]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/app/test-crypto-perf/cperf_test_throughput.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / app / test-crypto-perf / cperf_test_throughput.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2016-2017 Intel Corporation
3 */
4
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9
10 #include "cperf_test_throughput.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13
14 struct cperf_throughput_ctx {
15 uint8_t dev_id;
16 uint16_t qp_id;
17 uint8_t lcore_id;
18
19 struct rte_mempool *pool;
20
21 struct rte_cryptodev_sym_session *sess;
22
23 cperf_populate_ops_t populate_ops;
24
25 uint32_t src_buf_offset;
26 uint32_t dst_buf_offset;
27
28 const struct cperf_options *options;
29 const struct cperf_test_vector *test_vector;
30 };
31
32 static void
33 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
34 {
35 if (ctx) {
36 if (ctx->sess) {
37 rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
38 rte_cryptodev_sym_session_free(ctx->sess);
39 }
40
41 if (ctx->pool)
42 rte_mempool_free(ctx->pool);
43
44 rte_free(ctx);
45 }
46 }
47
48 void *
49 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
50 struct rte_mempool *sess_priv_mp,
51 uint8_t dev_id, uint16_t qp_id,
52 const struct cperf_options *options,
53 const struct cperf_test_vector *test_vector,
54 const struct cperf_op_fns *op_fns)
55 {
56 struct cperf_throughput_ctx *ctx = NULL;
57
58 ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
59 if (ctx == NULL)
60 goto err;
61
62 ctx->dev_id = dev_id;
63 ctx->qp_id = qp_id;
64
65 ctx->populate_ops = op_fns->populate_ops;
66 ctx->options = options;
67 ctx->test_vector = test_vector;
68
69 /* IV goes at the end of the crypto operation */
70 uint16_t iv_offset = sizeof(struct rte_crypto_op) +
71 sizeof(struct rte_crypto_sym_op);
72
73 ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
74 test_vector, iv_offset);
75 if (ctx->sess == NULL)
76 goto err;
77
78 if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
79 &ctx->src_buf_offset, &ctx->dst_buf_offset,
80 &ctx->pool) < 0)
81 goto err;
82
83 return ctx;
84 err:
85 cperf_throughput_test_free(ctx);
86
87 return NULL;
88 }
89
90 int
91 cperf_throughput_test_runner(void *test_ctx)
92 {
93 struct cperf_throughput_ctx *ctx = test_ctx;
94 uint16_t test_burst_size;
95 uint8_t burst_size_idx = 0;
96 uint32_t imix_idx = 0;
97
98 static int only_once;
99
100 struct rte_crypto_op *ops[ctx->options->max_burst_size];
101 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
102 uint64_t i;
103
104 uint32_t lcore = rte_lcore_id();
105
106 #ifdef CPERF_LINEARIZATION_ENABLE
107 struct rte_cryptodev_info dev_info;
108 int linearize = 0;
109
110 /* Check if source mbufs require coalescing */
111 if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
112 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
113 if ((dev_info.feature_flags &
114 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
115 linearize = 1;
116 }
117 #endif /* CPERF_LINEARIZATION_ENABLE */
118
119 ctx->lcore_id = lcore;
120
121 /* Warm up the host CPU before starting the test */
122 for (i = 0; i < ctx->options->total_ops; i++)
123 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
124
125 /* Get first size from range or list */
126 if (ctx->options->inc_burst_size != 0)
127 test_burst_size = ctx->options->min_burst_size;
128 else
129 test_burst_size = ctx->options->burst_size_list[0];
130
131 uint16_t iv_offset = sizeof(struct rte_crypto_op) +
132 sizeof(struct rte_crypto_sym_op);
133
134 while (test_burst_size <= ctx->options->max_burst_size) {
135 uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
136 uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
137
138 uint64_t tsc_start, tsc_end, tsc_duration;
139
140 uint16_t ops_unused = 0;
141
142 tsc_start = rte_rdtsc_precise();
143
144 while (ops_enqd_total < ctx->options->total_ops) {
145
146 uint16_t burst_size = ((ops_enqd_total + test_burst_size)
147 <= ctx->options->total_ops) ?
148 test_burst_size :
149 ctx->options->total_ops -
150 ops_enqd_total;
151
152 uint16_t ops_needed = burst_size - ops_unused;
153
154 /* Allocate objects containing crypto operations and mbufs */
155 if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
156 ops_needed) != 0) {
157 RTE_LOG(ERR, USER1,
158 "Failed to allocate more crypto operations "
159 "from the crypto operation pool.\n"
160 "Consider increasing the pool size "
161 "with --pool-sz\n");
162 return -1;
163 }
164
165 /* Setup crypto op, attach mbuf etc */
166 (ctx->populate_ops)(ops, ctx->src_buf_offset,
167 ctx->dst_buf_offset,
168 ops_needed, ctx->sess,
169 ctx->options, ctx->test_vector,
170 iv_offset, &imix_idx);
171
172 /**
173 * When ops_needed is smaller than ops_enqd, the
174 * unused ops need to be moved to the front for
175 * next round use.
176 */
177 if (unlikely(ops_enqd > ops_needed)) {
178 size_t nb_b_to_mov = ops_unused * sizeof(
179 struct rte_crypto_op *);
180
181 memmove(&ops[ops_needed], &ops[ops_enqd],
182 nb_b_to_mov);
183 }
184
185 #ifdef CPERF_LINEARIZATION_ENABLE
186 if (linearize) {
187 /* PMD doesn't support scatter-gather and source buffer
188 * is segmented.
189 * We need to linearize it before enqueuing.
190 */
191 for (i = 0; i < burst_size; i++)
192 rte_pktmbuf_linearize(ops[i]->sym->m_src);
193 }
194 #endif /* CPERF_LINEARIZATION_ENABLE */
195
196 /* Enqueue burst of ops on crypto device */
197 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
198 ops, burst_size);
199 if (ops_enqd < burst_size)
200 ops_enqd_failed++;
201
202 /**
203 * Calculate number of ops not enqueued (mainly for hw
204 * accelerators whose ingress queue can fill up).
205 */
206 ops_unused = burst_size - ops_enqd;
207 ops_enqd_total += ops_enqd;
208
209
210 /* Dequeue processed burst of ops from crypto device */
211 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
212 ops_processed, test_burst_size);
213
214 if (likely(ops_deqd)) {
215 /* Free crypto ops so they can be reused. */
216 rte_mempool_put_bulk(ctx->pool,
217 (void **)ops_processed, ops_deqd);
218
219 ops_deqd_total += ops_deqd;
220 } else {
221 /**
222 * Count dequeue polls which didn't return any
223 * processed operations. This statistic is mainly
224 * relevant to hw accelerators.
225 */
226 ops_deqd_failed++;
227 }
228
229 }
230
231 /* Dequeue any operations still in the crypto device */
232
233 while (ops_deqd_total < ctx->options->total_ops) {
234 /* Sending 0 length burst to flush sw crypto device */
235 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
236
237 /* dequeue burst */
238 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
239 ops_processed, test_burst_size);
240 if (ops_deqd == 0)
241 ops_deqd_failed++;
242 else {
243 rte_mempool_put_bulk(ctx->pool,
244 (void **)ops_processed, ops_deqd);
245 ops_deqd_total += ops_deqd;
246 }
247 }
248
249 tsc_end = rte_rdtsc_precise();
250 tsc_duration = (tsc_end - tsc_start);
251
252 /* Calculate average operations processed per second */
253 double ops_per_second = ((double)ctx->options->total_ops /
254 tsc_duration) * rte_get_tsc_hz();
255
256 /* Calculate average throughput (Gbps) in bits per second */
257 double throughput_gbps = ((ops_per_second *
258 ctx->options->test_buffer_size * 8) / 1000000000);
259
260 /* Calculate average cycles per packet */
261 double cycles_per_packet = ((double)tsc_duration /
262 ctx->options->total_ops);
263
264 if (!ctx->options->csv) {
265 if (!only_once)
266 printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
267 "lcore id", "Buf Size", "Burst Size",
268 "Enqueued", "Dequeued", "Failed Enq",
269 "Failed Deq", "MOps", "Gbps",
270 "Cycles/Buf");
271 only_once = 1;
272
273 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
274 "%12"PRIu64"%12.4f%12.4f%12.2f\n",
275 ctx->lcore_id,
276 ctx->options->test_buffer_size,
277 test_burst_size,
278 ops_enqd_total,
279 ops_deqd_total,
280 ops_enqd_failed,
281 ops_deqd_failed,
282 ops_per_second/1000000,
283 throughput_gbps,
284 cycles_per_packet);
285 } else {
286 if (!only_once)
287 printf("#lcore id,Buffer Size(B),"
288 "Burst Size,Enqueued,Dequeued,Failed Enq,"
289 "Failed Deq,Ops(Millions),Throughput(Gbps),"
290 "Cycles/Buf\n\n");
291 only_once = 1;
292
293 printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
294 "%.3f;%.3f;%.3f\n",
295 ctx->lcore_id,
296 ctx->options->test_buffer_size,
297 test_burst_size,
298 ops_enqd_total,
299 ops_deqd_total,
300 ops_enqd_failed,
301 ops_deqd_failed,
302 ops_per_second/1000000,
303 throughput_gbps,
304 cycles_per_packet);
305 }
306
307 /* Get next size from range or list */
308 if (ctx->options->inc_burst_size != 0)
309 test_burst_size += ctx->options->inc_burst_size;
310 else {
311 if (++burst_size_idx == ctx->options->burst_size_count)
312 break;
313 test_burst_size = ctx->options->burst_size_list[burst_size_idx];
314 }
315
316 }
317
318 return 0;
319 }
320
321
322 void
323 cperf_throughput_test_destructor(void *arg)
324 {
325 struct cperf_throughput_ctx *ctx = arg;
326
327 if (ctx == NULL)
328 return;
329
330 cperf_throughput_test_free(ctx);
331 }