]> git.proxmox.com Git - ceph.git/blob - ceph/src/rapidjson/thirdparty/gtest/googlemock/test/gmock-actions_test.cc
update sources to v12.1.0
[ceph.git] / ceph / src / rapidjson / thirdparty / gtest / googlemock / test / gmock-actions_test.cc
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file tests the built-in actions.
35
36 #include "gmock/gmock-actions.h"
37 #include <algorithm>
38 #include <iterator>
39 #include <memory>
40 #include <string>
41 #include "gmock/gmock.h"
42 #include "gmock/internal/gmock-port.h"
43 #include "gtest/gtest.h"
44 #include "gtest/gtest-spi.h"
45
46 namespace {
47
48 // This list should be kept sorted.
49 using testing::Action;
50 using testing::ActionInterface;
51 using testing::Assign;
52 using testing::ByMove;
53 using testing::ByRef;
54 using testing::DefaultValue;
55 using testing::DoDefault;
56 using testing::IgnoreResult;
57 using testing::Invoke;
58 using testing::InvokeWithoutArgs;
59 using testing::MakePolymorphicAction;
60 using testing::Ne;
61 using testing::PolymorphicAction;
62 using testing::Return;
63 using testing::ReturnNull;
64 using testing::ReturnRef;
65 using testing::ReturnRefOfCopy;
66 using testing::SetArgPointee;
67 using testing::SetArgumentPointee;
68 using testing::_;
69 using testing::get;
70 using testing::internal::BuiltInDefaultValue;
71 using testing::internal::Int64;
72 using testing::internal::UInt64;
73 using testing::make_tuple;
74 using testing::tuple;
75 using testing::tuple_element;
76
77 #if !GTEST_OS_WINDOWS_MOBILE
78 using testing::SetErrnoAndReturn;
79 #endif
80
81 #if GTEST_HAS_PROTOBUF_
82 using testing::internal::TestMessage;
83 #endif // GTEST_HAS_PROTOBUF_
84
85 // Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
86 TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
87 EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == NULL);
88 EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == NULL);
89 EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == NULL);
90 }
91
92 // Tests that BuiltInDefaultValue<T*>::Exists() return true.
93 TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
94 EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
95 EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
96 EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
97 }
98
99 // Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
100 // built-in numeric type.
101 TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
102 EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
103 EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
104 EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
105 #if GMOCK_HAS_SIGNED_WCHAR_T_
106 EXPECT_EQ(0U, BuiltInDefaultValue<unsigned wchar_t>::Get());
107 EXPECT_EQ(0, BuiltInDefaultValue<signed wchar_t>::Get());
108 #endif
109 #if GMOCK_WCHAR_T_IS_NATIVE_
110 EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
111 #endif
112 EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
113 EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
114 EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
115 EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
116 EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
117 EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
118 EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT
119 EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT
120 EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT
121 EXPECT_EQ(0U, BuiltInDefaultValue<UInt64>::Get());
122 EXPECT_EQ(0, BuiltInDefaultValue<Int64>::Get());
123 EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
124 EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
125 }
126
127 // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
128 // built-in numeric type.
129 TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
130 EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
131 EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
132 EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
133 #if GMOCK_HAS_SIGNED_WCHAR_T_
134 EXPECT_TRUE(BuiltInDefaultValue<unsigned wchar_t>::Exists());
135 EXPECT_TRUE(BuiltInDefaultValue<signed wchar_t>::Exists());
136 #endif
137 #if GMOCK_WCHAR_T_IS_NATIVE_
138 EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
139 #endif
140 EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
141 EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
142 EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
143 EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
144 EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
145 EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
146 EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT
147 EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT
148 EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT
149 EXPECT_TRUE(BuiltInDefaultValue<UInt64>::Exists());
150 EXPECT_TRUE(BuiltInDefaultValue<Int64>::Exists());
151 EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
152 EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
153 }
154
155 // Tests that BuiltInDefaultValue<bool>::Get() returns false.
156 TEST(BuiltInDefaultValueTest, IsFalseForBool) {
157 EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
158 }
159
160 // Tests that BuiltInDefaultValue<bool>::Exists() returns true.
161 TEST(BuiltInDefaultValueTest, BoolExists) {
162 EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
163 }
164
165 // Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
166 // string type.
167 TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
168 #if GTEST_HAS_GLOBAL_STRING
169 EXPECT_EQ("", BuiltInDefaultValue< ::string>::Get());
170 #endif // GTEST_HAS_GLOBAL_STRING
171
172 EXPECT_EQ("", BuiltInDefaultValue< ::std::string>::Get());
173 }
174
175 // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
176 // string type.
177 TEST(BuiltInDefaultValueTest, ExistsForString) {
178 #if GTEST_HAS_GLOBAL_STRING
179 EXPECT_TRUE(BuiltInDefaultValue< ::string>::Exists());
180 #endif // GTEST_HAS_GLOBAL_STRING
181
182 EXPECT_TRUE(BuiltInDefaultValue< ::std::string>::Exists());
183 }
184
185 // Tests that BuiltInDefaultValue<const T>::Get() returns the same
186 // value as BuiltInDefaultValue<T>::Get() does.
187 TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
188 EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
189 EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
190 EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == NULL);
191 EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
192 }
193
194 // A type that's default constructible.
195 class MyDefaultConstructible {
196 public:
197 MyDefaultConstructible() : value_(42) {}
198
199 int value() const { return value_; }
200
201 private:
202 int value_;
203 };
204
205 // A type that's not default constructible.
206 class MyNonDefaultConstructible {
207 public:
208 // Does not have a default ctor.
209 explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
210
211 int value() const { return value_; }
212
213 private:
214 int value_;
215 };
216
217 #if GTEST_HAS_STD_TYPE_TRAITS_
218
219 TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
220 EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
221 }
222
223 TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
224 EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
225 }
226
227 #endif // GTEST_HAS_STD_TYPE_TRAITS_
228
229 TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
230 EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
231 }
232
233 // Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
234 TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
235 EXPECT_DEATH_IF_SUPPORTED({
236 BuiltInDefaultValue<int&>::Get();
237 }, "");
238 EXPECT_DEATH_IF_SUPPORTED({
239 BuiltInDefaultValue<const char&>::Get();
240 }, "");
241 }
242
243 TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
244 EXPECT_DEATH_IF_SUPPORTED({
245 BuiltInDefaultValue<MyNonDefaultConstructible>::Get();
246 }, "");
247 }
248
249 // Tests that DefaultValue<T>::IsSet() is false initially.
250 TEST(DefaultValueTest, IsInitiallyUnset) {
251 EXPECT_FALSE(DefaultValue<int>::IsSet());
252 EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
253 EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
254 }
255
256 // Tests that DefaultValue<T> can be set and then unset.
257 TEST(DefaultValueTest, CanBeSetAndUnset) {
258 EXPECT_TRUE(DefaultValue<int>::Exists());
259 EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
260
261 DefaultValue<int>::Set(1);
262 DefaultValue<const MyNonDefaultConstructible>::Set(
263 MyNonDefaultConstructible(42));
264
265 EXPECT_EQ(1, DefaultValue<int>::Get());
266 EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
267
268 EXPECT_TRUE(DefaultValue<int>::Exists());
269 EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
270
271 DefaultValue<int>::Clear();
272 DefaultValue<const MyNonDefaultConstructible>::Clear();
273
274 EXPECT_FALSE(DefaultValue<int>::IsSet());
275 EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
276
277 EXPECT_TRUE(DefaultValue<int>::Exists());
278 EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
279 }
280
281 // Tests that DefaultValue<T>::Get() returns the
282 // BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
283 // false.
284 TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
285 EXPECT_FALSE(DefaultValue<int>::IsSet());
286 EXPECT_TRUE(DefaultValue<int>::Exists());
287 EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
288 EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
289
290 EXPECT_EQ(0, DefaultValue<int>::Get());
291
292 EXPECT_DEATH_IF_SUPPORTED({
293 DefaultValue<MyNonDefaultConstructible>::Get();
294 }, "");
295 }
296
297 #if GTEST_HAS_STD_UNIQUE_PTR_
298 TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
299 EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
300 EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == NULL);
301 DefaultValue<std::unique_ptr<int>>::SetFactory([] {
302 return std::unique_ptr<int>(new int(42));
303 });
304 EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
305 std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
306 EXPECT_EQ(42, *i);
307 }
308 #endif // GTEST_HAS_STD_UNIQUE_PTR_
309
310 // Tests that DefaultValue<void>::Get() returns void.
311 TEST(DefaultValueTest, GetWorksForVoid) {
312 return DefaultValue<void>::Get();
313 }
314
315 // Tests using DefaultValue with a reference type.
316
317 // Tests that DefaultValue<T&>::IsSet() is false initially.
318 TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
319 EXPECT_FALSE(DefaultValue<int&>::IsSet());
320 EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
321 EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
322 }
323
324 // Tests that DefaultValue<T&>::Exists is false initiallly.
325 TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
326 EXPECT_FALSE(DefaultValue<int&>::Exists());
327 EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
328 EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
329 }
330
331 // Tests that DefaultValue<T&> can be set and then unset.
332 TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
333 int n = 1;
334 DefaultValue<const int&>::Set(n);
335 MyNonDefaultConstructible x(42);
336 DefaultValue<MyNonDefaultConstructible&>::Set(x);
337
338 EXPECT_TRUE(DefaultValue<const int&>::Exists());
339 EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
340
341 EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
342 EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
343
344 DefaultValue<const int&>::Clear();
345 DefaultValue<MyNonDefaultConstructible&>::Clear();
346
347 EXPECT_FALSE(DefaultValue<const int&>::Exists());
348 EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
349
350 EXPECT_FALSE(DefaultValue<const int&>::IsSet());
351 EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
352 }
353
354 // Tests that DefaultValue<T&>::Get() returns the
355 // BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
356 // false.
357 TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
358 EXPECT_FALSE(DefaultValue<int&>::IsSet());
359 EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
360
361 EXPECT_DEATH_IF_SUPPORTED({
362 DefaultValue<int&>::Get();
363 }, "");
364 EXPECT_DEATH_IF_SUPPORTED({
365 DefaultValue<MyNonDefaultConstructible>::Get();
366 }, "");
367 }
368
369 // Tests that ActionInterface can be implemented by defining the
370 // Perform method.
371
372 typedef int MyGlobalFunction(bool, int);
373
374 class MyActionImpl : public ActionInterface<MyGlobalFunction> {
375 public:
376 virtual int Perform(const tuple<bool, int>& args) {
377 return get<0>(args) ? get<1>(args) : 0;
378 }
379 };
380
381 TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
382 MyActionImpl my_action_impl;
383 (void)my_action_impl;
384 }
385
386 TEST(ActionInterfaceTest, MakeAction) {
387 Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
388
389 // When exercising the Perform() method of Action<F>, we must pass
390 // it a tuple whose size and type are compatible with F's argument
391 // types. For example, if F is int(), then Perform() takes a
392 // 0-tuple; if F is void(bool, int), then Perform() takes a
393 // tuple<bool, int>, and so on.
394 EXPECT_EQ(5, action.Perform(make_tuple(true, 5)));
395 }
396
397 // Tests that Action<F> can be contructed from a pointer to
398 // ActionInterface<F>.
399 TEST(ActionTest, CanBeConstructedFromActionInterface) {
400 Action<MyGlobalFunction> action(new MyActionImpl);
401 }
402
403 // Tests that Action<F> delegates actual work to ActionInterface<F>.
404 TEST(ActionTest, DelegatesWorkToActionInterface) {
405 const Action<MyGlobalFunction> action(new MyActionImpl);
406
407 EXPECT_EQ(5, action.Perform(make_tuple(true, 5)));
408 EXPECT_EQ(0, action.Perform(make_tuple(false, 1)));
409 }
410
411 // Tests that Action<F> can be copied.
412 TEST(ActionTest, IsCopyable) {
413 Action<MyGlobalFunction> a1(new MyActionImpl);
414 Action<MyGlobalFunction> a2(a1); // Tests the copy constructor.
415
416 // a1 should continue to work after being copied from.
417 EXPECT_EQ(5, a1.Perform(make_tuple(true, 5)));
418 EXPECT_EQ(0, a1.Perform(make_tuple(false, 1)));
419
420 // a2 should work like the action it was copied from.
421 EXPECT_EQ(5, a2.Perform(make_tuple(true, 5)));
422 EXPECT_EQ(0, a2.Perform(make_tuple(false, 1)));
423
424 a2 = a1; // Tests the assignment operator.
425
426 // a1 should continue to work after being copied from.
427 EXPECT_EQ(5, a1.Perform(make_tuple(true, 5)));
428 EXPECT_EQ(0, a1.Perform(make_tuple(false, 1)));
429
430 // a2 should work like the action it was copied from.
431 EXPECT_EQ(5, a2.Perform(make_tuple(true, 5)));
432 EXPECT_EQ(0, a2.Perform(make_tuple(false, 1)));
433 }
434
435 // Tests that an Action<From> object can be converted to a
436 // compatible Action<To> object.
437
438 class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
439 public:
440 virtual bool Perform(const tuple<int>& arg) {
441 return get<0>(arg) != 0;
442 }
443 };
444
445 #if !GTEST_OS_SYMBIAN
446 // Compiling this test on Nokia's Symbian compiler fails with:
447 // 'Result' is not a member of class 'testing::internal::Function<int>'
448 // (point of instantiation: '@unnamed@gmock_actions_test_cc@::
449 // ActionTest_CanBeConvertedToOtherActionType_Test::TestBody()')
450 // with no obvious fix.
451 TEST(ActionTest, CanBeConvertedToOtherActionType) {
452 const Action<bool(int)> a1(new IsNotZero); // NOLINT
453 const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
454 EXPECT_EQ(1, a2.Perform(make_tuple('a')));
455 EXPECT_EQ(0, a2.Perform(make_tuple('\0')));
456 }
457 #endif // !GTEST_OS_SYMBIAN
458
459 // The following two classes are for testing MakePolymorphicAction().
460
461 // Implements a polymorphic action that returns the second of the
462 // arguments it receives.
463 class ReturnSecondArgumentAction {
464 public:
465 // We want to verify that MakePolymorphicAction() can work with a
466 // polymorphic action whose Perform() method template is either
467 // const or not. This lets us verify the non-const case.
468 template <typename Result, typename ArgumentTuple>
469 Result Perform(const ArgumentTuple& args) { return get<1>(args); }
470 };
471
472 // Implements a polymorphic action that can be used in a nullary
473 // function to return 0.
474 class ReturnZeroFromNullaryFunctionAction {
475 public:
476 // For testing that MakePolymorphicAction() works when the
477 // implementation class' Perform() method template takes only one
478 // template parameter.
479 //
480 // We want to verify that MakePolymorphicAction() can work with a
481 // polymorphic action whose Perform() method template is either
482 // const or not. This lets us verify the const case.
483 template <typename Result>
484 Result Perform(const tuple<>&) const { return 0; }
485 };
486
487 // These functions verify that MakePolymorphicAction() returns a
488 // PolymorphicAction<T> where T is the argument's type.
489
490 PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
491 return MakePolymorphicAction(ReturnSecondArgumentAction());
492 }
493
494 PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
495 ReturnZeroFromNullaryFunction() {
496 return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
497 }
498
499 // Tests that MakePolymorphicAction() turns a polymorphic action
500 // implementation class into a polymorphic action.
501 TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
502 Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT
503 EXPECT_EQ(5, a1.Perform(make_tuple(false, 5, 2.0)));
504 }
505
506 // Tests that MakePolymorphicAction() works when the implementation
507 // class' Perform() method template has only one template parameter.
508 TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
509 Action<int()> a1 = ReturnZeroFromNullaryFunction();
510 EXPECT_EQ(0, a1.Perform(make_tuple()));
511
512 Action<void*()> a2 = ReturnZeroFromNullaryFunction();
513 EXPECT_TRUE(a2.Perform(make_tuple()) == NULL);
514 }
515
516 // Tests that Return() works as an action for void-returning
517 // functions.
518 TEST(ReturnTest, WorksForVoid) {
519 const Action<void(int)> ret = Return(); // NOLINT
520 return ret.Perform(make_tuple(1));
521 }
522
523 // Tests that Return(v) returns v.
524 TEST(ReturnTest, ReturnsGivenValue) {
525 Action<int()> ret = Return(1); // NOLINT
526 EXPECT_EQ(1, ret.Perform(make_tuple()));
527
528 ret = Return(-5);
529 EXPECT_EQ(-5, ret.Perform(make_tuple()));
530 }
531
532 // Tests that Return("string literal") works.
533 TEST(ReturnTest, AcceptsStringLiteral) {
534 Action<const char*()> a1 = Return("Hello");
535 EXPECT_STREQ("Hello", a1.Perform(make_tuple()));
536
537 Action<std::string()> a2 = Return("world");
538 EXPECT_EQ("world", a2.Perform(make_tuple()));
539 }
540
541 // Test struct which wraps a vector of integers. Used in
542 // 'SupportsWrapperReturnType' test.
543 struct IntegerVectorWrapper {
544 std::vector<int> * v;
545 IntegerVectorWrapper(std::vector<int>& _v) : v(&_v) {} // NOLINT
546 };
547
548 // Tests that Return() works when return type is a wrapper type.
549 TEST(ReturnTest, SupportsWrapperReturnType) {
550 // Initialize vector of integers.
551 std::vector<int> v;
552 for (int i = 0; i < 5; ++i) v.push_back(i);
553
554 // Return() called with 'v' as argument. The Action will return the same data
555 // as 'v' (copy) but it will be wrapped in an IntegerVectorWrapper.
556 Action<IntegerVectorWrapper()> a = Return(v);
557 const std::vector<int>& result = *(a.Perform(make_tuple()).v);
558 EXPECT_THAT(result, ::testing::ElementsAre(0, 1, 2, 3, 4));
559 }
560
561 // Tests that Return(v) is covaraint.
562
563 struct Base {
564 bool operator==(const Base&) { return true; }
565 };
566
567 struct Derived : public Base {
568 bool operator==(const Derived&) { return true; }
569 };
570
571 TEST(ReturnTest, IsCovariant) {
572 Base base;
573 Derived derived;
574 Action<Base*()> ret = Return(&base);
575 EXPECT_EQ(&base, ret.Perform(make_tuple()));
576
577 ret = Return(&derived);
578 EXPECT_EQ(&derived, ret.Perform(make_tuple()));
579 }
580
581 // Tests that the type of the value passed into Return is converted into T
582 // when the action is cast to Action<T(...)> rather than when the action is
583 // performed. See comments on testing::internal::ReturnAction in
584 // gmock-actions.h for more information.
585 class FromType {
586 public:
587 explicit FromType(bool* is_converted) : converted_(is_converted) {}
588 bool* converted() const { return converted_; }
589
590 private:
591 bool* const converted_;
592
593 GTEST_DISALLOW_ASSIGN_(FromType);
594 };
595
596 class ToType {
597 public:
598 // Must allow implicit conversion due to use in ImplicitCast_<T>.
599 ToType(const FromType& x) { *x.converted() = true; } // NOLINT
600 };
601
602 TEST(ReturnTest, ConvertsArgumentWhenConverted) {
603 bool converted = false;
604 FromType x(&converted);
605 Action<ToType()> action(Return(x));
606 EXPECT_TRUE(converted) << "Return must convert its argument in its own "
607 << "conversion operator.";
608 converted = false;
609 action.Perform(tuple<>());
610 EXPECT_FALSE(converted) << "Action must NOT convert its argument "
611 << "when performed.";
612 }
613
614 class DestinationType {};
615
616 class SourceType {
617 public:
618 // Note: a non-const typecast operator.
619 operator DestinationType() { return DestinationType(); }
620 };
621
622 TEST(ReturnTest, CanConvertArgumentUsingNonConstTypeCastOperator) {
623 SourceType s;
624 Action<DestinationType()> action(Return(s));
625 }
626
627 // Tests that ReturnNull() returns NULL in a pointer-returning function.
628 TEST(ReturnNullTest, WorksInPointerReturningFunction) {
629 const Action<int*()> a1 = ReturnNull();
630 EXPECT_TRUE(a1.Perform(make_tuple()) == NULL);
631
632 const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT
633 EXPECT_TRUE(a2.Perform(make_tuple(true)) == NULL);
634 }
635
636 #if GTEST_HAS_STD_UNIQUE_PTR_
637 // Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
638 // functions.
639 TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
640 const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
641 EXPECT_TRUE(a1.Perform(make_tuple()) == nullptr);
642
643 const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
644 EXPECT_TRUE(a2.Perform(make_tuple("foo")) == nullptr);
645 }
646 #endif // GTEST_HAS_STD_UNIQUE_PTR_
647
648 // Tests that ReturnRef(v) works for reference types.
649 TEST(ReturnRefTest, WorksForReference) {
650 const int n = 0;
651 const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT
652
653 EXPECT_EQ(&n, &ret.Perform(make_tuple(true)));
654 }
655
656 // Tests that ReturnRef(v) is covariant.
657 TEST(ReturnRefTest, IsCovariant) {
658 Base base;
659 Derived derived;
660 Action<Base&()> a = ReturnRef(base);
661 EXPECT_EQ(&base, &a.Perform(make_tuple()));
662
663 a = ReturnRef(derived);
664 EXPECT_EQ(&derived, &a.Perform(make_tuple()));
665 }
666
667 // Tests that ReturnRefOfCopy(v) works for reference types.
668 TEST(ReturnRefOfCopyTest, WorksForReference) {
669 int n = 42;
670 const Action<const int&()> ret = ReturnRefOfCopy(n);
671
672 EXPECT_NE(&n, &ret.Perform(make_tuple()));
673 EXPECT_EQ(42, ret.Perform(make_tuple()));
674
675 n = 43;
676 EXPECT_NE(&n, &ret.Perform(make_tuple()));
677 EXPECT_EQ(42, ret.Perform(make_tuple()));
678 }
679
680 // Tests that ReturnRefOfCopy(v) is covariant.
681 TEST(ReturnRefOfCopyTest, IsCovariant) {
682 Base base;
683 Derived derived;
684 Action<Base&()> a = ReturnRefOfCopy(base);
685 EXPECT_NE(&base, &a.Perform(make_tuple()));
686
687 a = ReturnRefOfCopy(derived);
688 EXPECT_NE(&derived, &a.Perform(make_tuple()));
689 }
690
691 // Tests that DoDefault() does the default action for the mock method.
692
693 class MockClass {
694 public:
695 MockClass() {}
696
697 MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT
698 MOCK_METHOD0(Foo, MyNonDefaultConstructible());
699 #if GTEST_HAS_STD_UNIQUE_PTR_
700 MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
701 MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
702 MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
703 #endif
704
705 private:
706 GTEST_DISALLOW_COPY_AND_ASSIGN_(MockClass);
707 };
708
709 // Tests that DoDefault() returns the built-in default value for the
710 // return type by default.
711 TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
712 MockClass mock;
713 EXPECT_CALL(mock, IntFunc(_))
714 .WillOnce(DoDefault());
715 EXPECT_EQ(0, mock.IntFunc(true));
716 }
717
718 // Tests that DoDefault() throws (when exceptions are enabled) or aborts
719 // the process when there is no built-in default value for the return type.
720 TEST(DoDefaultDeathTest, DiesForUnknowType) {
721 MockClass mock;
722 EXPECT_CALL(mock, Foo())
723 .WillRepeatedly(DoDefault());
724 #if GTEST_HAS_EXCEPTIONS
725 EXPECT_ANY_THROW(mock.Foo());
726 #else
727 EXPECT_DEATH_IF_SUPPORTED({
728 mock.Foo();
729 }, "");
730 #endif
731 }
732
733 // Tests that using DoDefault() inside a composite action leads to a
734 // run-time error.
735
736 void VoidFunc(bool /* flag */) {}
737
738 TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
739 MockClass mock;
740 EXPECT_CALL(mock, IntFunc(_))
741 .WillRepeatedly(DoAll(Invoke(VoidFunc),
742 DoDefault()));
743
744 // Ideally we should verify the error message as well. Sadly,
745 // EXPECT_DEATH() can only capture stderr, while Google Mock's
746 // errors are printed on stdout. Therefore we have to settle for
747 // not verifying the message.
748 EXPECT_DEATH_IF_SUPPORTED({
749 mock.IntFunc(true);
750 }, "");
751 }
752
753 // Tests that DoDefault() returns the default value set by
754 // DefaultValue<T>::Set() when it's not overriden by an ON_CALL().
755 TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
756 DefaultValue<int>::Set(1);
757 MockClass mock;
758 EXPECT_CALL(mock, IntFunc(_))
759 .WillOnce(DoDefault());
760 EXPECT_EQ(1, mock.IntFunc(false));
761 DefaultValue<int>::Clear();
762 }
763
764 // Tests that DoDefault() does the action specified by ON_CALL().
765 TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
766 MockClass mock;
767 ON_CALL(mock, IntFunc(_))
768 .WillByDefault(Return(2));
769 EXPECT_CALL(mock, IntFunc(_))
770 .WillOnce(DoDefault());
771 EXPECT_EQ(2, mock.IntFunc(false));
772 }
773
774 // Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
775 TEST(DoDefaultTest, CannotBeUsedInOnCall) {
776 MockClass mock;
777 EXPECT_NONFATAL_FAILURE({ // NOLINT
778 ON_CALL(mock, IntFunc(_))
779 .WillByDefault(DoDefault());
780 }, "DoDefault() cannot be used in ON_CALL()");
781 }
782
783 // Tests that SetArgPointee<N>(v) sets the variable pointed to by
784 // the N-th (0-based) argument to v.
785 TEST(SetArgPointeeTest, SetsTheNthPointee) {
786 typedef void MyFunction(bool, int*, char*);
787 Action<MyFunction> a = SetArgPointee<1>(2);
788
789 int n = 0;
790 char ch = '\0';
791 a.Perform(make_tuple(true, &n, &ch));
792 EXPECT_EQ(2, n);
793 EXPECT_EQ('\0', ch);
794
795 a = SetArgPointee<2>('a');
796 n = 0;
797 ch = '\0';
798 a.Perform(make_tuple(true, &n, &ch));
799 EXPECT_EQ(0, n);
800 EXPECT_EQ('a', ch);
801 }
802
803 #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
804 // Tests that SetArgPointee<N>() accepts a string literal.
805 // GCC prior to v4.0 and the Symbian compiler do not support this.
806 TEST(SetArgPointeeTest, AcceptsStringLiteral) {
807 typedef void MyFunction(std::string*, const char**);
808 Action<MyFunction> a = SetArgPointee<0>("hi");
809 std::string str;
810 const char* ptr = NULL;
811 a.Perform(make_tuple(&str, &ptr));
812 EXPECT_EQ("hi", str);
813 EXPECT_TRUE(ptr == NULL);
814
815 a = SetArgPointee<1>("world");
816 str = "";
817 a.Perform(make_tuple(&str, &ptr));
818 EXPECT_EQ("", str);
819 EXPECT_STREQ("world", ptr);
820 }
821
822 TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
823 typedef void MyFunction(const wchar_t**);
824 Action<MyFunction> a = SetArgPointee<0>(L"world");
825 const wchar_t* ptr = NULL;
826 a.Perform(make_tuple(&ptr));
827 EXPECT_STREQ(L"world", ptr);
828
829 # if GTEST_HAS_STD_WSTRING
830
831 typedef void MyStringFunction(std::wstring*);
832 Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
833 std::wstring str = L"";
834 a2.Perform(make_tuple(&str));
835 EXPECT_EQ(L"world", str);
836
837 # endif
838 }
839 #endif
840
841 // Tests that SetArgPointee<N>() accepts a char pointer.
842 TEST(SetArgPointeeTest, AcceptsCharPointer) {
843 typedef void MyFunction(bool, std::string*, const char**);
844 const char* const hi = "hi";
845 Action<MyFunction> a = SetArgPointee<1>(hi);
846 std::string str;
847 const char* ptr = NULL;
848 a.Perform(make_tuple(true, &str, &ptr));
849 EXPECT_EQ("hi", str);
850 EXPECT_TRUE(ptr == NULL);
851
852 char world_array[] = "world";
853 char* const world = world_array;
854 a = SetArgPointee<2>(world);
855 str = "";
856 a.Perform(make_tuple(true, &str, &ptr));
857 EXPECT_EQ("", str);
858 EXPECT_EQ(world, ptr);
859 }
860
861 TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
862 typedef void MyFunction(bool, const wchar_t**);
863 const wchar_t* const hi = L"hi";
864 Action<MyFunction> a = SetArgPointee<1>(hi);
865 const wchar_t* ptr = NULL;
866 a.Perform(make_tuple(true, &ptr));
867 EXPECT_EQ(hi, ptr);
868
869 # if GTEST_HAS_STD_WSTRING
870
871 typedef void MyStringFunction(bool, std::wstring*);
872 wchar_t world_array[] = L"world";
873 wchar_t* const world = world_array;
874 Action<MyStringFunction> a2 = SetArgPointee<1>(world);
875 std::wstring str;
876 a2.Perform(make_tuple(true, &str));
877 EXPECT_EQ(world_array, str);
878 # endif
879 }
880
881 #if GTEST_HAS_PROTOBUF_
882
883 // Tests that SetArgPointee<N>(proto_buffer) sets the v1 protobuf
884 // variable pointed to by the N-th (0-based) argument to proto_buffer.
885 TEST(SetArgPointeeTest, SetsTheNthPointeeOfProtoBufferType) {
886 TestMessage* const msg = new TestMessage;
887 msg->set_member("yes");
888 TestMessage orig_msg;
889 orig_msg.CopyFrom(*msg);
890
891 Action<void(bool, TestMessage*)> a = SetArgPointee<1>(*msg);
892 // SetArgPointee<N>(proto_buffer) makes a copy of proto_buffer
893 // s.t. the action works even when the original proto_buffer has
894 // died. We ensure this behavior by deleting msg before using the
895 // action.
896 delete msg;
897
898 TestMessage dest;
899 EXPECT_FALSE(orig_msg.Equals(dest));
900 a.Perform(make_tuple(true, &dest));
901 EXPECT_TRUE(orig_msg.Equals(dest));
902 }
903
904 // Tests that SetArgPointee<N>(proto_buffer) sets the
905 // ::ProtocolMessage variable pointed to by the N-th (0-based)
906 // argument to proto_buffer.
907 TEST(SetArgPointeeTest, SetsTheNthPointeeOfProtoBufferBaseType) {
908 TestMessage* const msg = new TestMessage;
909 msg->set_member("yes");
910 TestMessage orig_msg;
911 orig_msg.CopyFrom(*msg);
912
913 Action<void(bool, ::ProtocolMessage*)> a = SetArgPointee<1>(*msg);
914 // SetArgPointee<N>(proto_buffer) makes a copy of proto_buffer
915 // s.t. the action works even when the original proto_buffer has
916 // died. We ensure this behavior by deleting msg before using the
917 // action.
918 delete msg;
919
920 TestMessage dest;
921 ::ProtocolMessage* const dest_base = &dest;
922 EXPECT_FALSE(orig_msg.Equals(dest));
923 a.Perform(make_tuple(true, dest_base));
924 EXPECT_TRUE(orig_msg.Equals(dest));
925 }
926
927 // Tests that SetArgPointee<N>(proto2_buffer) sets the v2
928 // protobuf variable pointed to by the N-th (0-based) argument to
929 // proto2_buffer.
930 TEST(SetArgPointeeTest, SetsTheNthPointeeOfProto2BufferType) {
931 using testing::internal::FooMessage;
932 FooMessage* const msg = new FooMessage;
933 msg->set_int_field(2);
934 msg->set_string_field("hi");
935 FooMessage orig_msg;
936 orig_msg.CopyFrom(*msg);
937
938 Action<void(bool, FooMessage*)> a = SetArgPointee<1>(*msg);
939 // SetArgPointee<N>(proto2_buffer) makes a copy of
940 // proto2_buffer s.t. the action works even when the original
941 // proto2_buffer has died. We ensure this behavior by deleting msg
942 // before using the action.
943 delete msg;
944
945 FooMessage dest;
946 dest.set_int_field(0);
947 a.Perform(make_tuple(true, &dest));
948 EXPECT_EQ(2, dest.int_field());
949 EXPECT_EQ("hi", dest.string_field());
950 }
951
952 // Tests that SetArgPointee<N>(proto2_buffer) sets the
953 // proto2::Message variable pointed to by the N-th (0-based) argument
954 // to proto2_buffer.
955 TEST(SetArgPointeeTest, SetsTheNthPointeeOfProto2BufferBaseType) {
956 using testing::internal::FooMessage;
957 FooMessage* const msg = new FooMessage;
958 msg->set_int_field(2);
959 msg->set_string_field("hi");
960 FooMessage orig_msg;
961 orig_msg.CopyFrom(*msg);
962
963 Action<void(bool, ::proto2::Message*)> a = SetArgPointee<1>(*msg);
964 // SetArgPointee<N>(proto2_buffer) makes a copy of
965 // proto2_buffer s.t. the action works even when the original
966 // proto2_buffer has died. We ensure this behavior by deleting msg
967 // before using the action.
968 delete msg;
969
970 FooMessage dest;
971 dest.set_int_field(0);
972 ::proto2::Message* const dest_base = &dest;
973 a.Perform(make_tuple(true, dest_base));
974 EXPECT_EQ(2, dest.int_field());
975 EXPECT_EQ("hi", dest.string_field());
976 }
977
978 #endif // GTEST_HAS_PROTOBUF_
979
980 // Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
981 // the N-th (0-based) argument to v.
982 TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
983 typedef void MyFunction(bool, int*, char*);
984 Action<MyFunction> a = SetArgumentPointee<1>(2);
985
986 int n = 0;
987 char ch = '\0';
988 a.Perform(make_tuple(true, &n, &ch));
989 EXPECT_EQ(2, n);
990 EXPECT_EQ('\0', ch);
991
992 a = SetArgumentPointee<2>('a');
993 n = 0;
994 ch = '\0';
995 a.Perform(make_tuple(true, &n, &ch));
996 EXPECT_EQ(0, n);
997 EXPECT_EQ('a', ch);
998 }
999
1000 #if GTEST_HAS_PROTOBUF_
1001
1002 // Tests that SetArgumentPointee<N>(proto_buffer) sets the v1 protobuf
1003 // variable pointed to by the N-th (0-based) argument to proto_buffer.
1004 TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProtoBufferType) {
1005 TestMessage* const msg = new TestMessage;
1006 msg->set_member("yes");
1007 TestMessage orig_msg;
1008 orig_msg.CopyFrom(*msg);
1009
1010 Action<void(bool, TestMessage*)> a = SetArgumentPointee<1>(*msg);
1011 // SetArgumentPointee<N>(proto_buffer) makes a copy of proto_buffer
1012 // s.t. the action works even when the original proto_buffer has
1013 // died. We ensure this behavior by deleting msg before using the
1014 // action.
1015 delete msg;
1016
1017 TestMessage dest;
1018 EXPECT_FALSE(orig_msg.Equals(dest));
1019 a.Perform(make_tuple(true, &dest));
1020 EXPECT_TRUE(orig_msg.Equals(dest));
1021 }
1022
1023 // Tests that SetArgumentPointee<N>(proto_buffer) sets the
1024 // ::ProtocolMessage variable pointed to by the N-th (0-based)
1025 // argument to proto_buffer.
1026 TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProtoBufferBaseType) {
1027 TestMessage* const msg = new TestMessage;
1028 msg->set_member("yes");
1029 TestMessage orig_msg;
1030 orig_msg.CopyFrom(*msg);
1031
1032 Action<void(bool, ::ProtocolMessage*)> a = SetArgumentPointee<1>(*msg);
1033 // SetArgumentPointee<N>(proto_buffer) makes a copy of proto_buffer
1034 // s.t. the action works even when the original proto_buffer has
1035 // died. We ensure this behavior by deleting msg before using the
1036 // action.
1037 delete msg;
1038
1039 TestMessage dest;
1040 ::ProtocolMessage* const dest_base = &dest;
1041 EXPECT_FALSE(orig_msg.Equals(dest));
1042 a.Perform(make_tuple(true, dest_base));
1043 EXPECT_TRUE(orig_msg.Equals(dest));
1044 }
1045
1046 // Tests that SetArgumentPointee<N>(proto2_buffer) sets the v2
1047 // protobuf variable pointed to by the N-th (0-based) argument to
1048 // proto2_buffer.
1049 TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProto2BufferType) {
1050 using testing::internal::FooMessage;
1051 FooMessage* const msg = new FooMessage;
1052 msg->set_int_field(2);
1053 msg->set_string_field("hi");
1054 FooMessage orig_msg;
1055 orig_msg.CopyFrom(*msg);
1056
1057 Action<void(bool, FooMessage*)> a = SetArgumentPointee<1>(*msg);
1058 // SetArgumentPointee<N>(proto2_buffer) makes a copy of
1059 // proto2_buffer s.t. the action works even when the original
1060 // proto2_buffer has died. We ensure this behavior by deleting msg
1061 // before using the action.
1062 delete msg;
1063
1064 FooMessage dest;
1065 dest.set_int_field(0);
1066 a.Perform(make_tuple(true, &dest));
1067 EXPECT_EQ(2, dest.int_field());
1068 EXPECT_EQ("hi", dest.string_field());
1069 }
1070
1071 // Tests that SetArgumentPointee<N>(proto2_buffer) sets the
1072 // proto2::Message variable pointed to by the N-th (0-based) argument
1073 // to proto2_buffer.
1074 TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProto2BufferBaseType) {
1075 using testing::internal::FooMessage;
1076 FooMessage* const msg = new FooMessage;
1077 msg->set_int_field(2);
1078 msg->set_string_field("hi");
1079 FooMessage orig_msg;
1080 orig_msg.CopyFrom(*msg);
1081
1082 Action<void(bool, ::proto2::Message*)> a = SetArgumentPointee<1>(*msg);
1083 // SetArgumentPointee<N>(proto2_buffer) makes a copy of
1084 // proto2_buffer s.t. the action works even when the original
1085 // proto2_buffer has died. We ensure this behavior by deleting msg
1086 // before using the action.
1087 delete msg;
1088
1089 FooMessage dest;
1090 dest.set_int_field(0);
1091 ::proto2::Message* const dest_base = &dest;
1092 a.Perform(make_tuple(true, dest_base));
1093 EXPECT_EQ(2, dest.int_field());
1094 EXPECT_EQ("hi", dest.string_field());
1095 }
1096
1097 #endif // GTEST_HAS_PROTOBUF_
1098
1099 // Sample functions and functors for testing Invoke() and etc.
1100 int Nullary() { return 1; }
1101
1102 class NullaryFunctor {
1103 public:
1104 int operator()() { return 2; }
1105 };
1106
1107 bool g_done = false;
1108 void VoidNullary() { g_done = true; }
1109
1110 class VoidNullaryFunctor {
1111 public:
1112 void operator()() { g_done = true; }
1113 };
1114
1115 class Foo {
1116 public:
1117 Foo() : value_(123) {}
1118
1119 int Nullary() const { return value_; }
1120
1121 private:
1122 int value_;
1123 };
1124
1125 // Tests InvokeWithoutArgs(function).
1126 TEST(InvokeWithoutArgsTest, Function) {
1127 // As an action that takes one argument.
1128 Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT
1129 EXPECT_EQ(1, a.Perform(make_tuple(2)));
1130
1131 // As an action that takes two arguments.
1132 Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT
1133 EXPECT_EQ(1, a2.Perform(make_tuple(2, 3.5)));
1134
1135 // As an action that returns void.
1136 Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT
1137 g_done = false;
1138 a3.Perform(make_tuple(1));
1139 EXPECT_TRUE(g_done);
1140 }
1141
1142 // Tests InvokeWithoutArgs(functor).
1143 TEST(InvokeWithoutArgsTest, Functor) {
1144 // As an action that takes no argument.
1145 Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT
1146 EXPECT_EQ(2, a.Perform(make_tuple()));
1147
1148 // As an action that takes three arguments.
1149 Action<int(int, double, char)> a2 = // NOLINT
1150 InvokeWithoutArgs(NullaryFunctor());
1151 EXPECT_EQ(2, a2.Perform(make_tuple(3, 3.5, 'a')));
1152
1153 // As an action that returns void.
1154 Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
1155 g_done = false;
1156 a3.Perform(make_tuple());
1157 EXPECT_TRUE(g_done);
1158 }
1159
1160 // Tests InvokeWithoutArgs(obj_ptr, method).
1161 TEST(InvokeWithoutArgsTest, Method) {
1162 Foo foo;
1163 Action<int(bool, char)> a = // NOLINT
1164 InvokeWithoutArgs(&foo, &Foo::Nullary);
1165 EXPECT_EQ(123, a.Perform(make_tuple(true, 'a')));
1166 }
1167
1168 // Tests using IgnoreResult() on a polymorphic action.
1169 TEST(IgnoreResultTest, PolymorphicAction) {
1170 Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT
1171 a.Perform(make_tuple(1));
1172 }
1173
1174 // Tests using IgnoreResult() on a monomorphic action.
1175
1176 int ReturnOne() {
1177 g_done = true;
1178 return 1;
1179 }
1180
1181 TEST(IgnoreResultTest, MonomorphicAction) {
1182 g_done = false;
1183 Action<void()> a = IgnoreResult(Invoke(ReturnOne));
1184 a.Perform(make_tuple());
1185 EXPECT_TRUE(g_done);
1186 }
1187
1188 // Tests using IgnoreResult() on an action that returns a class type.
1189
1190 MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
1191 g_done = true;
1192 return MyNonDefaultConstructible(42);
1193 }
1194
1195 TEST(IgnoreResultTest, ActionReturningClass) {
1196 g_done = false;
1197 Action<void(int)> a =
1198 IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT
1199 a.Perform(make_tuple(2));
1200 EXPECT_TRUE(g_done);
1201 }
1202
1203 TEST(AssignTest, Int) {
1204 int x = 0;
1205 Action<void(int)> a = Assign(&x, 5);
1206 a.Perform(make_tuple(0));
1207 EXPECT_EQ(5, x);
1208 }
1209
1210 TEST(AssignTest, String) {
1211 ::std::string x;
1212 Action<void(void)> a = Assign(&x, "Hello, world");
1213 a.Perform(make_tuple());
1214 EXPECT_EQ("Hello, world", x);
1215 }
1216
1217 TEST(AssignTest, CompatibleTypes) {
1218 double x = 0;
1219 Action<void(int)> a = Assign(&x, 5);
1220 a.Perform(make_tuple(0));
1221 EXPECT_DOUBLE_EQ(5, x);
1222 }
1223
1224 #if !GTEST_OS_WINDOWS_MOBILE
1225
1226 class SetErrnoAndReturnTest : public testing::Test {
1227 protected:
1228 virtual void SetUp() { errno = 0; }
1229 virtual void TearDown() { errno = 0; }
1230 };
1231
1232 TEST_F(SetErrnoAndReturnTest, Int) {
1233 Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
1234 EXPECT_EQ(-5, a.Perform(make_tuple()));
1235 EXPECT_EQ(ENOTTY, errno);
1236 }
1237
1238 TEST_F(SetErrnoAndReturnTest, Ptr) {
1239 int x;
1240 Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
1241 EXPECT_EQ(&x, a.Perform(make_tuple()));
1242 EXPECT_EQ(ENOTTY, errno);
1243 }
1244
1245 TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
1246 Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
1247 EXPECT_DOUBLE_EQ(5.0, a.Perform(make_tuple()));
1248 EXPECT_EQ(EINVAL, errno);
1249 }
1250
1251 #endif // !GTEST_OS_WINDOWS_MOBILE
1252
1253 // Tests ByRef().
1254
1255 // Tests that ReferenceWrapper<T> is copyable.
1256 TEST(ByRefTest, IsCopyable) {
1257 const std::string s1 = "Hi";
1258 const std::string s2 = "Hello";
1259
1260 ::testing::internal::ReferenceWrapper<const std::string> ref_wrapper =
1261 ByRef(s1);
1262 const std::string& r1 = ref_wrapper;
1263 EXPECT_EQ(&s1, &r1);
1264
1265 // Assigns a new value to ref_wrapper.
1266 ref_wrapper = ByRef(s2);
1267 const std::string& r2 = ref_wrapper;
1268 EXPECT_EQ(&s2, &r2);
1269
1270 ::testing::internal::ReferenceWrapper<const std::string> ref_wrapper1 =
1271 ByRef(s1);
1272 // Copies ref_wrapper1 to ref_wrapper.
1273 ref_wrapper = ref_wrapper1;
1274 const std::string& r3 = ref_wrapper;
1275 EXPECT_EQ(&s1, &r3);
1276 }
1277
1278 // Tests using ByRef() on a const value.
1279 TEST(ByRefTest, ConstValue) {
1280 const int n = 0;
1281 // int& ref = ByRef(n); // This shouldn't compile - we have a
1282 // negative compilation test to catch it.
1283 const int& const_ref = ByRef(n);
1284 EXPECT_EQ(&n, &const_ref);
1285 }
1286
1287 // Tests using ByRef() on a non-const value.
1288 TEST(ByRefTest, NonConstValue) {
1289 int n = 0;
1290
1291 // ByRef(n) can be used as either an int&,
1292 int& ref = ByRef(n);
1293 EXPECT_EQ(&n, &ref);
1294
1295 // or a const int&.
1296 const int& const_ref = ByRef(n);
1297 EXPECT_EQ(&n, &const_ref);
1298 }
1299
1300 // Tests explicitly specifying the type when using ByRef().
1301 TEST(ByRefTest, ExplicitType) {
1302 int n = 0;
1303 const int& r1 = ByRef<const int>(n);
1304 EXPECT_EQ(&n, &r1);
1305
1306 // ByRef<char>(n); // This shouldn't compile - we have a negative
1307 // compilation test to catch it.
1308
1309 Derived d;
1310 Derived& r2 = ByRef<Derived>(d);
1311 EXPECT_EQ(&d, &r2);
1312
1313 const Derived& r3 = ByRef<const Derived>(d);
1314 EXPECT_EQ(&d, &r3);
1315
1316 Base& r4 = ByRef<Base>(d);
1317 EXPECT_EQ(&d, &r4);
1318
1319 const Base& r5 = ByRef<const Base>(d);
1320 EXPECT_EQ(&d, &r5);
1321
1322 // The following shouldn't compile - we have a negative compilation
1323 // test for it.
1324 //
1325 // Base b;
1326 // ByRef<Derived>(b);
1327 }
1328
1329 // Tests that Google Mock prints expression ByRef(x) as a reference to x.
1330 TEST(ByRefTest, PrintsCorrectly) {
1331 int n = 42;
1332 ::std::stringstream expected, actual;
1333 testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
1334 testing::internal::UniversalPrint(ByRef(n), &actual);
1335 EXPECT_EQ(expected.str(), actual.str());
1336 }
1337
1338 #if GTEST_HAS_STD_UNIQUE_PTR_
1339
1340 std::unique_ptr<int> UniquePtrSource() {
1341 return std::unique_ptr<int>(new int(19));
1342 }
1343
1344 std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
1345 std::vector<std::unique_ptr<int>> out;
1346 out.emplace_back(new int(7));
1347 return out;
1348 }
1349
1350 TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
1351 MockClass mock;
1352 std::unique_ptr<int> i(new int(19));
1353 EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
1354 EXPECT_CALL(mock, MakeVectorUnique())
1355 .WillOnce(Return(ByMove(VectorUniquePtrSource())));
1356 Derived* d = new Derived;
1357 EXPECT_CALL(mock, MakeUniqueBase())
1358 .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
1359
1360 std::unique_ptr<int> result1 = mock.MakeUnique();
1361 EXPECT_EQ(19, *result1);
1362
1363 std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1364 EXPECT_EQ(1u, vresult.size());
1365 EXPECT_NE(nullptr, vresult[0]);
1366 EXPECT_EQ(7, *vresult[0]);
1367
1368 std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
1369 EXPECT_EQ(d, result2.get());
1370 }
1371
1372 TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
1373 testing::MockFunction<void()> mock_function;
1374 MockClass mock;
1375 std::unique_ptr<int> i(new int(19));
1376 EXPECT_CALL(mock_function, Call());
1377 EXPECT_CALL(mock, MakeUnique()).WillOnce(DoAll(
1378 InvokeWithoutArgs(&mock_function, &testing::MockFunction<void()>::Call),
1379 Return(ByMove(std::move(i)))));
1380
1381 std::unique_ptr<int> result1 = mock.MakeUnique();
1382 EXPECT_EQ(19, *result1);
1383 }
1384
1385 TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
1386 MockClass mock;
1387
1388 // Check default value
1389 DefaultValue<std::unique_ptr<int>>::SetFactory([] {
1390 return std::unique_ptr<int>(new int(42));
1391 });
1392 EXPECT_EQ(42, *mock.MakeUnique());
1393
1394 EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
1395 EXPECT_CALL(mock, MakeVectorUnique())
1396 .WillRepeatedly(Invoke(VectorUniquePtrSource));
1397 std::unique_ptr<int> result1 = mock.MakeUnique();
1398 EXPECT_EQ(19, *result1);
1399 std::unique_ptr<int> result2 = mock.MakeUnique();
1400 EXPECT_EQ(19, *result2);
1401 EXPECT_NE(result1, result2);
1402
1403 std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1404 EXPECT_EQ(1u, vresult.size());
1405 EXPECT_NE(nullptr, vresult[0]);
1406 EXPECT_EQ(7, *vresult[0]);
1407 }
1408
1409 #endif // GTEST_HAS_STD_UNIQUE_PTR_
1410
1411 } // Unnamed namespace