]> git.proxmox.com Git - ceph.git/blob - ceph/src/osd/osd_types.h
update sources to v12.2.3
[ceph.git] / ceph / src / osd / osd_types.h
1 // -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
2 // vim: ts=8 sw=2 smarttab
3 /*
4 * Ceph - scalable distributed file system
5 *
6 * Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
7 * Copyright (C) 2013,2014 Cloudwatt <libre.licensing@cloudwatt.com>
8 *
9 * Author: Loic Dachary <loic@dachary.org>
10 *
11 * This is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License version 2.1, as published by the Free Software
14 * Foundation. See file COPYING.
15 *
16 */
17
18 #ifndef CEPH_OSD_TYPES_H
19 #define CEPH_OSD_TYPES_H
20
21 #include <sstream>
22 #include <stdio.h>
23 #include <memory>
24 #include <boost/scoped_ptr.hpp>
25 #include <boost/optional/optional_io.hpp>
26 #include <boost/variant.hpp>
27
28 #include "include/rados/rados_types.hpp"
29 #include "include/mempool.h"
30
31 #include "msg/msg_types.h"
32 #include "include/types.h"
33 #include "include/utime.h"
34 #include "include/CompatSet.h"
35 #include "common/histogram.h"
36 #include "include/interval_set.h"
37 #include "include/inline_memory.h"
38 #include "common/Formatter.h"
39 #include "common/bloom_filter.hpp"
40 #include "common/hobject.h"
41 #include "common/snap_types.h"
42 #include "HitSet.h"
43 #include "Watch.h"
44 #include "include/cmp.h"
45 #include "librados/ListObjectImpl.h"
46 #include "compressor/Compressor.h"
47 #include <atomic>
48
49 #define CEPH_OSD_ONDISK_MAGIC "ceph osd volume v026"
50
51 #define CEPH_OSD_FEATURE_INCOMPAT_BASE CompatSet::Feature(1, "initial feature set(~v.18)")
52 #define CEPH_OSD_FEATURE_INCOMPAT_PGINFO CompatSet::Feature(2, "pginfo object")
53 #define CEPH_OSD_FEATURE_INCOMPAT_OLOC CompatSet::Feature(3, "object locator")
54 #define CEPH_OSD_FEATURE_INCOMPAT_LEC CompatSet::Feature(4, "last_epoch_clean")
55 #define CEPH_OSD_FEATURE_INCOMPAT_CATEGORIES CompatSet::Feature(5, "categories")
56 #define CEPH_OSD_FEATURE_INCOMPAT_HOBJECTPOOL CompatSet::Feature(6, "hobjectpool")
57 #define CEPH_OSD_FEATURE_INCOMPAT_BIGINFO CompatSet::Feature(7, "biginfo")
58 #define CEPH_OSD_FEATURE_INCOMPAT_LEVELDBINFO CompatSet::Feature(8, "leveldbinfo")
59 #define CEPH_OSD_FEATURE_INCOMPAT_LEVELDBLOG CompatSet::Feature(9, "leveldblog")
60 #define CEPH_OSD_FEATURE_INCOMPAT_SNAPMAPPER CompatSet::Feature(10, "snapmapper")
61 #define CEPH_OSD_FEATURE_INCOMPAT_SHARDS CompatSet::Feature(11, "sharded objects")
62 #define CEPH_OSD_FEATURE_INCOMPAT_HINTS CompatSet::Feature(12, "transaction hints")
63 #define CEPH_OSD_FEATURE_INCOMPAT_PGMETA CompatSet::Feature(13, "pg meta object")
64 #define CEPH_OSD_FEATURE_INCOMPAT_MISSING CompatSet::Feature(14, "explicit missing set")
65 #define CEPH_OSD_FEATURE_INCOMPAT_FASTINFO CompatSet::Feature(15, "fastinfo pg attr")
66 #define CEPH_OSD_FEATURE_INCOMPAT_RECOVERY_DELETES CompatSet::Feature(16, "deletes in missing set")
67
68
69 /// min recovery priority for MBackfillReserve
70 #define OSD_RECOVERY_PRIORITY_MIN 0
71
72 /// base backfill priority for MBackfillReserve
73 #define OSD_BACKFILL_PRIORITY_BASE 100
74
75 /// base backfill priority for MBackfillReserve (degraded PG)
76 #define OSD_BACKFILL_DEGRADED_PRIORITY_BASE 140
77
78 /// base recovery priority for MBackfillReserve
79 #define OSD_RECOVERY_PRIORITY_BASE 180
80
81 /// base backfill priority for MBackfillReserve (inactive PG)
82 #define OSD_BACKFILL_INACTIVE_PRIORITY_BASE 220
83
84 /// max manually/automatically set recovery priority for MBackfillReserve
85 #define OSD_RECOVERY_PRIORITY_MAX 254
86
87 /// max recovery priority for MBackfillReserve, only when forced manually
88 #define OSD_RECOVERY_PRIORITY_FORCED 255
89
90
91 typedef hobject_t collection_list_handle_t;
92
93 /// convert a single CPEH_OSD_FLAG_* to a string
94 const char *ceph_osd_flag_name(unsigned flag);
95 /// convert a single CEPH_OSD_OF_FLAG_* to a string
96 const char *ceph_osd_op_flag_name(unsigned flag);
97
98 /// convert CEPH_OSD_FLAG_* op flags to a string
99 string ceph_osd_flag_string(unsigned flags);
100 /// conver CEPH_OSD_OP_FLAG_* op flags to a string
101 string ceph_osd_op_flag_string(unsigned flags);
102 /// conver CEPH_OSD_ALLOC_HINT_FLAG_* op flags to a string
103 string ceph_osd_alloc_hint_flag_string(unsigned flags);
104
105
106 /**
107 * osd request identifier
108 *
109 * caller name + incarnation# + tid to unique identify this request.
110 */
111 struct osd_reqid_t {
112 entity_name_t name; // who
113 ceph_tid_t tid;
114 int32_t inc; // incarnation
115
116 osd_reqid_t()
117 : tid(0), inc(0)
118 {}
119 osd_reqid_t(const osd_reqid_t& other)
120 : name(other.name), tid(other.tid), inc(other.inc)
121 {}
122 osd_reqid_t(const entity_name_t& a, int i, ceph_tid_t t)
123 : name(a), tid(t), inc(i)
124 {}
125
126 DENC(osd_reqid_t, v, p) {
127 DENC_START(2, 2, p);
128 denc(v.name, p);
129 denc(v.tid, p);
130 denc(v.inc, p);
131 DENC_FINISH(p);
132 }
133 void dump(Formatter *f) const;
134 static void generate_test_instances(list<osd_reqid_t*>& o);
135 };
136 WRITE_CLASS_DENC(osd_reqid_t)
137
138
139
140 struct pg_shard_t {
141 static const int32_t NO_OSD = 0x7fffffff;
142 int32_t osd;
143 shard_id_t shard;
144 pg_shard_t() : osd(-1), shard(shard_id_t::NO_SHARD) {}
145 explicit pg_shard_t(int osd) : osd(osd), shard(shard_id_t::NO_SHARD) {}
146 pg_shard_t(int osd, shard_id_t shard) : osd(osd), shard(shard) {}
147 bool is_undefined() const {
148 return osd == -1;
149 }
150 string get_osd() const { return (osd == NO_OSD ? "NONE" : to_string(osd)); }
151 void encode(bufferlist &bl) const;
152 void decode(bufferlist::iterator &bl);
153 void dump(Formatter *f) const {
154 f->dump_unsigned("osd", osd);
155 if (shard != shard_id_t::NO_SHARD) {
156 f->dump_unsigned("shard", shard);
157 }
158 }
159 };
160 WRITE_CLASS_ENCODER(pg_shard_t)
161 WRITE_EQ_OPERATORS_2(pg_shard_t, osd, shard)
162 WRITE_CMP_OPERATORS_2(pg_shard_t, osd, shard)
163 ostream &operator<<(ostream &lhs, const pg_shard_t &rhs);
164
165 class IsPGRecoverablePredicate {
166 public:
167 /**
168 * have encodes the shards available
169 */
170 virtual bool operator()(const set<pg_shard_t> &have) const = 0;
171 virtual ~IsPGRecoverablePredicate() {}
172 };
173
174 class IsPGReadablePredicate {
175 public:
176 /**
177 * have encodes the shards available
178 */
179 virtual bool operator()(const set<pg_shard_t> &have) const = 0;
180 virtual ~IsPGReadablePredicate() {}
181 };
182
183 inline ostream& operator<<(ostream& out, const osd_reqid_t& r) {
184 return out << r.name << "." << r.inc << ":" << r.tid;
185 }
186
187 inline bool operator==(const osd_reqid_t& l, const osd_reqid_t& r) {
188 return (l.name == r.name) && (l.inc == r.inc) && (l.tid == r.tid);
189 }
190 inline bool operator!=(const osd_reqid_t& l, const osd_reqid_t& r) {
191 return (l.name != r.name) || (l.inc != r.inc) || (l.tid != r.tid);
192 }
193 inline bool operator<(const osd_reqid_t& l, const osd_reqid_t& r) {
194 return (l.name < r.name) || (l.inc < r.inc) ||
195 (l.name == r.name && l.inc == r.inc && l.tid < r.tid);
196 }
197 inline bool operator<=(const osd_reqid_t& l, const osd_reqid_t& r) {
198 return (l.name < r.name) || (l.inc < r.inc) ||
199 (l.name == r.name && l.inc == r.inc && l.tid <= r.tid);
200 }
201 inline bool operator>(const osd_reqid_t& l, const osd_reqid_t& r) { return !(l <= r); }
202 inline bool operator>=(const osd_reqid_t& l, const osd_reqid_t& r) { return !(l < r); }
203
204 namespace std {
205 template<> struct hash<osd_reqid_t> {
206 size_t operator()(const osd_reqid_t &r) const {
207 static hash<uint64_t> H;
208 return H(r.name.num() ^ r.tid ^ r.inc);
209 }
210 };
211 } // namespace std
212
213
214 // -----
215
216 // a locator constrains the placement of an object. mainly, which pool
217 // does it go in.
218 struct object_locator_t {
219 // You specify either the hash or the key -- not both
220 int64_t pool; ///< pool id
221 string key; ///< key string (if non-empty)
222 string nspace; ///< namespace
223 int64_t hash; ///< hash position (if >= 0)
224
225 explicit object_locator_t()
226 : pool(-1), hash(-1) {}
227 explicit object_locator_t(int64_t po)
228 : pool(po), hash(-1) {}
229 explicit object_locator_t(int64_t po, int64_t ps)
230 : pool(po), hash(ps) {}
231 explicit object_locator_t(int64_t po, string ns)
232 : pool(po), nspace(ns), hash(-1) {}
233 explicit object_locator_t(int64_t po, string ns, int64_t ps)
234 : pool(po), nspace(ns), hash(ps) {}
235 explicit object_locator_t(int64_t po, string ns, string s)
236 : pool(po), key(s), nspace(ns), hash(-1) {}
237 explicit object_locator_t(const hobject_t& soid)
238 : pool(soid.pool), key(soid.get_key()), nspace(soid.nspace), hash(-1) {}
239
240 int64_t get_pool() const {
241 return pool;
242 }
243
244 void clear() {
245 pool = -1;
246 key = "";
247 nspace = "";
248 hash = -1;
249 }
250
251 bool empty() const {
252 return pool == -1;
253 }
254
255 void encode(bufferlist& bl) const;
256 void decode(bufferlist::iterator& p);
257 void dump(Formatter *f) const;
258 static void generate_test_instances(list<object_locator_t*>& o);
259 };
260 WRITE_CLASS_ENCODER(object_locator_t)
261
262 inline bool operator==(const object_locator_t& l, const object_locator_t& r) {
263 return l.pool == r.pool && l.key == r.key && l.nspace == r.nspace && l.hash == r.hash;
264 }
265 inline bool operator!=(const object_locator_t& l, const object_locator_t& r) {
266 return !(l == r);
267 }
268
269 inline ostream& operator<<(ostream& out, const object_locator_t& loc)
270 {
271 out << "@" << loc.pool;
272 if (loc.nspace.length())
273 out << ";" << loc.nspace;
274 if (loc.key.length())
275 out << ":" << loc.key;
276 return out;
277 }
278
279 struct request_redirect_t {
280 private:
281 object_locator_t redirect_locator; ///< this is authoritative
282 string redirect_object; ///< If non-empty, the request goes to this object name
283 bufferlist osd_instructions; ///< a bufferlist for the OSDs, passed but not interpreted by clients
284
285 friend ostream& operator<<(ostream& out, const request_redirect_t& redir);
286 public:
287
288 request_redirect_t() {}
289 explicit request_redirect_t(const object_locator_t& orig, int64_t rpool) :
290 redirect_locator(orig) { redirect_locator.pool = rpool; }
291 explicit request_redirect_t(const object_locator_t& rloc) :
292 redirect_locator(rloc) {}
293 explicit request_redirect_t(const object_locator_t& orig,
294 const string& robj) :
295 redirect_locator(orig), redirect_object(robj) {}
296
297 void set_instructions(const bufferlist& bl) { osd_instructions = bl; }
298 const bufferlist& get_instructions() { return osd_instructions; }
299
300 bool empty() const { return redirect_locator.empty() &&
301 redirect_object.empty(); }
302
303 void combine_with_locator(object_locator_t& orig, string& obj) const {
304 orig = redirect_locator;
305 if (!redirect_object.empty())
306 obj = redirect_object;
307 }
308
309 void encode(bufferlist& bl) const;
310 void decode(bufferlist::iterator& bl);
311 void dump(Formatter *f) const;
312 static void generate_test_instances(list<request_redirect_t*>& o);
313 };
314 WRITE_CLASS_ENCODER(request_redirect_t)
315
316 inline ostream& operator<<(ostream& out, const request_redirect_t& redir) {
317 out << "object " << redir.redirect_object << ", locator{" << redir.redirect_locator << "}";
318 return out;
319 }
320
321 // Internal OSD op flags - set by the OSD based on the op types
322 enum {
323 CEPH_OSD_RMW_FLAG_READ = (1 << 1),
324 CEPH_OSD_RMW_FLAG_WRITE = (1 << 2),
325 CEPH_OSD_RMW_FLAG_CLASS_READ = (1 << 3),
326 CEPH_OSD_RMW_FLAG_CLASS_WRITE = (1 << 4),
327 CEPH_OSD_RMW_FLAG_PGOP = (1 << 5),
328 CEPH_OSD_RMW_FLAG_CACHE = (1 << 6),
329 CEPH_OSD_RMW_FLAG_FORCE_PROMOTE = (1 << 7),
330 CEPH_OSD_RMW_FLAG_SKIP_HANDLE_CACHE = (1 << 8),
331 CEPH_OSD_RMW_FLAG_SKIP_PROMOTE = (1 << 9),
332 CEPH_OSD_RMW_FLAG_RWORDERED = (1 << 10),
333 };
334
335
336 // pg stuff
337
338 #define OSD_SUPERBLOCK_GOBJECT ghobject_t(hobject_t(sobject_t(object_t("osd_superblock"), 0)))
339
340 // placement seed (a hash value)
341 typedef uint32_t ps_t;
342
343 // old (v1) pg_t encoding (wrap old struct ceph_pg)
344 struct old_pg_t {
345 ceph_pg v;
346 void encode(bufferlist& bl) const {
347 ::encode_raw(v, bl);
348 }
349 void decode(bufferlist::iterator& bl) {
350 ::decode_raw(v, bl);
351 }
352 };
353 WRITE_CLASS_ENCODER(old_pg_t)
354
355 // placement group id
356 struct pg_t {
357 uint64_t m_pool;
358 uint32_t m_seed;
359 int32_t m_preferred;
360
361 pg_t() : m_pool(0), m_seed(0), m_preferred(-1) {}
362 pg_t(ps_t seed, uint64_t pool, int pref=-1) :
363 m_pool(pool), m_seed(seed), m_preferred(pref) {}
364 // cppcheck-suppress noExplicitConstructor
365 pg_t(const ceph_pg& cpg) :
366 m_pool(cpg.pool), m_seed(cpg.ps), m_preferred((__s16)cpg.preferred) {}
367
368 // cppcheck-suppress noExplicitConstructor
369 pg_t(const old_pg_t& opg) {
370 *this = opg.v;
371 }
372
373 old_pg_t get_old_pg() const {
374 old_pg_t o;
375 assert(m_pool < 0xffffffffull);
376 o.v.pool = m_pool;
377 o.v.ps = m_seed;
378 o.v.preferred = (__s16)m_preferred;
379 return o;
380 }
381
382 ps_t ps() const {
383 return m_seed;
384 }
385 uint64_t pool() const {
386 return m_pool;
387 }
388 int32_t preferred() const {
389 return m_preferred;
390 }
391
392 static const uint8_t calc_name_buf_size = 36; // max length for max values len("18446744073709551615.ffffffff") + future suffix len("_head") + '\0'
393 char *calc_name(char *buf, const char *suffix_backwords) const;
394
395 void set_ps(ps_t p) {
396 m_seed = p;
397 }
398 void set_pool(uint64_t p) {
399 m_pool = p;
400 }
401 void set_preferred(int32_t osd) {
402 m_preferred = osd;
403 }
404
405 pg_t get_parent() const;
406 pg_t get_ancestor(unsigned old_pg_num) const;
407
408 int print(char *o, int maxlen) const;
409 bool parse(const char *s);
410
411 bool is_split(unsigned old_pg_num, unsigned new_pg_num, set<pg_t> *pchildren) const;
412
413 /**
414 * Returns b such that for all object o:
415 * ~((~0)<<b) & o.hash) == 0 iff o is in the pg for *this
416 */
417 unsigned get_split_bits(unsigned pg_num) const;
418
419 bool contains(int bits, const ghobject_t& oid) {
420 return oid.match(bits, ps());
421 }
422 bool contains(int bits, const hobject_t& oid) {
423 return oid.match(bits, ps());
424 }
425
426 hobject_t get_hobj_start() const;
427 hobject_t get_hobj_end(unsigned pg_num) const;
428
429 void encode(bufferlist& bl) const {
430 __u8 v = 1;
431 ::encode(v, bl);
432 ::encode(m_pool, bl);
433 ::encode(m_seed, bl);
434 ::encode(m_preferred, bl);
435 }
436 void decode(bufferlist::iterator& bl) {
437 __u8 v;
438 ::decode(v, bl);
439 ::decode(m_pool, bl);
440 ::decode(m_seed, bl);
441 ::decode(m_preferred, bl);
442 }
443 void decode_old(bufferlist::iterator& bl) {
444 old_pg_t opg;
445 ::decode(opg, bl);
446 *this = opg;
447 }
448 void dump(Formatter *f) const;
449 static void generate_test_instances(list<pg_t*>& o);
450 };
451 WRITE_CLASS_ENCODER(pg_t)
452
453 inline bool operator<(const pg_t& l, const pg_t& r) {
454 return l.pool() < r.pool() ||
455 (l.pool() == r.pool() && (l.preferred() < r.preferred() ||
456 (l.preferred() == r.preferred() && (l.ps() < r.ps()))));
457 }
458 inline bool operator<=(const pg_t& l, const pg_t& r) {
459 return l.pool() < r.pool() ||
460 (l.pool() == r.pool() && (l.preferred() < r.preferred() ||
461 (l.preferred() == r.preferred() && (l.ps() <= r.ps()))));
462 }
463 inline bool operator==(const pg_t& l, const pg_t& r) {
464 return l.pool() == r.pool() &&
465 l.preferred() == r.preferred() &&
466 l.ps() == r.ps();
467 }
468 inline bool operator!=(const pg_t& l, const pg_t& r) {
469 return l.pool() != r.pool() ||
470 l.preferred() != r.preferred() ||
471 l.ps() != r.ps();
472 }
473 inline bool operator>(const pg_t& l, const pg_t& r) {
474 return l.pool() > r.pool() ||
475 (l.pool() == r.pool() && (l.preferred() > r.preferred() ||
476 (l.preferred() == r.preferred() && (l.ps() > r.ps()))));
477 }
478 inline bool operator>=(const pg_t& l, const pg_t& r) {
479 return l.pool() > r.pool() ||
480 (l.pool() == r.pool() && (l.preferred() > r.preferred() ||
481 (l.preferred() == r.preferred() && (l.ps() >= r.ps()))));
482 }
483
484 ostream& operator<<(ostream& out, const pg_t &pg);
485
486 namespace std {
487 template<> struct hash< pg_t >
488 {
489 size_t operator()( const pg_t& x ) const
490 {
491 static hash<uint32_t> H;
492 return H((x.pool() & 0xffffffff) ^ (x.pool() >> 32) ^ x.ps() ^ x.preferred());
493 }
494 };
495 } // namespace std
496
497 struct spg_t {
498 pg_t pgid;
499 shard_id_t shard;
500 spg_t() : shard(shard_id_t::NO_SHARD) {}
501 spg_t(pg_t pgid, shard_id_t shard) : pgid(pgid), shard(shard) {}
502 explicit spg_t(pg_t pgid) : pgid(pgid), shard(shard_id_t::NO_SHARD) {}
503 unsigned get_split_bits(unsigned pg_num) const {
504 return pgid.get_split_bits(pg_num);
505 }
506 spg_t get_parent() const {
507 return spg_t(pgid.get_parent(), shard);
508 }
509 ps_t ps() const {
510 return pgid.ps();
511 }
512 uint64_t pool() const {
513 return pgid.pool();
514 }
515 int32_t preferred() const {
516 return pgid.preferred();
517 }
518
519 static const uint8_t calc_name_buf_size = pg_t::calc_name_buf_size + 4; // 36 + len('s') + len("255");
520 char *calc_name(char *buf, const char *suffix_backwords) const;
521
522 bool parse(const char *s);
523 bool parse(const std::string& s) {
524 return parse(s.c_str());
525 }
526 bool is_split(unsigned old_pg_num, unsigned new_pg_num,
527 set<spg_t> *pchildren) const {
528 set<pg_t> _children;
529 set<pg_t> *children = pchildren ? &_children : NULL;
530 bool is_split = pgid.is_split(old_pg_num, new_pg_num, children);
531 if (pchildren && is_split) {
532 for (set<pg_t>::iterator i = _children.begin();
533 i != _children.end();
534 ++i) {
535 pchildren->insert(spg_t(*i, shard));
536 }
537 }
538 return is_split;
539 }
540 bool is_no_shard() const {
541 return shard == shard_id_t::NO_SHARD;
542 }
543
544 ghobject_t make_pgmeta_oid() const {
545 return ghobject_t::make_pgmeta(pgid.pool(), pgid.ps(), shard);
546 }
547
548 void encode(bufferlist &bl) const {
549 ENCODE_START(1, 1, bl);
550 ::encode(pgid, bl);
551 ::encode(shard, bl);
552 ENCODE_FINISH(bl);
553 }
554 void decode(bufferlist::iterator &bl) {
555 DECODE_START(1, bl);
556 ::decode(pgid, bl);
557 ::decode(shard, bl);
558 DECODE_FINISH(bl);
559 }
560
561 ghobject_t make_temp_ghobject(const string& name) const {
562 return ghobject_t(
563 hobject_t(object_t(name), "", CEPH_NOSNAP,
564 pgid.ps(),
565 hobject_t::POOL_TEMP_START - pgid.pool(), ""),
566 ghobject_t::NO_GEN,
567 shard);
568 }
569
570 unsigned hash_to_shard(unsigned num_shards) const {
571 return ps() % num_shards;
572 }
573 };
574 WRITE_CLASS_ENCODER(spg_t)
575 WRITE_EQ_OPERATORS_2(spg_t, pgid, shard)
576 WRITE_CMP_OPERATORS_2(spg_t, pgid, shard)
577
578 namespace std {
579 template<> struct hash< spg_t >
580 {
581 size_t operator()( const spg_t& x ) const
582 {
583 static hash<uint32_t> H;
584 return H(hash<pg_t>()(x.pgid) ^ x.shard);
585 }
586 };
587 } // namespace std
588
589 ostream& operator<<(ostream& out, const spg_t &pg);
590
591 // ----------------------
592
593 class coll_t {
594 enum type_t {
595 TYPE_META = 0,
596 TYPE_LEGACY_TEMP = 1, /* no longer used */
597 TYPE_PG = 2,
598 TYPE_PG_TEMP = 3,
599 };
600 type_t type;
601 spg_t pgid;
602 uint64_t removal_seq; // note: deprecated, not encoded
603
604 char _str_buff[spg_t::calc_name_buf_size];
605 char *_str;
606
607 void calc_str();
608
609 coll_t(type_t t, spg_t p, uint64_t r)
610 : type(t), pgid(p), removal_seq(r) {
611 calc_str();
612 }
613
614 public:
615 coll_t() : type(TYPE_META), removal_seq(0)
616 {
617 calc_str();
618 }
619
620 coll_t(const coll_t& other)
621 : type(other.type), pgid(other.pgid), removal_seq(other.removal_seq) {
622 calc_str();
623 }
624
625 explicit coll_t(spg_t pgid)
626 : type(TYPE_PG), pgid(pgid), removal_seq(0)
627 {
628 calc_str();
629 }
630
631 coll_t& operator=(const coll_t& rhs)
632 {
633 this->type = rhs.type;
634 this->pgid = rhs.pgid;
635 this->removal_seq = rhs.removal_seq;
636 this->calc_str();
637 return *this;
638 }
639
640 // named constructors
641 static coll_t meta() {
642 return coll_t();
643 }
644 static coll_t pg(spg_t p) {
645 return coll_t(p);
646 }
647
648 const std::string to_str() const {
649 return string(_str);
650 }
651 const char *c_str() const {
652 return _str;
653 }
654
655 bool parse(const std::string& s);
656
657 int operator<(const coll_t &rhs) const {
658 return type < rhs.type ||
659 (type == rhs.type && pgid < rhs.pgid);
660 }
661
662 bool is_meta() const {
663 return type == TYPE_META;
664 }
665 bool is_pg_prefix(spg_t *pgid_) const {
666 if (type == TYPE_PG || type == TYPE_PG_TEMP) {
667 *pgid_ = pgid;
668 return true;
669 }
670 return false;
671 }
672 bool is_pg() const {
673 return type == TYPE_PG;
674 }
675 bool is_pg(spg_t *pgid_) const {
676 if (type == TYPE_PG) {
677 *pgid_ = pgid;
678 return true;
679 }
680 return false;
681 }
682 bool is_temp() const {
683 return type == TYPE_PG_TEMP;
684 }
685 bool is_temp(spg_t *pgid_) const {
686 if (type == TYPE_PG_TEMP) {
687 *pgid_ = pgid;
688 return true;
689 }
690 return false;
691 }
692
693 void encode(bufferlist& bl) const;
694 void decode(bufferlist::iterator& bl);
695 size_t encoded_size() const;
696
697 inline bool operator==(const coll_t& rhs) const {
698 // only compare type if meta
699 if (type != rhs.type)
700 return false;
701 if (type == TYPE_META)
702 return true;
703 return type == rhs.type && pgid == rhs.pgid;
704 }
705 inline bool operator!=(const coll_t& rhs) const {
706 return !(*this == rhs);
707 }
708
709 // get a TEMP collection that corresponds to the current collection,
710 // which we presume is a pg collection.
711 coll_t get_temp() const {
712 assert(type == TYPE_PG);
713 return coll_t(TYPE_PG_TEMP, pgid, 0);
714 }
715
716 ghobject_t get_min_hobj() const {
717 ghobject_t o;
718 switch (type) {
719 case TYPE_PG:
720 o.hobj.pool = pgid.pool();
721 o.set_shard(pgid.shard);
722 break;
723 case TYPE_META:
724 o.hobj.pool = -1;
725 break;
726 default:
727 break;
728 }
729 return o;
730 }
731
732 unsigned hash_to_shard(unsigned num_shards) const {
733 if (type == TYPE_PG)
734 return pgid.hash_to_shard(num_shards);
735 return 0; // whatever.
736 }
737
738 void dump(Formatter *f) const;
739 static void generate_test_instances(list<coll_t*>& o);
740 };
741
742 WRITE_CLASS_ENCODER(coll_t)
743
744 inline ostream& operator<<(ostream& out, const coll_t& c) {
745 out << c.to_str();
746 return out;
747 }
748
749 namespace std {
750 template<> struct hash<coll_t> {
751 size_t operator()(const coll_t &c) const {
752 size_t h = 0;
753 string str(c.to_str());
754 std::string::const_iterator end(str.end());
755 for (std::string::const_iterator s = str.begin(); s != end; ++s) {
756 h += *s;
757 h += (h << 10);
758 h ^= (h >> 6);
759 }
760 h += (h << 3);
761 h ^= (h >> 11);
762 h += (h << 15);
763 return h;
764 }
765 };
766 } // namespace std
767
768 inline ostream& operator<<(ostream& out, const ceph_object_layout &ol)
769 {
770 out << pg_t(ol.ol_pgid);
771 int su = ol.ol_stripe_unit;
772 if (su)
773 out << ".su=" << su;
774 return out;
775 }
776
777
778
779 // compound rados version type
780 /* WARNING: If add member in eversion_t, please make sure the encode/decode function
781 * work well. For little-endian machine, we should make sure there is no padding
782 * in 32-bit machine and 64-bit machine.
783 */
784 class eversion_t {
785 public:
786 version_t version;
787 epoch_t epoch;
788 __u32 __pad;
789 eversion_t() : version(0), epoch(0), __pad(0) {}
790 eversion_t(epoch_t e, version_t v) : version(v), epoch(e), __pad(0) {}
791
792 // cppcheck-suppress noExplicitConstructor
793 eversion_t(const ceph_eversion& ce) :
794 version(ce.version),
795 epoch(ce.epoch),
796 __pad(0) { }
797
798 explicit eversion_t(bufferlist& bl) : __pad(0) { decode(bl); }
799
800 static eversion_t max() {
801 eversion_t max;
802 max.version -= 1;
803 max.epoch -= 1;
804 return max;
805 }
806
807 operator ceph_eversion() {
808 ceph_eversion c;
809 c.epoch = epoch;
810 c.version = version;
811 return c;
812 }
813
814 string get_key_name() const;
815
816 void encode(bufferlist &bl) const {
817 #if defined(CEPH_LITTLE_ENDIAN)
818 bl.append((char *)this, sizeof(version_t) + sizeof(epoch_t));
819 #else
820 ::encode(version, bl);
821 ::encode(epoch, bl);
822 #endif
823 }
824 void decode(bufferlist::iterator &bl) {
825 #if defined(CEPH_LITTLE_ENDIAN)
826 bl.copy(sizeof(version_t) + sizeof(epoch_t), (char *)this);
827 #else
828 ::decode(version, bl);
829 ::decode(epoch, bl);
830 #endif
831 }
832 void decode(bufferlist& bl) {
833 bufferlist::iterator p = bl.begin();
834 decode(p);
835 }
836 };
837 WRITE_CLASS_ENCODER(eversion_t)
838
839 inline bool operator==(const eversion_t& l, const eversion_t& r) {
840 return (l.epoch == r.epoch) && (l.version == r.version);
841 }
842 inline bool operator!=(const eversion_t& l, const eversion_t& r) {
843 return (l.epoch != r.epoch) || (l.version != r.version);
844 }
845 inline bool operator<(const eversion_t& l, const eversion_t& r) {
846 return (l.epoch == r.epoch) ? (l.version < r.version):(l.epoch < r.epoch);
847 }
848 inline bool operator<=(const eversion_t& l, const eversion_t& r) {
849 return (l.epoch == r.epoch) ? (l.version <= r.version):(l.epoch <= r.epoch);
850 }
851 inline bool operator>(const eversion_t& l, const eversion_t& r) {
852 return (l.epoch == r.epoch) ? (l.version > r.version):(l.epoch > r.epoch);
853 }
854 inline bool operator>=(const eversion_t& l, const eversion_t& r) {
855 return (l.epoch == r.epoch) ? (l.version >= r.version):(l.epoch >= r.epoch);
856 }
857 inline ostream& operator<<(ostream& out, const eversion_t& e) {
858 return out << e.epoch << "'" << e.version;
859 }
860
861 /**
862 * objectstore_perf_stat_t
863 *
864 * current perf information about the osd
865 */
866 struct objectstore_perf_stat_t {
867 // cur_op_latency is in ms since double add/sub are not associative
868 uint32_t os_commit_latency;
869 uint32_t os_apply_latency;
870
871 objectstore_perf_stat_t() :
872 os_commit_latency(0), os_apply_latency(0) {}
873
874 bool operator==(const objectstore_perf_stat_t &r) const {
875 return os_commit_latency == r.os_commit_latency &&
876 os_apply_latency == r.os_apply_latency;
877 }
878
879 void add(const objectstore_perf_stat_t &o) {
880 os_commit_latency += o.os_commit_latency;
881 os_apply_latency += o.os_apply_latency;
882 }
883 void sub(const objectstore_perf_stat_t &o) {
884 os_commit_latency -= o.os_commit_latency;
885 os_apply_latency -= o.os_apply_latency;
886 }
887 void dump(Formatter *f) const;
888 void encode(bufferlist &bl) const;
889 void decode(bufferlist::iterator &bl);
890 static void generate_test_instances(std::list<objectstore_perf_stat_t*>& o);
891 };
892 WRITE_CLASS_ENCODER(objectstore_perf_stat_t)
893
894 /** osd_stat
895 * aggregate stats for an osd
896 */
897 struct osd_stat_t {
898 int64_t kb, kb_used, kb_avail;
899 vector<int> hb_peers;
900 int32_t snap_trim_queue_len, num_snap_trimming;
901
902 pow2_hist_t op_queue_age_hist;
903
904 objectstore_perf_stat_t os_perf_stat;
905
906 epoch_t up_from = 0;
907 uint64_t seq = 0;
908
909 uint32_t num_pgs = 0;
910
911 osd_stat_t() : kb(0), kb_used(0), kb_avail(0),
912 snap_trim_queue_len(0), num_snap_trimming(0) {}
913
914 void add(const osd_stat_t& o) {
915 kb += o.kb;
916 kb_used += o.kb_used;
917 kb_avail += o.kb_avail;
918 snap_trim_queue_len += o.snap_trim_queue_len;
919 num_snap_trimming += o.num_snap_trimming;
920 op_queue_age_hist.add(o.op_queue_age_hist);
921 os_perf_stat.add(o.os_perf_stat);
922 num_pgs += o.num_pgs;
923 }
924 void sub(const osd_stat_t& o) {
925 kb -= o.kb;
926 kb_used -= o.kb_used;
927 kb_avail -= o.kb_avail;
928 snap_trim_queue_len -= o.snap_trim_queue_len;
929 num_snap_trimming -= o.num_snap_trimming;
930 op_queue_age_hist.sub(o.op_queue_age_hist);
931 os_perf_stat.sub(o.os_perf_stat);
932 num_pgs -= o.num_pgs;
933 }
934
935 void dump(Formatter *f) const;
936 void encode(bufferlist &bl) const;
937 void decode(bufferlist::iterator &bl);
938 static void generate_test_instances(std::list<osd_stat_t*>& o);
939 };
940 WRITE_CLASS_ENCODER(osd_stat_t)
941
942 inline bool operator==(const osd_stat_t& l, const osd_stat_t& r) {
943 return l.kb == r.kb &&
944 l.kb_used == r.kb_used &&
945 l.kb_avail == r.kb_avail &&
946 l.snap_trim_queue_len == r.snap_trim_queue_len &&
947 l.num_snap_trimming == r.num_snap_trimming &&
948 l.hb_peers == r.hb_peers &&
949 l.op_queue_age_hist == r.op_queue_age_hist &&
950 l.os_perf_stat == r.os_perf_stat &&
951 l.num_pgs == r.num_pgs;
952 }
953 inline bool operator!=(const osd_stat_t& l, const osd_stat_t& r) {
954 return !(l == r);
955 }
956
957
958
959 inline ostream& operator<<(ostream& out, const osd_stat_t& s) {
960 return out << "osd_stat(" << kb_t(s.kb_used) << " used, "
961 << kb_t(s.kb_avail) << " avail, "
962 << kb_t(s.kb) << " total, "
963 << "peers " << s.hb_peers
964 << " op hist " << s.op_queue_age_hist.h
965 << ")";
966 }
967
968
969 /*
970 * pg states
971 */
972 #define PG_STATE_CREATING (1<<0) // creating
973 #define PG_STATE_ACTIVE (1<<1) // i am active. (primary: replicas too)
974 #define PG_STATE_CLEAN (1<<2) // peers are complete, clean of stray replicas.
975 #define PG_STATE_DOWN (1<<4) // a needed replica is down, PG offline
976 #define PG_STATE_RECOVERY_UNFOUND (1<<5) // recovery stopped due to unfound
977 #define PG_STATE_BACKFILL_UNFOUND (1<<6) // backfill stopped due to unfound
978 //#define PG_STATE_SPLITTING (1<<7) // i am splitting
979 #define PG_STATE_SCRUBBING (1<<8) // scrubbing
980 //#define PG_STATE_SCRUBQ (1<<9) // queued for scrub
981 #define PG_STATE_DEGRADED (1<<10) // pg contains objects with reduced redundancy
982 #define PG_STATE_INCONSISTENT (1<<11) // pg replicas are inconsistent (but shouldn't be)
983 #define PG_STATE_PEERING (1<<12) // pg is (re)peering
984 #define PG_STATE_REPAIR (1<<13) // pg should repair on next scrub
985 #define PG_STATE_RECOVERING (1<<14) // pg is recovering/migrating objects
986 #define PG_STATE_BACKFILL_WAIT (1<<15) // [active] reserving backfill
987 #define PG_STATE_INCOMPLETE (1<<16) // incomplete content, peering failed.
988 #define PG_STATE_STALE (1<<17) // our state for this pg is stale, unknown.
989 #define PG_STATE_REMAPPED (1<<18) // pg is explicitly remapped to different OSDs than CRUSH
990 #define PG_STATE_DEEP_SCRUB (1<<19) // deep scrub: check CRC32 on files
991 #define PG_STATE_BACKFILLING (1<<20) // [active] backfilling pg content
992 #define PG_STATE_BACKFILL_TOOFULL (1<<21) // backfill can't proceed: too full
993 #define PG_STATE_RECOVERY_WAIT (1<<22) // waiting for recovery reservations
994 #define PG_STATE_UNDERSIZED (1<<23) // pg acting < pool size
995 #define PG_STATE_ACTIVATING (1<<24) // pg is peered but not yet active
996 #define PG_STATE_PEERED (1<<25) // peered, cannot go active, can recover
997 #define PG_STATE_SNAPTRIM (1<<26) // trimming snaps
998 #define PG_STATE_SNAPTRIM_WAIT (1<<27) // queued to trim snaps
999 #define PG_STATE_RECOVERY_TOOFULL (1<<28) // recovery can't proceed: too full
1000 #define PG_STATE_SNAPTRIM_ERROR (1<<29) // error stopped trimming snaps
1001 #define PG_STATE_FORCED_RECOVERY (1<<30) // force recovery of this pg before any other
1002 #define PG_STATE_FORCED_BACKFILL (1<<31) // force backfill of this pg before any other
1003
1004 std::string pg_state_string(int state);
1005 std::string pg_vector_string(const vector<int32_t> &a);
1006 boost::optional<uint64_t> pg_string_state(const std::string& state);
1007
1008
1009 /*
1010 * pool_snap_info_t
1011 *
1012 * attributes for a single pool snapshot.
1013 */
1014 struct pool_snap_info_t {
1015 snapid_t snapid;
1016 utime_t stamp;
1017 string name;
1018
1019 void dump(Formatter *f) const;
1020 void encode(bufferlist& bl, uint64_t features) const;
1021 void decode(bufferlist::iterator& bl);
1022 static void generate_test_instances(list<pool_snap_info_t*>& o);
1023 };
1024 WRITE_CLASS_ENCODER_FEATURES(pool_snap_info_t)
1025
1026 inline ostream& operator<<(ostream& out, const pool_snap_info_t& si) {
1027 return out << si.snapid << '(' << si.name << ' ' << si.stamp << ')';
1028 }
1029
1030
1031 /*
1032 * pool_opts_t
1033 *
1034 * pool options.
1035 */
1036
1037 class pool_opts_t {
1038 public:
1039 enum key_t {
1040 SCRUB_MIN_INTERVAL,
1041 SCRUB_MAX_INTERVAL,
1042 DEEP_SCRUB_INTERVAL,
1043 RECOVERY_PRIORITY,
1044 RECOVERY_OP_PRIORITY,
1045 SCRUB_PRIORITY,
1046 COMPRESSION_MODE,
1047 COMPRESSION_ALGORITHM,
1048 COMPRESSION_REQUIRED_RATIO,
1049 COMPRESSION_MAX_BLOB_SIZE,
1050 COMPRESSION_MIN_BLOB_SIZE,
1051 CSUM_TYPE,
1052 CSUM_MAX_BLOCK,
1053 CSUM_MIN_BLOCK,
1054 };
1055
1056 enum type_t {
1057 STR,
1058 INT,
1059 DOUBLE,
1060 };
1061
1062 struct opt_desc_t {
1063 key_t key;
1064 type_t type;
1065
1066 opt_desc_t(key_t k, type_t t) : key(k), type(t) {}
1067
1068 bool operator==(const opt_desc_t& rhs) const {
1069 return key == rhs.key && type == rhs.type;
1070 }
1071 };
1072
1073 typedef boost::variant<std::string,int,double> value_t;
1074
1075 static bool is_opt_name(const std::string& name);
1076 static opt_desc_t get_opt_desc(const std::string& name);
1077
1078 pool_opts_t() : opts() {}
1079
1080 bool is_set(key_t key) const;
1081
1082 template<typename T>
1083 void set(key_t key, const T &val) {
1084 value_t value = val;
1085 opts[key] = value;
1086 }
1087
1088 template<typename T>
1089 bool get(key_t key, T *val) const {
1090 opts_t::const_iterator i = opts.find(key);
1091 if (i == opts.end()) {
1092 return false;
1093 }
1094 *val = boost::get<T>(i->second);
1095 return true;
1096 }
1097
1098 const value_t& get(key_t key) const;
1099
1100 bool unset(key_t key);
1101
1102 void dump(const std::string& name, Formatter *f) const;
1103
1104 void dump(Formatter *f) const;
1105 void encode(bufferlist &bl) const;
1106 void decode(bufferlist::iterator &bl);
1107
1108 private:
1109 typedef std::map<key_t, value_t> opts_t;
1110 opts_t opts;
1111
1112 friend ostream& operator<<(ostream& out, const pool_opts_t& opts);
1113 };
1114 WRITE_CLASS_ENCODER(pool_opts_t)
1115
1116 /*
1117 * pg_pool
1118 */
1119 struct pg_pool_t {
1120 static const char *APPLICATION_NAME_CEPHFS;
1121 static const char *APPLICATION_NAME_RBD;
1122 static const char *APPLICATION_NAME_RGW;
1123
1124 enum {
1125 TYPE_REPLICATED = 1, // replication
1126 //TYPE_RAID4 = 2, // raid4 (never implemented)
1127 TYPE_ERASURE = 3, // erasure-coded
1128 };
1129 static const char *get_type_name(int t) {
1130 switch (t) {
1131 case TYPE_REPLICATED: return "replicated";
1132 //case TYPE_RAID4: return "raid4";
1133 case TYPE_ERASURE: return "erasure";
1134 default: return "???";
1135 }
1136 }
1137 const char *get_type_name() const {
1138 return get_type_name(type);
1139 }
1140
1141 enum {
1142 FLAG_HASHPSPOOL = 1<<0, // hash pg seed and pool together (instead of adding)
1143 FLAG_FULL = 1<<1, // pool is full
1144 FLAG_EC_OVERWRITES = 1<<2, // enables overwrites, once enabled, cannot be disabled
1145 FLAG_INCOMPLETE_CLONES = 1<<3, // may have incomplete clones (bc we are/were an overlay)
1146 FLAG_NODELETE = 1<<4, // pool can't be deleted
1147 FLAG_NOPGCHANGE = 1<<5, // pool's pg and pgp num can't be changed
1148 FLAG_NOSIZECHANGE = 1<<6, // pool's size and min size can't be changed
1149 FLAG_WRITE_FADVISE_DONTNEED = 1<<7, // write mode with LIBRADOS_OP_FLAG_FADVISE_DONTNEED
1150 FLAG_NOSCRUB = 1<<8, // block periodic scrub
1151 FLAG_NODEEP_SCRUB = 1<<9, // block periodic deep-scrub
1152 FLAG_FULL_NO_QUOTA = 1<<10, // pool is currently running out of quota, will set FLAG_FULL too
1153 FLAG_NEARFULL = 1<<11, // pool is nearfull
1154 FLAG_BACKFILLFULL = 1<<12, // pool is backfillfull
1155 };
1156
1157 static const char *get_flag_name(int f) {
1158 switch (f) {
1159 case FLAG_HASHPSPOOL: return "hashpspool";
1160 case FLAG_FULL: return "full";
1161 case FLAG_EC_OVERWRITES: return "ec_overwrites";
1162 case FLAG_INCOMPLETE_CLONES: return "incomplete_clones";
1163 case FLAG_NODELETE: return "nodelete";
1164 case FLAG_NOPGCHANGE: return "nopgchange";
1165 case FLAG_NOSIZECHANGE: return "nosizechange";
1166 case FLAG_WRITE_FADVISE_DONTNEED: return "write_fadvise_dontneed";
1167 case FLAG_NOSCRUB: return "noscrub";
1168 case FLAG_NODEEP_SCRUB: return "nodeep-scrub";
1169 case FLAG_FULL_NO_QUOTA: return "full_no_quota";
1170 case FLAG_NEARFULL: return "nearfull";
1171 case FLAG_BACKFILLFULL: return "backfillfull";
1172 default: return "???";
1173 }
1174 }
1175 static string get_flags_string(uint64_t f) {
1176 string s;
1177 for (unsigned n=0; f && n<64; ++n) {
1178 if (f & (1ull << n)) {
1179 if (s.length())
1180 s += ",";
1181 s += get_flag_name(1ull << n);
1182 }
1183 }
1184 return s;
1185 }
1186 string get_flags_string() const {
1187 return get_flags_string(flags);
1188 }
1189 static uint64_t get_flag_by_name(const string& name) {
1190 if (name == "hashpspool")
1191 return FLAG_HASHPSPOOL;
1192 if (name == "full")
1193 return FLAG_FULL;
1194 if (name == "ec_overwrites")
1195 return FLAG_EC_OVERWRITES;
1196 if (name == "incomplete_clones")
1197 return FLAG_INCOMPLETE_CLONES;
1198 if (name == "nodelete")
1199 return FLAG_NODELETE;
1200 if (name == "nopgchange")
1201 return FLAG_NOPGCHANGE;
1202 if (name == "nosizechange")
1203 return FLAG_NOSIZECHANGE;
1204 if (name == "write_fadvise_dontneed")
1205 return FLAG_WRITE_FADVISE_DONTNEED;
1206 if (name == "noscrub")
1207 return FLAG_NOSCRUB;
1208 if (name == "nodeep-scrub")
1209 return FLAG_NODEEP_SCRUB;
1210 if (name == "full_no_quota")
1211 return FLAG_FULL_NO_QUOTA;
1212 if (name == "nearfull")
1213 return FLAG_NEARFULL;
1214 if (name == "backfillfull")
1215 return FLAG_BACKFILLFULL;
1216 return 0;
1217 }
1218
1219 /// converts the acting/up vector to a set of pg shards
1220 void convert_to_pg_shards(const vector<int> &from, set<pg_shard_t>* to) const;
1221
1222 typedef enum {
1223 CACHEMODE_NONE = 0, ///< no caching
1224 CACHEMODE_WRITEBACK = 1, ///< write to cache, flush later
1225 CACHEMODE_FORWARD = 2, ///< forward if not in cache
1226 CACHEMODE_READONLY = 3, ///< handle reads, forward writes [not strongly consistent]
1227 CACHEMODE_READFORWARD = 4, ///< forward reads, write to cache flush later
1228 CACHEMODE_READPROXY = 5, ///< proxy reads, write to cache flush later
1229 CACHEMODE_PROXY = 6, ///< proxy if not in cache
1230 } cache_mode_t;
1231 static const char *get_cache_mode_name(cache_mode_t m) {
1232 switch (m) {
1233 case CACHEMODE_NONE: return "none";
1234 case CACHEMODE_WRITEBACK: return "writeback";
1235 case CACHEMODE_FORWARD: return "forward";
1236 case CACHEMODE_READONLY: return "readonly";
1237 case CACHEMODE_READFORWARD: return "readforward";
1238 case CACHEMODE_READPROXY: return "readproxy";
1239 case CACHEMODE_PROXY: return "proxy";
1240 default: return "unknown";
1241 }
1242 }
1243 static cache_mode_t get_cache_mode_from_str(const string& s) {
1244 if (s == "none")
1245 return CACHEMODE_NONE;
1246 if (s == "writeback")
1247 return CACHEMODE_WRITEBACK;
1248 if (s == "forward")
1249 return CACHEMODE_FORWARD;
1250 if (s == "readonly")
1251 return CACHEMODE_READONLY;
1252 if (s == "readforward")
1253 return CACHEMODE_READFORWARD;
1254 if (s == "readproxy")
1255 return CACHEMODE_READPROXY;
1256 if (s == "proxy")
1257 return CACHEMODE_PROXY;
1258 return (cache_mode_t)-1;
1259 }
1260 const char *get_cache_mode_name() const {
1261 return get_cache_mode_name(cache_mode);
1262 }
1263 bool cache_mode_requires_hit_set() const {
1264 switch (cache_mode) {
1265 case CACHEMODE_NONE:
1266 case CACHEMODE_FORWARD:
1267 case CACHEMODE_READONLY:
1268 case CACHEMODE_PROXY:
1269 return false;
1270 case CACHEMODE_WRITEBACK:
1271 case CACHEMODE_READFORWARD:
1272 case CACHEMODE_READPROXY:
1273 return true;
1274 default:
1275 assert(0 == "implement me");
1276 }
1277 }
1278
1279 uint64_t flags; ///< FLAG_*
1280 __u8 type; ///< TYPE_*
1281 __u8 size, min_size; ///< number of osds in each pg
1282 __u8 crush_rule; ///< crush placement rule
1283 __u8 object_hash; ///< hash mapping object name to ps
1284 private:
1285 __u32 pg_num, pgp_num; ///< number of pgs
1286
1287
1288 public:
1289 map<string,string> properties; ///< OBSOLETE
1290 string erasure_code_profile; ///< name of the erasure code profile in OSDMap
1291 epoch_t last_change; ///< most recent epoch changed, exclusing snapshot changes
1292 epoch_t last_force_op_resend; ///< last epoch that forced clients to resend
1293 /// last epoch that forced clients to resend (pre-luminous clients only)
1294 epoch_t last_force_op_resend_preluminous;
1295 snapid_t snap_seq; ///< seq for per-pool snapshot
1296 epoch_t snap_epoch; ///< osdmap epoch of last snap
1297 uint64_t auid; ///< who owns the pg
1298 __u32 crash_replay_interval; ///< seconds to allow clients to replay ACKed but unCOMMITted requests
1299
1300 uint64_t quota_max_bytes; ///< maximum number of bytes for this pool
1301 uint64_t quota_max_objects; ///< maximum number of objects for this pool
1302
1303 /*
1304 * Pool snaps (global to this pool). These define a SnapContext for
1305 * the pool, unless the client manually specifies an alternate
1306 * context.
1307 */
1308 map<snapid_t, pool_snap_info_t> snaps;
1309 /*
1310 * Alternatively, if we are defining non-pool snaps (e.g. via the
1311 * Ceph MDS), we must track @removed_snaps (since @snaps is not
1312 * used). Snaps and removed_snaps are to be used exclusive of each
1313 * other!
1314 */
1315 interval_set<snapid_t> removed_snaps;
1316
1317 unsigned pg_num_mask, pgp_num_mask;
1318
1319 set<uint64_t> tiers; ///< pools that are tiers of us
1320 int64_t tier_of; ///< pool for which we are a tier
1321 // Note that write wins for read+write ops
1322 int64_t read_tier; ///< pool/tier for objecter to direct reads to
1323 int64_t write_tier; ///< pool/tier for objecter to direct writes to
1324 cache_mode_t cache_mode; ///< cache pool mode
1325
1326 bool is_tier() const { return tier_of >= 0; }
1327 bool has_tiers() const { return !tiers.empty(); }
1328 void clear_tier() {
1329 tier_of = -1;
1330 clear_read_tier();
1331 clear_write_tier();
1332 clear_tier_tunables();
1333 }
1334 bool has_read_tier() const { return read_tier >= 0; }
1335 void clear_read_tier() { read_tier = -1; }
1336 bool has_write_tier() const { return write_tier >= 0; }
1337 void clear_write_tier() { write_tier = -1; }
1338 void clear_tier_tunables() {
1339 if (cache_mode != CACHEMODE_NONE)
1340 flags |= FLAG_INCOMPLETE_CLONES;
1341 cache_mode = CACHEMODE_NONE;
1342
1343 target_max_bytes = 0;
1344 target_max_objects = 0;
1345 cache_target_dirty_ratio_micro = 0;
1346 cache_target_dirty_high_ratio_micro = 0;
1347 cache_target_full_ratio_micro = 0;
1348 hit_set_params = HitSet::Params();
1349 hit_set_period = 0;
1350 hit_set_count = 0;
1351 hit_set_grade_decay_rate = 0;
1352 hit_set_search_last_n = 0;
1353 grade_table.resize(0);
1354 }
1355
1356 uint64_t target_max_bytes; ///< tiering: target max pool size
1357 uint64_t target_max_objects; ///< tiering: target max pool size
1358
1359 uint32_t cache_target_dirty_ratio_micro; ///< cache: fraction of target to leave dirty
1360 uint32_t cache_target_dirty_high_ratio_micro; ///<cache: fraction of target to flush with high speed
1361 uint32_t cache_target_full_ratio_micro; ///< cache: fraction of target to fill before we evict in earnest
1362
1363 uint32_t cache_min_flush_age; ///< minimum age (seconds) before we can flush
1364 uint32_t cache_min_evict_age; ///< minimum age (seconds) before we can evict
1365
1366 HitSet::Params hit_set_params; ///< The HitSet params to use on this pool
1367 uint32_t hit_set_period; ///< periodicity of HitSet segments (seconds)
1368 uint32_t hit_set_count; ///< number of periods to retain
1369 bool use_gmt_hitset; ///< use gmt to name the hitset archive object
1370 uint32_t min_read_recency_for_promote; ///< minimum number of HitSet to check before promote on read
1371 uint32_t min_write_recency_for_promote; ///< minimum number of HitSet to check before promote on write
1372 uint32_t hit_set_grade_decay_rate; ///< current hit_set has highest priority on objects
1373 ///temperature count,the follow hit_set's priority decay
1374 ///by this params than pre hit_set
1375 uint32_t hit_set_search_last_n; ///<accumulate atmost N hit_sets for temperature
1376
1377 uint32_t stripe_width; ///< erasure coded stripe size in bytes
1378
1379 uint64_t expected_num_objects; ///< expected number of objects on this pool, a value of 0 indicates
1380 ///< user does not specify any expected value
1381 bool fast_read; ///< whether turn on fast read on the pool or not
1382
1383 pool_opts_t opts; ///< options
1384
1385 /// application -> key/value metadata
1386 map<string, std::map<string, string>> application_metadata;
1387
1388 private:
1389 vector<uint32_t> grade_table;
1390
1391 public:
1392 uint32_t get_grade(unsigned i) const {
1393 if (grade_table.size() <= i)
1394 return 0;
1395 return grade_table[i];
1396 }
1397 void calc_grade_table() {
1398 unsigned v = 1000000;
1399 grade_table.resize(hit_set_count);
1400 for (unsigned i = 0; i < hit_set_count; i++) {
1401 v = v * (1 - (hit_set_grade_decay_rate / 100.0));
1402 grade_table[i] = v;
1403 }
1404 }
1405
1406 pg_pool_t()
1407 : flags(0), type(0), size(0), min_size(0),
1408 crush_rule(0), object_hash(0),
1409 pg_num(0), pgp_num(0),
1410 last_change(0),
1411 last_force_op_resend(0),
1412 last_force_op_resend_preluminous(0),
1413 snap_seq(0), snap_epoch(0),
1414 auid(0),
1415 crash_replay_interval(0),
1416 quota_max_bytes(0), quota_max_objects(0),
1417 pg_num_mask(0), pgp_num_mask(0),
1418 tier_of(-1), read_tier(-1), write_tier(-1),
1419 cache_mode(CACHEMODE_NONE),
1420 target_max_bytes(0), target_max_objects(0),
1421 cache_target_dirty_ratio_micro(0),
1422 cache_target_dirty_high_ratio_micro(0),
1423 cache_target_full_ratio_micro(0),
1424 cache_min_flush_age(0),
1425 cache_min_evict_age(0),
1426 hit_set_params(),
1427 hit_set_period(0),
1428 hit_set_count(0),
1429 use_gmt_hitset(true),
1430 min_read_recency_for_promote(0),
1431 min_write_recency_for_promote(0),
1432 hit_set_grade_decay_rate(0),
1433 hit_set_search_last_n(0),
1434 stripe_width(0),
1435 expected_num_objects(0),
1436 fast_read(false),
1437 opts()
1438 { }
1439
1440 void dump(Formatter *f) const;
1441
1442 uint64_t get_flags() const { return flags; }
1443 bool has_flag(uint64_t f) const { return flags & f; }
1444 void set_flag(uint64_t f) { flags |= f; }
1445 void unset_flag(uint64_t f) { flags &= ~f; }
1446
1447 bool ec_pool() const {
1448 return type == TYPE_ERASURE;
1449 }
1450 bool require_rollback() const {
1451 return ec_pool();
1452 }
1453
1454 /// true if incomplete clones may be present
1455 bool allow_incomplete_clones() const {
1456 return cache_mode != CACHEMODE_NONE || has_flag(FLAG_INCOMPLETE_CLONES);
1457 }
1458
1459 unsigned get_type() const { return type; }
1460 unsigned get_size() const { return size; }
1461 unsigned get_min_size() const { return min_size; }
1462 int get_crush_rule() const { return crush_rule; }
1463 int get_object_hash() const { return object_hash; }
1464 const char *get_object_hash_name() const {
1465 return ceph_str_hash_name(get_object_hash());
1466 }
1467 epoch_t get_last_change() const { return last_change; }
1468 epoch_t get_last_force_op_resend() const { return last_force_op_resend; }
1469 epoch_t get_last_force_op_resend_preluminous() const {
1470 return last_force_op_resend_preluminous;
1471 }
1472 epoch_t get_snap_epoch() const { return snap_epoch; }
1473 snapid_t get_snap_seq() const { return snap_seq; }
1474 uint64_t get_auid() const { return auid; }
1475 unsigned get_crash_replay_interval() const { return crash_replay_interval; }
1476
1477 void set_snap_seq(snapid_t s) { snap_seq = s; }
1478 void set_snap_epoch(epoch_t e) { snap_epoch = e; }
1479
1480 void set_stripe_width(uint32_t s) { stripe_width = s; }
1481 uint32_t get_stripe_width() const { return stripe_width; }
1482
1483 bool is_replicated() const { return get_type() == TYPE_REPLICATED; }
1484 bool is_erasure() const { return get_type() == TYPE_ERASURE; }
1485
1486 bool supports_omap() const {
1487 return !(get_type() == TYPE_ERASURE);
1488 }
1489
1490 bool requires_aligned_append() const {
1491 return is_erasure() && !has_flag(FLAG_EC_OVERWRITES);
1492 }
1493 uint64_t required_alignment() const { return stripe_width; }
1494
1495 bool allows_ecoverwrites() const {
1496 return has_flag(FLAG_EC_OVERWRITES);
1497 }
1498
1499 bool can_shift_osds() const {
1500 switch (get_type()) {
1501 case TYPE_REPLICATED:
1502 return true;
1503 case TYPE_ERASURE:
1504 return false;
1505 default:
1506 assert(0 == "unhandled pool type");
1507 }
1508 }
1509
1510 unsigned get_pg_num() const { return pg_num; }
1511 unsigned get_pgp_num() const { return pgp_num; }
1512
1513 unsigned get_pg_num_mask() const { return pg_num_mask; }
1514 unsigned get_pgp_num_mask() const { return pgp_num_mask; }
1515
1516 // if pg_num is not a multiple of two, pgs are not equally sized.
1517 // return, for a given pg, the fraction (denominator) of the total
1518 // pool size that it represents.
1519 unsigned get_pg_num_divisor(pg_t pgid) const;
1520
1521 void set_pg_num(int p) {
1522 pg_num = p;
1523 calc_pg_masks();
1524 }
1525 void set_pgp_num(int p) {
1526 pgp_num = p;
1527 calc_pg_masks();
1528 }
1529
1530 void set_quota_max_bytes(uint64_t m) {
1531 quota_max_bytes = m;
1532 }
1533 uint64_t get_quota_max_bytes() {
1534 return quota_max_bytes;
1535 }
1536
1537 void set_quota_max_objects(uint64_t m) {
1538 quota_max_objects = m;
1539 }
1540 uint64_t get_quota_max_objects() {
1541 return quota_max_objects;
1542 }
1543
1544 void set_last_force_op_resend(uint64_t t) {
1545 last_force_op_resend = t;
1546 last_force_op_resend_preluminous = t;
1547 }
1548
1549 void calc_pg_masks();
1550
1551 /*
1552 * we have two snap modes:
1553 * - pool global snaps
1554 * - snap existence/non-existence defined by snaps[] and snap_seq
1555 * - user managed snaps
1556 * - removal governed by removed_snaps
1557 *
1558 * we know which mode we're using based on whether removed_snaps is empty.
1559 * If nothing has been created, both functions report false.
1560 */
1561 bool is_pool_snaps_mode() const;
1562 bool is_unmanaged_snaps_mode() const;
1563 bool is_removed_snap(snapid_t s) const;
1564
1565 /*
1566 * build set of known-removed sets from either pool snaps or
1567 * explicit removed_snaps set.
1568 */
1569 void build_removed_snaps(interval_set<snapid_t>& rs) const;
1570 snapid_t snap_exists(const char *s) const;
1571 void add_snap(const char *n, utime_t stamp);
1572 void add_unmanaged_snap(uint64_t& snapid);
1573 void remove_snap(snapid_t s);
1574 void remove_unmanaged_snap(snapid_t s);
1575
1576 SnapContext get_snap_context() const;
1577
1578 /// hash a object name+namespace key to a hash position
1579 uint32_t hash_key(const string& key, const string& ns) const;
1580
1581 /// round a hash position down to a pg num
1582 uint32_t raw_hash_to_pg(uint32_t v) const;
1583
1584 /*
1585 * map a raw pg (with full precision ps) into an actual pg, for storage
1586 */
1587 pg_t raw_pg_to_pg(pg_t pg) const;
1588
1589 /*
1590 * map raw pg (full precision ps) into a placement seed. include
1591 * pool id in that value so that different pools don't use the same
1592 * seeds.
1593 */
1594 ps_t raw_pg_to_pps(pg_t pg) const;
1595
1596 /// choose a random hash position within a pg
1597 uint32_t get_random_pg_position(pg_t pgid, uint32_t seed) const;
1598
1599 void encode(bufferlist& bl, uint64_t features) const;
1600 void decode(bufferlist::iterator& bl);
1601
1602 static void generate_test_instances(list<pg_pool_t*>& o);
1603 };
1604 WRITE_CLASS_ENCODER_FEATURES(pg_pool_t)
1605
1606 ostream& operator<<(ostream& out, const pg_pool_t& p);
1607
1608
1609 /**
1610 * a summation of object stats
1611 *
1612 * This is just a container for object stats; we don't know what for.
1613 *
1614 * If you add members in object_stat_sum_t, you should make sure there are
1615 * not padding among these members.
1616 * You should also modify the padding_check function.
1617
1618 */
1619 struct object_stat_sum_t {
1620 /**************************************************************************
1621 * WARNING: be sure to update operator==, floor, and split when
1622 * adding/removing fields!
1623 **************************************************************************/
1624 int64_t num_bytes; // in bytes
1625 int64_t num_objects;
1626 int64_t num_object_clones;
1627 int64_t num_object_copies; // num_objects * num_replicas
1628 int64_t num_objects_missing_on_primary;
1629 int64_t num_objects_degraded;
1630 int64_t num_objects_unfound;
1631 int64_t num_rd;
1632 int64_t num_rd_kb;
1633 int64_t num_wr;
1634 int64_t num_wr_kb;
1635 int64_t num_scrub_errors; // total deep and shallow scrub errors
1636 int64_t num_objects_recovered;
1637 int64_t num_bytes_recovered;
1638 int64_t num_keys_recovered;
1639 int64_t num_shallow_scrub_errors;
1640 int64_t num_deep_scrub_errors;
1641 int64_t num_objects_dirty;
1642 int64_t num_whiteouts;
1643 int64_t num_objects_omap;
1644 int64_t num_objects_hit_set_archive;
1645 int64_t num_objects_misplaced;
1646 int64_t num_bytes_hit_set_archive;
1647 int64_t num_flush;
1648 int64_t num_flush_kb;
1649 int64_t num_evict;
1650 int64_t num_evict_kb;
1651 int64_t num_promote;
1652 int32_t num_flush_mode_high; // 1 when in high flush mode, otherwise 0
1653 int32_t num_flush_mode_low; // 1 when in low flush mode, otherwise 0
1654 int32_t num_evict_mode_some; // 1 when in evict some mode, otherwise 0
1655 int32_t num_evict_mode_full; // 1 when in evict full mode, otherwise 0
1656 int64_t num_objects_pinned;
1657 int64_t num_objects_missing;
1658 int64_t num_legacy_snapsets; ///< upper bound on pre-luminous-style SnapSets
1659
1660 object_stat_sum_t()
1661 : num_bytes(0),
1662 num_objects(0), num_object_clones(0), num_object_copies(0),
1663 num_objects_missing_on_primary(0), num_objects_degraded(0),
1664 num_objects_unfound(0),
1665 num_rd(0), num_rd_kb(0), num_wr(0), num_wr_kb(0),
1666 num_scrub_errors(0),
1667 num_objects_recovered(0),
1668 num_bytes_recovered(0),
1669 num_keys_recovered(0),
1670 num_shallow_scrub_errors(0),
1671 num_deep_scrub_errors(0),
1672 num_objects_dirty(0),
1673 num_whiteouts(0),
1674 num_objects_omap(0),
1675 num_objects_hit_set_archive(0),
1676 num_objects_misplaced(0),
1677 num_bytes_hit_set_archive(0),
1678 num_flush(0),
1679 num_flush_kb(0),
1680 num_evict(0),
1681 num_evict_kb(0),
1682 num_promote(0),
1683 num_flush_mode_high(0), num_flush_mode_low(0),
1684 num_evict_mode_some(0), num_evict_mode_full(0),
1685 num_objects_pinned(0),
1686 num_objects_missing(0),
1687 num_legacy_snapsets(0)
1688 {}
1689
1690 void floor(int64_t f) {
1691 #define FLOOR(x) if (x < f) x = f
1692 FLOOR(num_bytes);
1693 FLOOR(num_objects);
1694 FLOOR(num_object_clones);
1695 FLOOR(num_object_copies);
1696 FLOOR(num_objects_missing_on_primary);
1697 FLOOR(num_objects_missing);
1698 FLOOR(num_objects_degraded);
1699 FLOOR(num_objects_misplaced);
1700 FLOOR(num_objects_unfound);
1701 FLOOR(num_rd);
1702 FLOOR(num_rd_kb);
1703 FLOOR(num_wr);
1704 FLOOR(num_wr_kb);
1705 FLOOR(num_scrub_errors);
1706 FLOOR(num_shallow_scrub_errors);
1707 FLOOR(num_deep_scrub_errors);
1708 FLOOR(num_objects_recovered);
1709 FLOOR(num_bytes_recovered);
1710 FLOOR(num_keys_recovered);
1711 FLOOR(num_objects_dirty);
1712 FLOOR(num_whiteouts);
1713 FLOOR(num_objects_omap);
1714 FLOOR(num_objects_hit_set_archive);
1715 FLOOR(num_bytes_hit_set_archive);
1716 FLOOR(num_flush);
1717 FLOOR(num_flush_kb);
1718 FLOOR(num_evict);
1719 FLOOR(num_evict_kb);
1720 FLOOR(num_promote);
1721 FLOOR(num_flush_mode_high);
1722 FLOOR(num_flush_mode_low);
1723 FLOOR(num_evict_mode_some);
1724 FLOOR(num_evict_mode_full);
1725 FLOOR(num_objects_pinned);
1726 FLOOR(num_legacy_snapsets);
1727 #undef FLOOR
1728 }
1729
1730 void split(vector<object_stat_sum_t> &out) const {
1731 #define SPLIT(PARAM) \
1732 for (unsigned i = 0; i < out.size(); ++i) { \
1733 out[i].PARAM = PARAM / out.size(); \
1734 if (i < (PARAM % out.size())) { \
1735 out[i].PARAM++; \
1736 } \
1737 }
1738 #define SPLIT_PRESERVE_NONZERO(PARAM) \
1739 for (unsigned i = 0; i < out.size(); ++i) { \
1740 if (PARAM) \
1741 out[i].PARAM = 1 + PARAM / out.size(); \
1742 else \
1743 out[i].PARAM = 0; \
1744 }
1745
1746 SPLIT(num_bytes);
1747 SPLIT(num_objects);
1748 SPLIT(num_object_clones);
1749 SPLIT(num_object_copies);
1750 SPLIT(num_objects_missing_on_primary);
1751 SPLIT(num_objects_missing);
1752 SPLIT(num_objects_degraded);
1753 SPLIT(num_objects_misplaced);
1754 SPLIT(num_objects_unfound);
1755 SPLIT(num_rd);
1756 SPLIT(num_rd_kb);
1757 SPLIT(num_wr);
1758 SPLIT(num_wr_kb);
1759 SPLIT(num_scrub_errors);
1760 SPLIT(num_shallow_scrub_errors);
1761 SPLIT(num_deep_scrub_errors);
1762 SPLIT(num_objects_recovered);
1763 SPLIT(num_bytes_recovered);
1764 SPLIT(num_keys_recovered);
1765 SPLIT(num_objects_dirty);
1766 SPLIT(num_whiteouts);
1767 SPLIT(num_objects_omap);
1768 SPLIT(num_objects_hit_set_archive);
1769 SPLIT(num_bytes_hit_set_archive);
1770 SPLIT(num_flush);
1771 SPLIT(num_flush_kb);
1772 SPLIT(num_evict);
1773 SPLIT(num_evict_kb);
1774 SPLIT(num_promote);
1775 SPLIT(num_flush_mode_high);
1776 SPLIT(num_flush_mode_low);
1777 SPLIT(num_evict_mode_some);
1778 SPLIT(num_evict_mode_full);
1779 SPLIT(num_objects_pinned);
1780 SPLIT_PRESERVE_NONZERO(num_legacy_snapsets);
1781 #undef SPLIT
1782 #undef SPLIT_PRESERVE_NONZERO
1783 }
1784
1785 void clear() {
1786 memset(this, 0, sizeof(*this));
1787 }
1788
1789 void calc_copies(int nrep) {
1790 num_object_copies = nrep * num_objects;
1791 }
1792
1793 bool is_zero() const {
1794 return mem_is_zero((char*)this, sizeof(*this));
1795 }
1796
1797 void add(const object_stat_sum_t& o);
1798 void sub(const object_stat_sum_t& o);
1799
1800 void dump(Formatter *f) const;
1801 void padding_check() {
1802 static_assert(
1803 sizeof(object_stat_sum_t) ==
1804 sizeof(num_bytes) +
1805 sizeof(num_objects) +
1806 sizeof(num_object_clones) +
1807 sizeof(num_object_copies) +
1808 sizeof(num_objects_missing_on_primary) +
1809 sizeof(num_objects_degraded) +
1810 sizeof(num_objects_unfound) +
1811 sizeof(num_rd) +
1812 sizeof(num_rd_kb) +
1813 sizeof(num_wr) +
1814 sizeof(num_wr_kb) +
1815 sizeof(num_scrub_errors) +
1816 sizeof(num_objects_recovered) +
1817 sizeof(num_bytes_recovered) +
1818 sizeof(num_keys_recovered) +
1819 sizeof(num_shallow_scrub_errors) +
1820 sizeof(num_deep_scrub_errors) +
1821 sizeof(num_objects_dirty) +
1822 sizeof(num_whiteouts) +
1823 sizeof(num_objects_omap) +
1824 sizeof(num_objects_hit_set_archive) +
1825 sizeof(num_objects_misplaced) +
1826 sizeof(num_bytes_hit_set_archive) +
1827 sizeof(num_flush) +
1828 sizeof(num_flush_kb) +
1829 sizeof(num_evict) +
1830 sizeof(num_evict_kb) +
1831 sizeof(num_promote) +
1832 sizeof(num_flush_mode_high) +
1833 sizeof(num_flush_mode_low) +
1834 sizeof(num_evict_mode_some) +
1835 sizeof(num_evict_mode_full) +
1836 sizeof(num_objects_pinned) +
1837 sizeof(num_objects_missing) +
1838 sizeof(num_legacy_snapsets)
1839 ,
1840 "object_stat_sum_t have padding");
1841 }
1842 void encode(bufferlist& bl) const;
1843 void decode(bufferlist::iterator& bl);
1844 static void generate_test_instances(list<object_stat_sum_t*>& o);
1845 };
1846 WRITE_CLASS_ENCODER(object_stat_sum_t)
1847
1848 bool operator==(const object_stat_sum_t& l, const object_stat_sum_t& r);
1849
1850 /**
1851 * a collection of object stat sums
1852 *
1853 * This is a collection of stat sums over different categories.
1854 */
1855 struct object_stat_collection_t {
1856 /**************************************************************************
1857 * WARNING: be sure to update the operator== when adding/removing fields! *
1858 **************************************************************************/
1859 object_stat_sum_t sum;
1860
1861 void calc_copies(int nrep) {
1862 sum.calc_copies(nrep);
1863 }
1864
1865 void dump(Formatter *f) const;
1866 void encode(bufferlist& bl) const;
1867 void decode(bufferlist::iterator& bl);
1868 static void generate_test_instances(list<object_stat_collection_t*>& o);
1869
1870 bool is_zero() const {
1871 return sum.is_zero();
1872 }
1873
1874 void clear() {
1875 sum.clear();
1876 }
1877
1878 void floor(int64_t f) {
1879 sum.floor(f);
1880 }
1881
1882 void add(const object_stat_sum_t& o) {
1883 sum.add(o);
1884 }
1885
1886 void add(const object_stat_collection_t& o) {
1887 sum.add(o.sum);
1888 }
1889 void sub(const object_stat_collection_t& o) {
1890 sum.sub(o.sum);
1891 }
1892 };
1893 WRITE_CLASS_ENCODER(object_stat_collection_t)
1894
1895 inline bool operator==(const object_stat_collection_t& l,
1896 const object_stat_collection_t& r) {
1897 return l.sum == r.sum;
1898 }
1899
1900
1901 /** pg_stat
1902 * aggregate stats for a single PG.
1903 */
1904 struct pg_stat_t {
1905 /**************************************************************************
1906 * WARNING: be sure to update the operator== when adding/removing fields! *
1907 **************************************************************************/
1908 eversion_t version;
1909 version_t reported_seq; // sequence number
1910 epoch_t reported_epoch; // epoch of this report
1911 __u32 state;
1912 utime_t last_fresh; // last reported
1913 utime_t last_change; // new state != previous state
1914 utime_t last_active; // state & PG_STATE_ACTIVE
1915 utime_t last_peered; // state & PG_STATE_ACTIVE || state & PG_STATE_PEERED
1916 utime_t last_clean; // state & PG_STATE_CLEAN
1917 utime_t last_unstale; // (state & PG_STATE_STALE) == 0
1918 utime_t last_undegraded; // (state & PG_STATE_DEGRADED) == 0
1919 utime_t last_fullsized; // (state & PG_STATE_UNDERSIZED) == 0
1920
1921 eversion_t log_start; // (log_start,version]
1922 eversion_t ondisk_log_start; // there may be more on disk
1923
1924 epoch_t created;
1925 epoch_t last_epoch_clean;
1926 pg_t parent;
1927 __u32 parent_split_bits;
1928
1929 eversion_t last_scrub;
1930 eversion_t last_deep_scrub;
1931 utime_t last_scrub_stamp;
1932 utime_t last_deep_scrub_stamp;
1933 utime_t last_clean_scrub_stamp;
1934
1935 object_stat_collection_t stats;
1936
1937 int64_t log_size;
1938 int64_t ondisk_log_size; // >= active_log_size
1939
1940 vector<int32_t> up, acting;
1941 epoch_t mapping_epoch;
1942
1943 vector<int32_t> blocked_by; ///< osds on which the pg is blocked
1944
1945 utime_t last_became_active;
1946 utime_t last_became_peered;
1947
1948 /// up, acting primaries
1949 int32_t up_primary;
1950 int32_t acting_primary;
1951
1952 // snaptrimq.size() is 64bit, but let's be serious - anything over 50k is
1953 // absurd already, so cap it to 2^32 and save 4 bytes at the same time
1954 uint32_t snaptrimq_len;
1955
1956 bool stats_invalid:1;
1957 /// true if num_objects_dirty is not accurate (because it was not
1958 /// maintained starting from pool creation)
1959 bool dirty_stats_invalid:1;
1960 bool omap_stats_invalid:1;
1961 bool hitset_stats_invalid:1;
1962 bool hitset_bytes_stats_invalid:1;
1963 bool pin_stats_invalid:1;
1964
1965 pg_stat_t()
1966 : reported_seq(0),
1967 reported_epoch(0),
1968 state(0),
1969 created(0), last_epoch_clean(0),
1970 parent_split_bits(0),
1971 log_size(0), ondisk_log_size(0),
1972 mapping_epoch(0),
1973 up_primary(-1),
1974 acting_primary(-1),
1975 snaptrimq_len(0),
1976 stats_invalid(false),
1977 dirty_stats_invalid(false),
1978 omap_stats_invalid(false),
1979 hitset_stats_invalid(false),
1980 hitset_bytes_stats_invalid(false),
1981 pin_stats_invalid(false)
1982 { }
1983
1984 epoch_t get_effective_last_epoch_clean() const {
1985 if (state & PG_STATE_CLEAN) {
1986 // we are clean as of this report, and should thus take the
1987 // reported epoch
1988 return reported_epoch;
1989 } else {
1990 return last_epoch_clean;
1991 }
1992 }
1993
1994 pair<epoch_t, version_t> get_version_pair() const {
1995 return make_pair(reported_epoch, reported_seq);
1996 }
1997
1998 void floor(int64_t f) {
1999 stats.floor(f);
2000 if (log_size < f)
2001 log_size = f;
2002 if (ondisk_log_size < f)
2003 ondisk_log_size = f;
2004 if (snaptrimq_len < f)
2005 snaptrimq_len = f;
2006 }
2007
2008 void add(const pg_stat_t& o) {
2009 stats.add(o.stats);
2010 log_size += o.log_size;
2011 ondisk_log_size += o.ondisk_log_size;
2012 if (((uint64_t)snaptrimq_len + (uint64_t)o.snaptrimq_len) > (uint64_t)(1 << 31)) {
2013 snaptrimq_len = 1 << 31;
2014 } else {
2015 snaptrimq_len += o.snaptrimq_len;
2016 }
2017 }
2018 void sub(const pg_stat_t& o) {
2019 stats.sub(o.stats);
2020 log_size -= o.log_size;
2021 ondisk_log_size -= o.ondisk_log_size;
2022 if (o.snaptrimq_len < snaptrimq_len) {
2023 snaptrimq_len -= o.snaptrimq_len;
2024 } else {
2025 snaptrimq_len = 0;
2026 }
2027 }
2028
2029 bool is_acting_osd(int32_t osd, bool primary) const;
2030 void dump(Formatter *f) const;
2031 void dump_brief(Formatter *f) const;
2032 void encode(bufferlist &bl) const;
2033 void decode(bufferlist::iterator &bl);
2034 static void generate_test_instances(list<pg_stat_t*>& o);
2035 };
2036 WRITE_CLASS_ENCODER(pg_stat_t)
2037
2038 bool operator==(const pg_stat_t& l, const pg_stat_t& r);
2039
2040 /*
2041 * summation over an entire pool
2042 */
2043 struct pool_stat_t {
2044 object_stat_collection_t stats;
2045 int64_t log_size;
2046 int64_t ondisk_log_size; // >= active_log_size
2047 int32_t up; ///< number of up replicas or shards
2048 int32_t acting; ///< number of acting replicas or shards
2049
2050 pool_stat_t() : log_size(0), ondisk_log_size(0), up(0), acting(0)
2051 { }
2052
2053 void floor(int64_t f) {
2054 stats.floor(f);
2055 if (log_size < f)
2056 log_size = f;
2057 if (ondisk_log_size < f)
2058 ondisk_log_size = f;
2059 if (up < f)
2060 up = f;
2061 if (acting < f)
2062 acting = f;
2063 }
2064
2065 void add(const pg_stat_t& o) {
2066 stats.add(o.stats);
2067 log_size += o.log_size;
2068 ondisk_log_size += o.ondisk_log_size;
2069 up += o.up.size();
2070 acting += o.acting.size();
2071 }
2072 void sub(const pg_stat_t& o) {
2073 stats.sub(o.stats);
2074 log_size -= o.log_size;
2075 ondisk_log_size -= o.ondisk_log_size;
2076 up -= o.up.size();
2077 acting -= o.acting.size();
2078 }
2079
2080 bool is_zero() const {
2081 return (stats.is_zero() &&
2082 log_size == 0 &&
2083 ondisk_log_size == 0 &&
2084 up == 0 &&
2085 acting == 0);
2086 }
2087
2088 void dump(Formatter *f) const;
2089 void encode(bufferlist &bl, uint64_t features) const;
2090 void decode(bufferlist::iterator &bl);
2091 static void generate_test_instances(list<pool_stat_t*>& o);
2092 };
2093 WRITE_CLASS_ENCODER_FEATURES(pool_stat_t)
2094
2095
2096 // -----------------------------------------
2097
2098 /**
2099 * pg_hit_set_info_t - information about a single recorded HitSet
2100 *
2101 * Track basic metadata about a HitSet, like the nubmer of insertions
2102 * and the time range it covers.
2103 */
2104 struct pg_hit_set_info_t {
2105 utime_t begin, end; ///< time interval
2106 eversion_t version; ///< version this HitSet object was written
2107 bool using_gmt; ///< use gmt for creating the hit_set archive object name
2108
2109 friend bool operator==(const pg_hit_set_info_t& l,
2110 const pg_hit_set_info_t& r) {
2111 return
2112 l.begin == r.begin &&
2113 l.end == r.end &&
2114 l.version == r.version &&
2115 l.using_gmt == r.using_gmt;
2116 }
2117
2118 explicit pg_hit_set_info_t(bool using_gmt = true)
2119 : using_gmt(using_gmt) {}
2120
2121 void encode(bufferlist &bl) const;
2122 void decode(bufferlist::iterator &bl);
2123 void dump(Formatter *f) const;
2124 static void generate_test_instances(list<pg_hit_set_info_t*>& o);
2125 };
2126 WRITE_CLASS_ENCODER(pg_hit_set_info_t)
2127
2128 /**
2129 * pg_hit_set_history_t - information about a history of hitsets
2130 *
2131 * Include information about the currently accumulating hit set as well
2132 * as archived/historical ones.
2133 */
2134 struct pg_hit_set_history_t {
2135 eversion_t current_last_update; ///< last version inserted into current set
2136 list<pg_hit_set_info_t> history; ///< archived sets, sorted oldest -> newest
2137
2138 friend bool operator==(const pg_hit_set_history_t& l,
2139 const pg_hit_set_history_t& r) {
2140 return
2141 l.current_last_update == r.current_last_update &&
2142 l.history == r.history;
2143 }
2144
2145 void encode(bufferlist &bl) const;
2146 void decode(bufferlist::iterator &bl);
2147 void dump(Formatter *f) const;
2148 static void generate_test_instances(list<pg_hit_set_history_t*>& o);
2149 };
2150 WRITE_CLASS_ENCODER(pg_hit_set_history_t)
2151
2152
2153 // -----------------------------------------
2154
2155 /**
2156 * pg_history_t - information about recent pg peering/mapping history
2157 *
2158 * This is aggressively shared between OSDs to bound the amount of past
2159 * history they need to worry about.
2160 */
2161 struct pg_history_t {
2162 epoch_t epoch_created; // epoch in which *pg* was created (pool or pg)
2163 epoch_t epoch_pool_created; // epoch in which *pool* was created
2164 // (note: may be pg creation epoch for
2165 // pre-luminous clusters)
2166 epoch_t last_epoch_started; // lower bound on last epoch started (anywhere, not necessarily locally)
2167 epoch_t last_interval_started; // first epoch of last_epoch_started interval
2168 epoch_t last_epoch_clean; // lower bound on last epoch the PG was completely clean.
2169 epoch_t last_interval_clean; // first epoch of last_epoch_clean interval
2170 epoch_t last_epoch_split; // as parent or child
2171 epoch_t last_epoch_marked_full; // pool or cluster
2172
2173 /**
2174 * In the event of a map discontinuity, same_*_since may reflect the first
2175 * map the osd has seen in the new map sequence rather than the actual start
2176 * of the interval. This is ok since a discontinuity at epoch e means there
2177 * must have been a clean interval between e and now and that we cannot be
2178 * in the active set during the interval containing e.
2179 */
2180 epoch_t same_up_since; // same acting set since
2181 epoch_t same_interval_since; // same acting AND up set since
2182 epoch_t same_primary_since; // same primary at least back through this epoch.
2183
2184 eversion_t last_scrub;
2185 eversion_t last_deep_scrub;
2186 utime_t last_scrub_stamp;
2187 utime_t last_deep_scrub_stamp;
2188 utime_t last_clean_scrub_stamp;
2189
2190 friend bool operator==(const pg_history_t& l, const pg_history_t& r) {
2191 return
2192 l.epoch_created == r.epoch_created &&
2193 l.epoch_pool_created == r.epoch_pool_created &&
2194 l.last_epoch_started == r.last_epoch_started &&
2195 l.last_interval_started == r.last_interval_started &&
2196 l.last_epoch_clean == r.last_epoch_clean &&
2197 l.last_interval_clean == r.last_interval_clean &&
2198 l.last_epoch_split == r.last_epoch_split &&
2199 l.last_epoch_marked_full == r.last_epoch_marked_full &&
2200 l.same_up_since == r.same_up_since &&
2201 l.same_interval_since == r.same_interval_since &&
2202 l.same_primary_since == r.same_primary_since &&
2203 l.last_scrub == r.last_scrub &&
2204 l.last_deep_scrub == r.last_deep_scrub &&
2205 l.last_scrub_stamp == r.last_scrub_stamp &&
2206 l.last_deep_scrub_stamp == r.last_deep_scrub_stamp &&
2207 l.last_clean_scrub_stamp == r.last_clean_scrub_stamp;
2208 }
2209
2210 pg_history_t()
2211 : epoch_created(0),
2212 epoch_pool_created(0),
2213 last_epoch_started(0),
2214 last_interval_started(0),
2215 last_epoch_clean(0),
2216 last_interval_clean(0),
2217 last_epoch_split(0),
2218 last_epoch_marked_full(0),
2219 same_up_since(0), same_interval_since(0), same_primary_since(0) {}
2220
2221 bool merge(const pg_history_t &other) {
2222 // Here, we only update the fields which cannot be calculated from the OSDmap.
2223 bool modified = false;
2224 if (epoch_created < other.epoch_created) {
2225 epoch_created = other.epoch_created;
2226 modified = true;
2227 }
2228 if (epoch_pool_created < other.epoch_pool_created) {
2229 // FIXME: for jewel compat only; this should either be 0 or always the
2230 // same value across all pg instances.
2231 epoch_pool_created = other.epoch_pool_created;
2232 modified = true;
2233 }
2234 if (last_epoch_started < other.last_epoch_started) {
2235 last_epoch_started = other.last_epoch_started;
2236 modified = true;
2237 }
2238 if (last_interval_started < other.last_interval_started) {
2239 last_interval_started = other.last_interval_started;
2240 modified = true;
2241 }
2242 if (last_epoch_clean < other.last_epoch_clean) {
2243 last_epoch_clean = other.last_epoch_clean;
2244 modified = true;
2245 }
2246 if (last_interval_clean < other.last_interval_clean) {
2247 last_interval_clean = other.last_interval_clean;
2248 modified = true;
2249 }
2250 if (last_epoch_split < other.last_epoch_split) {
2251 last_epoch_split = other.last_epoch_split;
2252 modified = true;
2253 }
2254 if (last_epoch_marked_full < other.last_epoch_marked_full) {
2255 last_epoch_marked_full = other.last_epoch_marked_full;
2256 modified = true;
2257 }
2258 if (other.last_scrub > last_scrub) {
2259 last_scrub = other.last_scrub;
2260 modified = true;
2261 }
2262 if (other.last_scrub_stamp > last_scrub_stamp) {
2263 last_scrub_stamp = other.last_scrub_stamp;
2264 modified = true;
2265 }
2266 if (other.last_deep_scrub > last_deep_scrub) {
2267 last_deep_scrub = other.last_deep_scrub;
2268 modified = true;
2269 }
2270 if (other.last_deep_scrub_stamp > last_deep_scrub_stamp) {
2271 last_deep_scrub_stamp = other.last_deep_scrub_stamp;
2272 modified = true;
2273 }
2274 if (other.last_clean_scrub_stamp > last_clean_scrub_stamp) {
2275 last_clean_scrub_stamp = other.last_clean_scrub_stamp;
2276 modified = true;
2277 }
2278 return modified;
2279 }
2280
2281 void encode(bufferlist& bl) const;
2282 void decode(bufferlist::iterator& p);
2283 void dump(Formatter *f) const;
2284 static void generate_test_instances(list<pg_history_t*>& o);
2285 };
2286 WRITE_CLASS_ENCODER(pg_history_t)
2287
2288 inline ostream& operator<<(ostream& out, const pg_history_t& h) {
2289 return out << "ec=" << h.epoch_created << "/" << h.epoch_pool_created
2290 << " lis/c " << h.last_interval_started
2291 << "/" << h.last_interval_clean
2292 << " les/c/f " << h.last_epoch_started << "/" << h.last_epoch_clean
2293 << "/" << h.last_epoch_marked_full
2294 << " " << h.same_up_since
2295 << "/" << h.same_interval_since
2296 << "/" << h.same_primary_since;
2297 }
2298
2299
2300 /**
2301 * pg_info_t - summary of PG statistics.
2302 *
2303 * some notes:
2304 * - last_complete implies we have all objects that existed as of that
2305 * stamp, OR a newer object, OR have already applied a later delete.
2306 * - if last_complete >= log.bottom, then we know pg contents thru log.head.
2307 * otherwise, we have no idea what the pg is supposed to contain.
2308 */
2309 struct pg_info_t {
2310 spg_t pgid;
2311 eversion_t last_update; ///< last object version applied to store.
2312 eversion_t last_complete; ///< last version pg was complete through.
2313 epoch_t last_epoch_started; ///< last epoch at which this pg started on this osd
2314 epoch_t last_interval_started; ///< first epoch of last_epoch_started interval
2315
2316 version_t last_user_version; ///< last user object version applied to store
2317
2318 eversion_t log_tail; ///< oldest log entry.
2319
2320 hobject_t last_backfill; ///< objects >= this and < last_complete may be missing
2321 bool last_backfill_bitwise; ///< true if last_backfill reflects a bitwise (vs nibblewise) sort
2322
2323 interval_set<snapid_t> purged_snaps;
2324
2325 pg_stat_t stats;
2326
2327 pg_history_t history;
2328 pg_hit_set_history_t hit_set;
2329
2330 friend bool operator==(const pg_info_t& l, const pg_info_t& r) {
2331 return
2332 l.pgid == r.pgid &&
2333 l.last_update == r.last_update &&
2334 l.last_complete == r.last_complete &&
2335 l.last_epoch_started == r.last_epoch_started &&
2336 l.last_interval_started == r.last_interval_started &&
2337 l.last_user_version == r.last_user_version &&
2338 l.log_tail == r.log_tail &&
2339 l.last_backfill == r.last_backfill &&
2340 l.last_backfill_bitwise == r.last_backfill_bitwise &&
2341 l.purged_snaps == r.purged_snaps &&
2342 l.stats == r.stats &&
2343 l.history == r.history &&
2344 l.hit_set == r.hit_set;
2345 }
2346
2347 pg_info_t()
2348 : last_epoch_started(0),
2349 last_interval_started(0),
2350 last_user_version(0),
2351 last_backfill(hobject_t::get_max()),
2352 last_backfill_bitwise(false)
2353 { }
2354 // cppcheck-suppress noExplicitConstructor
2355 pg_info_t(spg_t p)
2356 : pgid(p),
2357 last_epoch_started(0),
2358 last_interval_started(0),
2359 last_user_version(0),
2360 last_backfill(hobject_t::get_max()),
2361 last_backfill_bitwise(false)
2362 { }
2363
2364 void set_last_backfill(hobject_t pos) {
2365 last_backfill = pos;
2366 last_backfill_bitwise = true;
2367 }
2368
2369 bool is_empty() const { return last_update.version == 0; }
2370 bool dne() const { return history.epoch_created == 0; }
2371
2372 bool is_incomplete() const { return !last_backfill.is_max(); }
2373
2374 void encode(bufferlist& bl) const;
2375 void decode(bufferlist::iterator& p);
2376 void dump(Formatter *f) const;
2377 bool overlaps_with(const pg_info_t &oinfo) const {
2378 return last_update > oinfo.log_tail ?
2379 oinfo.last_update >= log_tail :
2380 last_update >= oinfo.log_tail;
2381 }
2382 static void generate_test_instances(list<pg_info_t*>& o);
2383 };
2384 WRITE_CLASS_ENCODER(pg_info_t)
2385
2386 inline ostream& operator<<(ostream& out, const pg_info_t& pgi)
2387 {
2388 out << pgi.pgid << "(";
2389 if (pgi.dne())
2390 out << " DNE";
2391 if (pgi.is_empty())
2392 out << " empty";
2393 else {
2394 out << " v " << pgi.last_update;
2395 if (pgi.last_complete != pgi.last_update)
2396 out << " lc " << pgi.last_complete;
2397 out << " (" << pgi.log_tail << "," << pgi.last_update << "]";
2398 }
2399 if (pgi.is_incomplete())
2400 out << " lb " << pgi.last_backfill
2401 << (pgi.last_backfill_bitwise ? " (bitwise)" : " (NIBBLEWISE)");
2402 //out << " c " << pgi.epoch_created;
2403 out << " local-lis/les=" << pgi.last_interval_started
2404 << "/" << pgi.last_epoch_started;
2405 out << " n=" << pgi.stats.stats.sum.num_objects;
2406 out << " " << pgi.history
2407 << ")";
2408 return out;
2409 }
2410
2411 /**
2412 * pg_fast_info_t - common pg_info_t fields
2413 *
2414 * These are the fields of pg_info_t (and children) that are updated for
2415 * most IO operations.
2416 *
2417 * ** WARNING **
2418 * Because we rely on these fields to be applied to the normal
2419 * info struct, adding a new field here that is not also new in info
2420 * means that we must set an incompat OSD feature bit!
2421 */
2422 struct pg_fast_info_t {
2423 eversion_t last_update;
2424 eversion_t last_complete;
2425 version_t last_user_version;
2426 struct { // pg_stat_t stats
2427 eversion_t version;
2428 version_t reported_seq;
2429 utime_t last_fresh;
2430 utime_t last_active;
2431 utime_t last_peered;
2432 utime_t last_clean;
2433 utime_t last_unstale;
2434 utime_t last_undegraded;
2435 utime_t last_fullsized;
2436 int64_t log_size; // (also ondisk_log_size, which has the same value)
2437 struct { // object_stat_collection_t stats;
2438 struct { // objct_stat_sum_t sum
2439 int64_t num_bytes; // in bytes
2440 int64_t num_objects;
2441 int64_t num_object_copies;
2442 int64_t num_rd;
2443 int64_t num_rd_kb;
2444 int64_t num_wr;
2445 int64_t num_wr_kb;
2446 int64_t num_objects_dirty;
2447 } sum;
2448 } stats;
2449 } stats;
2450
2451 void populate_from(const pg_info_t& info) {
2452 last_update = info.last_update;
2453 last_complete = info.last_complete;
2454 last_user_version = info.last_user_version;
2455 stats.version = info.stats.version;
2456 stats.reported_seq = info.stats.reported_seq;
2457 stats.last_fresh = info.stats.last_fresh;
2458 stats.last_active = info.stats.last_active;
2459 stats.last_peered = info.stats.last_peered;
2460 stats.last_clean = info.stats.last_clean;
2461 stats.last_unstale = info.stats.last_unstale;
2462 stats.last_undegraded = info.stats.last_undegraded;
2463 stats.last_fullsized = info.stats.last_fullsized;
2464 stats.log_size = info.stats.log_size;
2465 stats.stats.sum.num_bytes = info.stats.stats.sum.num_bytes;
2466 stats.stats.sum.num_objects = info.stats.stats.sum.num_objects;
2467 stats.stats.sum.num_object_copies = info.stats.stats.sum.num_object_copies;
2468 stats.stats.sum.num_rd = info.stats.stats.sum.num_rd;
2469 stats.stats.sum.num_rd_kb = info.stats.stats.sum.num_rd_kb;
2470 stats.stats.sum.num_wr = info.stats.stats.sum.num_wr;
2471 stats.stats.sum.num_wr_kb = info.stats.stats.sum.num_wr_kb;
2472 stats.stats.sum.num_objects_dirty = info.stats.stats.sum.num_objects_dirty;
2473 }
2474
2475 bool try_apply_to(pg_info_t* info) {
2476 if (last_update <= info->last_update)
2477 return false;
2478 info->last_update = last_update;
2479 info->last_complete = last_complete;
2480 info->last_user_version = last_user_version;
2481 info->stats.version = stats.version;
2482 info->stats.reported_seq = stats.reported_seq;
2483 info->stats.last_fresh = stats.last_fresh;
2484 info->stats.last_active = stats.last_active;
2485 info->stats.last_peered = stats.last_peered;
2486 info->stats.last_clean = stats.last_clean;
2487 info->stats.last_unstale = stats.last_unstale;
2488 info->stats.last_undegraded = stats.last_undegraded;
2489 info->stats.last_fullsized = stats.last_fullsized;
2490 info->stats.log_size = stats.log_size;
2491 info->stats.ondisk_log_size = stats.log_size;
2492 info->stats.stats.sum.num_bytes = stats.stats.sum.num_bytes;
2493 info->stats.stats.sum.num_objects = stats.stats.sum.num_objects;
2494 info->stats.stats.sum.num_object_copies = stats.stats.sum.num_object_copies;
2495 info->stats.stats.sum.num_rd = stats.stats.sum.num_rd;
2496 info->stats.stats.sum.num_rd_kb = stats.stats.sum.num_rd_kb;
2497 info->stats.stats.sum.num_wr = stats.stats.sum.num_wr;
2498 info->stats.stats.sum.num_wr_kb = stats.stats.sum.num_wr_kb;
2499 info->stats.stats.sum.num_objects_dirty = stats.stats.sum.num_objects_dirty;
2500 return true;
2501 }
2502
2503 void encode(bufferlist& bl) const {
2504 ENCODE_START(1, 1, bl);
2505 ::encode(last_update, bl);
2506 ::encode(last_complete, bl);
2507 ::encode(last_user_version, bl);
2508 ::encode(stats.version, bl);
2509 ::encode(stats.reported_seq, bl);
2510 ::encode(stats.last_fresh, bl);
2511 ::encode(stats.last_active, bl);
2512 ::encode(stats.last_peered, bl);
2513 ::encode(stats.last_clean, bl);
2514 ::encode(stats.last_unstale, bl);
2515 ::encode(stats.last_undegraded, bl);
2516 ::encode(stats.last_fullsized, bl);
2517 ::encode(stats.log_size, bl);
2518 ::encode(stats.stats.sum.num_bytes, bl);
2519 ::encode(stats.stats.sum.num_objects, bl);
2520 ::encode(stats.stats.sum.num_object_copies, bl);
2521 ::encode(stats.stats.sum.num_rd, bl);
2522 ::encode(stats.stats.sum.num_rd_kb, bl);
2523 ::encode(stats.stats.sum.num_wr, bl);
2524 ::encode(stats.stats.sum.num_wr_kb, bl);
2525 ::encode(stats.stats.sum.num_objects_dirty, bl);
2526 ENCODE_FINISH(bl);
2527 }
2528 void decode(bufferlist::iterator& p) {
2529 DECODE_START(1, p);
2530 ::decode(last_update, p);
2531 ::decode(last_complete, p);
2532 ::decode(last_user_version, p);
2533 ::decode(stats.version, p);
2534 ::decode(stats.reported_seq, p);
2535 ::decode(stats.last_fresh, p);
2536 ::decode(stats.last_active, p);
2537 ::decode(stats.last_peered, p);
2538 ::decode(stats.last_clean, p);
2539 ::decode(stats.last_unstale, p);
2540 ::decode(stats.last_undegraded, p);
2541 ::decode(stats.last_fullsized, p);
2542 ::decode(stats.log_size, p);
2543 ::decode(stats.stats.sum.num_bytes, p);
2544 ::decode(stats.stats.sum.num_objects, p);
2545 ::decode(stats.stats.sum.num_object_copies, p);
2546 ::decode(stats.stats.sum.num_rd, p);
2547 ::decode(stats.stats.sum.num_rd_kb, p);
2548 ::decode(stats.stats.sum.num_wr, p);
2549 ::decode(stats.stats.sum.num_wr_kb, p);
2550 ::decode(stats.stats.sum.num_objects_dirty, p);
2551 DECODE_FINISH(p);
2552 }
2553 };
2554 WRITE_CLASS_ENCODER(pg_fast_info_t)
2555
2556
2557 struct pg_notify_t {
2558 epoch_t query_epoch;
2559 epoch_t epoch_sent;
2560 pg_info_t info;
2561 shard_id_t to;
2562 shard_id_t from;
2563 pg_notify_t() :
2564 query_epoch(0), epoch_sent(0), to(shard_id_t::NO_SHARD),
2565 from(shard_id_t::NO_SHARD) {}
2566 pg_notify_t(
2567 shard_id_t to,
2568 shard_id_t from,
2569 epoch_t query_epoch,
2570 epoch_t epoch_sent,
2571 const pg_info_t &info)
2572 : query_epoch(query_epoch),
2573 epoch_sent(epoch_sent),
2574 info(info), to(to), from(from) {
2575 assert(from == info.pgid.shard);
2576 }
2577 void encode(bufferlist &bl) const;
2578 void decode(bufferlist::iterator &p);
2579 void dump(Formatter *f) const;
2580 static void generate_test_instances(list<pg_notify_t*> &o);
2581 };
2582 WRITE_CLASS_ENCODER(pg_notify_t)
2583 ostream &operator<<(ostream &lhs, const pg_notify_t &notify);
2584
2585
2586 class OSDMap;
2587 /**
2588 * PastIntervals -- information needed to determine the PriorSet and
2589 * the might_have_unfound set
2590 */
2591 class PastIntervals {
2592 public:
2593 struct pg_interval_t {
2594 vector<int32_t> up, acting;
2595 epoch_t first, last;
2596 bool maybe_went_rw;
2597 int32_t primary;
2598 int32_t up_primary;
2599
2600 pg_interval_t()
2601 : first(0), last(0),
2602 maybe_went_rw(false),
2603 primary(-1),
2604 up_primary(-1)
2605 {}
2606
2607 pg_interval_t(
2608 vector<int32_t> &&up,
2609 vector<int32_t> &&acting,
2610 epoch_t first,
2611 epoch_t last,
2612 bool maybe_went_rw,
2613 int32_t primary,
2614 int32_t up_primary)
2615 : up(up), acting(acting), first(first), last(last),
2616 maybe_went_rw(maybe_went_rw), primary(primary), up_primary(up_primary)
2617 {}
2618
2619 void encode(bufferlist& bl) const;
2620 void decode(bufferlist::iterator& bl);
2621 void dump(Formatter *f) const;
2622 static void generate_test_instances(list<pg_interval_t*>& o);
2623 };
2624
2625 PastIntervals() = default;
2626 PastIntervals(bool ec_pool, const OSDMap &osdmap) : PastIntervals() {
2627 update_type_from_map(ec_pool, osdmap);
2628 }
2629 PastIntervals(bool ec_pool, bool compact) : PastIntervals() {
2630 update_type(ec_pool, compact);
2631 }
2632 PastIntervals(PastIntervals &&rhs) = default;
2633 PastIntervals &operator=(PastIntervals &&rhs) = default;
2634
2635 PastIntervals(const PastIntervals &rhs);
2636 PastIntervals &operator=(const PastIntervals &rhs);
2637
2638 class interval_rep {
2639 public:
2640 virtual size_t size() const = 0;
2641 virtual bool empty() const = 0;
2642 virtual void clear() = 0;
2643 virtual pair<epoch_t, epoch_t> get_bounds() const = 0;
2644 virtual set<pg_shard_t> get_all_participants(
2645 bool ec_pool) const = 0;
2646 virtual void add_interval(bool ec_pool, const pg_interval_t &interval) = 0;
2647 virtual unique_ptr<interval_rep> clone() const = 0;
2648 virtual ostream &print(ostream &out) const = 0;
2649 virtual void encode(bufferlist &bl) const = 0;
2650 virtual void decode(bufferlist::iterator &bl) = 0;
2651 virtual void dump(Formatter *f) const = 0;
2652 virtual bool is_classic() const = 0;
2653 virtual void iterate_mayberw_back_to(
2654 bool ec_pool,
2655 epoch_t les,
2656 std::function<void(epoch_t, const set<pg_shard_t> &)> &&f) const = 0;
2657
2658 virtual bool has_full_intervals() const { return false; }
2659 virtual void iterate_all_intervals(
2660 std::function<void(const pg_interval_t &)> &&f) const {
2661 assert(!has_full_intervals());
2662 assert(0 == "not valid for this implementation");
2663 }
2664
2665 virtual ~interval_rep() {}
2666 };
2667 friend class pi_simple_rep;
2668 friend class pi_compact_rep;
2669 private:
2670
2671 unique_ptr<interval_rep> past_intervals;
2672
2673 PastIntervals(interval_rep *rep) : past_intervals(rep) {}
2674
2675 public:
2676 void add_interval(bool ec_pool, const pg_interval_t &interval) {
2677 assert(past_intervals);
2678 return past_intervals->add_interval(ec_pool, interval);
2679 }
2680
2681 bool is_classic() const {
2682 assert(past_intervals);
2683 return past_intervals->is_classic();
2684 }
2685
2686 void encode(bufferlist &bl) const {
2687 ENCODE_START(1, 1, bl);
2688 if (past_intervals) {
2689 __u8 type = is_classic() ? 1 : 2;
2690 ::encode(type, bl);
2691 past_intervals->encode(bl);
2692 } else {
2693 ::encode((__u8)0, bl);
2694 }
2695 ENCODE_FINISH(bl);
2696 }
2697 void encode_classic(bufferlist &bl) const {
2698 if (past_intervals) {
2699 assert(past_intervals->is_classic());
2700 past_intervals->encode(bl);
2701 } else {
2702 // it's a map<>
2703 ::encode((uint32_t)0, bl);
2704 }
2705 }
2706
2707 void decode(bufferlist::iterator &bl);
2708 void decode_classic(bufferlist::iterator &bl);
2709
2710 void dump(Formatter *f) const {
2711 assert(past_intervals);
2712 past_intervals->dump(f);
2713 }
2714 static void generate_test_instances(list<PastIntervals *> & o);
2715
2716 /**
2717 * Determines whether there is an interval change
2718 */
2719 static bool is_new_interval(
2720 int old_acting_primary,
2721 int new_acting_primary,
2722 const vector<int> &old_acting,
2723 const vector<int> &new_acting,
2724 int old_up_primary,
2725 int new_up_primary,
2726 const vector<int> &old_up,
2727 const vector<int> &new_up,
2728 int old_size,
2729 int new_size,
2730 int old_min_size,
2731 int new_min_size,
2732 unsigned old_pg_num,
2733 unsigned new_pg_num,
2734 bool old_sort_bitwise,
2735 bool new_sort_bitwise,
2736 bool old_recovery_deletes,
2737 bool new_recovery_deletes,
2738 pg_t pgid
2739 );
2740
2741 /**
2742 * Determines whether there is an interval change
2743 */
2744 static bool is_new_interval(
2745 int old_acting_primary, ///< [in] primary as of lastmap
2746 int new_acting_primary, ///< [in] primary as of lastmap
2747 const vector<int> &old_acting, ///< [in] acting as of lastmap
2748 const vector<int> &new_acting, ///< [in] acting as of osdmap
2749 int old_up_primary, ///< [in] up primary of lastmap
2750 int new_up_primary, ///< [in] up primary of osdmap
2751 const vector<int> &old_up, ///< [in] up as of lastmap
2752 const vector<int> &new_up, ///< [in] up as of osdmap
2753 ceph::shared_ptr<const OSDMap> osdmap, ///< [in] current map
2754 ceph::shared_ptr<const OSDMap> lastmap, ///< [in] last map
2755 pg_t pgid ///< [in] pgid for pg
2756 );
2757
2758 /**
2759 * Integrates a new map into *past_intervals, returns true
2760 * if an interval was closed out.
2761 */
2762 static bool check_new_interval(
2763 int old_acting_primary, ///< [in] primary as of lastmap
2764 int new_acting_primary, ///< [in] primary as of osdmap
2765 const vector<int> &old_acting, ///< [in] acting as of lastmap
2766 const vector<int> &new_acting, ///< [in] acting as of osdmap
2767 int old_up_primary, ///< [in] up primary of lastmap
2768 int new_up_primary, ///< [in] up primary of osdmap
2769 const vector<int> &old_up, ///< [in] up as of lastmap
2770 const vector<int> &new_up, ///< [in] up as of osdmap
2771 epoch_t same_interval_since, ///< [in] as of osdmap
2772 epoch_t last_epoch_clean, ///< [in] current
2773 ceph::shared_ptr<const OSDMap> osdmap, ///< [in] current map
2774 ceph::shared_ptr<const OSDMap> lastmap, ///< [in] last map
2775 pg_t pgid, ///< [in] pgid for pg
2776 IsPGRecoverablePredicate *could_have_gone_active, /// [in] predicate whether the pg can be active
2777 PastIntervals *past_intervals, ///< [out] intervals
2778 ostream *out = 0 ///< [out] debug ostream
2779 );
2780
2781 friend ostream& operator<<(ostream& out, const PastIntervals &i);
2782
2783 template <typename F>
2784 void iterate_mayberw_back_to(
2785 bool ec_pool,
2786 epoch_t les,
2787 F &&f) const {
2788 assert(past_intervals);
2789 past_intervals->iterate_mayberw_back_to(ec_pool, les, std::forward<F>(f));
2790 }
2791 void clear() {
2792 assert(past_intervals);
2793 past_intervals->clear();
2794 }
2795
2796 /**
2797 * Should return a value which gives an indication of the amount
2798 * of state contained
2799 */
2800 size_t size() const {
2801 assert(past_intervals);
2802 return past_intervals->size();
2803 }
2804
2805 bool empty() const {
2806 assert(past_intervals);
2807 return past_intervals->empty();
2808 }
2809
2810 void swap(PastIntervals &other) {
2811 using std::swap;
2812 swap(other.past_intervals, past_intervals);
2813 }
2814
2815 /**
2816 * Return all shards which have been in the acting set back to the
2817 * latest epoch to which we have trimmed except for pg_whoami
2818 */
2819 set<pg_shard_t> get_might_have_unfound(
2820 pg_shard_t pg_whoami,
2821 bool ec_pool) const {
2822 assert(past_intervals);
2823 auto ret = past_intervals->get_all_participants(ec_pool);
2824 ret.erase(pg_whoami);
2825 return ret;
2826 }
2827
2828 /**
2829 * Return all shards which we might want to talk to for peering
2830 */
2831 set<pg_shard_t> get_all_probe(
2832 bool ec_pool) const {
2833 assert(past_intervals);
2834 return past_intervals->get_all_participants(ec_pool);
2835 }
2836
2837 /* Return the set of epochs [start, end) represented by the
2838 * past_interval set.
2839 */
2840 pair<epoch_t, epoch_t> get_bounds() const {
2841 assert(past_intervals);
2842 return past_intervals->get_bounds();
2843 }
2844
2845 enum osd_state_t {
2846 UP,
2847 DOWN,
2848 DNE,
2849 LOST
2850 };
2851 struct PriorSet {
2852 bool ec_pool = false;
2853 set<pg_shard_t> probe; /// current+prior OSDs we need to probe.
2854 set<int> down; /// down osds that would normally be in @a probe and might be interesting.
2855 map<int, epoch_t> blocked_by; /// current lost_at values for any OSDs in cur set for which (re)marking them lost would affect cur set
2856
2857 bool pg_down = false; /// some down osds are included in @a cur; the DOWN pg state bit should be set.
2858 unique_ptr<IsPGRecoverablePredicate> pcontdec;
2859
2860 PriorSet() = default;
2861 PriorSet(PriorSet &&) = default;
2862 PriorSet &operator=(PriorSet &&) = default;
2863
2864 PriorSet &operator=(const PriorSet &) = delete;
2865 PriorSet(const PriorSet &) = delete;
2866
2867 bool operator==(const PriorSet &rhs) const {
2868 return (ec_pool == rhs.ec_pool) &&
2869 (probe == rhs.probe) &&
2870 (down == rhs.down) &&
2871 (blocked_by == rhs.blocked_by) &&
2872 (pg_down == rhs.pg_down);
2873 }
2874
2875 bool affected_by_map(
2876 const OSDMap &osdmap,
2877 const DoutPrefixProvider *dpp) const;
2878
2879 // For verifying tests
2880 PriorSet(
2881 bool ec_pool,
2882 set<pg_shard_t> probe,
2883 set<int> down,
2884 map<int, epoch_t> blocked_by,
2885 bool pg_down,
2886 IsPGRecoverablePredicate *pcontdec)
2887 : ec_pool(ec_pool), probe(probe), down(down), blocked_by(blocked_by),
2888 pg_down(pg_down), pcontdec(pcontdec) {}
2889
2890 private:
2891 template <typename F>
2892 PriorSet(
2893 const PastIntervals &past_intervals,
2894 bool ec_pool,
2895 epoch_t last_epoch_started,
2896 IsPGRecoverablePredicate *c,
2897 F f,
2898 const vector<int> &up,
2899 const vector<int> &acting,
2900 const DoutPrefixProvider *dpp);
2901
2902 friend class PastIntervals;
2903 };
2904
2905 void update_type(bool ec_pool, bool compact);
2906 void update_type_from_map(bool ec_pool, const OSDMap &osdmap);
2907
2908 template <typename... Args>
2909 PriorSet get_prior_set(Args&&... args) const {
2910 return PriorSet(*this, std::forward<Args>(args)...);
2911 }
2912 };
2913 WRITE_CLASS_ENCODER(PastIntervals)
2914
2915 ostream& operator<<(ostream& out, const PastIntervals::pg_interval_t& i);
2916 ostream& operator<<(ostream& out, const PastIntervals &i);
2917 ostream& operator<<(ostream& out, const PastIntervals::PriorSet &i);
2918
2919 template <typename F>
2920 PastIntervals::PriorSet::PriorSet(
2921 const PastIntervals &past_intervals,
2922 bool ec_pool,
2923 epoch_t last_epoch_started,
2924 IsPGRecoverablePredicate *c,
2925 F f,
2926 const vector<int> &up,
2927 const vector<int> &acting,
2928 const DoutPrefixProvider *dpp)
2929 : ec_pool(ec_pool), pg_down(false), pcontdec(c)
2930 {
2931 /*
2932 * We have to be careful to gracefully deal with situations like
2933 * so. Say we have a power outage or something that takes out both
2934 * OSDs, but the monitor doesn't mark them down in the same epoch.
2935 * The history may look like
2936 *
2937 * 1: A B
2938 * 2: B
2939 * 3: let's say B dies for good, too (say, from the power spike)
2940 * 4: A
2941 *
2942 * which makes it look like B may have applied updates to the PG
2943 * that we need in order to proceed. This sucks...
2944 *
2945 * To minimize the risk of this happening, we CANNOT go active if
2946 * _any_ OSDs in the prior set are down until we send an MOSDAlive
2947 * to the monitor such that the OSDMap sets osd_up_thru to an epoch.
2948 * Then, we have something like
2949 *
2950 * 1: A B
2951 * 2: B up_thru[B]=0
2952 * 3:
2953 * 4: A
2954 *
2955 * -> we can ignore B, bc it couldn't have gone active (alive_thru
2956 * still 0).
2957 *
2958 * or,
2959 *
2960 * 1: A B
2961 * 2: B up_thru[B]=0
2962 * 3: B up_thru[B]=2
2963 * 4:
2964 * 5: A
2965 *
2966 * -> we must wait for B, bc it was alive through 2, and could have
2967 * written to the pg.
2968 *
2969 * If B is really dead, then an administrator will need to manually
2970 * intervene by marking the OSD as "lost."
2971 */
2972
2973 // Include current acting and up nodes... not because they may
2974 // contain old data (this interval hasn't gone active, obviously),
2975 // but because we want their pg_info to inform choose_acting(), and
2976 // so that we know what they do/do not have explicitly before
2977 // sending them any new info/logs/whatever.
2978 for (unsigned i = 0; i < acting.size(); i++) {
2979 if (acting[i] != 0x7fffffff /* CRUSH_ITEM_NONE, can't import crush.h here */)
2980 probe.insert(pg_shard_t(acting[i], ec_pool ? shard_id_t(i) : shard_id_t::NO_SHARD));
2981 }
2982 // It may be possible to exclude the up nodes, but let's keep them in
2983 // there for now.
2984 for (unsigned i = 0; i < up.size(); i++) {
2985 if (up[i] != 0x7fffffff /* CRUSH_ITEM_NONE, can't import crush.h here */)
2986 probe.insert(pg_shard_t(up[i], ec_pool ? shard_id_t(i) : shard_id_t::NO_SHARD));
2987 }
2988
2989 set<pg_shard_t> all_probe = past_intervals.get_all_probe(ec_pool);
2990 ldpp_dout(dpp, 10) << "build_prior all_probe " << all_probe << dendl;
2991 for (auto &&i: all_probe) {
2992 switch (f(0, i.osd, nullptr)) {
2993 case UP: {
2994 probe.insert(i);
2995 break;
2996 }
2997 case DNE:
2998 case LOST:
2999 case DOWN: {
3000 down.insert(i.osd);
3001 break;
3002 }
3003 }
3004 }
3005
3006 past_intervals.iterate_mayberw_back_to(
3007 ec_pool,
3008 last_epoch_started,
3009 [&](epoch_t start, const set<pg_shard_t> &acting) {
3010 ldpp_dout(dpp, 10) << "build_prior maybe_rw interval:" << start
3011 << ", acting: " << acting << dendl;
3012
3013 // look at candidate osds during this interval. each falls into
3014 // one of three categories: up, down (but potentially
3015 // interesting), or lost (down, but we won't wait for it).
3016 set<pg_shard_t> up_now;
3017 map<int, epoch_t> candidate_blocked_by;
3018 // any candidates down now (that might have useful data)
3019 bool any_down_now = false;
3020
3021 // consider ACTING osds
3022 for (auto &&so: acting) {
3023 epoch_t lost_at = 0;
3024 switch (f(start, so.osd, &lost_at)) {
3025 case UP: {
3026 // include past acting osds if they are up.
3027 up_now.insert(so);
3028 break;
3029 }
3030 case DNE: {
3031 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3032 << " no longer exists" << dendl;
3033 break;
3034 }
3035 case LOST: {
3036 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3037 << " is down, but lost_at " << lost_at << dendl;
3038 up_now.insert(so);
3039 break;
3040 }
3041 case DOWN: {
3042 ldpp_dout(dpp, 10) << "build_prior prior osd." << so.osd
3043 << " is down" << dendl;
3044 candidate_blocked_by[so.osd] = lost_at;
3045 any_down_now = true;
3046 break;
3047 }
3048 }
3049 }
3050
3051 // if not enough osds survived this interval, and we may have gone rw,
3052 // then we need to wait for one of those osds to recover to
3053 // ensure that we haven't lost any information.
3054 if (!(*pcontdec)(up_now) && any_down_now) {
3055 // fixme: how do we identify a "clean" shutdown anyway?
3056 ldpp_dout(dpp, 10) << "build_prior possibly went active+rw,"
3057 << " insufficient up; including down osds" << dendl;
3058 assert(!candidate_blocked_by.empty());
3059 pg_down = true;
3060 blocked_by.insert(
3061 candidate_blocked_by.begin(),
3062 candidate_blocked_by.end());
3063 }
3064 });
3065
3066 ldpp_dout(dpp, 10) << "build_prior final: probe " << probe
3067 << " down " << down
3068 << " blocked_by " << blocked_by
3069 << (pg_down ? " pg_down":"")
3070 << dendl;
3071 }
3072
3073 /**
3074 * pg_query_t - used to ask a peer for information about a pg.
3075 *
3076 * note: if version=0, type=LOG, then we just provide our full log.
3077 */
3078 struct pg_query_t {
3079 enum {
3080 INFO = 0,
3081 LOG = 1,
3082 MISSING = 4,
3083 FULLLOG = 5,
3084 };
3085 const char *get_type_name() const {
3086 switch (type) {
3087 case INFO: return "info";
3088 case LOG: return "log";
3089 case MISSING: return "missing";
3090 case FULLLOG: return "fulllog";
3091 default: return "???";
3092 }
3093 }
3094
3095 __s32 type;
3096 eversion_t since;
3097 pg_history_t history;
3098 epoch_t epoch_sent;
3099 shard_id_t to;
3100 shard_id_t from;
3101
3102 pg_query_t() : type(-1), epoch_sent(0), to(shard_id_t::NO_SHARD),
3103 from(shard_id_t::NO_SHARD) {}
3104 pg_query_t(
3105 int t,
3106 shard_id_t to,
3107 shard_id_t from,
3108 const pg_history_t& h,
3109 epoch_t epoch_sent)
3110 : type(t),
3111 history(h),
3112 epoch_sent(epoch_sent),
3113 to(to), from(from) {
3114 assert(t != LOG);
3115 }
3116 pg_query_t(
3117 int t,
3118 shard_id_t to,
3119 shard_id_t from,
3120 eversion_t s,
3121 const pg_history_t& h,
3122 epoch_t epoch_sent)
3123 : type(t), since(s), history(h),
3124 epoch_sent(epoch_sent), to(to), from(from) {
3125 assert(t == LOG);
3126 }
3127
3128 void encode(bufferlist &bl, uint64_t features) const;
3129 void decode(bufferlist::iterator &bl);
3130
3131 void dump(Formatter *f) const;
3132 static void generate_test_instances(list<pg_query_t*>& o);
3133 };
3134 WRITE_CLASS_ENCODER_FEATURES(pg_query_t)
3135
3136 inline ostream& operator<<(ostream& out, const pg_query_t& q) {
3137 out << "query(" << q.get_type_name() << " " << q.since;
3138 if (q.type == pg_query_t::LOG)
3139 out << " " << q.history;
3140 out << ")";
3141 return out;
3142 }
3143
3144 class PGBackend;
3145 class ObjectModDesc {
3146 bool can_local_rollback;
3147 bool rollback_info_completed;
3148
3149 // version required to decode, reflected in encode/decode version
3150 __u8 max_required_version = 1;
3151 public:
3152 class Visitor {
3153 public:
3154 virtual void append(uint64_t old_offset) {}
3155 virtual void setattrs(map<string, boost::optional<bufferlist> > &attrs) {}
3156 virtual void rmobject(version_t old_version) {}
3157 /**
3158 * Used to support the unfound_lost_delete log event: if the stashed
3159 * version exists, we unstash it, otherwise, we do nothing. This way
3160 * each replica rolls back to whatever state it had prior to the attempt
3161 * at mark unfound lost delete
3162 */
3163 virtual void try_rmobject(version_t old_version) {
3164 rmobject(old_version);
3165 }
3166 virtual void create() {}
3167 virtual void update_snaps(const set<snapid_t> &old_snaps) {}
3168 virtual void rollback_extents(
3169 version_t gen,
3170 const vector<pair<uint64_t, uint64_t> > &extents) {}
3171 virtual ~Visitor() {}
3172 };
3173 void visit(Visitor *visitor) const;
3174 mutable bufferlist bl;
3175 enum ModID {
3176 APPEND = 1,
3177 SETATTRS = 2,
3178 DELETE = 3,
3179 CREATE = 4,
3180 UPDATE_SNAPS = 5,
3181 TRY_DELETE = 6,
3182 ROLLBACK_EXTENTS = 7
3183 };
3184 ObjectModDesc() : can_local_rollback(true), rollback_info_completed(false) {
3185 bl.reassign_to_mempool(mempool::mempool_osd_pglog);
3186 }
3187 void claim(ObjectModDesc &other) {
3188 bl.clear();
3189 bl.claim(other.bl);
3190 can_local_rollback = other.can_local_rollback;
3191 rollback_info_completed = other.rollback_info_completed;
3192 }
3193 void claim_append(ObjectModDesc &other) {
3194 if (!can_local_rollback || rollback_info_completed)
3195 return;
3196 if (!other.can_local_rollback) {
3197 mark_unrollbackable();
3198 return;
3199 }
3200 bl.claim_append(other.bl);
3201 rollback_info_completed = other.rollback_info_completed;
3202 }
3203 void swap(ObjectModDesc &other) {
3204 bl.swap(other.bl);
3205
3206 using std::swap;
3207 swap(other.can_local_rollback, can_local_rollback);
3208 swap(other.rollback_info_completed, rollback_info_completed);
3209 swap(other.max_required_version, max_required_version);
3210 }
3211 void append_id(ModID id) {
3212 uint8_t _id(id);
3213 ::encode(_id, bl);
3214 }
3215 void append(uint64_t old_size) {
3216 if (!can_local_rollback || rollback_info_completed)
3217 return;
3218 ENCODE_START(1, 1, bl);
3219 append_id(APPEND);
3220 ::encode(old_size, bl);
3221 ENCODE_FINISH(bl);
3222 }
3223 void setattrs(map<string, boost::optional<bufferlist> > &old_attrs) {
3224 if (!can_local_rollback || rollback_info_completed)
3225 return;
3226 ENCODE_START(1, 1, bl);
3227 append_id(SETATTRS);
3228 ::encode(old_attrs, bl);
3229 ENCODE_FINISH(bl);
3230 }
3231 bool rmobject(version_t deletion_version) {
3232 if (!can_local_rollback || rollback_info_completed)
3233 return false;
3234 ENCODE_START(1, 1, bl);
3235 append_id(DELETE);
3236 ::encode(deletion_version, bl);
3237 ENCODE_FINISH(bl);
3238 rollback_info_completed = true;
3239 return true;
3240 }
3241 bool try_rmobject(version_t deletion_version) {
3242 if (!can_local_rollback || rollback_info_completed)
3243 return false;
3244 ENCODE_START(1, 1, bl);
3245 append_id(TRY_DELETE);
3246 ::encode(deletion_version, bl);
3247 ENCODE_FINISH(bl);
3248 rollback_info_completed = true;
3249 return true;
3250 }
3251 void create() {
3252 if (!can_local_rollback || rollback_info_completed)
3253 return;
3254 rollback_info_completed = true;
3255 ENCODE_START(1, 1, bl);
3256 append_id(CREATE);
3257 ENCODE_FINISH(bl);
3258 }
3259 void update_snaps(const set<snapid_t> &old_snaps) {
3260 if (!can_local_rollback || rollback_info_completed)
3261 return;
3262 ENCODE_START(1, 1, bl);
3263 append_id(UPDATE_SNAPS);
3264 ::encode(old_snaps, bl);
3265 ENCODE_FINISH(bl);
3266 }
3267 void rollback_extents(
3268 version_t gen, const vector<pair<uint64_t, uint64_t> > &extents) {
3269 assert(can_local_rollback);
3270 assert(!rollback_info_completed);
3271 if (max_required_version < 2)
3272 max_required_version = 2;
3273 ENCODE_START(2, 2, bl);
3274 append_id(ROLLBACK_EXTENTS);
3275 ::encode(gen, bl);
3276 ::encode(extents, bl);
3277 ENCODE_FINISH(bl);
3278 }
3279
3280 // cannot be rolled back
3281 void mark_unrollbackable() {
3282 can_local_rollback = false;
3283 bl.clear();
3284 }
3285 bool can_rollback() const {
3286 return can_local_rollback;
3287 }
3288 bool empty() const {
3289 return can_local_rollback && (bl.length() == 0);
3290 }
3291
3292 bool requires_kraken() const {
3293 return max_required_version >= 2;
3294 }
3295
3296 /**
3297 * Create fresh copy of bl bytes to avoid keeping large buffers around
3298 * in the case that bl contains ptrs which point into a much larger
3299 * message buffer
3300 */
3301 void trim_bl() const {
3302 if (bl.length() > 0)
3303 bl.rebuild();
3304 }
3305 void encode(bufferlist &bl) const;
3306 void decode(bufferlist::iterator &bl);
3307 void dump(Formatter *f) const;
3308 static void generate_test_instances(list<ObjectModDesc*>& o);
3309 };
3310 WRITE_CLASS_ENCODER(ObjectModDesc)
3311
3312
3313 /**
3314 * pg_log_entry_t - single entry/event in pg log
3315 *
3316 */
3317 struct pg_log_entry_t {
3318 enum {
3319 MODIFY = 1, // some unspecified modification (but not *all* modifications)
3320 CLONE = 2, // cloned object from head
3321 DELETE = 3, // deleted object
3322 BACKLOG = 4, // event invented by generate_backlog [deprecated]
3323 LOST_REVERT = 5, // lost new version, revert to an older version.
3324 LOST_DELETE = 6, // lost new version, revert to no object (deleted).
3325 LOST_MARK = 7, // lost new version, now EIO
3326 PROMOTE = 8, // promoted object from another tier
3327 CLEAN = 9, // mark an object clean
3328 ERROR = 10, // write that returned an error
3329 };
3330 static const char *get_op_name(int op) {
3331 switch (op) {
3332 case MODIFY:
3333 return "modify";
3334 case PROMOTE:
3335 return "promote";
3336 case CLONE:
3337 return "clone";
3338 case DELETE:
3339 return "delete";
3340 case BACKLOG:
3341 return "backlog";
3342 case LOST_REVERT:
3343 return "l_revert";
3344 case LOST_DELETE:
3345 return "l_delete";
3346 case LOST_MARK:
3347 return "l_mark";
3348 case CLEAN:
3349 return "clean";
3350 case ERROR:
3351 return "error";
3352 default:
3353 return "unknown";
3354 }
3355 }
3356 const char *get_op_name() const {
3357 return get_op_name(op);
3358 }
3359
3360 // describes state for a locally-rollbackable entry
3361 ObjectModDesc mod_desc;
3362 bufferlist snaps; // only for clone entries
3363 hobject_t soid;
3364 osd_reqid_t reqid; // caller+tid to uniquely identify request
3365 mempool::osd_pglog::vector<pair<osd_reqid_t, version_t> > extra_reqids;
3366 eversion_t version, prior_version, reverting_to;
3367 version_t user_version; // the user version for this entry
3368 utime_t mtime; // this is the _user_ mtime, mind you
3369 int32_t return_code; // only stored for ERRORs for dup detection
3370
3371 __s32 op;
3372 bool invalid_hash; // only when decoding sobject_t based entries
3373 bool invalid_pool; // only when decoding pool-less hobject based entries
3374
3375 pg_log_entry_t()
3376 : user_version(0), return_code(0), op(0),
3377 invalid_hash(false), invalid_pool(false) {
3378 snaps.reassign_to_mempool(mempool::mempool_osd_pglog);
3379 }
3380 pg_log_entry_t(int _op, const hobject_t& _soid,
3381 const eversion_t& v, const eversion_t& pv,
3382 version_t uv,
3383 const osd_reqid_t& rid, const utime_t& mt,
3384 int return_code)
3385 : soid(_soid), reqid(rid), version(v), prior_version(pv), user_version(uv),
3386 mtime(mt), return_code(return_code), op(_op),
3387 invalid_hash(false), invalid_pool(false) {
3388 snaps.reassign_to_mempool(mempool::mempool_osd_pglog);
3389 }
3390
3391 bool is_clone() const { return op == CLONE; }
3392 bool is_modify() const { return op == MODIFY; }
3393 bool is_promote() const { return op == PROMOTE; }
3394 bool is_clean() const { return op == CLEAN; }
3395 bool is_backlog() const { return op == BACKLOG; }
3396 bool is_lost_revert() const { return op == LOST_REVERT; }
3397 bool is_lost_delete() const { return op == LOST_DELETE; }
3398 bool is_lost_mark() const { return op == LOST_MARK; }
3399 bool is_error() const { return op == ERROR; }
3400
3401 bool is_update() const {
3402 return
3403 is_clone() || is_modify() || is_promote() || is_clean() ||
3404 is_backlog() || is_lost_revert() || is_lost_mark();
3405 }
3406 bool is_delete() const {
3407 return op == DELETE || op == LOST_DELETE;
3408 }
3409
3410 bool can_rollback() const {
3411 return mod_desc.can_rollback();
3412 }
3413
3414 void mark_unrollbackable() {
3415 mod_desc.mark_unrollbackable();
3416 }
3417
3418 bool requires_kraken() const {
3419 return mod_desc.requires_kraken();
3420 }
3421
3422 // Errors are only used for dup detection, whereas
3423 // the index by objects is used by recovery, copy_get,
3424 // and other facilities that don't expect or need to
3425 // be aware of error entries.
3426 bool object_is_indexed() const {
3427 return !is_error();
3428 }
3429
3430 bool reqid_is_indexed() const {
3431 return reqid != osd_reqid_t() &&
3432 (op == MODIFY || op == DELETE || op == ERROR);
3433 }
3434
3435 string get_key_name() const;
3436 void encode_with_checksum(bufferlist& bl) const;
3437 void decode_with_checksum(bufferlist::iterator& p);
3438
3439 void encode(bufferlist &bl) const;
3440 void decode(bufferlist::iterator &bl);
3441 void dump(Formatter *f) const;
3442 static void generate_test_instances(list<pg_log_entry_t*>& o);
3443
3444 };
3445 WRITE_CLASS_ENCODER(pg_log_entry_t)
3446
3447 ostream& operator<<(ostream& out, const pg_log_entry_t& e);
3448
3449 struct pg_log_dup_t {
3450 osd_reqid_t reqid; // caller+tid to uniquely identify request
3451 eversion_t version;
3452 version_t user_version; // the user version for this entry
3453 int32_t return_code; // only stored for ERRORs for dup detection
3454
3455 pg_log_dup_t()
3456 : user_version(0), return_code(0)
3457 {}
3458 explicit pg_log_dup_t(const pg_log_entry_t& entry)
3459 : reqid(entry.reqid), version(entry.version),
3460 user_version(entry.user_version), return_code(entry.return_code)
3461 {}
3462 pg_log_dup_t(const eversion_t& v, version_t uv,
3463 const osd_reqid_t& rid, int return_code)
3464 : reqid(rid), version(v), user_version(uv),
3465 return_code(return_code)
3466 {}
3467
3468 string get_key_name() const;
3469 void encode(bufferlist &bl) const;
3470 void decode(bufferlist::iterator &bl);
3471 void dump(Formatter *f) const;
3472 static void generate_test_instances(list<pg_log_dup_t*>& o);
3473
3474 bool operator==(const pg_log_dup_t &rhs) const {
3475 return reqid == rhs.reqid &&
3476 version == rhs.version &&
3477 user_version == rhs.user_version &&
3478 return_code == rhs.return_code;
3479 }
3480 bool operator!=(const pg_log_dup_t &rhs) const {
3481 return !(*this == rhs);
3482 }
3483
3484 friend std::ostream& operator<<(std::ostream& out, const pg_log_dup_t& e);
3485 };
3486 WRITE_CLASS_ENCODER(pg_log_dup_t)
3487
3488 std::ostream& operator<<(std::ostream& out, const pg_log_dup_t& e);
3489
3490 /**
3491 * pg_log_t - incremental log of recent pg changes.
3492 *
3493 * serves as a recovery queue for recent changes.
3494 */
3495 struct pg_log_t {
3496 /*
3497 * head - newest entry (update|delete)
3498 * tail - entry previous to oldest (update|delete) for which we have
3499 * complete negative information.
3500 * i.e. we can infer pg contents for any store whose last_update >= tail.
3501 */
3502 eversion_t head; // newest entry
3503 eversion_t tail; // version prior to oldest
3504
3505 protected:
3506 // We can rollback rollback-able entries > can_rollback_to
3507 eversion_t can_rollback_to;
3508
3509 // always <= can_rollback_to, indicates how far stashed rollback
3510 // data can be found
3511 eversion_t rollback_info_trimmed_to;
3512
3513 public:
3514 // the actual log
3515 mempool::osd_pglog::list<pg_log_entry_t> log;
3516
3517 // entries just for dup op detection ordered oldest to newest
3518 mempool::osd_pglog::list<pg_log_dup_t> dups;
3519
3520 pg_log_t() = default;
3521 pg_log_t(const eversion_t &last_update,
3522 const eversion_t &log_tail,
3523 const eversion_t &can_rollback_to,
3524 const eversion_t &rollback_info_trimmed_to,
3525 mempool::osd_pglog::list<pg_log_entry_t> &&entries,
3526 mempool::osd_pglog::list<pg_log_dup_t> &&dup_entries)
3527 : head(last_update), tail(log_tail), can_rollback_to(can_rollback_to),
3528 rollback_info_trimmed_to(rollback_info_trimmed_to),
3529 log(std::move(entries)), dups(std::move(dup_entries)) {}
3530 pg_log_t(const eversion_t &last_update,
3531 const eversion_t &log_tail,
3532 const eversion_t &can_rollback_to,
3533 const eversion_t &rollback_info_trimmed_to,
3534 const std::list<pg_log_entry_t> &entries,
3535 const std::list<pg_log_dup_t> &dup_entries)
3536 : head(last_update), tail(log_tail), can_rollback_to(can_rollback_to),
3537 rollback_info_trimmed_to(rollback_info_trimmed_to) {
3538 for (auto &&entry: entries) {
3539 log.push_back(entry);
3540 }
3541 for (auto &&entry: dup_entries) {
3542 dups.push_back(entry);
3543 }
3544 }
3545
3546 void clear() {
3547 eversion_t z;
3548 rollback_info_trimmed_to = can_rollback_to = head = tail = z;
3549 log.clear();
3550 dups.clear();
3551 }
3552
3553 eversion_t get_rollback_info_trimmed_to() const {
3554 return rollback_info_trimmed_to;
3555 }
3556 eversion_t get_can_rollback_to() const {
3557 return can_rollback_to;
3558 }
3559
3560
3561 pg_log_t split_out_child(pg_t child_pgid, unsigned split_bits) {
3562 mempool::osd_pglog::list<pg_log_entry_t> oldlog, childlog;
3563 oldlog.swap(log);
3564
3565 eversion_t old_tail;
3566 unsigned mask = ~((~0)<<split_bits);
3567 for (auto i = oldlog.begin();
3568 i != oldlog.end();
3569 ) {
3570 if ((i->soid.get_hash() & mask) == child_pgid.m_seed) {
3571 childlog.push_back(*i);
3572 } else {
3573 log.push_back(*i);
3574 }
3575 oldlog.erase(i++);
3576 }
3577
3578 // osd_reqid is unique, so it doesn't matter if there are extra
3579 // dup entries in each pg. To avoid storing oid with the dup
3580 // entries, just copy the whole list.
3581 auto childdups(dups);
3582
3583 return pg_log_t(
3584 head,
3585 tail,
3586 can_rollback_to,
3587 rollback_info_trimmed_to,
3588 std::move(childlog),
3589 std::move(childdups));
3590 }
3591
3592 mempool::osd_pglog::list<pg_log_entry_t> rewind_from_head(eversion_t newhead) {
3593 assert(newhead >= tail);
3594
3595 mempool::osd_pglog::list<pg_log_entry_t>::iterator p = log.end();
3596 mempool::osd_pglog::list<pg_log_entry_t> divergent;
3597 while (true) {
3598 if (p == log.begin()) {
3599 // yikes, the whole thing is divergent!
3600 using std::swap;
3601 swap(divergent, log);
3602 break;
3603 }
3604 --p;
3605 if (p->version.version <= newhead.version) {
3606 /*
3607 * look at eversion.version here. we want to avoid a situation like:
3608 * our log: 100'10 (0'0) m 10000004d3a.00000000/head by client4225.1:18529
3609 * new log: 122'10 (0'0) m 10000004d3a.00000000/head by client4225.1:18529
3610 * lower_bound = 100'9
3611 * i.e, same request, different version. If the eversion.version is > the
3612 * lower_bound, we it is divergent.
3613 */
3614 ++p;
3615 divergent.splice(divergent.begin(), log, p, log.end());
3616 break;
3617 }
3618 assert(p->version > newhead);
3619 }
3620 head = newhead;
3621
3622 if (can_rollback_to > newhead)
3623 can_rollback_to = newhead;
3624
3625 if (rollback_info_trimmed_to > newhead)
3626 rollback_info_trimmed_to = newhead;
3627
3628 return divergent;
3629 }
3630
3631 bool empty() const {
3632 return log.empty();
3633 }
3634
3635 bool null() const {
3636 return head.version == 0 && head.epoch == 0;
3637 }
3638
3639 size_t approx_size() const {
3640 return head.version - tail.version;
3641 }
3642
3643 static void filter_log(spg_t import_pgid, const OSDMap &curmap,
3644 const string &hit_set_namespace, const pg_log_t &in,
3645 pg_log_t &out, pg_log_t &reject);
3646
3647 /**
3648 * copy entries from the tail of another pg_log_t
3649 *
3650 * @param other pg_log_t to copy from
3651 * @param from copy entries after this version
3652 */
3653 void copy_after(const pg_log_t &other, eversion_t from);
3654
3655 /**
3656 * copy a range of entries from another pg_log_t
3657 *
3658 * @param other pg_log_t to copy from
3659 * @param from copy entries after this version
3660 * @param to up to and including this version
3661 */
3662 void copy_range(const pg_log_t &other, eversion_t from, eversion_t to);
3663
3664 /**
3665 * copy up to N entries
3666 *
3667 * @param other source log
3668 * @param max max number of entries to copy
3669 */
3670 void copy_up_to(const pg_log_t &other, int max);
3671
3672 ostream& print(ostream& out) const;
3673
3674 void encode(bufferlist &bl) const;
3675 void decode(bufferlist::iterator &bl, int64_t pool = -1);
3676 void dump(Formatter *f) const;
3677 static void generate_test_instances(list<pg_log_t*>& o);
3678 };
3679 WRITE_CLASS_ENCODER(pg_log_t)
3680
3681 inline ostream& operator<<(ostream& out, const pg_log_t& log)
3682 {
3683 out << "log((" << log.tail << "," << log.head << "], crt="
3684 << log.get_can_rollback_to() << ")";
3685 return out;
3686 }
3687
3688
3689 /**
3690 * pg_missing_t - summary of missing objects.
3691 *
3692 * kept in memory, as a supplement to pg_log_t
3693 * also used to pass missing info in messages.
3694 */
3695 struct pg_missing_item {
3696 eversion_t need, have;
3697 enum missing_flags_t {
3698 FLAG_NONE = 0,
3699 FLAG_DELETE = 1,
3700 } flags;
3701 pg_missing_item() : flags(FLAG_NONE) {}
3702 explicit pg_missing_item(eversion_t n) : need(n), flags(FLAG_NONE) {} // have no old version
3703 pg_missing_item(eversion_t n, eversion_t h, bool is_delete=false) : need(n), have(h) {
3704 set_delete(is_delete);
3705 }
3706
3707 void encode(bufferlist& bl, uint64_t features) const {
3708 if (HAVE_FEATURE(features, OSD_RECOVERY_DELETES)) {
3709 // encoding a zeroed eversion_t to differentiate between this and
3710 // legacy unversioned encoding - a need value of 0'0 is not
3711 // possible. This can be replaced with the legacy encoding
3712 // macros post-luminous.
3713 eversion_t e;
3714 ::encode(e, bl);
3715 ::encode(need, bl);
3716 ::encode(have, bl);
3717 ::encode(static_cast<uint8_t>(flags), bl);
3718 } else {
3719 // legacy unversioned encoding
3720 ::encode(need, bl);
3721 ::encode(have, bl);
3722 }
3723 }
3724 void decode(bufferlist::iterator& bl) {
3725 eversion_t e;
3726 ::decode(e, bl);
3727 if (e != eversion_t()) {
3728 // legacy encoding, this is the need value
3729 need = e;
3730 ::decode(have, bl);
3731 } else {
3732 ::decode(need, bl);
3733 ::decode(have, bl);
3734 uint8_t f;
3735 ::decode(f, bl);
3736 flags = static_cast<missing_flags_t>(f);
3737 }
3738 }
3739
3740 void set_delete(bool is_delete) {
3741 flags = is_delete ? FLAG_DELETE : FLAG_NONE;
3742 }
3743
3744 bool is_delete() const {
3745 return (flags & FLAG_DELETE) == FLAG_DELETE;
3746 }
3747
3748 string flag_str() const {
3749 if (flags == FLAG_NONE) {
3750 return "none";
3751 } else {
3752 return "delete";
3753 }
3754 }
3755
3756 void dump(Formatter *f) const {
3757 f->dump_stream("need") << need;
3758 f->dump_stream("have") << have;
3759 f->dump_stream("flags") << flag_str();
3760 }
3761 static void generate_test_instances(list<pg_missing_item*>& o) {
3762 o.push_back(new pg_missing_item);
3763 o.push_back(new pg_missing_item);
3764 o.back()->need = eversion_t(1, 2);
3765 o.back()->have = eversion_t(1, 1);
3766 o.push_back(new pg_missing_item);
3767 o.back()->need = eversion_t(3, 5);
3768 o.back()->have = eversion_t(3, 4);
3769 o.back()->flags = FLAG_DELETE;
3770 }
3771 bool operator==(const pg_missing_item &rhs) const {
3772 return need == rhs.need && have == rhs.have && flags == rhs.flags;
3773 }
3774 bool operator!=(const pg_missing_item &rhs) const {
3775 return !(*this == rhs);
3776 }
3777 };
3778 WRITE_CLASS_ENCODER_FEATURES(pg_missing_item)
3779 ostream& operator<<(ostream& out, const pg_missing_item &item);
3780
3781 class pg_missing_const_i {
3782 public:
3783 virtual const map<hobject_t, pg_missing_item> &
3784 get_items() const = 0;
3785 virtual const map<version_t, hobject_t> &get_rmissing() const = 0;
3786 virtual bool get_may_include_deletes() const = 0;
3787 virtual unsigned int num_missing() const = 0;
3788 virtual bool have_missing() const = 0;
3789 virtual bool is_missing(const hobject_t& oid, pg_missing_item *out = nullptr) const = 0;
3790 virtual bool is_missing(const hobject_t& oid, eversion_t v) const = 0;
3791 virtual eversion_t have_old(const hobject_t& oid) const = 0;
3792 virtual ~pg_missing_const_i() {}
3793 };
3794
3795
3796 template <bool Track>
3797 class ChangeTracker {
3798 public:
3799 void changed(const hobject_t &obj) {}
3800 template <typename F>
3801 void get_changed(F &&f) const {}
3802 void flush() {}
3803 bool is_clean() const {
3804 return true;
3805 }
3806 };
3807 template <>
3808 class ChangeTracker<true> {
3809 set<hobject_t> _changed;
3810 public:
3811 void changed(const hobject_t &obj) {
3812 _changed.insert(obj);
3813 }
3814 template <typename F>
3815 void get_changed(F &&f) const {
3816 for (auto const &i: _changed) {
3817 f(i);
3818 }
3819 }
3820 void flush() {
3821 _changed.clear();
3822 }
3823 bool is_clean() const {
3824 return _changed.empty();
3825 }
3826 };
3827
3828 template <bool TrackChanges>
3829 class pg_missing_set : public pg_missing_const_i {
3830 using item = pg_missing_item;
3831 map<hobject_t, item> missing; // oid -> (need v, have v)
3832 map<version_t, hobject_t> rmissing; // v -> oid
3833 ChangeTracker<TrackChanges> tracker;
3834
3835 public:
3836 pg_missing_set() = default;
3837
3838 template <typename missing_type>
3839 pg_missing_set(const missing_type &m) {
3840 missing = m.get_items();
3841 rmissing = m.get_rmissing();
3842 may_include_deletes = m.get_may_include_deletes();
3843 for (auto &&i: missing)
3844 tracker.changed(i.first);
3845 }
3846
3847 bool may_include_deletes = false;
3848
3849 const map<hobject_t, item> &get_items() const override {
3850 return missing;
3851 }
3852 const map<version_t, hobject_t> &get_rmissing() const override {
3853 return rmissing;
3854 }
3855 bool get_may_include_deletes() const override {
3856 return may_include_deletes;
3857 }
3858 unsigned int num_missing() const override {
3859 return missing.size();
3860 }
3861 bool have_missing() const override {
3862 return !missing.empty();
3863 }
3864 bool is_missing(const hobject_t& oid, pg_missing_item *out = nullptr) const override {
3865 auto iter = missing.find(oid);
3866 if (iter == missing.end())
3867 return false;
3868 if (out)
3869 *out = iter->second;
3870 return true;
3871 }
3872 bool is_missing(const hobject_t& oid, eversion_t v) const override {
3873 map<hobject_t, item>::const_iterator m =
3874 missing.find(oid);
3875 if (m == missing.end())
3876 return false;
3877 const item &item(m->second);
3878 if (item.need > v)
3879 return false;
3880 return true;
3881 }
3882 eversion_t have_old(const hobject_t& oid) const override {
3883 map<hobject_t, item>::const_iterator m =
3884 missing.find(oid);
3885 if (m == missing.end())
3886 return eversion_t();
3887 const item &item(m->second);
3888 return item.have;
3889 }
3890
3891 void claim(pg_missing_set& o) {
3892 static_assert(!TrackChanges, "Can't use claim with TrackChanges");
3893 missing.swap(o.missing);
3894 rmissing.swap(o.rmissing);
3895 }
3896
3897 /*
3898 * this needs to be called in log order as we extend the log. it
3899 * assumes missing is accurate up through the previous log entry.
3900 */
3901 void add_next_event(const pg_log_entry_t& e) {
3902 map<hobject_t, item>::iterator missing_it;
3903 missing_it = missing.find(e.soid);
3904 bool is_missing_divergent_item = missing_it != missing.end();
3905 if (e.prior_version == eversion_t() || e.is_clone()) {
3906 // new object.
3907 if (is_missing_divergent_item) { // use iterator
3908 rmissing.erase((missing_it->second).need.version);
3909 missing_it->second = item(e.version, eversion_t(), e.is_delete()); // .have = nil
3910 } else // create new element in missing map
3911 missing[e.soid] = item(e.version, eversion_t(), e.is_delete()); // .have = nil
3912 } else if (is_missing_divergent_item) {
3913 // already missing (prior).
3914 rmissing.erase((missing_it->second).need.version);
3915 (missing_it->second).need = e.version; // leave .have unchanged.
3916 missing_it->second.set_delete(e.is_delete());
3917 } else if (e.is_backlog()) {
3918 // May not have prior version
3919 assert(0 == "these don't exist anymore");
3920 } else {
3921 // not missing, we must have prior_version (if any)
3922 assert(!is_missing_divergent_item);
3923 missing[e.soid] = item(e.version, e.prior_version, e.is_delete());
3924 }
3925 rmissing[e.version.version] = e.soid;
3926 tracker.changed(e.soid);
3927 }
3928
3929 void revise_need(hobject_t oid, eversion_t need, bool is_delete) {
3930 if (missing.count(oid)) {
3931 rmissing.erase(missing[oid].need.version);
3932 missing[oid].need = need; // no not adjust .have
3933 missing[oid].set_delete(is_delete);
3934 } else {
3935 missing[oid] = item(need, eversion_t(), is_delete);
3936 }
3937 rmissing[need.version] = oid;
3938
3939 tracker.changed(oid);
3940 }
3941
3942 void revise_have(hobject_t oid, eversion_t have) {
3943 if (missing.count(oid)) {
3944 tracker.changed(oid);
3945 missing[oid].have = have;
3946 }
3947 }
3948
3949 void add(const hobject_t& oid, eversion_t need, eversion_t have,
3950 bool is_delete) {
3951 missing[oid] = item(need, have, is_delete);
3952 rmissing[need.version] = oid;
3953 tracker.changed(oid);
3954 }
3955
3956 void rm(const hobject_t& oid, eversion_t v) {
3957 std::map<hobject_t, item>::iterator p = missing.find(oid);
3958 if (p != missing.end() && p->second.need <= v)
3959 rm(p);
3960 }
3961
3962 void rm(std::map<hobject_t, item>::const_iterator m) {
3963 tracker.changed(m->first);
3964 rmissing.erase(m->second.need.version);
3965 missing.erase(m);
3966 }
3967
3968 void got(const hobject_t& oid, eversion_t v) {
3969 std::map<hobject_t, item>::iterator p = missing.find(oid);
3970 assert(p != missing.end());
3971 assert(p->second.need <= v || p->second.is_delete());
3972 got(p);
3973 }
3974
3975 void got(std::map<hobject_t, item>::const_iterator m) {
3976 tracker.changed(m->first);
3977 rmissing.erase(m->second.need.version);
3978 missing.erase(m);
3979 }
3980
3981 void split_into(
3982 pg_t child_pgid,
3983 unsigned split_bits,
3984 pg_missing_set *omissing) {
3985 omissing->may_include_deletes = may_include_deletes;
3986 unsigned mask = ~((~0)<<split_bits);
3987 for (map<hobject_t, item>::iterator i = missing.begin();
3988 i != missing.end();
3989 ) {
3990 if ((i->first.get_hash() & mask) == child_pgid.m_seed) {
3991 omissing->add(i->first, i->second.need, i->second.have,
3992 i->second.is_delete());
3993 rm(i++);
3994 } else {
3995 ++i;
3996 }
3997 }
3998 }
3999
4000 void clear() {
4001 for (auto const &i: missing)
4002 tracker.changed(i.first);
4003 missing.clear();
4004 rmissing.clear();
4005 }
4006
4007 void encode(bufferlist &bl) const {
4008 ENCODE_START(4, 2, bl);
4009 ::encode(missing, bl, may_include_deletes ? CEPH_FEATURE_OSD_RECOVERY_DELETES : 0);
4010 ::encode(may_include_deletes, bl);
4011 ENCODE_FINISH(bl);
4012 }
4013 void decode(bufferlist::iterator &bl, int64_t pool = -1) {
4014 for (auto const &i: missing)
4015 tracker.changed(i.first);
4016 DECODE_START_LEGACY_COMPAT_LEN(4, 2, 2, bl);
4017 ::decode(missing, bl);
4018 if (struct_v >= 4) {
4019 ::decode(may_include_deletes, bl);
4020 }
4021 DECODE_FINISH(bl);
4022
4023 if (struct_v < 3) {
4024 // Handle hobject_t upgrade
4025 map<hobject_t, item> tmp;
4026 for (map<hobject_t, item>::iterator i =
4027 missing.begin();
4028 i != missing.end();
4029 ) {
4030 if (!i->first.is_max() && i->first.pool == -1) {
4031 hobject_t to_insert(i->first);
4032 to_insert.pool = pool;
4033 tmp[to_insert] = i->second;
4034 missing.erase(i++);
4035 } else {
4036 ++i;
4037 }
4038 }
4039 missing.insert(tmp.begin(), tmp.end());
4040 }
4041
4042 for (map<hobject_t,item>::iterator it =
4043 missing.begin();
4044 it != missing.end();
4045 ++it)
4046 rmissing[it->second.need.version] = it->first;
4047 for (auto const &i: missing)
4048 tracker.changed(i.first);
4049 }
4050 void dump(Formatter *f) const {
4051 f->open_array_section("missing");
4052 for (map<hobject_t,item>::const_iterator p =
4053 missing.begin(); p != missing.end(); ++p) {
4054 f->open_object_section("item");
4055 f->dump_stream("object") << p->first;
4056 p->second.dump(f);
4057 f->close_section();
4058 }
4059 f->close_section();
4060 f->dump_bool("may_include_deletes", may_include_deletes);
4061 }
4062 template <typename F>
4063 void filter_objects(F &&f) {
4064 for (auto i = missing.begin(); i != missing.end();) {
4065 if (f(i->first)) {
4066 rm(i++);
4067 } else {
4068 ++i;
4069 }
4070 }
4071 }
4072 static void generate_test_instances(list<pg_missing_set*>& o) {
4073 o.push_back(new pg_missing_set);
4074 o.push_back(new pg_missing_set);
4075 o.back()->add(
4076 hobject_t(object_t("foo"), "foo", 123, 456, 0, ""),
4077 eversion_t(5, 6), eversion_t(5, 1), false);
4078 o.push_back(new pg_missing_set);
4079 o.back()->add(
4080 hobject_t(object_t("foo"), "foo", 123, 456, 0, ""),
4081 eversion_t(5, 6), eversion_t(5, 1), true);
4082 o.back()->may_include_deletes = true;
4083 }
4084 template <typename F>
4085 void get_changed(F &&f) const {
4086 tracker.get_changed(f);
4087 }
4088 void flush() {
4089 tracker.flush();
4090 }
4091 bool is_clean() const {
4092 return tracker.is_clean();
4093 }
4094 template <typename missing_t>
4095 bool debug_verify_from_init(
4096 const missing_t &init_missing,
4097 ostream *oss) const {
4098 if (!TrackChanges)
4099 return true;
4100 auto check_missing(init_missing.get_items());
4101 tracker.get_changed([&](const hobject_t &hoid) {
4102 check_missing.erase(hoid);
4103 if (missing.count(hoid)) {
4104 check_missing.insert(*(missing.find(hoid)));
4105 }
4106 });
4107 bool ok = true;
4108 if (check_missing.size() != missing.size()) {
4109 if (oss) {
4110 *oss << "Size mismatch, check: " << check_missing.size()
4111 << ", actual: " << missing.size() << "\n";
4112 }
4113 ok = false;
4114 }
4115 for (auto &i: missing) {
4116 if (!check_missing.count(i.first)) {
4117 if (oss)
4118 *oss << "check_missing missing " << i.first << "\n";
4119 ok = false;
4120 } else if (check_missing[i.first] != i.second) {
4121 if (oss)
4122 *oss << "check_missing missing item mismatch on " << i.first
4123 << ", check: " << check_missing[i.first]
4124 << ", actual: " << i.second << "\n";
4125 ok = false;
4126 }
4127 }
4128 if (oss && !ok) {
4129 *oss << "check_missing: " << check_missing << "\n";
4130 set<hobject_t> changed;
4131 tracker.get_changed([&](const hobject_t &hoid) { changed.insert(hoid); });
4132 *oss << "changed: " << changed << "\n";
4133 }
4134 return ok;
4135 }
4136 };
4137 template <bool TrackChanges>
4138 void encode(
4139 const pg_missing_set<TrackChanges> &c, bufferlist &bl, uint64_t features=0) {
4140 ENCODE_DUMP_PRE();
4141 c.encode(bl);
4142 ENCODE_DUMP_POST(cl);
4143 }
4144 template <bool TrackChanges>
4145 void decode(pg_missing_set<TrackChanges> &c, bufferlist::iterator &p) {
4146 c.decode(p);
4147 }
4148 template <bool TrackChanges>
4149 ostream& operator<<(ostream& out, const pg_missing_set<TrackChanges> &missing)
4150 {
4151 out << "missing(" << missing.num_missing()
4152 << " may_include_deletes = " << missing.may_include_deletes;
4153 //if (missing.num_lost()) out << ", " << missing.num_lost() << " lost";
4154 out << ")";
4155 return out;
4156 }
4157
4158 using pg_missing_t = pg_missing_set<false>;
4159 using pg_missing_tracker_t = pg_missing_set<true>;
4160
4161
4162 /**
4163 * pg list objects response format
4164 *
4165 */
4166 struct pg_nls_response_t {
4167 collection_list_handle_t handle;
4168 list<librados::ListObjectImpl> entries;
4169
4170 void encode(bufferlist& bl) const {
4171 ENCODE_START(1, 1, bl);
4172 ::encode(handle, bl);
4173 __u32 n = (__u32)entries.size();
4174 ::encode(n, bl);
4175 for (list<librados::ListObjectImpl>::const_iterator i = entries.begin(); i != entries.end(); ++i) {
4176 ::encode(i->nspace, bl);
4177 ::encode(i->oid, bl);
4178 ::encode(i->locator, bl);
4179 }
4180 ENCODE_FINISH(bl);
4181 }
4182 void decode(bufferlist::iterator& bl) {
4183 DECODE_START(1, bl);
4184 ::decode(handle, bl);
4185 __u32 n;
4186 ::decode(n, bl);
4187 entries.clear();
4188 while (n--) {
4189 librados::ListObjectImpl i;
4190 ::decode(i.nspace, bl);
4191 ::decode(i.oid, bl);
4192 ::decode(i.locator, bl);
4193 entries.push_back(i);
4194 }
4195 DECODE_FINISH(bl);
4196 }
4197 void dump(Formatter *f) const {
4198 f->dump_stream("handle") << handle;
4199 f->open_array_section("entries");
4200 for (list<librados::ListObjectImpl>::const_iterator p = entries.begin(); p != entries.end(); ++p) {
4201 f->open_object_section("object");
4202 f->dump_string("namespace", p->nspace);
4203 f->dump_string("object", p->oid);
4204 f->dump_string("key", p->locator);
4205 f->close_section();
4206 }
4207 f->close_section();
4208 }
4209 static void generate_test_instances(list<pg_nls_response_t*>& o) {
4210 o.push_back(new pg_nls_response_t);
4211 o.push_back(new pg_nls_response_t);
4212 o.back()->handle = hobject_t(object_t("hi"), "key", 1, 2, -1, "");
4213 o.back()->entries.push_back(librados::ListObjectImpl("", "one", ""));
4214 o.back()->entries.push_back(librados::ListObjectImpl("", "two", "twokey"));
4215 o.back()->entries.push_back(librados::ListObjectImpl("", "three", ""));
4216 o.push_back(new pg_nls_response_t);
4217 o.back()->handle = hobject_t(object_t("hi"), "key", 3, 4, -1, "");
4218 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1one", ""));
4219 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1two", "n1twokey"));
4220 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1three", ""));
4221 o.push_back(new pg_nls_response_t);
4222 o.back()->handle = hobject_t(object_t("hi"), "key", 5, 6, -1, "");
4223 o.back()->entries.push_back(librados::ListObjectImpl("", "one", ""));
4224 o.back()->entries.push_back(librados::ListObjectImpl("", "two", "twokey"));
4225 o.back()->entries.push_back(librados::ListObjectImpl("", "three", ""));
4226 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1one", ""));
4227 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1two", "n1twokey"));
4228 o.back()->entries.push_back(librados::ListObjectImpl("n1", "n1three", ""));
4229 }
4230 };
4231
4232 WRITE_CLASS_ENCODER(pg_nls_response_t)
4233
4234 // For backwards compatibility with older OSD requests
4235 struct pg_ls_response_t {
4236 collection_list_handle_t handle;
4237 list<pair<object_t, string> > entries;
4238
4239 void encode(bufferlist& bl) const {
4240 __u8 v = 1;
4241 ::encode(v, bl);
4242 ::encode(handle, bl);
4243 ::encode(entries, bl);
4244 }
4245 void decode(bufferlist::iterator& bl) {
4246 __u8 v;
4247 ::decode(v, bl);
4248 assert(v == 1);
4249 ::decode(handle, bl);
4250 ::decode(entries, bl);
4251 }
4252 void dump(Formatter *f) const {
4253 f->dump_stream("handle") << handle;
4254 f->open_array_section("entries");
4255 for (list<pair<object_t, string> >::const_iterator p = entries.begin(); p != entries.end(); ++p) {
4256 f->open_object_section("object");
4257 f->dump_stream("object") << p->first;
4258 f->dump_string("key", p->second);
4259 f->close_section();
4260 }
4261 f->close_section();
4262 }
4263 static void generate_test_instances(list<pg_ls_response_t*>& o) {
4264 o.push_back(new pg_ls_response_t);
4265 o.push_back(new pg_ls_response_t);
4266 o.back()->handle = hobject_t(object_t("hi"), "key", 1, 2, -1, "");
4267 o.back()->entries.push_back(make_pair(object_t("one"), string()));
4268 o.back()->entries.push_back(make_pair(object_t("two"), string("twokey")));
4269 }
4270 };
4271
4272 WRITE_CLASS_ENCODER(pg_ls_response_t)
4273
4274 /**
4275 * object_copy_cursor_t
4276 */
4277 struct object_copy_cursor_t {
4278 uint64_t data_offset;
4279 string omap_offset;
4280 bool attr_complete;
4281 bool data_complete;
4282 bool omap_complete;
4283
4284 object_copy_cursor_t()
4285 : data_offset(0),
4286 attr_complete(false),
4287 data_complete(false),
4288 omap_complete(false)
4289 {}
4290
4291 bool is_initial() const {
4292 return !attr_complete && data_offset == 0 && omap_offset.empty();
4293 }
4294 bool is_complete() const {
4295 return attr_complete && data_complete && omap_complete;
4296 }
4297
4298 static void generate_test_instances(list<object_copy_cursor_t*>& o);
4299 void encode(bufferlist& bl) const;
4300 void decode(bufferlist::iterator &bl);
4301 void dump(Formatter *f) const;
4302 };
4303 WRITE_CLASS_ENCODER(object_copy_cursor_t)
4304
4305 /**
4306 * object_copy_data_t
4307 *
4308 * Return data from a copy request. The semantics are a little strange
4309 * as a result of the encoding's heritage.
4310 *
4311 * In particular, the sender unconditionally fills in the cursor (from what
4312 * it receives and sends), the size, and the mtime, but is responsible for
4313 * figuring out whether it should put any data in the attrs, data, or
4314 * omap members (corresponding to xattrs, object data, and the omap entries)
4315 * based on external data (the client includes a max amount to return with
4316 * the copy request). The client then looks into the attrs, data, and/or omap
4317 * based on the contents of the cursor.
4318 */
4319 struct object_copy_data_t {
4320 enum {
4321 FLAG_DATA_DIGEST = 1<<0,
4322 FLAG_OMAP_DIGEST = 1<<1,
4323 };
4324 object_copy_cursor_t cursor;
4325 uint64_t size;
4326 utime_t mtime;
4327 uint32_t data_digest, omap_digest;
4328 uint32_t flags;
4329 map<string, bufferlist> attrs;
4330 bufferlist data;
4331 bufferlist omap_header;
4332 bufferlist omap_data;
4333
4334 /// which snaps we are defined for (if a snap and not the head)
4335 vector<snapid_t> snaps;
4336 ///< latest snap seq for the object (if head)
4337 snapid_t snap_seq;
4338
4339 ///< recent reqids on this object
4340 mempool::osd_pglog::vector<pair<osd_reqid_t, version_t> > reqids;
4341
4342 uint64_t truncate_seq;
4343 uint64_t truncate_size;
4344
4345 public:
4346 object_copy_data_t() :
4347 size((uint64_t)-1), data_digest(-1),
4348 omap_digest(-1), flags(0),
4349 truncate_seq(0),
4350 truncate_size(0) {}
4351
4352 static void generate_test_instances(list<object_copy_data_t*>& o);
4353 void encode(bufferlist& bl, uint64_t features) const;
4354 void decode(bufferlist::iterator& bl);
4355 void dump(Formatter *f) const;
4356 };
4357 WRITE_CLASS_ENCODER_FEATURES(object_copy_data_t)
4358
4359 /**
4360 * pg creation info
4361 */
4362 struct pg_create_t {
4363 epoch_t created; // epoch pg created
4364 pg_t parent; // split from parent (if != pg_t())
4365 __s32 split_bits;
4366
4367 pg_create_t()
4368 : created(0), split_bits(0) {}
4369 pg_create_t(unsigned c, pg_t p, int s)
4370 : created(c), parent(p), split_bits(s) {}
4371
4372 void encode(bufferlist &bl) const;
4373 void decode(bufferlist::iterator &bl);
4374 void dump(Formatter *f) const;
4375 static void generate_test_instances(list<pg_create_t*>& o);
4376 };
4377 WRITE_CLASS_ENCODER(pg_create_t)
4378
4379 // -----------------------------------------
4380
4381 struct osd_peer_stat_t {
4382 utime_t stamp;
4383
4384 osd_peer_stat_t() { }
4385
4386 void encode(bufferlist &bl) const;
4387 void decode(bufferlist::iterator &bl);
4388 void dump(Formatter *f) const;
4389 static void generate_test_instances(list<osd_peer_stat_t*>& o);
4390 };
4391 WRITE_CLASS_ENCODER(osd_peer_stat_t)
4392
4393 ostream& operator<<(ostream& out, const osd_peer_stat_t &stat);
4394
4395
4396 // -----------------------------------------
4397
4398 class ObjectExtent {
4399 /**
4400 * ObjectExtents are used for specifying IO behavior against RADOS
4401 * objects when one is using the ObjectCacher.
4402 *
4403 * To use this in a real system, *every member* must be filled
4404 * out correctly. In particular, make sure to initialize the
4405 * oloc correctly, as its default values are deliberate poison
4406 * and will cause internal ObjectCacher asserts.
4407 *
4408 * Similarly, your buffer_extents vector *must* specify a total
4409 * size equal to your length. If the buffer_extents inadvertently
4410 * contain less space than the length member specifies, you
4411 * will get unintelligible asserts deep in the ObjectCacher.
4412 *
4413 * If you are trying to do testing and don't care about actual
4414 * RADOS function, the simplest thing to do is to initialize
4415 * the ObjectExtent (truncate_size can be 0), create a single entry
4416 * in buffer_extents matching the length, and set oloc.pool to 0.
4417 */
4418 public:
4419 object_t oid; // object id
4420 uint64_t objectno;
4421 uint64_t offset; // in object
4422 uint64_t length; // in object
4423 uint64_t truncate_size; // in object
4424
4425 object_locator_t oloc; // object locator (pool etc)
4426
4427 vector<pair<uint64_t,uint64_t> > buffer_extents; // off -> len. extents in buffer being mapped (may be fragmented bc of striping!)
4428
4429 ObjectExtent() : objectno(0), offset(0), length(0), truncate_size(0) {}
4430 ObjectExtent(object_t o, uint64_t ono, uint64_t off, uint64_t l, uint64_t ts) :
4431 oid(o), objectno(ono), offset(off), length(l), truncate_size(ts) { }
4432 };
4433
4434 inline ostream& operator<<(ostream& out, const ObjectExtent &ex)
4435 {
4436 return out << "extent("
4437 << ex.oid << " (" << ex.objectno << ") in " << ex.oloc
4438 << " " << ex.offset << "~" << ex.length
4439 << " -> " << ex.buffer_extents
4440 << ")";
4441 }
4442
4443
4444 // ---------------------------------------
4445
4446 class OSDSuperblock {
4447 public:
4448 uuid_d cluster_fsid, osd_fsid;
4449 int32_t whoami; // my role in this fs.
4450 epoch_t current_epoch; // most recent epoch
4451 epoch_t oldest_map, newest_map; // oldest/newest maps we have.
4452 double weight;
4453
4454 CompatSet compat_features;
4455
4456 // last interval over which i mounted and was then active
4457 epoch_t mounted; // last epoch i mounted
4458 epoch_t clean_thru; // epoch i was active and clean thru
4459
4460 OSDSuperblock() :
4461 whoami(-1),
4462 current_epoch(0), oldest_map(0), newest_map(0), weight(0),
4463 mounted(0), clean_thru(0) {
4464 }
4465
4466 void encode(bufferlist &bl) const;
4467 void decode(bufferlist::iterator &bl);
4468 void dump(Formatter *f) const;
4469 static void generate_test_instances(list<OSDSuperblock*>& o);
4470 };
4471 WRITE_CLASS_ENCODER(OSDSuperblock)
4472
4473 inline ostream& operator<<(ostream& out, const OSDSuperblock& sb)
4474 {
4475 return out << "sb(" << sb.cluster_fsid
4476 << " osd." << sb.whoami
4477 << " " << sb.osd_fsid
4478 << " e" << sb.current_epoch
4479 << " [" << sb.oldest_map << "," << sb.newest_map << "]"
4480 << " lci=[" << sb.mounted << "," << sb.clean_thru << "]"
4481 << ")";
4482 }
4483
4484
4485 // -------
4486
4487
4488
4489
4490
4491
4492 /*
4493 * attached to object head. describes most recent snap context, and
4494 * set of existing clones.
4495 */
4496 struct SnapSet {
4497 snapid_t seq;
4498 bool head_exists;
4499 vector<snapid_t> snaps; // descending
4500 vector<snapid_t> clones; // ascending
4501 map<snapid_t, interval_set<uint64_t> > clone_overlap; // overlap w/ next newest
4502 map<snapid_t, uint64_t> clone_size;
4503 map<snapid_t, vector<snapid_t>> clone_snaps; // descending
4504
4505 SnapSet() : seq(0), head_exists(false) {}
4506 explicit SnapSet(bufferlist& bl) {
4507 bufferlist::iterator p = bl.begin();
4508 decode(p);
4509 }
4510
4511 bool is_legacy() const {
4512 return clone_snaps.size() < clones.size() || !head_exists;
4513 }
4514
4515 /// populate SnapSet from a librados::snap_set_t
4516 void from_snap_set(const librados::snap_set_t& ss, bool legacy);
4517
4518 /// get space accounted to clone
4519 uint64_t get_clone_bytes(snapid_t clone) const;
4520
4521 void encode(bufferlist& bl) const;
4522 void decode(bufferlist::iterator& bl);
4523 void dump(Formatter *f) const;
4524 static void generate_test_instances(list<SnapSet*>& o);
4525
4526 SnapContext get_ssc_as_of(snapid_t as_of) const {
4527 SnapContext out;
4528 out.seq = as_of;
4529 for (vector<snapid_t>::const_iterator i = snaps.begin();
4530 i != snaps.end();
4531 ++i) {
4532 if (*i <= as_of)
4533 out.snaps.push_back(*i);
4534 }
4535 return out;
4536 }
4537
4538 // return min element of snaps > after, return max if no such element
4539 snapid_t get_first_snap_after(snapid_t after, snapid_t max) const {
4540 for (vector<snapid_t>::const_reverse_iterator i = snaps.rbegin();
4541 i != snaps.rend();
4542 ++i) {
4543 if (*i > after)
4544 return *i;
4545 }
4546 return max;
4547 }
4548
4549 SnapSet get_filtered(const pg_pool_t &pinfo) const;
4550 void filter(const pg_pool_t &pinfo);
4551 };
4552 WRITE_CLASS_ENCODER(SnapSet)
4553
4554 ostream& operator<<(ostream& out, const SnapSet& cs);
4555
4556
4557
4558 #define OI_ATTR "_"
4559 #define SS_ATTR "snapset"
4560
4561 struct watch_info_t {
4562 uint64_t cookie;
4563 uint32_t timeout_seconds;
4564 entity_addr_t addr;
4565
4566 watch_info_t() : cookie(0), timeout_seconds(0) { }
4567 watch_info_t(uint64_t c, uint32_t t, const entity_addr_t& a) : cookie(c), timeout_seconds(t), addr(a) {}
4568
4569 void encode(bufferlist& bl, uint64_t features) const;
4570 void decode(bufferlist::iterator& bl);
4571 void dump(Formatter *f) const;
4572 static void generate_test_instances(list<watch_info_t*>& o);
4573 };
4574 WRITE_CLASS_ENCODER_FEATURES(watch_info_t)
4575
4576 static inline bool operator==(const watch_info_t& l, const watch_info_t& r) {
4577 return l.cookie == r.cookie && l.timeout_seconds == r.timeout_seconds
4578 && l.addr == r.addr;
4579 }
4580
4581 static inline ostream& operator<<(ostream& out, const watch_info_t& w) {
4582 return out << "watch(cookie " << w.cookie << " " << w.timeout_seconds << "s"
4583 << " " << w.addr << ")";
4584 }
4585
4586 struct notify_info_t {
4587 uint64_t cookie;
4588 uint64_t notify_id;
4589 uint32_t timeout;
4590 bufferlist bl;
4591 };
4592
4593 static inline ostream& operator<<(ostream& out, const notify_info_t& n) {
4594 return out << "notify(cookie " << n.cookie
4595 << " notify" << n.notify_id
4596 << " " << n.timeout << "s)";
4597 }
4598
4599 struct object_info_t;
4600 struct object_manifest_t {
4601 enum {
4602 TYPE_NONE = 0,
4603 TYPE_REDIRECT = 1, // start with this
4604 TYPE_CHUNKED = 2, // do this later
4605 };
4606 uint8_t type; // redirect, chunked, ...
4607 hobject_t redirect_target;
4608
4609 object_manifest_t() : type(0) { }
4610 object_manifest_t(uint8_t type, const hobject_t& redirect_target)
4611 : type(type), redirect_target(redirect_target) { }
4612
4613 bool is_empty() const {
4614 return type == TYPE_NONE;
4615 }
4616 bool is_redirect() const {
4617 return type == TYPE_REDIRECT;
4618 }
4619 bool is_chunked() const {
4620 return type == TYPE_CHUNKED;
4621 }
4622 static const char *get_type_name(uint8_t m) {
4623 switch (m) {
4624 case TYPE_NONE: return "none";
4625 case TYPE_REDIRECT: return "redirect";
4626 case TYPE_CHUNKED: return "chunked";
4627 default: return "unknown";
4628 }
4629 }
4630 const char *get_type_name() const {
4631 return get_type_name(type);
4632 }
4633 static void generate_test_instances(list<object_manifest_t*>& o);
4634 void encode(bufferlist &bl) const;
4635 void decode(bufferlist::iterator &bl);
4636 void dump(Formatter *f) const;
4637 friend ostream& operator<<(ostream& out, const object_info_t& oi);
4638 };
4639 WRITE_CLASS_ENCODER(object_manifest_t)
4640 ostream& operator<<(ostream& out, const object_manifest_t& oi);
4641
4642 struct object_info_t {
4643 hobject_t soid;
4644 eversion_t version, prior_version;
4645 version_t user_version;
4646 osd_reqid_t last_reqid;
4647
4648 uint64_t size;
4649 utime_t mtime;
4650 utime_t local_mtime; // local mtime
4651
4652 // note: these are currently encoded into a total 16 bits; see
4653 // encode()/decode() for the weirdness.
4654 typedef enum {
4655 FLAG_LOST = 1<<0,
4656 FLAG_WHITEOUT = 1<<1, // object logically does not exist
4657 FLAG_DIRTY = 1<<2, // object has been modified since last flushed or undirtied
4658 FLAG_OMAP = 1 << 3, // has (or may have) some/any omap data
4659 FLAG_DATA_DIGEST = 1 << 4, // has data crc
4660 FLAG_OMAP_DIGEST = 1 << 5, // has omap crc
4661 FLAG_CACHE_PIN = 1 << 6, // pin the object in cache tier
4662 FLAG_MANIFEST = 1 << 7, // has manifest
4663 // ...
4664 FLAG_USES_TMAP = 1<<8, // deprecated; no longer used.
4665 } flag_t;
4666
4667 flag_t flags;
4668
4669 static string get_flag_string(flag_t flags) {
4670 string s;
4671 if (flags & FLAG_LOST)
4672 s += "|lost";
4673 if (flags & FLAG_WHITEOUT)
4674 s += "|whiteout";
4675 if (flags & FLAG_DIRTY)
4676 s += "|dirty";
4677 if (flags & FLAG_USES_TMAP)
4678 s += "|uses_tmap";
4679 if (flags & FLAG_OMAP)
4680 s += "|omap";
4681 if (flags & FLAG_DATA_DIGEST)
4682 s += "|data_digest";
4683 if (flags & FLAG_OMAP_DIGEST)
4684 s += "|omap_digest";
4685 if (flags & FLAG_CACHE_PIN)
4686 s += "|cache_pin";
4687 if (flags & FLAG_MANIFEST)
4688 s += "|manifest";
4689 if (s.length())
4690 return s.substr(1);
4691 return s;
4692 }
4693 string get_flag_string() const {
4694 return get_flag_string(flags);
4695 }
4696
4697 /// [clone] descending. pre-luminous; moved to SnapSet
4698 vector<snapid_t> legacy_snaps;
4699
4700 uint64_t truncate_seq, truncate_size;
4701
4702 map<pair<uint64_t, entity_name_t>, watch_info_t> watchers;
4703
4704 // opportunistic checksums; may or may not be present
4705 __u32 data_digest; ///< data crc32c
4706 __u32 omap_digest; ///< omap crc32c
4707
4708 // alloc hint attribute
4709 uint64_t expected_object_size, expected_write_size;
4710 uint32_t alloc_hint_flags;
4711
4712 struct object_manifest_t manifest;
4713
4714 void copy_user_bits(const object_info_t& other);
4715
4716 static ps_t legacy_object_locator_to_ps(const object_t &oid,
4717 const object_locator_t &loc);
4718
4719 bool test_flag(flag_t f) const {
4720 return (flags & f) == f;
4721 }
4722 void set_flag(flag_t f) {
4723 flags = (flag_t)(flags | f);
4724 }
4725 void clear_flag(flag_t f) {
4726 flags = (flag_t)(flags & ~f);
4727 }
4728 bool is_lost() const {
4729 return test_flag(FLAG_LOST);
4730 }
4731 bool is_whiteout() const {
4732 return test_flag(FLAG_WHITEOUT);
4733 }
4734 bool is_dirty() const {
4735 return test_flag(FLAG_DIRTY);
4736 }
4737 bool is_omap() const {
4738 return test_flag(FLAG_OMAP);
4739 }
4740 bool is_data_digest() const {
4741 return test_flag(FLAG_DATA_DIGEST);
4742 }
4743 bool is_omap_digest() const {
4744 return test_flag(FLAG_OMAP_DIGEST);
4745 }
4746 bool is_cache_pinned() const {
4747 return test_flag(FLAG_CACHE_PIN);
4748 }
4749 bool has_manifest() const {
4750 return test_flag(FLAG_MANIFEST);
4751 }
4752
4753 void set_data_digest(__u32 d) {
4754 set_flag(FLAG_DATA_DIGEST);
4755 data_digest = d;
4756 }
4757 void set_omap_digest(__u32 d) {
4758 set_flag(FLAG_OMAP_DIGEST);
4759 omap_digest = d;
4760 }
4761 void clear_data_digest() {
4762 clear_flag(FLAG_DATA_DIGEST);
4763 data_digest = -1;
4764 }
4765 void clear_omap_digest() {
4766 clear_flag(FLAG_OMAP_DIGEST);
4767 omap_digest = -1;
4768 }
4769 void new_object() {
4770 set_data_digest(-1);
4771 set_omap_digest(-1);
4772 }
4773
4774 void encode(bufferlist& bl, uint64_t features) const;
4775 void decode(bufferlist::iterator& bl);
4776 void decode(bufferlist& bl) {
4777 bufferlist::iterator p = bl.begin();
4778 decode(p);
4779 }
4780 void dump(Formatter *f) const;
4781 static void generate_test_instances(list<object_info_t*>& o);
4782
4783 explicit object_info_t()
4784 : user_version(0), size(0), flags((flag_t)0),
4785 truncate_seq(0), truncate_size(0),
4786 data_digest(-1), omap_digest(-1),
4787 expected_object_size(0), expected_write_size(0),
4788 alloc_hint_flags(0)
4789 {}
4790
4791 explicit object_info_t(const hobject_t& s)
4792 : soid(s),
4793 user_version(0), size(0), flags((flag_t)0),
4794 truncate_seq(0), truncate_size(0),
4795 data_digest(-1), omap_digest(-1),
4796 expected_object_size(0), expected_write_size(0),
4797 alloc_hint_flags(0)
4798 {}
4799
4800 explicit object_info_t(bufferlist& bl) {
4801 decode(bl);
4802 }
4803 };
4804 WRITE_CLASS_ENCODER_FEATURES(object_info_t)
4805
4806 ostream& operator<<(ostream& out, const object_info_t& oi);
4807
4808
4809
4810 // Object recovery
4811 struct ObjectRecoveryInfo {
4812 hobject_t soid;
4813 eversion_t version;
4814 uint64_t size;
4815 object_info_t oi;
4816 SnapSet ss; // only populated if soid is_snap()
4817 interval_set<uint64_t> copy_subset;
4818 map<hobject_t, interval_set<uint64_t>> clone_subset;
4819
4820 ObjectRecoveryInfo() : size(0) { }
4821
4822 static void generate_test_instances(list<ObjectRecoveryInfo*>& o);
4823 void encode(bufferlist &bl, uint64_t features) const;
4824 void decode(bufferlist::iterator &bl, int64_t pool = -1);
4825 ostream &print(ostream &out) const;
4826 void dump(Formatter *f) const;
4827 };
4828 WRITE_CLASS_ENCODER_FEATURES(ObjectRecoveryInfo)
4829 ostream& operator<<(ostream& out, const ObjectRecoveryInfo &inf);
4830
4831 struct ObjectRecoveryProgress {
4832 uint64_t data_recovered_to;
4833 string omap_recovered_to;
4834 bool first;
4835 bool data_complete;
4836 bool omap_complete;
4837 bool error = false;
4838
4839 ObjectRecoveryProgress()
4840 : data_recovered_to(0),
4841 first(true),
4842 data_complete(false), omap_complete(false) { }
4843
4844 bool is_complete(const ObjectRecoveryInfo& info) const {
4845 return (data_recovered_to >= (
4846 info.copy_subset.empty() ?
4847 0 : info.copy_subset.range_end())) &&
4848 omap_complete;
4849 }
4850
4851 static void generate_test_instances(list<ObjectRecoveryProgress*>& o);
4852 void encode(bufferlist &bl) const;
4853 void decode(bufferlist::iterator &bl);
4854 ostream &print(ostream &out) const;
4855 void dump(Formatter *f) const;
4856 };
4857 WRITE_CLASS_ENCODER(ObjectRecoveryProgress)
4858 ostream& operator<<(ostream& out, const ObjectRecoveryProgress &prog);
4859
4860 struct PushReplyOp {
4861 hobject_t soid;
4862
4863 static void generate_test_instances(list<PushReplyOp*>& o);
4864 void encode(bufferlist &bl) const;
4865 void decode(bufferlist::iterator &bl);
4866 ostream &print(ostream &out) const;
4867 void dump(Formatter *f) const;
4868
4869 uint64_t cost(CephContext *cct) const;
4870 };
4871 WRITE_CLASS_ENCODER(PushReplyOp)
4872 ostream& operator<<(ostream& out, const PushReplyOp &op);
4873
4874 struct PullOp {
4875 hobject_t soid;
4876
4877 ObjectRecoveryInfo recovery_info;
4878 ObjectRecoveryProgress recovery_progress;
4879
4880 static void generate_test_instances(list<PullOp*>& o);
4881 void encode(bufferlist &bl, uint64_t features) const;
4882 void decode(bufferlist::iterator &bl);
4883 ostream &print(ostream &out) const;
4884 void dump(Formatter *f) const;
4885
4886 uint64_t cost(CephContext *cct) const;
4887 };
4888 WRITE_CLASS_ENCODER_FEATURES(PullOp)
4889 ostream& operator<<(ostream& out, const PullOp &op);
4890
4891 struct PushOp {
4892 hobject_t soid;
4893 eversion_t version;
4894 bufferlist data;
4895 interval_set<uint64_t> data_included;
4896 bufferlist omap_header;
4897 map<string, bufferlist> omap_entries;
4898 map<string, bufferlist> attrset;
4899
4900 ObjectRecoveryInfo recovery_info;
4901 ObjectRecoveryProgress before_progress;
4902 ObjectRecoveryProgress after_progress;
4903
4904 static void generate_test_instances(list<PushOp*>& o);
4905 void encode(bufferlist &bl, uint64_t features) const;
4906 void decode(bufferlist::iterator &bl);
4907 ostream &print(ostream &out) const;
4908 void dump(Formatter *f) const;
4909
4910 uint64_t cost(CephContext *cct) const;
4911 };
4912 WRITE_CLASS_ENCODER_FEATURES(PushOp)
4913 ostream& operator<<(ostream& out, const PushOp &op);
4914
4915
4916 /*
4917 * summarize pg contents for purposes of a scrub
4918 */
4919 struct ScrubMap {
4920 struct object {
4921 map<string,bufferptr> attrs;
4922 uint64_t size;
4923 __u32 omap_digest; ///< omap crc32c
4924 __u32 digest; ///< data crc32c
4925 bool negative:1;
4926 bool digest_present:1;
4927 bool omap_digest_present:1;
4928 bool read_error:1;
4929 bool stat_error:1;
4930 bool ec_hash_mismatch:1;
4931 bool ec_size_mismatch:1;
4932
4933 object() :
4934 // Init invalid size so it won't match if we get a stat EIO error
4935 size(-1), omap_digest(0), digest(0),
4936 negative(false), digest_present(false), omap_digest_present(false),
4937 read_error(false), stat_error(false), ec_hash_mismatch(false), ec_size_mismatch(false) {}
4938
4939 void encode(bufferlist& bl) const;
4940 void decode(bufferlist::iterator& bl);
4941 void dump(Formatter *f) const;
4942 static void generate_test_instances(list<object*>& o);
4943 };
4944 WRITE_CLASS_ENCODER(object)
4945
4946 map<hobject_t,object> objects;
4947 eversion_t valid_through;
4948 eversion_t incr_since;
4949
4950 void merge_incr(const ScrubMap &l);
4951 void insert(const ScrubMap &r) {
4952 objects.insert(r.objects.begin(), r.objects.end());
4953 }
4954 void swap(ScrubMap &r) {
4955 using std::swap;
4956 swap(objects, r.objects);
4957 swap(valid_through, r.valid_through);
4958 swap(incr_since, r.incr_since);
4959 }
4960
4961 void encode(bufferlist& bl) const;
4962 void decode(bufferlist::iterator& bl, int64_t pool=-1);
4963 void dump(Formatter *f) const;
4964 static void generate_test_instances(list<ScrubMap*>& o);
4965 };
4966 WRITE_CLASS_ENCODER(ScrubMap::object)
4967 WRITE_CLASS_ENCODER(ScrubMap)
4968
4969 struct OSDOp {
4970 ceph_osd_op op;
4971 sobject_t soid;
4972
4973 bufferlist indata, outdata;
4974 errorcode32_t rval;
4975
4976 OSDOp() : rval(0) {
4977 memset(&op, 0, sizeof(ceph_osd_op));
4978 }
4979
4980 /**
4981 * split a bufferlist into constituent indata members of a vector of OSDOps
4982 *
4983 * @param ops [out] vector of OSDOps
4984 * @param in [in] combined data buffer
4985 */
4986 static void split_osd_op_vector_in_data(vector<OSDOp>& ops, bufferlist& in);
4987
4988 /**
4989 * merge indata members of a vector of OSDOp into a single bufferlist
4990 *
4991 * Notably this also encodes certain other OSDOp data into the data
4992 * buffer, including the sobject_t soid.
4993 *
4994 * @param ops [in] vector of OSDOps
4995 * @param out [out] combined data buffer
4996 */
4997 static void merge_osd_op_vector_in_data(vector<OSDOp>& ops, bufferlist& out);
4998
4999 /**
5000 * split a bufferlist into constituent outdata members of a vector of OSDOps
5001 *
5002 * @param ops [out] vector of OSDOps
5003 * @param in [in] combined data buffer
5004 */
5005 static void split_osd_op_vector_out_data(vector<OSDOp>& ops, bufferlist& in);
5006
5007 /**
5008 * merge outdata members of a vector of OSDOps into a single bufferlist
5009 *
5010 * @param ops [in] vector of OSDOps
5011 * @param out [out] combined data buffer
5012 */
5013 static void merge_osd_op_vector_out_data(vector<OSDOp>& ops, bufferlist& out);
5014
5015 /**
5016 * Clear data as much as possible, leave minimal data for historical op dump
5017 *
5018 * @param ops [in] vector of OSDOps
5019 */
5020 static void clear_data(vector<OSDOp>& ops);
5021 };
5022
5023 ostream& operator<<(ostream& out, const OSDOp& op);
5024
5025 struct watch_item_t {
5026 entity_name_t name;
5027 uint64_t cookie;
5028 uint32_t timeout_seconds;
5029 entity_addr_t addr;
5030
5031 watch_item_t() : cookie(0), timeout_seconds(0) { }
5032 watch_item_t(entity_name_t name, uint64_t cookie, uint32_t timeout,
5033 const entity_addr_t& addr)
5034 : name(name), cookie(cookie), timeout_seconds(timeout),
5035 addr(addr) { }
5036
5037 void encode(bufferlist &bl, uint64_t features) const {
5038 ENCODE_START(2, 1, bl);
5039 ::encode(name, bl);
5040 ::encode(cookie, bl);
5041 ::encode(timeout_seconds, bl);
5042 ::encode(addr, bl, features);
5043 ENCODE_FINISH(bl);
5044 }
5045 void decode(bufferlist::iterator &bl) {
5046 DECODE_START(2, bl);
5047 ::decode(name, bl);
5048 ::decode(cookie, bl);
5049 ::decode(timeout_seconds, bl);
5050 if (struct_v >= 2) {
5051 ::decode(addr, bl);
5052 }
5053 DECODE_FINISH(bl);
5054 }
5055 };
5056 WRITE_CLASS_ENCODER_FEATURES(watch_item_t)
5057
5058 struct obj_watch_item_t {
5059 hobject_t obj;
5060 watch_item_t wi;
5061 };
5062
5063 /**
5064 * obj list watch response format
5065 *
5066 */
5067 struct obj_list_watch_response_t {
5068 list<watch_item_t> entries;
5069
5070 void encode(bufferlist& bl, uint64_t features) const {
5071 ENCODE_START(1, 1, bl);
5072 ::encode(entries, bl, features);
5073 ENCODE_FINISH(bl);
5074 }
5075 void decode(bufferlist::iterator& bl) {
5076 DECODE_START(1, bl);
5077 ::decode(entries, bl);
5078 DECODE_FINISH(bl);
5079 }
5080 void dump(Formatter *f) const {
5081 f->open_array_section("entries");
5082 for (list<watch_item_t>::const_iterator p = entries.begin(); p != entries.end(); ++p) {
5083 f->open_object_section("watch");
5084 f->dump_stream("watcher") << p->name;
5085 f->dump_int("cookie", p->cookie);
5086 f->dump_int("timeout", p->timeout_seconds);
5087 f->open_object_section("addr");
5088 p->addr.dump(f);
5089 f->close_section();
5090 f->close_section();
5091 }
5092 f->close_section();
5093 }
5094 static void generate_test_instances(list<obj_list_watch_response_t*>& o) {
5095 entity_addr_t ea;
5096 o.push_back(new obj_list_watch_response_t);
5097 o.push_back(new obj_list_watch_response_t);
5098 ea.set_type(entity_addr_t::TYPE_LEGACY);
5099 ea.set_nonce(1000);
5100 ea.set_family(AF_INET);
5101 ea.set_in4_quad(0, 127);
5102 ea.set_in4_quad(1, 0);
5103 ea.set_in4_quad(2, 0);
5104 ea.set_in4_quad(3, 1);
5105 ea.set_port(1024);
5106 o.back()->entries.push_back(watch_item_t(entity_name_t(entity_name_t::TYPE_CLIENT, 1), 10, 30, ea));
5107 ea.set_nonce(1001);
5108 ea.set_in4_quad(3, 2);
5109 ea.set_port(1025);
5110 o.back()->entries.push_back(watch_item_t(entity_name_t(entity_name_t::TYPE_CLIENT, 2), 20, 60, ea));
5111 }
5112 };
5113 WRITE_CLASS_ENCODER_FEATURES(obj_list_watch_response_t)
5114
5115 struct clone_info {
5116 snapid_t cloneid;
5117 vector<snapid_t> snaps; // ascending
5118 vector< pair<uint64_t,uint64_t> > overlap;
5119 uint64_t size;
5120
5121 clone_info() : cloneid(CEPH_NOSNAP), size(0) {}
5122
5123 void encode(bufferlist& bl) const {
5124 ENCODE_START(1, 1, bl);
5125 ::encode(cloneid, bl);
5126 ::encode(snaps, bl);
5127 ::encode(overlap, bl);
5128 ::encode(size, bl);
5129 ENCODE_FINISH(bl);
5130 }
5131 void decode(bufferlist::iterator& bl) {
5132 DECODE_START(1, bl);
5133 ::decode(cloneid, bl);
5134 ::decode(snaps, bl);
5135 ::decode(overlap, bl);
5136 ::decode(size, bl);
5137 DECODE_FINISH(bl);
5138 }
5139 void dump(Formatter *f) const {
5140 if (cloneid == CEPH_NOSNAP)
5141 f->dump_string("cloneid", "HEAD");
5142 else
5143 f->dump_unsigned("cloneid", cloneid.val);
5144 f->open_array_section("snapshots");
5145 for (vector<snapid_t>::const_iterator p = snaps.begin(); p != snaps.end(); ++p) {
5146 f->open_object_section("snap");
5147 f->dump_unsigned("id", p->val);
5148 f->close_section();
5149 }
5150 f->close_section();
5151 f->open_array_section("overlaps");
5152 for (vector< pair<uint64_t,uint64_t> >::const_iterator q = overlap.begin();
5153 q != overlap.end(); ++q) {
5154 f->open_object_section("overlap");
5155 f->dump_unsigned("offset", q->first);
5156 f->dump_unsigned("length", q->second);
5157 f->close_section();
5158 }
5159 f->close_section();
5160 f->dump_unsigned("size", size);
5161 }
5162 static void generate_test_instances(list<clone_info*>& o) {
5163 o.push_back(new clone_info);
5164 o.push_back(new clone_info);
5165 o.back()->cloneid = 1;
5166 o.back()->snaps.push_back(1);
5167 o.back()->overlap.push_back(pair<uint64_t,uint64_t>(0,4096));
5168 o.back()->overlap.push_back(pair<uint64_t,uint64_t>(8192,4096));
5169 o.back()->size = 16384;
5170 o.push_back(new clone_info);
5171 o.back()->cloneid = CEPH_NOSNAP;
5172 o.back()->size = 32768;
5173 }
5174 };
5175 WRITE_CLASS_ENCODER(clone_info)
5176
5177 /**
5178 * obj list snaps response format
5179 *
5180 */
5181 struct obj_list_snap_response_t {
5182 vector<clone_info> clones; // ascending
5183 snapid_t seq;
5184
5185 void encode(bufferlist& bl) const {
5186 ENCODE_START(2, 1, bl);
5187 ::encode(clones, bl);
5188 ::encode(seq, bl);
5189 ENCODE_FINISH(bl);
5190 }
5191 void decode(bufferlist::iterator& bl) {
5192 DECODE_START(2, bl);
5193 ::decode(clones, bl);
5194 if (struct_v >= 2)
5195 ::decode(seq, bl);
5196 else
5197 seq = CEPH_NOSNAP;
5198 DECODE_FINISH(bl);
5199 }
5200 void dump(Formatter *f) const {
5201 f->open_array_section("clones");
5202 for (vector<clone_info>::const_iterator p = clones.begin(); p != clones.end(); ++p) {
5203 f->open_object_section("clone");
5204 p->dump(f);
5205 f->close_section();
5206 }
5207 f->dump_unsigned("seq", seq);
5208 f->close_section();
5209 }
5210 static void generate_test_instances(list<obj_list_snap_response_t*>& o) {
5211 o.push_back(new obj_list_snap_response_t);
5212 o.push_back(new obj_list_snap_response_t);
5213 clone_info cl;
5214 cl.cloneid = 1;
5215 cl.snaps.push_back(1);
5216 cl.overlap.push_back(pair<uint64_t,uint64_t>(0,4096));
5217 cl.overlap.push_back(pair<uint64_t,uint64_t>(8192,4096));
5218 cl.size = 16384;
5219 o.back()->clones.push_back(cl);
5220 cl.cloneid = CEPH_NOSNAP;
5221 cl.snaps.clear();
5222 cl.overlap.clear();
5223 cl.size = 32768;
5224 o.back()->clones.push_back(cl);
5225 o.back()->seq = 123;
5226 }
5227 };
5228
5229 WRITE_CLASS_ENCODER(obj_list_snap_response_t)
5230
5231 // PromoteCounter
5232
5233 struct PromoteCounter {
5234 std::atomic_ullong attempts{0};
5235 std::atomic_ullong objects{0};
5236 std::atomic_ullong bytes{0};
5237
5238 void attempt() {
5239 attempts++;
5240 }
5241
5242 void finish(uint64_t size) {
5243 objects++;
5244 bytes += size;
5245 }
5246
5247 void sample_and_attenuate(uint64_t *a, uint64_t *o, uint64_t *b) {
5248 *a = attempts;
5249 *o = objects;
5250 *b = bytes;
5251 attempts = *a / 2;
5252 objects = *o / 2;
5253 bytes = *b / 2;
5254 }
5255 };
5256
5257 /** store_statfs_t
5258 * ObjectStore full statfs information
5259 */
5260 struct store_statfs_t
5261 {
5262 uint64_t total = 0; // Total bytes
5263 uint64_t available = 0; // Free bytes available
5264
5265 int64_t allocated = 0; // Bytes allocated by the store
5266 int64_t stored = 0; // Bytes actually stored by the user
5267 int64_t compressed = 0; // Bytes stored after compression
5268 int64_t compressed_allocated = 0; // Bytes allocated for compressed data
5269 int64_t compressed_original = 0; // Bytes that were successfully compressed
5270
5271 void reset() {
5272 *this = store_statfs_t();
5273 }
5274 bool operator ==(const store_statfs_t& other) const;
5275 void dump(Formatter *f) const;
5276 };
5277 ostream &operator<<(ostream &lhs, const store_statfs_t &rhs);
5278
5279 #endif