection->logger->inc(l_msgr_recv_bytes,
1460 rx_frame_asm.get_frame_onwire_len());
1461
1462 messenger->ms_fast_preprocess(message);
1463 fast_dispatch_time = ceph::mono_clock::now();
1464 connection->logger->tinc(l_msgr_running_recv_time,
1465 fast_dispatch_time - connection->recv_start_time);
1466 if (connection->delay_state) {
1467 double delay_period = 0;
1468 if (rand() % 10000 < cct->_conf->ms_inject_delay_probability * 10000.0) {
1469 delay_period =
1470 cct->_conf->ms_inject_delay_max * (double)(rand() % 10000) / 10000.0;
1471 ldout(cct, 1) << "queue_received will delay after "
1472 << (ceph_clock_now() + delay_period) << " on " << message
1473 << " " << *message << dendl;
1474 }
1475 connection->delay_state->queue(delay_period, message);
1476 } else if (messenger->ms_can_fast_dispatch(message)) {
1477 connection->lock.unlock();
1478 connection->dispatch_queue->fast_dispatch(message);
1479 connection->recv_start_time = ceph::mono_clock::now();
1480 connection->logger->tinc(l_msgr_running_fast_dispatch_time,
1481 connection->recv_start_time - fast_dispatch_time);
1482 connection->lock.lock();
1483 // we might have been reused by another connection
1484 // let's check if that is the case
1485 if (state != READY) {
1486 // yes, that was the case, let's do nothing
1487 return nullptr;
1488 }
1489 } else {
1490 connection->dispatch_queue->enqueue(message, message->get_priority(),
1491 connection->conn_id);
1492 }
1493
1494 handle_message_ack(current_header.ack_seq);
1495
1496 out:
1497 if (need_dispatch_writer && connection->is_connected()) {
1498 connection->center->dispatch_event_external(connection->write_handler);
1499 }
1500
1501 return CONTINUE(read_frame);
1502 }
1503
1504
1505 CtPtr ProtocolV2::throttle_message() {
1506 ldout(cct, 20) << __func__ << dendl;
1507
1508 if (connection->policy.throttler_messages) {
1509 ldout(cct, 10) << __func__ << " wants " << 1
1510 << " message from policy throttler "
1511 << connection->policy.throttler_messages->get_current()
1512 << "/" << connection->policy.throttler_messages->get_max()
1513 << dendl;
1514 if (!connection->policy.throttler_messages->get_or_fail()) {
1515 ldout(cct, 10) << __func__ << " wants 1 message from policy throttle "
1516 << connection->policy.throttler_messages->get_current()
1517 << "/" << connection->policy.throttler_messages->get_max()
1518 << " failed, just wait." << dendl;
1519 // following thread pool deal with th full message queue isn't a
1520 // short time, so we can wait a ms.
1521 if (connection->register_time_events.empty()) {
1522 connection->register_time_events.insert(
1523 connection->center->create_time_event(1000,
1524 connection->wakeup_handler));
1525 }
1526 return nullptr;
1527 }
1528 }
1529
1530 state = THROTTLE_BYTES;
1531 return CONTINUE(throttle_bytes);
1532 }
1533
1534 CtPtr ProtocolV2::throttle_bytes() {
1535 ldout(cct, 20) << __func__ << dendl;
1536
1537 const size_t cur_msg_size = get_current_msg_size();
1538 if (cur_msg_size) {
1539 if (connection->policy.throttler_bytes) {
1540 ldout(cct, 10) << __func__ << " wants " << cur_msg_size
1541 << " bytes from policy throttler "
1542 << connection->policy.throttler_bytes->get_current() << "/"
1543 << connection->policy.throttler_bytes->get_max() << dendl;
1544 if (!connection->policy.throttler_bytes->get_or_fail(cur_msg_size)) {
1545 ldout(cct, 10) << __func__ << " wants " << cur_msg_size
1546 << " bytes from policy throttler "
1547 << connection->policy.throttler_bytes->get_current()
1548 << "/" << connection->policy.throttler_bytes->get_max()
1549 << " failed, just wait." << dendl;
1550 // following thread pool deal with th full message queue isn't a
1551 // short time, so we can wait a ms.
1552 if (connection->register_time_events.empty()) {
1553 connection->register_time_events.insert(
1554 connection->center->create_time_event(
1555 1000, connection->wakeup_handler));
1556 }
1557 return nullptr;
1558 }
1559 }
1560 }
1561
1562 state = THROTTLE_DISPATCH_QUEUE;
1563 return CONTINUE(throttle_dispatch_queue);
1564 }
1565
1566 CtPtr ProtocolV2::throttle_dispatch_queue() {
1567 ldout(cct, 20) << __func__ << dendl;
1568
1569 const size_t cur_msg_size = get_current_msg_size();
1570 if (cur_msg_size) {
1571 if (!connection->dispatch_queue->dispatch_throttler.get_or_fail(
1572 cur_msg_size)) {
1573 ldout(cct, 10)
1574 << __func__ << " wants " << cur_msg_size
1575 << " bytes from dispatch throttle "
1576 << connection->dispatch_queue->dispatch_throttler.get_current() << "/"
1577 << connection->dispatch_queue->dispatch_throttler.get_max()
1578 << " failed, just wait." << dendl;
1579 // following thread pool deal with th full message queue isn't a
1580 // short time, so we can wait a ms.
1581 if (connection->register_time_events.empty()) {
1582 connection->register_time_events.insert(
1583 connection->center->create_time_event(1000,
1584 connection->wakeup_handler));
1585 }
1586 return nullptr;
1587 }
1588 }
1589
1590 throttle_stamp = ceph_clock_now();
1591 state = THROTTLE_DONE;
1592
1593 return read_frame_segment();
1594 }
1595
1596 CtPtr ProtocolV2::handle_keepalive2(ceph::bufferlist &payload)
1597 {
1598 ldout(cct, 20) << __func__
1599 << " payload.length()=" << payload.length() << dendl;
1600
1601 if (state != READY) {
1602 lderr(cct) << __func__ << " not in ready state!" << dendl;
1603 return _fault();
1604 }
1605
1606 auto keepalive_frame = KeepAliveFrame::Decode(payload);
1607
1608 ldout(cct, 30) << __func__ << " got KEEPALIVE2 tag ..." << dendl;
1609
1610 connection->write_lock.lock();
1611 auto keepalive_ack_frame = KeepAliveFrameAck::Encode(keepalive_frame.timestamp());
1612 if (!append_frame(keepalive_ack_frame)) {
1613 connection->write_lock.unlock();
1614 return _fault();
1615 }
1616 connection->write_lock.unlock();
1617
1618 ldout(cct, 20) << __func__ << " got KEEPALIVE2 "
1619 << keepalive_frame.timestamp() << dendl;
1620 connection->set_last_keepalive(ceph_clock_now());
1621
1622 if (is_connected()) {
1623 connection->center->dispatch_event_external(connection->write_handler);
1624 }
1625
1626 return CONTINUE(read_frame);
1627 }
1628
1629 CtPtr ProtocolV2::handle_keepalive2_ack(ceph::bufferlist &payload)
1630 {
1631 ldout(cct, 20) << __func__
1632 << " payload.length()=" << payload.length() << dendl;
1633
1634 if (state != READY) {
1635 lderr(cct) << __func__ << " not in ready state!" << dendl;
1636 return _fault();
1637 }
1638
1639 auto keepalive_ack_frame = KeepAliveFrameAck::Decode(payload);
1640 connection->set_last_keepalive_ack(keepalive_ack_frame.timestamp());
1641 ldout(cct, 20) << __func__ << " got KEEPALIVE_ACK" << dendl;
1642
1643 return CONTINUE(read_frame);
1644 }
1645
1646 CtPtr ProtocolV2::handle_message_ack(ceph::bufferlist &payload)
1647 {
1648 ldout(cct, 20) << __func__
1649 << " payload.length()=" << payload.length() << dendl;
1650
1651 if (state != READY) {
1652 lderr(cct) << __func__ << " not in ready state!" << dendl;
1653 return _fault();
1654 }
1655
1656 auto ack = AckFrame::Decode(payload);
1657 handle_message_ack(ack.seq());
1658 return CONTINUE(read_frame);
1659 }
1660
1661 /* Client Protocol Methods */
1662
1663 CtPtr ProtocolV2::start_client_banner_exchange() {
1664 ldout(cct, 20) << __func__ << dendl;
1665
1666 INTERCEPT(1);
1667
1668 state = BANNER_CONNECTING;
1669
1670 global_seq = messenger->get_global_seq();
1671
1672 return _banner_exchange(CONTINUATION(post_client_banner_exchange));
1673 }
1674
1675 CtPtr ProtocolV2::post_client_banner_exchange() {
1676 ldout(cct, 20) << __func__ << dendl;
1677
1678 state = AUTH_CONNECTING;
1679
1680 return send_auth_request();
1681 }
1682
1683 CtPtr ProtocolV2::send_auth_request(std::vector<uint32_t> &allowed_methods) {
1684 ceph_assert(messenger->auth_client);
1685 ldout(cct, 20) << __func__ << " peer_type " << (int)connection->peer_type
1686 << " auth_client " << messenger->auth_client << dendl;
1687
1688 ceph::bufferlist bl;
1689 std::vector<uint32_t> preferred_modes;
1690 auto am = auth_meta;
1691 connection->lock.unlock();
1692 int r = messenger->auth_client->get_auth_request(
1693 connection, am.get(),
1694 &am->auth_method, &preferred_modes, &bl);
1695 connection->lock.lock();
1696 if (state != AUTH_CONNECTING) {
1697 ldout(cct, 1) << __func__ << " state changed!" << dendl;
1698 return _fault();
1699 }
1700 if (r < 0) {
1701 ldout(cct, 0) << __func__ << " get_initial_auth_request returned " << r
1702 << dendl;
1703 stop();
1704 connection->dispatch_queue->queue_reset(connection);
1705 return nullptr;
1706 }
1707
1708 INTERCEPT(9);
1709
1710 auto frame = AuthRequestFrame::Encode(auth_meta->auth_method, preferred_modes,
1711 bl);
1712 return WRITE(frame, "auth request", read_frame);
1713 }
1714
1715 CtPtr ProtocolV2::handle_auth_bad_method(ceph::bufferlist &payload) {
1716 ldout(cct, 20) << __func__
1717 << " payload.length()=" << payload.length() << dendl;
1718
1719 if (state != AUTH_CONNECTING) {
1720 lderr(cct) << __func__ << " not in auth connect state!" << dendl;
1721 return _fault();
1722 }
1723
1724 auto bad_method = AuthBadMethodFrame::Decode(payload);
1725 ldout(cct, 1) << __func__ << " method=" << bad_method.method()
1726 << " result " << cpp_strerror(bad_method.result())
1727 << ", allowed methods=" << bad_method.allowed_methods()
1728 << ", allowed modes=" << bad_method.allowed_modes()
1729 << dendl;
1730 ceph_assert(messenger->auth_client);
1731 auto am = auth_meta;
1732 connection->lock.unlock();
1733 int r = messenger->auth_client->handle_auth_bad_method(
1734 connection,
1735 am.get(),
1736 bad_method.method(), bad_method.result(),
1737 bad_method.allowed_methods(),
1738 bad_method.allowed_modes());
1739 connection->lock.lock();
1740 if (state != AUTH_CONNECTING || r < 0) {
1741 return _fault();
1742 }
1743 return send_auth_request(bad_method.allowed_methods());
1744 }
1745
1746 CtPtr ProtocolV2::handle_auth_reply_more(ceph::bufferlist &payload)
1747 {
1748 ldout(cct, 20) << __func__
1749 << " payload.length()=" << payload.length() << dendl;
1750
1751 if (state != AUTH_CONNECTING) {
1752 lderr(cct) << __func__ << " not in auth connect state!" << dendl;
1753 return _fault();
1754 }
1755
1756 auto auth_more = AuthReplyMoreFrame::Decode(payload);
1757 ldout(cct, 5) << __func__
1758 << " auth reply more len=" << auth_more.auth_payload().length()
1759 << dendl;
1760 ceph_assert(messenger->auth_client);
1761 ceph::bufferlist reply;
1762 auto am = auth_meta;
1763 connection->lock.unlock();
1764 int r = messenger->auth_client->handle_auth_reply_more(
1765 connection, am.get(), auth_more.auth_payload(), &reply);
1766 connection->lock.lock();
1767 if (state != AUTH_CONNECTING) {
1768 ldout(cct, 1) << __func__ << " state changed!" << dendl;
1769 return _fault();
1770 }
1771 if (r < 0) {
1772 lderr(cct) << __func__ << " auth_client handle_auth_reply_more returned "
1773 << r << dendl;
1774 return _fault();
1775 }
1776 auto more_reply = AuthRequestMoreFrame::Encode(reply);
1777 return WRITE(more_reply, "auth request more", read_frame);
1778 }
1779
1780 CtPtr ProtocolV2::handle_auth_done(ceph::bufferlist &payload)
1781 {
1782 ldout(cct, 20) << __func__
1783 << " payload.length()=" << payload.length() << dendl;
1784
1785 if (state != AUTH_CONNECTING) {
1786 lderr(cct) << __func__ << " not in auth connect state!" << dendl;
1787 return _fault();
1788 }
1789
1790 auto auth_done = AuthDoneFrame::Decode(payload);
1791
1792 ceph_assert(messenger->auth_client);
1793 auto am = auth_meta;
1794 connection->lock.unlock();
1795 int r = messenger->auth_client->handle_auth_done(
1796 connection,
1797 am.get(),
1798 auth_done.global_id(),
1799 auth_done.con_mode(),
1800 auth_done.auth_payload(),
1801 &am->session_key,
1802 &am->connection_secret);
1803 connection->lock.lock();
1804 if (state != AUTH_CONNECTING) {
1805 ldout(cct, 1) << __func__ << " state changed!" << dendl;
1806 return _fault();
1807 }
1808 if (r < 0) {
1809 return _fault();
1810 }
1811 auth_meta->con_mode = auth_done.con_mode();
1812 bool is_rev1 = HAVE_MSGR2_FEATURE(peer_supported_features, REVISION_1);
1813 session_stream_handlers = ceph::crypto::onwire::rxtx_t::create_handler_pair(
1814 cct, *auth_meta, /*new_nonce_format=*/is_rev1, /*crossed=*/false);
1815
1816 state = AUTH_CONNECTING_SIGN;
1817
1818 const auto sig = auth_meta->session_key.empty() ? sha256_digest_t() :
1819 auth_meta->session_key.hmac_sha256(cct, pre_auth.rxbuf);
1820 auto sig_frame = AuthSignatureFrame::Encode(sig);
1821 pre_auth.enabled = false;
1822 pre_auth.rxbuf.clear();
1823 return WRITE(sig_frame, "auth signature", read_frame);
1824 }
1825
1826 CtPtr ProtocolV2::finish_client_auth() {
1827 if (!server_cookie) {
1828 ceph_assert(connect_seq == 0);
1829 state = SESSION_CONNECTING;
1830 return send_client_ident();
1831 } else { // reconnecting to previous session
1832 state = SESSION_RECONNECTING;
1833 ceph_assert(connect_seq > 0);
1834 return send_reconnect();
1835 }
1836 }
1837
1838 CtPtr ProtocolV2::send_client_ident() {
1839 ldout(cct, 20) << __func__ << dendl;
1840
1841 if (!connection->policy.lossy && !client_cookie) {
1842 client_cookie = ceph::util::generate_random_number<uint64_t>(1, -1ll);
1843 }
1844
1845 uint64_t flags = 0;
1846 if (connection->policy.lossy) {
1847 flags |= CEPH_MSG_CONNECT_LOSSY;
1848 }
1849
1850 auto client_ident = ClientIdentFrame::Encode(
1851 messenger->get_myaddrs(),
1852 connection->target_addr,
1853 messenger->get_myname().num(),
1854 global_seq,
1855 connection->policy.features_supported,
1856 connection->policy.features_required | msgr2_required,
1857 flags,
1858 client_cookie);
1859
1860 ldout(cct, 5) << __func__ << " sending identification: "
1861 << "addrs=" << messenger->get_myaddrs()
1862 << " target=" << connection->target_addr
1863 << " gid=" << messenger->get_myname().num()
1864 << " global_seq=" << global_seq
1865 << " features_supported=" << std::hex
1866 << connection->policy.features_supported
1867 << " features_required="
1868 << (connection->policy.features_required | msgr2_required)
1869 << " flags=" << flags
1870 << " cookie=" << client_cookie << std::dec << dendl;
1871
1872 INTERCEPT(11);
1873
1874 return WRITE(client_ident, "client ident", read_frame);
1875 }
1876
1877 CtPtr ProtocolV2::send_reconnect() {
1878 ldout(cct, 20) << __func__ << dendl;
1879
1880 auto reconnect = ReconnectFrame::Encode(messenger->get_myaddrs(),
1881 client_cookie,
1882 server_cookie,
1883 global_seq,
1884 connect_seq,
1885 in_seq);
1886
1887 ldout(cct, 5) << __func__ << " reconnect to session: client_cookie="
1888 << std::hex << client_cookie << " server_cookie="
1889 << server_cookie << std::dec
1890 << " gs=" << global_seq << " cs=" << connect_seq
1891 << " ms=" << in_seq << dendl;
1892
1893 INTERCEPT(13);
1894
1895 return WRITE(reconnect, "reconnect", read_frame);
1896 }
1897
1898 CtPtr ProtocolV2::handle_ident_missing_features(ceph::bufferlist &payload)
1899 {
1900 ldout(cct, 20) << __func__
1901 << " payload.length()=" << payload.length() << dendl;
1902
1903 if (state != SESSION_CONNECTING) {
1904 lderr(cct) << __func__ << " not in session connect state!" << dendl;
1905 return _fault();
1906 }
1907
1908 auto ident_missing =
1909 IdentMissingFeaturesFrame::Decode(payload);
1910 lderr(cct) << __func__
1911 << " client does not support all server features: " << std::hex
1912 << ident_missing.features() << std::dec << dendl;
1913
1914 return _fault();
1915 }
1916
1917 CtPtr ProtocolV2::handle_session_reset(ceph::bufferlist &payload)
1918 {
1919 ldout(cct, 20) << __func__
1920 << " payload.length()=" << payload.length() << dendl;
1921
1922 if (state != SESSION_RECONNECTING) {
1923 lderr(cct) << __func__ << " not in session reconnect state!" << dendl;
1924 return _fault();
1925 }
1926
1927 auto reset = ResetFrame::Decode(payload);
1928
1929 ldout(cct, 1) << __func__ << " received session reset full=" << reset.full()
1930 << dendl;
1931 if (reset.full()) {
1932 reset_session();
1933 } else {
1934 server_cookie = 0;
1935 connect_seq = 0;
1936 in_seq = 0;
1937 }
1938
1939 state = SESSION_CONNECTING;
1940 return send_client_ident();
1941 }
1942
1943 CtPtr ProtocolV2::handle_session_retry(ceph::bufferlist &payload)
1944 {
1945 ldout(cct, 20) << __func__
1946 << " payload.length()=" << payload.length() << dendl;
1947
1948 if (state != SESSION_RECONNECTING) {
1949 lderr(cct) << __func__ << " not in session reconnect state!" << dendl;
1950 return _fault();
1951 }
1952
1953 auto retry = RetryFrame::Decode(payload);
1954 connect_seq = retry.connect_seq() + 1;
1955
1956 ldout(cct, 1) << __func__
1957 << " received session retry connect_seq=" << retry.connect_seq()
1958 << ", inc to cs=" << connect_seq << dendl;
1959
1960 return send_reconnect();
1961 }
1962
1963 CtPtr ProtocolV2::handle_session_retry_global(ceph::bufferlist &payload)
1964 {
1965 ldout(cct, 20) << __func__
1966 << " payload.length()=" << payload.length() << dendl;
1967
1968 if (state != SESSION_RECONNECTING) {
1969 lderr(cct) << __func__ << " not in session reconnect state!" << dendl;
1970 return _fault();
1971 }
1972
1973 auto retry = RetryGlobalFrame::Decode(payload);
1974 global_seq = messenger->get_global_seq(retry.global_seq());
1975
1976 ldout(cct, 1) << __func__ << " received session retry global global_seq="
1977 << retry.global_seq() << ", choose new gs=" << global_seq
1978 << dendl;
1979
1980 return send_reconnect();
1981 }
1982
1983 CtPtr ProtocolV2::handle_wait(ceph::bufferlist &payload) {
1984 ldout(cct, 20) << __func__
1985 << " received WAIT (connection race)"
1986 << " payload.length()=" << payload.length()
1987 << dendl;
1988
1989 if (state != SESSION_CONNECTING && state != SESSION_RECONNECTING) {
1990 lderr(cct) << __func__ << " not in session (re)connect state!" << dendl;
1991 return _fault();
1992 }
1993
1994 state = WAIT;
1995 WaitFrame::Decode(payload);
1996 return _fault();
1997 }
1998
1999 CtPtr ProtocolV2::handle_reconnect_ok(ceph::bufferlist &payload)
2000 {
2001 ldout(cct, 20) << __func__
2002 << " payload.length()=" << payload.length() << dendl;
2003
2004 if (state != SESSION_RECONNECTING) {
2005 lderr(cct) << __func__ << " not in session reconnect state!" << dendl;
2006 return _fault();
2007 }
2008
2009 auto reconnect_ok = ReconnectOkFrame::Decode(payload);
2010 ldout(cct, 5) << __func__
2011 << " reconnect accepted: sms=" << reconnect_ok.msg_seq()
2012 << dendl;
2013
2014 out_seq = discard_requeued_up_to(out_seq, reconnect_ok.msg_seq());
2015
2016 backoff = utime_t();
2017 ldout(cct, 10) << __func__ << " reconnect success " << connect_seq
2018 << ", lossy = " << connection->policy.lossy << ", features "
2019 << connection->get_features() << dendl;
2020
2021 if (connection->delay_state) {
2022 ceph_assert(connection->delay_state->ready());
2023 }
2024
2025 connection->dispatch_queue->queue_connect(connection);
2026 messenger->ms_deliver_handle_fast_connect(connection);
2027
2028 return ready();
2029 }
2030
2031 CtPtr ProtocolV2::handle_server_ident(ceph::bufferlist &payload)
2032 {
2033 ldout(cct, 20) << __func__
2034 << " payload.length()=" << payload.length() << dendl;
2035
2036 if (state != SESSION_CONNECTING) {
2037 lderr(cct) << __func__ << " not in session connect state!" << dendl;
2038 return _fault();
2039 }
2040
2041 auto server_ident = ServerIdentFrame::Decode(payload);
2042 ldout(cct, 5) << __func__ << " received server identification:"
2043 << " addrs=" << server_ident.addrs()
2044 << " gid=" << server_ident.gid()
2045 << " global_seq=" << server_ident.global_seq()
2046 << " features_supported=" << std::hex
2047 << server_ident.supported_features()
2048 << " features_required=" << server_ident.required_features()
2049 << " flags=" << server_ident.flags()
2050 << " cookie=" << server_ident.cookie() << std::dec << dendl;
2051
2052 // is this who we intended to talk to?
2053 // be a bit forgiving here, since we may be connecting based on addresses parsed out
2054 // of mon_host or something.
2055 if (!server_ident.addrs().contains(connection->target_addr)) {
2056 ldout(cct,1) << __func__ << " peer identifies as " << server_ident.addrs()
2057 << ", does not include " << connection->target_addr << dendl;
2058 return _fault();
2059 }
2060
2061 server_cookie = server_ident.cookie();
2062
2063 connection->set_peer_addrs(server_ident.addrs());
2064 peer_name = entity_name_t(connection->get_peer_type(), server_ident.gid());
2065 connection->set_features(server_ident.supported_features() &
2066 connection->policy.features_supported);
2067 peer_global_seq = server_ident.global_seq();
2068
2069 connection->policy.lossy = server_ident.flags() & CEPH_MSG_CONNECT_LOSSY;
2070
2071 backoff = utime_t();
2072 ldout(cct, 10) << __func__ << " connect success " << connect_seq
2073 << ", lossy = " << connection->policy.lossy << ", features "
2074 << connection->get_features() << dendl;
2075
2076 if (connection->delay_state) {
2077 ceph_assert(connection->delay_state->ready());
2078 }
2079
2080 connection->dispatch_queue->queue_connect(connection);
2081 messenger->ms_deliver_handle_fast_connect(connection);
2082
2083 return ready();
2084 }
2085
2086 /* Server Protocol Methods */
2087
2088 CtPtr ProtocolV2::start_server_banner_exchange() {
2089 ldout(cct, 20) << __func__ << dendl;
2090
2091 INTERCEPT(2);
2092
2093 state = BANNER_ACCEPTING;
2094
2095 return _banner_exchange(CONTINUATION(post_server_banner_exchange));
2096 }
2097
2098 CtPtr ProtocolV2::post_server_banner_exchange() {
2099 ldout(cct, 20) << __func__ << dendl;
2100
2101 state = AUTH_ACCEPTING;
2102
2103 return CONTINUE(read_frame);
2104 }
2105
2106 CtPtr ProtocolV2::handle_auth_request(ceph::bufferlist &payload) {
2107 ldout(cct, 20) << __func__ << " payload.length()=" << payload.length()
2108 << dendl;
2109
2110 if (state != AUTH_ACCEPTING) {
2111 lderr(cct) << __func__ << " not in auth accept state!" << dendl;
2112 return _fault();
2113 }
2114
2115 auto request = AuthRequestFrame::Decode(payload);
2116 ldout(cct, 10) << __func__ << " AuthRequest(method=" << request.method()
2117 << ", preferred_modes=" << request.preferred_modes()
2118 << ", payload_len=" << request.auth_payload().length() << ")"
2119 << dendl;
2120 auth_meta->auth_method = request.method();
2121 auth_meta->con_mode = messenger->auth_server->pick_con_mode(
2122 connection->get_peer_type(), auth_meta->auth_method,
2123 request.preferred_modes());
2124 if (auth_meta->con_mode == CEPH_CON_MODE_UNKNOWN) {
2125 return _auth_bad_method(-EOPNOTSUPP);
2126 }
2127 return _handle_auth_request(request.auth_payload(), false);
2128 }
2129
2130 CtPtr ProtocolV2::_auth_bad_method(int r)
2131 {
2132 ceph_assert(r < 0);
2133 std::vector<uint32_t> allowed_methods;
2134 std::vector<uint32_t> allowed_modes;
2135 messenger->auth_server->get_supported_auth_methods(
2136 connection->get_peer_type(), &allowed_methods, &allowed_modes);
2137 ldout(cct, 1) << __func__ << " auth_method " << auth_meta->auth_method
2138 << " r " << cpp_strerror(r)
2139 << ", allowed_methods " << allowed_methods
2140 << ", allowed_modes " << allowed_modes
2141 << dendl;
2142 auto bad_method = AuthBadMethodFrame::Encode(auth_meta->auth_method, r,
2143 allowed_methods, allowed_modes);
2144 return WRITE(bad_method, "bad auth method", read_frame);
2145 }
2146
2147 CtPtr ProtocolV2::_handle_auth_request(ceph::bufferlist& auth_payload, bool more)
2148 {
2149 if (!messenger->auth_server) {
2150 return _fault();
2151 }
2152 ceph::bufferlist reply;
2153 auto am = auth_meta;
2154 connection->lock.unlock();
2155 int r = messenger->auth_server->handle_auth_request(
2156 connection, am.get(),
2157 more, am->auth_method, auth_payload,
2158 &reply);
2159 connection->lock.lock();
2160 if (state != AUTH_ACCEPTING && state != AUTH_ACCEPTING_MORE) {
2161 ldout(cct, 1) << __func__
2162 << " state changed while accept, it must be mark_down"
2163 << dendl;
2164 ceph_assert(state == CLOSED);
2165 return _fault();
2166 }
2167 if (r == 1) {
2168 INTERCEPT(10);
2169 state = AUTH_ACCEPTING_SIGN;
2170
2171 auto auth_done = AuthDoneFrame::Encode(connection->peer_global_id,
2172 auth_meta->con_mode,
2173 reply);
2174 return WRITE(auth_done, "auth done", finish_auth);
2175 } else if (r == 0) {
2176 state = AUTH_ACCEPTING_MORE;
2177
2178 auto more = AuthReplyMoreFrame::Encode(reply);
2179 return WRITE(more, "auth reply more", read_frame);
2180 } else if (r == -EBUSY) {
2181 // kick the client and maybe they'll come back later
2182 return _fault();
2183 } else {
2184 return _auth_bad_method(r);
2185 }
2186 }
2187
2188 CtPtr ProtocolV2::finish_auth()
2189 {
2190 ceph_assert(auth_meta);
2191 // TODO: having a possibility to check whether we're server or client could
2192 // allow reusing finish_auth().
2193 bool is_rev1 = HAVE_MSGR2_FEATURE(peer_supported_features, REVISION_1);
2194 session_stream_handlers = ceph::crypto::onwire::rxtx_t::create_handler_pair(
2195 cct, *auth_meta, /*new_nonce_format=*/is_rev1, /*crossed=*/true);
2196
2197 const auto sig = auth_meta->session_key.empty() ? sha256_digest_t() :
2198 auth_meta->session_key.hmac_sha256(cct, pre_auth.rxbuf);
2199 auto sig_frame = AuthSignatureFrame::Encode(sig);
2200 pre_auth.enabled = false;
2201 pre_auth.rxbuf.clear();
2202 return WRITE(sig_frame, "auth signature", read_frame);
2203 }
2204
2205 CtPtr ProtocolV2::handle_auth_request_more(ceph::bufferlist &payload)
2206 {
2207 ldout(cct, 20) << __func__
2208 << " payload.length()=" << payload.length() << dendl;
2209
2210 if (state != AUTH_ACCEPTING_MORE) {
2211 lderr(cct) << __func__ << " not in auth accept more state!" << dendl;
2212 return _fault();
2213 }
2214
2215 auto auth_more = AuthRequestMoreFrame::Decode(payload);
2216 return _handle_auth_request(auth_more.auth_payload(), true);
2217 }
2218
2219 CtPtr ProtocolV2::handle_auth_signature(ceph::bufferlist &payload)
2220 {
2221 ldout(cct, 20) << __func__
2222 << " payload.length()=" << payload.length() << dendl;
2223
2224 if (state != AUTH_ACCEPTING_SIGN && state != AUTH_CONNECTING_SIGN) {
2225 lderr(cct) << __func__
2226 << " pre-auth verification signature seen in wrong state!"
2227 << dendl;
2228 return _fault();
2229 }
2230
2231 auto sig_frame = AuthSignatureFrame::Decode(payload);
2232
2233 const auto actual_tx_sig = auth_meta->session_key.empty() ?
2234 sha256_digest_t() : auth_meta->session_key.hmac_sha256(cct, pre_auth.txbuf);
2235 if (sig_frame.signature() != actual_tx_sig) {
2236 ldout(cct, 2) << __func__ << " pre-auth signature mismatch"
2237 << " actual_tx_sig=" << actual_tx_sig
2238 << " sig_frame.signature()=" << sig_frame.signature()
2239 << dendl;
2240 return _fault();
2241 } else {
2242 ldout(cct, 20) << __func__ << " pre-auth signature success"
2243 << " sig_frame.signature()=" << sig_frame.signature()
2244 << dendl;
2245 pre_auth.txbuf.clear();
2246 }
2247
2248 if (state == AUTH_ACCEPTING_SIGN) {
2249 // server had sent AuthDone and client responded with correct pre-auth
2250 // signature. we can start accepting new sessions/reconnects.
2251 state = SESSION_ACCEPTING;
2252 return CONTINUE(read_frame);
2253 } else if (state == AUTH_CONNECTING_SIGN) {
2254 // this happened at client side
2255 return finish_client_auth();
2256 } else {
2257 ceph_abort("state corruption");
2258 }
2259 }
2260
2261 CtPtr ProtocolV2::handle_client_ident(ceph::bufferlist &payload)
2262 {
2263 ldout(cct, 20) << __func__
2264 << " payload.length()=" << payload.length() << dendl;
2265
2266 if (state != SESSION_ACCEPTING) {
2267 lderr(cct) << __func__ << " not in session accept state!" << dendl;
2268 return _fault();
2269 }
2270
2271 auto client_ident = ClientIdentFrame::Decode(payload);
2272
2273 ldout(cct, 5) << __func__ << " received client identification:"
2274 << " addrs=" << client_ident.addrs()
2275 << " target=" << client_ident.target_addr()
2276 << " gid=" << client_ident.gid()
2277 << " global_seq=" << client_ident.global_seq()
2278 << " features_supported=" << std::hex
2279 << client_ident.supported_features()
2280 << " features_required=" << client_ident.required_features()
2281 << " flags=" << client_ident.flags()
2282 << " cookie=" << client_ident.cookie() << std::dec << dendl;
2283
2284 if (client_ident.addrs().empty() ||
2285 client_ident.addrs().front() == entity_addr_t()) {
2286 ldout(cct,5) << __func__ << " oops, client_ident.addrs() is empty" << dendl;
2287 return _fault(); // a v2 peer should never do this
2288 }
2289 if (!messenger->get_myaddrs().contains(client_ident.target_addr())) {
2290 ldout(cct,5) << __func__ << " peer is trying to reach "
2291 << client_ident.target_addr()
2292 << " which is not us (" << messenger->get_myaddrs() << ")"
2293 << dendl;
2294 return _fault();
2295 }
2296
2297 connection->set_peer_addrs(client_ident.addrs());
2298 connection->target_addr = connection->_infer_target_addr(client_ident.addrs());
2299
2300 peer_name = entity_name_t(connection->get_peer_type(), client_ident.gid());
2301 connection->set_peer_id(client_ident.gid());
2302
2303 client_cookie = client_ident.cookie();
2304
2305 uint64_t feat_missing =
2306 (connection->policy.features_required | msgr2_required) &
2307 ~(uint64_t)client_ident.supported_features();
2308 if (feat_missing) {
2309 ldout(cct, 1) << __func__ << " peer missing required features " << std::hex
2310 << feat_missing << std::dec << dendl;
2311 auto ident_missing_features =
2312 IdentMissingFeaturesFrame::Encode(feat_missing);
2313
2314 return WRITE(ident_missing_features, "ident missing features", read_frame);
2315 }
2316
2317 connection_features =
2318 client_ident.supported_features() & connection->policy.features_supported;
2319
2320 peer_global_seq = client_ident.global_seq();
2321
2322 if (connection->policy.server &&
2323 connection->policy.lossy &&
2324 !connection->policy.register_lossy_clients) {
2325 // incoming lossy client, no need to register this connection
2326 } else {
2327 // Looks good so far, let's check if there is already an existing connection
2328 // to this peer.
2329 connection->lock.unlock();
2330 AsyncConnectionRef existing = messenger->lookup_conn(
2331 *connection->peer_addrs);
2332
2333 if (existing &&
2334 existing->protocol->proto_type != 2) {
2335 ldout(cct,1) << __func__ << " existing " << existing << " proto "
2336 << existing->protocol.get() << " version is "
2337 << existing->protocol->proto_type << ", marking down"
2338 << dendl;
2339 existing->mark_down();
2340 existing = nullptr;
2341 }
2342
2343 connection->inject_delay();
2344
2345 connection->lock.lock();
2346 if (state != SESSION_ACCEPTING) {
2347 ldout(cct, 1) << __func__
2348 << " state changed while accept, it must be mark_down"
2349 << dendl;
2350 ceph_assert(state == CLOSED);
2351 return _fault();
2352 }
2353
2354 if (existing) {
2355 return handle_existing_connection(existing);
2356 }
2357 }
2358
2359 // if everything is OK reply with server identification
2360 return send_server_ident();
2361 }
2362
2363 CtPtr ProtocolV2::handle_reconnect(ceph::bufferlist &payload)
2364 {
2365 ldout(cct, 20) << __func__
2366 << " payload.length()=" << payload.length() << dendl;
2367
2368 if (state != SESSION_ACCEPTING) {
2369 lderr(cct) << __func__ << " not in session accept state!" << dendl;
2370 return _fault();
2371 }
2372
2373 auto reconnect = ReconnectFrame::Decode(payload);
2374
2375 ldout(cct, 5) << __func__
2376 << " received reconnect:"
2377 << " client_cookie=" << std::hex << reconnect.client_cookie()
2378 << " server_cookie=" << reconnect.server_cookie() << std::dec
2379 << " gs=" << reconnect.global_seq()
2380 << " cs=" << reconnect.connect_seq()
2381 << " ms=" << reconnect.msg_seq()
2382 << dendl;
2383
2384 // Should we check if one of the ident.addrs match connection->target_addr
2385 // as we do in ProtocolV1?
2386 connection->set_peer_addrs(reconnect.addrs());
2387 connection->target_addr = connection->_infer_target_addr(reconnect.addrs());
2388 peer_global_seq = reconnect.global_seq();
2389
2390 connection->lock.unlock();
2391 AsyncConnectionRef existing = messenger->lookup_conn(*connection->peer_addrs);
2392
2393 if (existing &&
2394 existing->protocol->proto_type != 2) {
2395 ldout(cct,1) << __func__ << " existing " << existing << " proto "
2396 << existing->protocol.get() << " version is "
2397 << existing->protocol->proto_type << ", marking down" << dendl;
2398 existing->mark_down();
2399 existing = nullptr;
2400 }
2401
2402 connection->inject_delay();
2403
2404 connection->lock.lock();
2405 if (state != SESSION_ACCEPTING) {
2406 ldout(cct, 1) << __func__
2407 << " state changed while accept, it must be mark_down"
2408 << dendl;
2409 ceph_assert(state == CLOSED);
2410 return _fault();
2411 }
2412
2413 if (!existing) {
2414 // there is no existing connection therefore cannot reconnect to previous
2415 // session
2416 ldout(cct, 0) << __func__
2417 << " no existing connection exists, reseting client" << dendl;
2418 auto reset = ResetFrame::Encode(true);
2419 return WRITE(reset, "session reset", read_frame);
2420 }
2421
2422 std::lock_guard<std::mutex> l(existing->lock);
2423
2424 ProtocolV2 *exproto = dynamic_cast<ProtocolV2 *>(existing->protocol.get());
2425 if (!exproto) {
2426 ldout(cct, 1) << __func__ << " existing=" << existing << dendl;
2427 ceph_assert(false);
2428 }
2429
2430 if (exproto->state == CLOSED) {
2431 ldout(cct, 5) << __func__ << " existing " << existing
2432 << " already closed. Reseting client" << dendl;
2433 auto reset = ResetFrame::Encode(true);
2434 return WRITE(reset, "session reset", read_frame);
2435 }
2436
2437 if (exproto->replacing) {
2438 ldout(cct, 1) << __func__
2439 << " existing racing replace happened while replacing."
2440 << " existing=" << existing << dendl;
2441 auto retry = RetryGlobalFrame::Encode(exproto->peer_global_seq);
2442 return WRITE(retry, "session retry", read_frame);
2443 }
2444
2445 if (exproto->client_cookie != reconnect.client_cookie()) {
2446 ldout(cct, 1) << __func__ << " existing=" << existing
2447 << " client cookie mismatch, I must have reseted:"
2448 << " cc=" << std::hex << exproto->client_cookie
2449 << " rcc=" << reconnect.client_cookie()
2450 << ", reseting client." << std::dec
2451 << dendl;
2452 auto reset = ResetFrame::Encode(connection->policy.resetcheck);
2453 return WRITE(reset, "session reset", read_frame);
2454 } else if (exproto->server_cookie == 0) {
2455 // this happens when:
2456 // - a connects to b
2457 // - a sends client_ident
2458 // - b gets client_ident, sends server_ident and sets cookie X
2459 // - connection fault
2460 // - b reconnects to a with cookie X, connect_seq=1
2461 // - a has cookie==0
2462 ldout(cct, 1) << __func__ << " I was a client and didn't received the"
2463 << " server_ident. Asking peer to resume session"
2464 << " establishment" << dendl;
2465 auto reset = ResetFrame::Encode(false);
2466 return WRITE(reset, "session reset", read_frame);
2467 }
2468
2469 if (exproto->peer_global_seq > reconnect.global_seq()) {
2470 ldout(cct, 5) << __func__
2471 << " stale global_seq: sgs=" << exproto->peer_global_seq
2472 << " cgs=" << reconnect.global_seq()
2473 << ", ask client to retry global" << dendl;
2474 auto retry = RetryGlobalFrame::Encode(exproto->peer_global_seq);
2475
2476 INTERCEPT(18);
2477
2478 return WRITE(retry, "session retry", read_frame);
2479 }
2480
2481 if (exproto->connect_seq > reconnect.connect_seq()) {
2482 ldout(cct, 5) << __func__
2483 << " stale connect_seq scs=" << exproto->connect_seq
2484 << " ccs=" << reconnect.connect_seq()
2485 << " , ask client to retry" << dendl;
2486 auto retry = RetryFrame::Encode(exproto->connect_seq);
2487 return WRITE(retry, "session retry", read_frame);
2488 }
2489
2490 if (exproto->connect_seq == reconnect.connect_seq()) {
2491 // reconnect race: both peers are sending reconnect messages
2492 if (existing->peer_addrs->msgr2_addr() >
2493 messenger->get_myaddrs().msgr2_addr() &&
2494 !existing->policy.server) {
2495 // the existing connection wins
2496 ldout(cct, 1)
2497 << __func__
2498 << " reconnect race detected, this connection loses to existing="
2499 << existing << dendl;
2500
2501 auto wait = WaitFrame::Encode();
2502 return WRITE(wait, "wait", read_frame);
2503 } else {
2504 // this connection wins
2505 ldout(cct, 1) << __func__
2506 << " reconnect race detected, replacing existing="
2507 << existing << " socket by this connection's socket"
2508 << dendl;
2509 }
2510 }
2511
2512 ldout(cct, 1) << __func__ << " reconnect to existing=" << existing << dendl;
2513
2514 reconnecting = true;
2515
2516 // everything looks good
2517 exproto->connect_seq = reconnect.connect_seq();
2518 exproto->message_seq = reconnect.msg_seq();
2519
2520 return reuse_connection(existing, exproto);
2521 }
2522
2523 CtPtr ProtocolV2::handle_existing_connection(const AsyncConnectionRef& existing) {
2524 ldout(cct, 20) << __func__ << " existing=" << existing << dendl;
2525
2526 std::lock_guard<std::mutex> l(existing->lock);
2527
2528 ProtocolV2 *exproto = dynamic_cast<ProtocolV2 *>(existing->protocol.get());
2529 if (!exproto) {
2530 ldout(cct, 1) << __func__ << " existing=" << existing << dendl;
2531 ceph_assert(false);
2532 }
2533
2534 if (exproto->state == CLOSED) {
2535 ldout(cct, 1) << __func__ << " existing " << existing << " already closed."
2536 << dendl;
2537 return send_server_ident();
2538 }
2539
2540 if (exproto->replacing) {
2541 ldout(cct, 1) << __func__
2542 << " existing racing replace happened while replacing."
2543 << " existing=" << existing << dendl;
2544 auto wait = WaitFrame::Encode();
2545 return WRITE(wait, "wait", read_frame);
2546 }
2547
2548 if (exproto->peer_global_seq > peer_global_seq) {
2549 ldout(cct, 1) << __func__ << " this is a stale connection, peer_global_seq="
2550 << peer_global_seq
2551 << " existing->peer_global_seq=" << exproto->peer_global_seq
2552 << ", stopping this connection." << dendl;
2553 stop();
2554 connection->dispatch_queue->queue_reset(connection);
2555 return nullptr;
2556 }
2557
2558 if (existing->policy.lossy) {
2559 // existing connection can be thrown out in favor of this one
2560 ldout(cct, 1)
2561 << __func__ << " existing=" << existing
2562 << " is a lossy channel. Stopping existing in favor of this connection"
2563 << dendl;
2564 existing->protocol->stop();
2565 existing->dispatch_queue->queue_reset(existing.get());
2566 return send_server_ident();
2567 }
2568
2569 if (exproto->server_cookie && exproto->client_cookie &&
2570 exproto->client_cookie != client_cookie) {
2571 // Found previous session
2572 // peer has reseted and we're going to reuse the existing connection
2573 // by replacing the communication socket
2574 ldout(cct, 1) << __func__ << " found previous session existing=" << existing
2575 << ", peer must have reseted." << dendl;
2576 if (connection->policy.resetcheck) {
2577 exproto->reset_session();
2578 }
2579 return reuse_connection(existing, exproto);
2580 }
2581
2582 if (exproto->client_cookie == client_cookie) {
2583 // session establishment interrupted between client_ident and server_ident,
2584 // continuing...
2585 ldout(cct, 1) << __func__ << " found previous session existing=" << existing
2586 << ", continuing session establishment." << dendl;
2587 return reuse_connection(existing, exproto);
2588 }
2589
2590 if (exproto->state == READY || exproto->state == STANDBY) {
2591 ldout(cct, 1) << __func__ << " existing=" << existing
2592 << " is READY/STANDBY, lets reuse it" << dendl;
2593 return reuse_connection(existing, exproto);
2594 }
2595
2596 // Looks like a connection race: server and client are both connecting to
2597 // each other at the same time.
2598 if (connection->peer_addrs->msgr2_addr() <
2599 messenger->get_myaddrs().msgr2_addr() ||
2600 existing->policy.server) {
2601 // this connection wins
2602 ldout(cct, 1) << __func__
2603 << " connection race detected, replacing existing="
2604 << existing << " socket by this connection's socket" << dendl;
2605 return reuse_connection(existing, exproto);
2606 } else {
2607 // the existing connection wins
2608 ldout(cct, 1)
2609 << __func__
2610 << " connection race detected, this connection loses to existing="
2611 << existing << dendl;
2612 ceph_assert(connection->peer_addrs->msgr2_addr() >
2613 messenger->get_myaddrs().msgr2_addr());
2614
2615 // make sure we follow through with opening the existing
2616 // connection (if it isn't yet open) since we know the peer
2617 // has something to send to us.
2618 existing->send_keepalive();
2619 auto wait = WaitFrame::Encode();
2620 return WRITE(wait, "wait", read_frame);
2621 }
2622 }
2623
2624 CtPtr ProtocolV2::reuse_connection(const AsyncConnectionRef& existing,
2625 ProtocolV2 *exproto) {
2626 ldout(cct, 20) << __func__ << " existing=" << existing
2627 << " reconnect=" << reconnecting << dendl;
2628
2629 connection->inject_delay();
2630
2631 std::lock_guard<std::mutex> l(existing->write_lock);
2632
2633 connection->center->delete_file_event(connection->cs.fd(),
2634 EVENT_READABLE | EVENT_WRITABLE);
2635
2636 if (existing->delay_state) {
2637 existing->delay_state->flush();
2638 ceph_assert(!connection->delay_state);
2639 }
2640 exproto->reset_recv_state();
2641 exproto->pre_auth.enabled = false;
2642
2643 if (!reconnecting) {
2644 exproto->peer_supported_features = peer_supported_features;
2645 exproto->tx_frame_asm.set_is_rev1(tx_frame_asm.get_is_rev1());
2646 exproto->rx_frame_asm.set_is_rev1(rx_frame_asm.get_is_rev1());
2647
2648 exproto->client_cookie = client_cookie;
2649 exproto->peer_name = peer_name;
2650 exproto->connection_features = connection_features;
2651 existing->set_features(connection_features);
2652 }
2653 exproto->peer_global_seq = peer_global_seq;
2654
2655 ceph_assert(connection->center->in_thread());
2656 auto temp_cs = std::move(connection->cs);
2657 EventCenter *new_center = connection->center;
2658 Worker *new_worker = connection->worker;
2659 // we can steal the session_stream_handlers under the assumption
2660 // this happens in the event center's thread as there should be
2661 // no user outside its boundaries (simlarly to e.g. outgoing_bl).
2662 auto temp_stream_handlers = std::move(session_stream_handlers);
2663 exproto->auth_meta = auth_meta;
2664
2665 ldout(messenger->cct, 5) << __func__ << " stop myself to swap existing"
2666 << dendl;
2667
2668 // avoid _stop shutdown replacing socket
2669 // queue a reset on the new connection, which we're dumping for the old
2670 stop();
2671
2672 connection->dispatch_queue->queue_reset(connection);
2673
2674 exproto->can_write = false;
2675 exproto->write_in_progress = false;
2676 exproto->reconnecting = reconnecting;
2677 exproto->replacing = true;
2678 existing->state_offset = 0;
2679 // avoid previous thread modify event
2680 exproto->state = NONE;
2681 existing->state = AsyncConnection::STATE_NONE;
2682 // Discard existing prefetch buffer in `recv_buf`
2683 existing->recv_start = existing->recv_end = 0;
2684 // there shouldn't exist any buffer
2685 ceph_assert(connection->recv_start == connection->recv_end);
2686
2687 auto deactivate_existing = std::bind(
2688 [ existing,
2689 new_worker,
2690 new_center,
2691 exproto,
2692 temp_stream_handlers=std::move(temp_stream_handlers)
2693 ](ConnectedSocket &cs) mutable {
2694 // we need to delete time event in original thread
2695 {
2696 std::lock_guard<std::mutex> l(existing->lock);
2697 existing->write_lock.lock();
2698 exproto->requeue_sent();
2699 // XXX: do we really need the locking for `outgoing_bl`? There is
2700 // a comment just above its definition saying "lockfree, only used
2701 // in own thread". I'm following lockfull schema just in the case.
2702 // From performance point of view it should be fine – this happens
2703 // far away from hot paths.
2704 existing->outgoing_bl.clear();
2705 existing->open_write = false;
2706 exproto->session_stream_handlers = std::move(temp_stream_handlers);
2707 existing->write_lock.unlock();
2708 if (exproto->state == NONE) {
2709 existing->shutdown_socket();
2710 existing->cs = std::move(cs);
2711 existing->worker->references--;
2712 new_worker->references++;
2713 existing->logger = new_worker->get_perf_counter();
2714 existing->worker = new_worker;
2715 existing->center = new_center;
2716 if (existing->delay_state)
2717 existing->delay_state->set_center(new_center);
2718 } else if (exproto->state == CLOSED) {
2719 auto back_to_close = std::bind(
2720 [](ConnectedSocket &cs) mutable { cs.close(); }, std::move(cs));
2721 new_center->submit_to(new_center->get_id(),
2722 std::move(back_to_close), true);
2723 return;
2724 } else {
2725 ceph_abort();
2726 }
2727 }
2728
2729 // Before changing existing->center, it may already exists some
2730 // events in existing->center's queue. Then if we mark down
2731 // `existing`, it will execute in another thread and clean up
2732 // connection. Previous event will result in segment fault
2733 auto transfer_existing = [existing, exproto]() mutable {
2734 std::lock_guard<std::mutex> l(existing->lock);
2735 if (exproto->state == CLOSED) return;
2736 ceph_assert(exproto->state == NONE);
2737
2738 exproto->state = SESSION_ACCEPTING;
2739 // we have called shutdown_socket above
2740 ceph_assert(existing->last_tick_id == 0);
2741 // restart timer since we are going to re-build connection
2742 existing->last_connect_started = ceph::coarse_mono_clock::now();
2743 existing->last_tick_id = existing->center->create_time_event(
2744 existing->connect_timeout_us, existing->tick_handler);
2745 existing->state = AsyncConnection::STATE_CONNECTION_ESTABLISHED;
2746 existing->center->create_file_event(existing->cs.fd(), EVENT_READABLE,
2747 existing->read_handler);
2748 if (!exproto->reconnecting) {
2749 exproto->run_continuation(exproto->send_server_ident());
2750 } else {
2751 exproto->run_continuation(exproto->send_reconnect_ok());
2752 }
2753 };
2754 if (existing->center->in_thread())
2755 transfer_existing();
2756 else
2757 existing->center->submit_to(existing->center->get_id(),
2758 std::move(transfer_existing), true);
2759 },
2760 std::move(temp_cs));
2761
2762 existing->center->submit_to(existing->center->get_id(),
2763 std::move(deactivate_existing), true);
2764 return nullptr;
2765 }
2766
2767 CtPtr ProtocolV2::send_server_ident() {
2768 ldout(cct, 20) << __func__ << dendl;
2769
2770 // this is required for the case when this connection is being replaced
2771 out_seq = discard_requeued_up_to(out_seq, 0);
2772 in_seq = 0;
2773
2774 if (!connection->policy.lossy) {
2775 server_cookie = ceph::util::generate_random_number<uint64_t>(1, -1ll);
2776 }
2777
2778 uint64_t flags = 0;
2779 if (connection->policy.lossy) {
2780 flags = flags | CEPH_MSG_CONNECT_LOSSY;
2781 }
2782
2783 uint64_t gs = messenger->get_global_seq();
2784 auto server_ident = ServerIdentFrame::Encode(
2785 messenger->get_myaddrs(),
2786 messenger->get_myname().num(),
2787 gs,
2788 connection->policy.features_supported,
2789 connection->policy.features_required | msgr2_required,
2790 flags,
2791 server_cookie);
2792
2793 ldout(cct, 5) << __func__ << " sending identification:"
2794 << " addrs=" << messenger->get_myaddrs()
2795 << " gid=" << messenger->get_myname().num()
2796 << " global_seq=" << gs << " features_supported=" << std::hex
2797 << connection->policy.features_supported
2798 << " features_required="
2799 << (connection->policy.features_required | msgr2_required)
2800 << " flags=" << flags
2801 << " cookie=" << server_cookie << std::dec << dendl;
2802
2803 connection->lock.unlock();
2804 // Because "replacing" will prevent other connections preempt this addr,
2805 // it's safe that here we don't acquire Connection's lock
2806 ssize_t r = messenger->accept_conn(connection);
2807
2808 connection->inject_delay();
2809
2810 connection->lock.lock();
2811
2812 if (r < 0) {
2813 ldout(cct, 1) << __func__ << " existing race replacing process for addr = "
2814 << connection->peer_addrs->msgr2_addr()
2815 << " just fail later one(this)" << dendl;
2816 connection->inject_delay();
2817 return _fault();
2818 }
2819 if (state != SESSION_ACCEPTING) {
2820 ldout(cct, 1) << __func__
2821 << " state changed while accept_conn, it must be mark_down"
2822 << dendl;
2823 ceph_assert(state == CLOSED || state == NONE);
2824 messenger->unregister_conn(connection);
2825 connection->inject_delay();
2826 return _fault();
2827 }
2828
2829 connection->set_features(connection_features);
2830
2831 // notify
2832 connection->dispatch_queue->queue_accept(connection);
2833 messenger->ms_deliver_handle_fast_accept(connection);
2834
2835 INTERCEPT(12);
2836
2837 return WRITE(server_ident, "server ident", server_ready);
2838 }
2839
2840 CtPtr ProtocolV2::server_ready() {
2841 ldout(cct, 20) << __func__ << dendl;
2842
2843 if (connection->delay_state) {
2844 ceph_assert(connection->delay_state->ready());
2845 }
2846
2847 return ready();
2848 }
2849
2850 CtPtr ProtocolV2::send_reconnect_ok() {
2851 ldout(cct, 20) << __func__ << dendl;
2852
2853 out_seq = discard_requeued_up_to(out_seq, message_seq);
2854
2855 uint64_t ms = in_seq;
2856 auto reconnect_ok = ReconnectOkFrame::Encode(ms);
2857
2858 ldout(cct, 5) << __func__ << " sending reconnect_ok: msg_seq=" << ms << dendl;
2859
2860 connection->lock.unlock();
2861 // Because "replacing" will prevent other connections preempt this addr,
2862 // it's safe that here we don't acquire Connection's lock
2863 ssize_t r = messenger->accept_conn(connection);
2864
2865 connection->inject_delay();
2866
2867 connection->lock.lock();
2868
2869 if (r < 0) {
2870 ldout(cct, 1) << __func__ << " existing race replacing process for addr = "
2871 << connection->peer_addrs->msgr2_addr()
2872 << " just fail later one(this)" << dendl;
2873 connection->inject_delay();
2874 return _fault();
2875 }
2876 if (state != SESSION_ACCEPTING) {
2877 ldout(cct, 1) << __func__
2878 << " state changed while accept_conn, it must be mark_down"
2879 << dendl;
2880 ceph_assert(state == CLOSED || state == NONE);
2881 messenger->unregister_conn(connection);
2882 connection->inject_delay();
2883 return _fault();
2884 }
2885
2886 // notify
2887 connection->dispatch_queue->queue_accept(connection);
2888 messenger->ms_deliver_handle_fast_accept(connection);
2889
2890 INTERCEPT(14);
2891
2892 return WRITE(reconnect_ok, "reconnect ok", server_ready);
2893 }