]> git.proxmox.com Git - ceph.git/blob - ceph/src/s3select/rapidjson/thirdparty/gtest/googlemock/src/gmock-matchers.cc
update ceph source to reef 18.1.2
[ceph.git] / ceph / src / s3select / rapidjson / thirdparty / gtest / googlemock / src / gmock-matchers.cc
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements Matcher<const string&>, Matcher<string>, and
35 // utilities for defining matchers.
36
37 #include "gmock/gmock-matchers.h"
38 #include "gmock/gmock-generated-matchers.h"
39
40 #include <string.h>
41 #include <iostream>
42 #include <sstream>
43 #include <string>
44
45 namespace testing {
46
47 // Constructs a matcher that matches a const std::string& whose value is
48 // equal to s.
49 Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); }
50
51 #if GTEST_HAS_GLOBAL_STRING
52 // Constructs a matcher that matches a const std::string& whose value is
53 // equal to s.
54 Matcher<const std::string&>::Matcher(const ::string& s) {
55 *this = Eq(static_cast<std::string>(s));
56 }
57 #endif // GTEST_HAS_GLOBAL_STRING
58
59 // Constructs a matcher that matches a const std::string& whose value is
60 // equal to s.
61 Matcher<const std::string&>::Matcher(const char* s) {
62 *this = Eq(std::string(s));
63 }
64
65 // Constructs a matcher that matches a std::string whose value is equal to
66 // s.
67 Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); }
68
69 #if GTEST_HAS_GLOBAL_STRING
70 // Constructs a matcher that matches a std::string whose value is equal to
71 // s.
72 Matcher<std::string>::Matcher(const ::string& s) {
73 *this = Eq(static_cast<std::string>(s));
74 }
75 #endif // GTEST_HAS_GLOBAL_STRING
76
77 // Constructs a matcher that matches a std::string whose value is equal to
78 // s.
79 Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); }
80
81 #if GTEST_HAS_GLOBAL_STRING
82 // Constructs a matcher that matches a const ::string& whose value is
83 // equal to s.
84 Matcher<const ::string&>::Matcher(const std::string& s) {
85 *this = Eq(static_cast<::string>(s));
86 }
87
88 // Constructs a matcher that matches a const ::string& whose value is
89 // equal to s.
90 Matcher<const ::string&>::Matcher(const ::string& s) { *this = Eq(s); }
91
92 // Constructs a matcher that matches a const ::string& whose value is
93 // equal to s.
94 Matcher<const ::string&>::Matcher(const char* s) { *this = Eq(::string(s)); }
95
96 // Constructs a matcher that matches a ::string whose value is equal to s.
97 Matcher<::string>::Matcher(const std::string& s) {
98 *this = Eq(static_cast<::string>(s));
99 }
100
101 // Constructs a matcher that matches a ::string whose value is equal to s.
102 Matcher<::string>::Matcher(const ::string& s) { *this = Eq(s); }
103
104 // Constructs a matcher that matches a string whose value is equal to s.
105 Matcher<::string>::Matcher(const char* s) { *this = Eq(::string(s)); }
106 #endif // GTEST_HAS_GLOBAL_STRING
107
108 #if GTEST_HAS_ABSL
109 // Constructs a matcher that matches a const absl::string_view& whose value is
110 // equal to s.
111 Matcher<const absl::string_view&>::Matcher(const std::string& s) {
112 *this = Eq(s);
113 }
114
115 #if GTEST_HAS_GLOBAL_STRING
116 // Constructs a matcher that matches a const absl::string_view& whose value is
117 // equal to s.
118 Matcher<const absl::string_view&>::Matcher(const ::string& s) { *this = Eq(s); }
119 #endif // GTEST_HAS_GLOBAL_STRING
120
121 // Constructs a matcher that matches a const absl::string_view& whose value is
122 // equal to s.
123 Matcher<const absl::string_view&>::Matcher(const char* s) {
124 *this = Eq(std::string(s));
125 }
126
127 // Constructs a matcher that matches a const absl::string_view& whose value is
128 // equal to s.
129 Matcher<const absl::string_view&>::Matcher(absl::string_view s) {
130 *this = Eq(std::string(s));
131 }
132
133 // Constructs a matcher that matches a absl::string_view whose value is equal to
134 // s.
135 Matcher<absl::string_view>::Matcher(const std::string& s) { *this = Eq(s); }
136
137 #if GTEST_HAS_GLOBAL_STRING
138 // Constructs a matcher that matches a absl::string_view whose value is equal to
139 // s.
140 Matcher<absl::string_view>::Matcher(const ::string& s) { *this = Eq(s); }
141 #endif // GTEST_HAS_GLOBAL_STRING
142
143 // Constructs a matcher that matches a absl::string_view whose value is equal to
144 // s.
145 Matcher<absl::string_view>::Matcher(const char* s) {
146 *this = Eq(std::string(s));
147 }
148
149 // Constructs a matcher that matches a absl::string_view whose value is equal to
150 // s.
151 Matcher<absl::string_view>::Matcher(absl::string_view s) {
152 *this = Eq(std::string(s));
153 }
154 #endif // GTEST_HAS_ABSL
155
156 namespace internal {
157
158 // Returns the description for a matcher defined using the MATCHER*()
159 // macro where the user-supplied description string is "", if
160 // 'negation' is false; otherwise returns the description of the
161 // negation of the matcher. 'param_values' contains a list of strings
162 // that are the print-out of the matcher's parameters.
163 GTEST_API_ std::string FormatMatcherDescription(bool negation,
164 const char* matcher_name,
165 const Strings& param_values) {
166 std::string result = ConvertIdentifierNameToWords(matcher_name);
167 if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
168 return negation ? "not (" + result + ")" : result;
169 }
170
171 // FindMaxBipartiteMatching and its helper class.
172 //
173 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
174 // bipartite matching. Flow is considered to be from left to right.
175 // There is an implicit source node that is connected to all of the left
176 // nodes, and an implicit sink node that is connected to all of the
177 // right nodes. All edges have unit capacity.
178 //
179 // Neither the flow graph nor the residual flow graph are represented
180 // explicitly. Instead, they are implied by the information in 'graph' and
181 // a vector<int> called 'left_' whose elements are initialized to the
182 // value kUnused. This represents the initial state of the algorithm,
183 // where the flow graph is empty, and the residual flow graph has the
184 // following edges:
185 // - An edge from source to each left_ node
186 // - An edge from each right_ node to sink
187 // - An edge from each left_ node to each right_ node, if the
188 // corresponding edge exists in 'graph'.
189 //
190 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
191 // nodes l and r. This induces the following changes:
192 // - The edges (source, l), (l, r), and (r, sink) are added to the
193 // flow graph.
194 // - The same three edges are removed from the residual flow graph.
195 // - The reverse edges (l, source), (r, l), and (sink, r) are added
196 // to the residual flow graph, which is a directional graph
197 // representing unused flow capacity.
198 //
199 // When the method augments a flow (moving left_[l] from some r1 to some
200 // other r2), this can be thought of as "undoing" the above steps with
201 // respect to r1 and "redoing" them with respect to r2.
202 //
203 // It bears repeating that the flow graph and residual flow graph are
204 // never represented explicitly, but can be derived by looking at the
205 // information in 'graph' and in left_.
206 //
207 // As an optimization, there is a second vector<int> called right_ which
208 // does not provide any new information. Instead, it enables more
209 // efficient queries about edges entering or leaving the right-side nodes
210 // of the flow or residual flow graphs. The following invariants are
211 // maintained:
212 //
213 // left[l] == kUnused or right[left[l]] == l
214 // right[r] == kUnused or left[right[r]] == r
215 //
216 // . [ source ] .
217 // . ||| .
218 // . ||| .
219 // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ .
220 // . || | | .
221 // . |\---> left[1]=-1 \--> right[1]=0 ---\| .
222 // . | || .
223 // . \----> left[2]=2 ------> right[2]=2 --\|| .
224 // . ||| .
225 // . elements matchers vvv .
226 // . [ sink ] .
227 //
228 // See Also:
229 // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
230 // "Introduction to Algorithms (Second ed.)", pp. 651-664.
231 // [2] "Ford-Fulkerson algorithm", Wikipedia,
232 // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
233 class MaxBipartiteMatchState {
234 public:
235 explicit MaxBipartiteMatchState(const MatchMatrix& graph)
236 : graph_(&graph),
237 left_(graph_->LhsSize(), kUnused),
238 right_(graph_->RhsSize(), kUnused) {}
239
240 // Returns the edges of a maximal match, each in the form {left, right}.
241 ElementMatcherPairs Compute() {
242 // 'seen' is used for path finding { 0: unseen, 1: seen }.
243 ::std::vector<char> seen;
244 // Searches the residual flow graph for a path from each left node to
245 // the sink in the residual flow graph, and if one is found, add flow
246 // to the graph. It's okay to search through the left nodes once. The
247 // edge from the implicit source node to each previously-visited left
248 // node will have flow if that left node has any path to the sink
249 // whatsoever. Subsequent augmentations can only add flow to the
250 // network, and cannot take away that previous flow unit from the source.
251 // Since the source-to-left edge can only carry one flow unit (or,
252 // each element can be matched to only one matcher), there is no need
253 // to visit the left nodes more than once looking for augmented paths.
254 // The flow is known to be possible or impossible by looking at the
255 // node once.
256 for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
257 // Reset the path-marking vector and try to find a path from
258 // source to sink starting at the left_[ilhs] node.
259 GTEST_CHECK_(left_[ilhs] == kUnused)
260 << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
261 // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
262 seen.assign(graph_->RhsSize(), 0);
263 TryAugment(ilhs, &seen);
264 }
265 ElementMatcherPairs result;
266 for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
267 size_t irhs = left_[ilhs];
268 if (irhs == kUnused) continue;
269 result.push_back(ElementMatcherPair(ilhs, irhs));
270 }
271 return result;
272 }
273
274 private:
275 static const size_t kUnused = static_cast<size_t>(-1);
276
277 // Perform a depth-first search from left node ilhs to the sink. If a
278 // path is found, flow is added to the network by linking the left and
279 // right vector elements corresponding each segment of the path.
280 // Returns true if a path to sink was found, which means that a unit of
281 // flow was added to the network. The 'seen' vector elements correspond
282 // to right nodes and are marked to eliminate cycles from the search.
283 //
284 // Left nodes will only be explored at most once because they
285 // are accessible from at most one right node in the residual flow
286 // graph.
287 //
288 // Note that left_[ilhs] is the only element of left_ that TryAugment will
289 // potentially transition from kUnused to another value. Any other
290 // left_ element holding kUnused before TryAugment will be holding it
291 // when TryAugment returns.
292 //
293 bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
294 for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
295 if ((*seen)[irhs]) continue;
296 if (!graph_->HasEdge(ilhs, irhs)) continue;
297 // There's an available edge from ilhs to irhs.
298 (*seen)[irhs] = 1;
299 // Next a search is performed to determine whether
300 // this edge is a dead end or leads to the sink.
301 //
302 // right_[irhs] == kUnused means that there is residual flow from
303 // right node irhs to the sink, so we can use that to finish this
304 // flow path and return success.
305 //
306 // Otherwise there is residual flow to some ilhs. We push flow
307 // along that path and call ourselves recursively to see if this
308 // ultimately leads to sink.
309 if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
310 // Add flow from left_[ilhs] to right_[irhs].
311 left_[ilhs] = irhs;
312 right_[irhs] = ilhs;
313 return true;
314 }
315 }
316 return false;
317 }
318
319 const MatchMatrix* graph_; // not owned
320 // Each element of the left_ vector represents a left hand side node
321 // (i.e. an element) and each element of right_ is a right hand side
322 // node (i.e. a matcher). The values in the left_ vector indicate
323 // outflow from that node to a node on the right_ side. The values
324 // in the right_ indicate inflow, and specify which left_ node is
325 // feeding that right_ node, if any. For example, left_[3] == 1 means
326 // there's a flow from element #3 to matcher #1. Such a flow would also
327 // be redundantly represented in the right_ vector as right_[1] == 3.
328 // Elements of left_ and right_ are either kUnused or mutually
329 // referent. Mutually referent means that left_[right_[i]] = i and
330 // right_[left_[i]] = i.
331 ::std::vector<size_t> left_;
332 ::std::vector<size_t> right_;
333
334 GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
335 };
336
337 const size_t MaxBipartiteMatchState::kUnused;
338
339 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
340 return MaxBipartiteMatchState(g).Compute();
341 }
342
343 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
344 ::std::ostream* stream) {
345 typedef ElementMatcherPairs::const_iterator Iter;
346 ::std::ostream& os = *stream;
347 os << "{";
348 const char* sep = "";
349 for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
350 os << sep << "\n ("
351 << "element #" << it->first << ", "
352 << "matcher #" << it->second << ")";
353 sep = ",";
354 }
355 os << "\n}";
356 }
357
358 bool MatchMatrix::NextGraph() {
359 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
360 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
361 char& b = matched_[SpaceIndex(ilhs, irhs)];
362 if (!b) {
363 b = 1;
364 return true;
365 }
366 b = 0;
367 }
368 }
369 return false;
370 }
371
372 void MatchMatrix::Randomize() {
373 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
374 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
375 char& b = matched_[SpaceIndex(ilhs, irhs)];
376 b = static_cast<char>(rand() & 1); // NOLINT
377 }
378 }
379 }
380
381 std::string MatchMatrix::DebugString() const {
382 ::std::stringstream ss;
383 const char* sep = "";
384 for (size_t i = 0; i < LhsSize(); ++i) {
385 ss << sep;
386 for (size_t j = 0; j < RhsSize(); ++j) {
387 ss << HasEdge(i, j);
388 }
389 sep = ";";
390 }
391 return ss.str();
392 }
393
394 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
395 ::std::ostream* os) const {
396 switch (match_flags()) {
397 case UnorderedMatcherRequire::ExactMatch:
398 if (matcher_describers_.empty()) {
399 *os << "is empty";
400 return;
401 }
402 if (matcher_describers_.size() == 1) {
403 *os << "has " << Elements(1) << " and that element ";
404 matcher_describers_[0]->DescribeTo(os);
405 return;
406 }
407 *os << "has " << Elements(matcher_describers_.size())
408 << " and there exists some permutation of elements such that:\n";
409 break;
410 case UnorderedMatcherRequire::Superset:
411 *os << "a surjection from elements to requirements exists such that:\n";
412 break;
413 case UnorderedMatcherRequire::Subset:
414 *os << "an injection from elements to requirements exists such that:\n";
415 break;
416 }
417
418 const char* sep = "";
419 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
420 *os << sep;
421 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
422 *os << " - element #" << i << " ";
423 } else {
424 *os << " - an element ";
425 }
426 matcher_describers_[i]->DescribeTo(os);
427 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
428 sep = ", and\n";
429 } else {
430 sep = "\n";
431 }
432 }
433 }
434
435 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
436 ::std::ostream* os) const {
437 switch (match_flags()) {
438 case UnorderedMatcherRequire::ExactMatch:
439 if (matcher_describers_.empty()) {
440 *os << "isn't empty";
441 return;
442 }
443 if (matcher_describers_.size() == 1) {
444 *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
445 << " that ";
446 matcher_describers_[0]->DescribeNegationTo(os);
447 return;
448 }
449 *os << "doesn't have " << Elements(matcher_describers_.size())
450 << ", or there exists no permutation of elements such that:\n";
451 break;
452 case UnorderedMatcherRequire::Superset:
453 *os << "no surjection from elements to requirements exists such that:\n";
454 break;
455 case UnorderedMatcherRequire::Subset:
456 *os << "no injection from elements to requirements exists such that:\n";
457 break;
458 }
459 const char* sep = "";
460 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
461 *os << sep;
462 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
463 *os << " - element #" << i << " ";
464 } else {
465 *os << " - an element ";
466 }
467 matcher_describers_[i]->DescribeTo(os);
468 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
469 sep = ", and\n";
470 } else {
471 sep = "\n";
472 }
473 }
474 }
475
476 // Checks that all matchers match at least one element, and that all
477 // elements match at least one matcher. This enables faster matching
478 // and better error reporting.
479 // Returns false, writing an explanation to 'listener', if and only
480 // if the success criteria are not met.
481 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
482 const ::std::vector<std::string>& element_printouts,
483 const MatchMatrix& matrix, MatchResultListener* listener) const {
484 bool result = true;
485 ::std::vector<char> element_matched(matrix.LhsSize(), 0);
486 ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
487
488 for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
489 for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
490 char matched = matrix.HasEdge(ilhs, irhs);
491 element_matched[ilhs] |= matched;
492 matcher_matched[irhs] |= matched;
493 }
494 }
495
496 if (match_flags() & UnorderedMatcherRequire::Superset) {
497 const char* sep =
498 "where the following matchers don't match any elements:\n";
499 for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
500 if (matcher_matched[mi]) continue;
501 result = false;
502 if (listener->IsInterested()) {
503 *listener << sep << "matcher #" << mi << ": ";
504 matcher_describers_[mi]->DescribeTo(listener->stream());
505 sep = ",\n";
506 }
507 }
508 }
509
510 if (match_flags() & UnorderedMatcherRequire::Subset) {
511 const char* sep =
512 "where the following elements don't match any matchers:\n";
513 const char* outer_sep = "";
514 if (!result) {
515 outer_sep = "\nand ";
516 }
517 for (size_t ei = 0; ei < element_matched.size(); ++ei) {
518 if (element_matched[ei]) continue;
519 result = false;
520 if (listener->IsInterested()) {
521 *listener << outer_sep << sep << "element #" << ei << ": "
522 << element_printouts[ei];
523 sep = ",\n";
524 outer_sep = "";
525 }
526 }
527 }
528 return result;
529 }
530
531 bool UnorderedElementsAreMatcherImplBase::FindPairing(
532 const MatchMatrix& matrix, MatchResultListener* listener) const {
533 ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
534
535 size_t max_flow = matches.size();
536 if ((match_flags() & UnorderedMatcherRequire::Superset) &&
537 max_flow < matrix.RhsSize()) {
538 if (listener->IsInterested()) {
539 *listener << "where no permutation of the elements can satisfy all "
540 "matchers, and the closest match is "
541 << max_flow << " of " << matrix.RhsSize()
542 << " matchers with the pairings:\n";
543 LogElementMatcherPairVec(matches, listener->stream());
544 }
545 return false;
546 }
547 if ((match_flags() & UnorderedMatcherRequire::Subset) &&
548 max_flow < matrix.LhsSize()) {
549 if (listener->IsInterested()) {
550 *listener
551 << "where not all elements can be matched, and the closest match is "
552 << max_flow << " of " << matrix.RhsSize()
553 << " matchers with the pairings:\n";
554 LogElementMatcherPairVec(matches, listener->stream());
555 }
556 return false;
557 }
558
559 if (matches.size() > 1) {
560 if (listener->IsInterested()) {
561 const char* sep = "where:\n";
562 for (size_t mi = 0; mi < matches.size(); ++mi) {
563 *listener << sep << " - element #" << matches[mi].first
564 << " is matched by matcher #" << matches[mi].second;
565 sep = ",\n";
566 }
567 }
568 }
569 return true;
570 }
571
572 } // namespace internal
573 } // namespace testing