]> git.proxmox.com Git - ceph.git/blob - ceph/src/s3select/rapidjson/thirdparty/gtest/googlemock/include/gmock/gmock-actions.h
bump version to 19.2.0-pve1
[ceph.git] / ceph / src / s3select / rapidjson / thirdparty / gtest / googlemock / include / gmock / gmock-actions.h
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements some commonly used actions.
35
36 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
37 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
38
39 #ifndef _WIN32_WCE
40 # include <errno.h>
41 #endif
42
43 #include <algorithm>
44 #include <string>
45
46 #include "gmock/internal/gmock-internal-utils.h"
47 #include "gmock/internal/gmock-port.h"
48
49 #if GTEST_LANG_CXX11 // Defined by gtest-port.h via gmock-port.h.
50 #include <functional>
51 #include <type_traits>
52 #endif // GTEST_LANG_CXX11
53
54 namespace testing {
55
56 // To implement an action Foo, define:
57 // 1. a class FooAction that implements the ActionInterface interface, and
58 // 2. a factory function that creates an Action object from a
59 // const FooAction*.
60 //
61 // The two-level delegation design follows that of Matcher, providing
62 // consistency for extension developers. It also eases ownership
63 // management as Action objects can now be copied like plain values.
64
65 namespace internal {
66
67 template <typename F1, typename F2>
68 class ActionAdaptor;
69
70 // BuiltInDefaultValueGetter<T, true>::Get() returns a
71 // default-constructed T value. BuiltInDefaultValueGetter<T,
72 // false>::Get() crashes with an error.
73 //
74 // This primary template is used when kDefaultConstructible is true.
75 template <typename T, bool kDefaultConstructible>
76 struct BuiltInDefaultValueGetter {
77 static T Get() { return T(); }
78 };
79 template <typename T>
80 struct BuiltInDefaultValueGetter<T, false> {
81 static T Get() {
82 Assert(false, __FILE__, __LINE__,
83 "Default action undefined for the function return type.");
84 return internal::Invalid<T>();
85 // The above statement will never be reached, but is required in
86 // order for this function to compile.
87 }
88 };
89
90 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
91 // for type T, which is NULL when T is a raw pointer type, 0 when T is
92 // a numeric type, false when T is bool, or "" when T is string or
93 // std::string. In addition, in C++11 and above, it turns a
94 // default-constructed T value if T is default constructible. For any
95 // other type T, the built-in default T value is undefined, and the
96 // function will abort the process.
97 template <typename T>
98 class BuiltInDefaultValue {
99 public:
100 #if GTEST_LANG_CXX11
101 // This function returns true iff type T has a built-in default value.
102 static bool Exists() {
103 return ::std::is_default_constructible<T>::value;
104 }
105
106 static T Get() {
107 return BuiltInDefaultValueGetter<
108 T, ::std::is_default_constructible<T>::value>::Get();
109 }
110
111 #else // GTEST_LANG_CXX11
112 // This function returns true iff type T has a built-in default value.
113 static bool Exists() {
114 return false;
115 }
116
117 static T Get() {
118 return BuiltInDefaultValueGetter<T, false>::Get();
119 }
120
121 #endif // GTEST_LANG_CXX11
122 };
123
124 // This partial specialization says that we use the same built-in
125 // default value for T and const T.
126 template <typename T>
127 class BuiltInDefaultValue<const T> {
128 public:
129 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
130 static T Get() { return BuiltInDefaultValue<T>::Get(); }
131 };
132
133 // This partial specialization defines the default values for pointer
134 // types.
135 template <typename T>
136 class BuiltInDefaultValue<T*> {
137 public:
138 static bool Exists() { return true; }
139 static T* Get() { return NULL; }
140 };
141
142 // The following specializations define the default values for
143 // specific types we care about.
144 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
145 template <> \
146 class BuiltInDefaultValue<type> { \
147 public: \
148 static bool Exists() { return true; } \
149 static type Get() { return value; } \
150 }
151
152 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
153 #if GTEST_HAS_GLOBAL_STRING
154 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
155 #endif // GTEST_HAS_GLOBAL_STRING
156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
157 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
158 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
159 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
160 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
161
162 // There's no need for a default action for signed wchar_t, as that
163 // type is the same as wchar_t for gcc, and invalid for MSVC.
164 //
165 // There's also no need for a default action for unsigned wchar_t, as
166 // that type is the same as unsigned int for gcc, and invalid for
167 // MSVC.
168 #if GMOCK_WCHAR_T_IS_NATIVE_
169 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
170 #endif
171
172 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
178 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
179 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
180 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
181 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
182
183 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
184
185 } // namespace internal
186
187 // When an unexpected function call is encountered, Google Mock will
188 // let it return a default value if the user has specified one for its
189 // return type, or if the return type has a built-in default value;
190 // otherwise Google Mock won't know what value to return and will have
191 // to abort the process.
192 //
193 // The DefaultValue<T> class allows a user to specify the
194 // default value for a type T that is both copyable and publicly
195 // destructible (i.e. anything that can be used as a function return
196 // type). The usage is:
197 //
198 // // Sets the default value for type T to be foo.
199 // DefaultValue<T>::Set(foo);
200 template <typename T>
201 class DefaultValue {
202 public:
203 // Sets the default value for type T; requires T to be
204 // copy-constructable and have a public destructor.
205 static void Set(T x) {
206 delete producer_;
207 producer_ = new FixedValueProducer(x);
208 }
209
210 // Provides a factory function to be called to generate the default value.
211 // This method can be used even if T is only move-constructible, but it is not
212 // limited to that case.
213 typedef T (*FactoryFunction)();
214 static void SetFactory(FactoryFunction factory) {
215 delete producer_;
216 producer_ = new FactoryValueProducer(factory);
217 }
218
219 // Unsets the default value for type T.
220 static void Clear() {
221 delete producer_;
222 producer_ = NULL;
223 }
224
225 // Returns true iff the user has set the default value for type T.
226 static bool IsSet() { return producer_ != NULL; }
227
228 // Returns true if T has a default return value set by the user or there
229 // exists a built-in default value.
230 static bool Exists() {
231 return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
232 }
233
234 // Returns the default value for type T if the user has set one;
235 // otherwise returns the built-in default value. Requires that Exists()
236 // is true, which ensures that the return value is well-defined.
237 static T Get() {
238 return producer_ == NULL ?
239 internal::BuiltInDefaultValue<T>::Get() : producer_->Produce();
240 }
241
242 private:
243 class ValueProducer {
244 public:
245 virtual ~ValueProducer() {}
246 virtual T Produce() = 0;
247 };
248
249 class FixedValueProducer : public ValueProducer {
250 public:
251 explicit FixedValueProducer(T value) : value_(value) {}
252 virtual T Produce() { return value_; }
253
254 private:
255 const T value_;
256 GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
257 };
258
259 class FactoryValueProducer : public ValueProducer {
260 public:
261 explicit FactoryValueProducer(FactoryFunction factory)
262 : factory_(factory) {}
263 virtual T Produce() { return factory_(); }
264
265 private:
266 const FactoryFunction factory_;
267 GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
268 };
269
270 static ValueProducer* producer_;
271 };
272
273 // This partial specialization allows a user to set default values for
274 // reference types.
275 template <typename T>
276 class DefaultValue<T&> {
277 public:
278 // Sets the default value for type T&.
279 static void Set(T& x) { // NOLINT
280 address_ = &x;
281 }
282
283 // Unsets the default value for type T&.
284 static void Clear() {
285 address_ = NULL;
286 }
287
288 // Returns true iff the user has set the default value for type T&.
289 static bool IsSet() { return address_ != NULL; }
290
291 // Returns true if T has a default return value set by the user or there
292 // exists a built-in default value.
293 static bool Exists() {
294 return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
295 }
296
297 // Returns the default value for type T& if the user has set one;
298 // otherwise returns the built-in default value if there is one;
299 // otherwise aborts the process.
300 static T& Get() {
301 return address_ == NULL ?
302 internal::BuiltInDefaultValue<T&>::Get() : *address_;
303 }
304
305 private:
306 static T* address_;
307 };
308
309 // This specialization allows DefaultValue<void>::Get() to
310 // compile.
311 template <>
312 class DefaultValue<void> {
313 public:
314 static bool Exists() { return true; }
315 static void Get() {}
316 };
317
318 // Points to the user-set default value for type T.
319 template <typename T>
320 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;
321
322 // Points to the user-set default value for type T&.
323 template <typename T>
324 T* DefaultValue<T&>::address_ = NULL;
325
326 // Implement this interface to define an action for function type F.
327 template <typename F>
328 class ActionInterface {
329 public:
330 typedef typename internal::Function<F>::Result Result;
331 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
332
333 ActionInterface() {}
334 virtual ~ActionInterface() {}
335
336 // Performs the action. This method is not const, as in general an
337 // action can have side effects and be stateful. For example, a
338 // get-the-next-element-from-the-collection action will need to
339 // remember the current element.
340 virtual Result Perform(const ArgumentTuple& args) = 0;
341
342 private:
343 GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
344 };
345
346 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
347 // object that represents an action to be taken when a mock function
348 // of type F is called. The implementation of Action<T> is just a
349 // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
350 // Don't inherit from Action!
351 //
352 // You can view an object implementing ActionInterface<F> as a
353 // concrete action (including its current state), and an Action<F>
354 // object as a handle to it.
355 template <typename F>
356 class Action {
357 public:
358 typedef typename internal::Function<F>::Result Result;
359 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
360
361 // Constructs a null Action. Needed for storing Action objects in
362 // STL containers.
363 Action() {}
364
365 #if GTEST_LANG_CXX11
366 // Construct an Action from a specified callable.
367 // This cannot take std::function directly, because then Action would not be
368 // directly constructible from lambda (it would require two conversions).
369 template <typename G,
370 typename = typename ::std::enable_if<
371 ::std::is_constructible<::std::function<F>, G>::value>::type>
372 Action(G&& fun) : fun_(::std::forward<G>(fun)) {} // NOLINT
373 #endif
374
375 // Constructs an Action from its implementation.
376 explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
377
378 // This constructor allows us to turn an Action<Func> object into an
379 // Action<F>, as long as F's arguments can be implicitly converted
380 // to Func's and Func's return type can be implicitly converted to
381 // F's.
382 template <typename Func>
383 explicit Action(const Action<Func>& action);
384
385 // Returns true iff this is the DoDefault() action.
386 bool IsDoDefault() const {
387 #if GTEST_LANG_CXX11
388 return impl_ == nullptr && fun_ == nullptr;
389 #else
390 return impl_ == NULL;
391 #endif
392 }
393
394 // Performs the action. Note that this method is const even though
395 // the corresponding method in ActionInterface is not. The reason
396 // is that a const Action<F> means that it cannot be re-bound to
397 // another concrete action, not that the concrete action it binds to
398 // cannot change state. (Think of the difference between a const
399 // pointer and a pointer to const.)
400 Result Perform(ArgumentTuple args) const {
401 if (IsDoDefault()) {
402 internal::IllegalDoDefault(__FILE__, __LINE__);
403 }
404 #if GTEST_LANG_CXX11
405 if (fun_ != nullptr) {
406 return internal::Apply(fun_, ::std::move(args));
407 }
408 #endif
409 return impl_->Perform(args);
410 }
411
412 private:
413 template <typename F1, typename F2>
414 friend class internal::ActionAdaptor;
415
416 template <typename G>
417 friend class Action;
418
419 // In C++11, Action can be implemented either as a generic functor (through
420 // std::function), or legacy ActionInterface. In C++98, only ActionInterface
421 // is available. The invariants are as follows:
422 // * in C++98, impl_ is null iff this is the default action
423 // * in C++11, at most one of fun_ & impl_ may be nonnull; both are null iff
424 // this is the default action
425 #if GTEST_LANG_CXX11
426 ::std::function<F> fun_;
427 #endif
428 internal::linked_ptr<ActionInterface<F> > impl_;
429 };
430
431 // The PolymorphicAction class template makes it easy to implement a
432 // polymorphic action (i.e. an action that can be used in mock
433 // functions of than one type, e.g. Return()).
434 //
435 // To define a polymorphic action, a user first provides a COPYABLE
436 // implementation class that has a Perform() method template:
437 //
438 // class FooAction {
439 // public:
440 // template <typename Result, typename ArgumentTuple>
441 // Result Perform(const ArgumentTuple& args) const {
442 // // Processes the arguments and returns a result, using
443 // // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
444 // }
445 // ...
446 // };
447 //
448 // Then the user creates the polymorphic action using
449 // MakePolymorphicAction(object) where object has type FooAction. See
450 // the definition of Return(void) and SetArgumentPointee<N>(value) for
451 // complete examples.
452 template <typename Impl>
453 class PolymorphicAction {
454 public:
455 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
456
457 template <typename F>
458 operator Action<F>() const {
459 return Action<F>(new MonomorphicImpl<F>(impl_));
460 }
461
462 private:
463 template <typename F>
464 class MonomorphicImpl : public ActionInterface<F> {
465 public:
466 typedef typename internal::Function<F>::Result Result;
467 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
468
469 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
470
471 virtual Result Perform(const ArgumentTuple& args) {
472 return impl_.template Perform<Result>(args);
473 }
474
475 private:
476 Impl impl_;
477
478 GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
479 };
480
481 Impl impl_;
482
483 GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
484 };
485
486 // Creates an Action from its implementation and returns it. The
487 // created Action object owns the implementation.
488 template <typename F>
489 Action<F> MakeAction(ActionInterface<F>* impl) {
490 return Action<F>(impl);
491 }
492
493 // Creates a polymorphic action from its implementation. This is
494 // easier to use than the PolymorphicAction<Impl> constructor as it
495 // doesn't require you to explicitly write the template argument, e.g.
496 //
497 // MakePolymorphicAction(foo);
498 // vs
499 // PolymorphicAction<TypeOfFoo>(foo);
500 template <typename Impl>
501 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
502 return PolymorphicAction<Impl>(impl);
503 }
504
505 namespace internal {
506
507 // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
508 // and F1 are compatible.
509 template <typename F1, typename F2>
510 class ActionAdaptor : public ActionInterface<F1> {
511 public:
512 typedef typename internal::Function<F1>::Result Result;
513 typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
514
515 explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
516
517 virtual Result Perform(const ArgumentTuple& args) {
518 return impl_->Perform(args);
519 }
520
521 private:
522 const internal::linked_ptr<ActionInterface<F2> > impl_;
523
524 GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
525 };
526
527 // Helper struct to specialize ReturnAction to execute a move instead of a copy
528 // on return. Useful for move-only types, but could be used on any type.
529 template <typename T>
530 struct ByMoveWrapper {
531 explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
532 T payload;
533 };
534
535 // Implements the polymorphic Return(x) action, which can be used in
536 // any function that returns the type of x, regardless of the argument
537 // types.
538 //
539 // Note: The value passed into Return must be converted into
540 // Function<F>::Result when this action is cast to Action<F> rather than
541 // when that action is performed. This is important in scenarios like
542 //
543 // MOCK_METHOD1(Method, T(U));
544 // ...
545 // {
546 // Foo foo;
547 // X x(&foo);
548 // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
549 // }
550 //
551 // In the example above the variable x holds reference to foo which leaves
552 // scope and gets destroyed. If copying X just copies a reference to foo,
553 // that copy will be left with a hanging reference. If conversion to T
554 // makes a copy of foo, the above code is safe. To support that scenario, we
555 // need to make sure that the type conversion happens inside the EXPECT_CALL
556 // statement, and conversion of the result of Return to Action<T(U)> is a
557 // good place for that.
558 //
559 // The real life example of the above scenario happens when an invocation
560 // of gtl::Container() is passed into Return.
561 //
562 template <typename R>
563 class ReturnAction {
564 public:
565 // Constructs a ReturnAction object from the value to be returned.
566 // 'value' is passed by value instead of by const reference in order
567 // to allow Return("string literal") to compile.
568 explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}
569
570 // This template type conversion operator allows Return(x) to be
571 // used in ANY function that returns x's type.
572 template <typename F>
573 operator Action<F>() const {
574 // Assert statement belongs here because this is the best place to verify
575 // conditions on F. It produces the clearest error messages
576 // in most compilers.
577 // Impl really belongs in this scope as a local class but can't
578 // because MSVC produces duplicate symbols in different translation units
579 // in this case. Until MS fixes that bug we put Impl into the class scope
580 // and put the typedef both here (for use in assert statement) and
581 // in the Impl class. But both definitions must be the same.
582 typedef typename Function<F>::Result Result;
583 GTEST_COMPILE_ASSERT_(
584 !is_reference<Result>::value,
585 use_ReturnRef_instead_of_Return_to_return_a_reference);
586 return Action<F>(new Impl<R, F>(value_));
587 }
588
589 private:
590 // Implements the Return(x) action for a particular function type F.
591 template <typename R_, typename F>
592 class Impl : public ActionInterface<F> {
593 public:
594 typedef typename Function<F>::Result Result;
595 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
596
597 // The implicit cast is necessary when Result has more than one
598 // single-argument constructor (e.g. Result is std::vector<int>) and R
599 // has a type conversion operator template. In that case, value_(value)
600 // won't compile as the compiler doesn't known which constructor of
601 // Result to call. ImplicitCast_ forces the compiler to convert R to
602 // Result without considering explicit constructors, thus resolving the
603 // ambiguity. value_ is then initialized using its copy constructor.
604 explicit Impl(const linked_ptr<R>& value)
605 : value_before_cast_(*value),
606 value_(ImplicitCast_<Result>(value_before_cast_)) {}
607
608 virtual Result Perform(const ArgumentTuple&) { return value_; }
609
610 private:
611 GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
612 Result_cannot_be_a_reference_type);
613 // We save the value before casting just in case it is being cast to a
614 // wrapper type.
615 R value_before_cast_;
616 Result value_;
617
618 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
619 };
620
621 // Partially specialize for ByMoveWrapper. This version of ReturnAction will
622 // move its contents instead.
623 template <typename R_, typename F>
624 class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
625 public:
626 typedef typename Function<F>::Result Result;
627 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
628
629 explicit Impl(const linked_ptr<R>& wrapper)
630 : performed_(false), wrapper_(wrapper) {}
631
632 virtual Result Perform(const ArgumentTuple&) {
633 GTEST_CHECK_(!performed_)
634 << "A ByMove() action should only be performed once.";
635 performed_ = true;
636 return internal::move(wrapper_->payload);
637 }
638
639 private:
640 bool performed_;
641 const linked_ptr<R> wrapper_;
642
643 GTEST_DISALLOW_ASSIGN_(Impl);
644 };
645
646 const linked_ptr<R> value_;
647
648 GTEST_DISALLOW_ASSIGN_(ReturnAction);
649 };
650
651 // Implements the ReturnNull() action.
652 class ReturnNullAction {
653 public:
654 // Allows ReturnNull() to be used in any pointer-returning function. In C++11
655 // this is enforced by returning nullptr, and in non-C++11 by asserting a
656 // pointer type on compile time.
657 template <typename Result, typename ArgumentTuple>
658 static Result Perform(const ArgumentTuple&) {
659 #if GTEST_LANG_CXX11
660 return nullptr;
661 #else
662 GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
663 ReturnNull_can_be_used_to_return_a_pointer_only);
664 return NULL;
665 #endif // GTEST_LANG_CXX11
666 }
667 };
668
669 // Implements the Return() action.
670 class ReturnVoidAction {
671 public:
672 // Allows Return() to be used in any void-returning function.
673 template <typename Result, typename ArgumentTuple>
674 static void Perform(const ArgumentTuple&) {
675 CompileAssertTypesEqual<void, Result>();
676 }
677 };
678
679 // Implements the polymorphic ReturnRef(x) action, which can be used
680 // in any function that returns a reference to the type of x,
681 // regardless of the argument types.
682 template <typename T>
683 class ReturnRefAction {
684 public:
685 // Constructs a ReturnRefAction object from the reference to be returned.
686 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
687
688 // This template type conversion operator allows ReturnRef(x) to be
689 // used in ANY function that returns a reference to x's type.
690 template <typename F>
691 operator Action<F>() const {
692 typedef typename Function<F>::Result Result;
693 // Asserts that the function return type is a reference. This
694 // catches the user error of using ReturnRef(x) when Return(x)
695 // should be used, and generates some helpful error message.
696 GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
697 use_Return_instead_of_ReturnRef_to_return_a_value);
698 return Action<F>(new Impl<F>(ref_));
699 }
700
701 private:
702 // Implements the ReturnRef(x) action for a particular function type F.
703 template <typename F>
704 class Impl : public ActionInterface<F> {
705 public:
706 typedef typename Function<F>::Result Result;
707 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
708
709 explicit Impl(T& ref) : ref_(ref) {} // NOLINT
710
711 virtual Result Perform(const ArgumentTuple&) {
712 return ref_;
713 }
714
715 private:
716 T& ref_;
717
718 GTEST_DISALLOW_ASSIGN_(Impl);
719 };
720
721 T& ref_;
722
723 GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
724 };
725
726 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
727 // used in any function that returns a reference to the type of x,
728 // regardless of the argument types.
729 template <typename T>
730 class ReturnRefOfCopyAction {
731 public:
732 // Constructs a ReturnRefOfCopyAction object from the reference to
733 // be returned.
734 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
735
736 // This template type conversion operator allows ReturnRefOfCopy(x) to be
737 // used in ANY function that returns a reference to x's type.
738 template <typename F>
739 operator Action<F>() const {
740 typedef typename Function<F>::Result Result;
741 // Asserts that the function return type is a reference. This
742 // catches the user error of using ReturnRefOfCopy(x) when Return(x)
743 // should be used, and generates some helpful error message.
744 GTEST_COMPILE_ASSERT_(
745 internal::is_reference<Result>::value,
746 use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
747 return Action<F>(new Impl<F>(value_));
748 }
749
750 private:
751 // Implements the ReturnRefOfCopy(x) action for a particular function type F.
752 template <typename F>
753 class Impl : public ActionInterface<F> {
754 public:
755 typedef typename Function<F>::Result Result;
756 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
757
758 explicit Impl(const T& value) : value_(value) {} // NOLINT
759
760 virtual Result Perform(const ArgumentTuple&) {
761 return value_;
762 }
763
764 private:
765 T value_;
766
767 GTEST_DISALLOW_ASSIGN_(Impl);
768 };
769
770 const T value_;
771
772 GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
773 };
774
775 // Implements the polymorphic DoDefault() action.
776 class DoDefaultAction {
777 public:
778 // This template type conversion operator allows DoDefault() to be
779 // used in any function.
780 template <typename F>
781 operator Action<F>() const { return Action<F>(); } // NOLINT
782 };
783
784 // Implements the Assign action to set a given pointer referent to a
785 // particular value.
786 template <typename T1, typename T2>
787 class AssignAction {
788 public:
789 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
790
791 template <typename Result, typename ArgumentTuple>
792 void Perform(const ArgumentTuple& /* args */) const {
793 *ptr_ = value_;
794 }
795
796 private:
797 T1* const ptr_;
798 const T2 value_;
799
800 GTEST_DISALLOW_ASSIGN_(AssignAction);
801 };
802
803 #if !GTEST_OS_WINDOWS_MOBILE
804
805 // Implements the SetErrnoAndReturn action to simulate return from
806 // various system calls and libc functions.
807 template <typename T>
808 class SetErrnoAndReturnAction {
809 public:
810 SetErrnoAndReturnAction(int errno_value, T result)
811 : errno_(errno_value),
812 result_(result) {}
813 template <typename Result, typename ArgumentTuple>
814 Result Perform(const ArgumentTuple& /* args */) const {
815 errno = errno_;
816 return result_;
817 }
818
819 private:
820 const int errno_;
821 const T result_;
822
823 GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
824 };
825
826 #endif // !GTEST_OS_WINDOWS_MOBILE
827
828 // Implements the SetArgumentPointee<N>(x) action for any function
829 // whose N-th argument (0-based) is a pointer to x's type. The
830 // template parameter kIsProto is true iff type A is ProtocolMessage,
831 // proto2::Message, or a sub-class of those.
832 template <size_t N, typename A, bool kIsProto>
833 class SetArgumentPointeeAction {
834 public:
835 // Constructs an action that sets the variable pointed to by the
836 // N-th function argument to 'value'.
837 explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
838
839 template <typename Result, typename ArgumentTuple>
840 void Perform(const ArgumentTuple& args) const {
841 CompileAssertTypesEqual<void, Result>();
842 *::testing::get<N>(args) = value_;
843 }
844
845 private:
846 const A value_;
847
848 GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
849 };
850
851 template <size_t N, typename Proto>
852 class SetArgumentPointeeAction<N, Proto, true> {
853 public:
854 // Constructs an action that sets the variable pointed to by the
855 // N-th function argument to 'proto'. Both ProtocolMessage and
856 // proto2::Message have the CopyFrom() method, so the same
857 // implementation works for both.
858 explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
859 proto_->CopyFrom(proto);
860 }
861
862 template <typename Result, typename ArgumentTuple>
863 void Perform(const ArgumentTuple& args) const {
864 CompileAssertTypesEqual<void, Result>();
865 ::testing::get<N>(args)->CopyFrom(*proto_);
866 }
867
868 private:
869 const internal::linked_ptr<Proto> proto_;
870
871 GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
872 };
873
874 // Implements the InvokeWithoutArgs(f) action. The template argument
875 // FunctionImpl is the implementation type of f, which can be either a
876 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an
877 // Action<F> as long as f's type is compatible with F (i.e. f can be
878 // assigned to a tr1::function<F>).
879 template <typename FunctionImpl>
880 class InvokeWithoutArgsAction {
881 public:
882 // The c'tor makes a copy of function_impl (either a function
883 // pointer or a functor).
884 explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
885 : function_impl_(function_impl) {}
886
887 // Allows InvokeWithoutArgs(f) to be used as any action whose type is
888 // compatible with f.
889 template <typename Result, typename ArgumentTuple>
890 Result Perform(const ArgumentTuple&) { return function_impl_(); }
891
892 private:
893 FunctionImpl function_impl_;
894
895 GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
896 };
897
898 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
899 template <class Class, typename MethodPtr>
900 class InvokeMethodWithoutArgsAction {
901 public:
902 InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
903 : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
904
905 template <typename Result, typename ArgumentTuple>
906 Result Perform(const ArgumentTuple&) const {
907 return (obj_ptr_->*method_ptr_)();
908 }
909
910 private:
911 Class* const obj_ptr_;
912 const MethodPtr method_ptr_;
913
914 GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
915 };
916
917 // Implements the InvokeWithoutArgs(callback) action.
918 template <typename CallbackType>
919 class InvokeCallbackWithoutArgsAction {
920 public:
921 // The c'tor takes ownership of the callback.
922 explicit InvokeCallbackWithoutArgsAction(CallbackType* callback)
923 : callback_(callback) {
924 callback->CheckIsRepeatable(); // Makes sure the callback is permanent.
925 }
926
927 // This type conversion operator template allows Invoke(callback) to
928 // be used wherever the callback's return type can be implicitly
929 // converted to that of the mock function.
930 template <typename Result, typename ArgumentTuple>
931 Result Perform(const ArgumentTuple&) const { return callback_->Run(); }
932
933 private:
934 const internal::linked_ptr<CallbackType> callback_;
935
936 GTEST_DISALLOW_ASSIGN_(InvokeCallbackWithoutArgsAction);
937 };
938
939 // Implements the IgnoreResult(action) action.
940 template <typename A>
941 class IgnoreResultAction {
942 public:
943 explicit IgnoreResultAction(const A& action) : action_(action) {}
944
945 template <typename F>
946 operator Action<F>() const {
947 // Assert statement belongs here because this is the best place to verify
948 // conditions on F. It produces the clearest error messages
949 // in most compilers.
950 // Impl really belongs in this scope as a local class but can't
951 // because MSVC produces duplicate symbols in different translation units
952 // in this case. Until MS fixes that bug we put Impl into the class scope
953 // and put the typedef both here (for use in assert statement) and
954 // in the Impl class. But both definitions must be the same.
955 typedef typename internal::Function<F>::Result Result;
956
957 // Asserts at compile time that F returns void.
958 CompileAssertTypesEqual<void, Result>();
959
960 return Action<F>(new Impl<F>(action_));
961 }
962
963 private:
964 template <typename F>
965 class Impl : public ActionInterface<F> {
966 public:
967 typedef typename internal::Function<F>::Result Result;
968 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
969
970 explicit Impl(const A& action) : action_(action) {}
971
972 virtual void Perform(const ArgumentTuple& args) {
973 // Performs the action and ignores its result.
974 action_.Perform(args);
975 }
976
977 private:
978 // Type OriginalFunction is the same as F except that its return
979 // type is IgnoredValue.
980 typedef typename internal::Function<F>::MakeResultIgnoredValue
981 OriginalFunction;
982
983 const Action<OriginalFunction> action_;
984
985 GTEST_DISALLOW_ASSIGN_(Impl);
986 };
987
988 const A action_;
989
990 GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
991 };
992
993 // A ReferenceWrapper<T> object represents a reference to type T,
994 // which can be either const or not. It can be explicitly converted
995 // from, and implicitly converted to, a T&. Unlike a reference,
996 // ReferenceWrapper<T> can be copied and can survive template type
997 // inference. This is used to support by-reference arguments in the
998 // InvokeArgument<N>(...) action. The idea was from "reference
999 // wrappers" in tr1, which we don't have in our source tree yet.
1000 template <typename T>
1001 class ReferenceWrapper {
1002 public:
1003 // Constructs a ReferenceWrapper<T> object from a T&.
1004 explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
1005
1006 // Allows a ReferenceWrapper<T> object to be implicitly converted to
1007 // a T&.
1008 operator T&() const { return *pointer_; }
1009 private:
1010 T* pointer_;
1011 };
1012
1013 // Allows the expression ByRef(x) to be printed as a reference to x.
1014 template <typename T>
1015 void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
1016 T& value = ref;
1017 UniversalPrinter<T&>::Print(value, os);
1018 }
1019
1020 // Does two actions sequentially. Used for implementing the DoAll(a1,
1021 // a2, ...) action.
1022 template <typename Action1, typename Action2>
1023 class DoBothAction {
1024 public:
1025 DoBothAction(Action1 action1, Action2 action2)
1026 : action1_(action1), action2_(action2) {}
1027
1028 // This template type conversion operator allows DoAll(a1, ..., a_n)
1029 // to be used in ANY function of compatible type.
1030 template <typename F>
1031 operator Action<F>() const {
1032 return Action<F>(new Impl<F>(action1_, action2_));
1033 }
1034
1035 private:
1036 // Implements the DoAll(...) action for a particular function type F.
1037 template <typename F>
1038 class Impl : public ActionInterface<F> {
1039 public:
1040 typedef typename Function<F>::Result Result;
1041 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1042 typedef typename Function<F>::MakeResultVoid VoidResult;
1043
1044 Impl(const Action<VoidResult>& action1, const Action<F>& action2)
1045 : action1_(action1), action2_(action2) {}
1046
1047 virtual Result Perform(const ArgumentTuple& args) {
1048 action1_.Perform(args);
1049 return action2_.Perform(args);
1050 }
1051
1052 private:
1053 const Action<VoidResult> action1_;
1054 const Action<F> action2_;
1055
1056 GTEST_DISALLOW_ASSIGN_(Impl);
1057 };
1058
1059 Action1 action1_;
1060 Action2 action2_;
1061
1062 GTEST_DISALLOW_ASSIGN_(DoBothAction);
1063 };
1064
1065 } // namespace internal
1066
1067 // An Unused object can be implicitly constructed from ANY value.
1068 // This is handy when defining actions that ignore some or all of the
1069 // mock function arguments. For example, given
1070 //
1071 // MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1072 // MOCK_METHOD3(Bar, double(int index, double x, double y));
1073 //
1074 // instead of
1075 //
1076 // double DistanceToOriginWithLabel(const string& label, double x, double y) {
1077 // return sqrt(x*x + y*y);
1078 // }
1079 // double DistanceToOriginWithIndex(int index, double x, double y) {
1080 // return sqrt(x*x + y*y);
1081 // }
1082 // ...
1083 // EXPECT_CALL(mock, Foo("abc", _, _))
1084 // .WillOnce(Invoke(DistanceToOriginWithLabel));
1085 // EXPECT_CALL(mock, Bar(5, _, _))
1086 // .WillOnce(Invoke(DistanceToOriginWithIndex));
1087 //
1088 // you could write
1089 //
1090 // // We can declare any uninteresting argument as Unused.
1091 // double DistanceToOrigin(Unused, double x, double y) {
1092 // return sqrt(x*x + y*y);
1093 // }
1094 // ...
1095 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1096 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1097 typedef internal::IgnoredValue Unused;
1098
1099 // This constructor allows us to turn an Action<From> object into an
1100 // Action<To>, as long as To's arguments can be implicitly converted
1101 // to From's and From's return type cann be implicitly converted to
1102 // To's.
1103 template <typename To>
1104 template <typename From>
1105 Action<To>::Action(const Action<From>& from)
1106 :
1107 #if GTEST_LANG_CXX11
1108 fun_(from.fun_),
1109 #endif
1110 impl_(from.impl_ == NULL ? NULL
1111 : new internal::ActionAdaptor<To, From>(from)) {
1112 }
1113
1114 // Creates an action that returns 'value'. 'value' is passed by value
1115 // instead of const reference - otherwise Return("string literal")
1116 // will trigger a compiler error about using array as initializer.
1117 template <typename R>
1118 internal::ReturnAction<R> Return(R value) {
1119 return internal::ReturnAction<R>(internal::move(value));
1120 }
1121
1122 // Creates an action that returns NULL.
1123 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1124 return MakePolymorphicAction(internal::ReturnNullAction());
1125 }
1126
1127 // Creates an action that returns from a void function.
1128 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1129 return MakePolymorphicAction(internal::ReturnVoidAction());
1130 }
1131
1132 // Creates an action that returns the reference to a variable.
1133 template <typename R>
1134 inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
1135 return internal::ReturnRefAction<R>(x);
1136 }
1137
1138 // Creates an action that returns the reference to a copy of the
1139 // argument. The copy is created when the action is constructed and
1140 // lives as long as the action.
1141 template <typename R>
1142 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1143 return internal::ReturnRefOfCopyAction<R>(x);
1144 }
1145
1146 // Modifies the parent action (a Return() action) to perform a move of the
1147 // argument instead of a copy.
1148 // Return(ByMove()) actions can only be executed once and will assert this
1149 // invariant.
1150 template <typename R>
1151 internal::ByMoveWrapper<R> ByMove(R x) {
1152 return internal::ByMoveWrapper<R>(internal::move(x));
1153 }
1154
1155 // Creates an action that does the default action for the give mock function.
1156 inline internal::DoDefaultAction DoDefault() {
1157 return internal::DoDefaultAction();
1158 }
1159
1160 // Creates an action that sets the variable pointed by the N-th
1161 // (0-based) function argument to 'value'.
1162 template <size_t N, typename T>
1163 PolymorphicAction<
1164 internal::SetArgumentPointeeAction<
1165 N, T, internal::IsAProtocolMessage<T>::value> >
1166 SetArgPointee(const T& x) {
1167 return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1168 N, T, internal::IsAProtocolMessage<T>::value>(x));
1169 }
1170
1171 #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
1172 // This overload allows SetArgPointee() to accept a string literal.
1173 // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
1174 // this overload from the templated version and emit a compile error.
1175 template <size_t N>
1176 PolymorphicAction<
1177 internal::SetArgumentPointeeAction<N, const char*, false> >
1178 SetArgPointee(const char* p) {
1179 return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1180 N, const char*, false>(p));
1181 }
1182
1183 template <size_t N>
1184 PolymorphicAction<
1185 internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1186 SetArgPointee(const wchar_t* p) {
1187 return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1188 N, const wchar_t*, false>(p));
1189 }
1190 #endif
1191
1192 // The following version is DEPRECATED.
1193 template <size_t N, typename T>
1194 PolymorphicAction<
1195 internal::SetArgumentPointeeAction<
1196 N, T, internal::IsAProtocolMessage<T>::value> >
1197 SetArgumentPointee(const T& x) {
1198 return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1199 N, T, internal::IsAProtocolMessage<T>::value>(x));
1200 }
1201
1202 // Creates an action that sets a pointer referent to a given value.
1203 template <typename T1, typename T2>
1204 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1205 return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1206 }
1207
1208 #if !GTEST_OS_WINDOWS_MOBILE
1209
1210 // Creates an action that sets errno and returns the appropriate error.
1211 template <typename T>
1212 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1213 SetErrnoAndReturn(int errval, T result) {
1214 return MakePolymorphicAction(
1215 internal::SetErrnoAndReturnAction<T>(errval, result));
1216 }
1217
1218 #endif // !GTEST_OS_WINDOWS_MOBILE
1219
1220 // Various overloads for InvokeWithoutArgs().
1221
1222 // Creates an action that invokes 'function_impl' with no argument.
1223 template <typename FunctionImpl>
1224 PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1225 InvokeWithoutArgs(FunctionImpl function_impl) {
1226 return MakePolymorphicAction(
1227 internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
1228 }
1229
1230 // Creates an action that invokes the given method on the given object
1231 // with no argument.
1232 template <class Class, typename MethodPtr>
1233 PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1234 InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1235 return MakePolymorphicAction(
1236 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1237 obj_ptr, method_ptr));
1238 }
1239
1240 // Creates an action that performs an_action and throws away its
1241 // result. In other words, it changes the return type of an_action to
1242 // void. an_action MUST NOT return void, or the code won't compile.
1243 template <typename A>
1244 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1245 return internal::IgnoreResultAction<A>(an_action);
1246 }
1247
1248 // Creates a reference wrapper for the given L-value. If necessary,
1249 // you can explicitly specify the type of the reference. For example,
1250 // suppose 'derived' is an object of type Derived, ByRef(derived)
1251 // would wrap a Derived&. If you want to wrap a const Base& instead,
1252 // where Base is a base class of Derived, just write:
1253 //
1254 // ByRef<const Base>(derived)
1255 template <typename T>
1256 inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
1257 return internal::ReferenceWrapper<T>(l_value);
1258 }
1259
1260 } // namespace testing
1261
1262 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_