]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/bus/dpaa/base/qbman/qman.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / bus / dpaa / base / qbman / qman.c
1 /* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)
2 *
3 * Copyright 2008-2016 Freescale Semiconductor Inc.
4 * Copyright 2017,2019 NXP
5 *
6 */
7
8 #include "qman.h"
9 #include <rte_branch_prediction.h>
10 #include <rte_dpaa_bus.h>
11 #include <rte_eventdev.h>
12 #include <rte_byteorder.h>
13
14 /* Compilation constants */
15 #define DQRR_MAXFILL 15
16 #define EQCR_ITHRESH 4 /* if EQCR congests, interrupt threshold */
17 #define IRQNAME "QMan portal %d"
18 #define MAX_IRQNAME 16 /* big enough for "QMan portal %d" */
19 /* maximum number of DQRR entries to process in qman_poll() */
20 #define FSL_QMAN_POLL_LIMIT 8
21
22 /* Lock/unlock frame queues, subject to the "LOCKED" flag. This is about
23 * inter-processor locking only. Note, FQLOCK() is always called either under a
24 * local_irq_save() or from interrupt context - hence there's no need for irq
25 * protection (and indeed, attempting to nest irq-protection doesn't work, as
26 * the "irq en/disable" machinery isn't recursive...).
27 */
28 #define FQLOCK(fq) \
29 do { \
30 struct qman_fq *__fq478 = (fq); \
31 if (fq_isset(__fq478, QMAN_FQ_FLAG_LOCKED)) \
32 spin_lock(&__fq478->fqlock); \
33 } while (0)
34 #define FQUNLOCK(fq) \
35 do { \
36 struct qman_fq *__fq478 = (fq); \
37 if (fq_isset(__fq478, QMAN_FQ_FLAG_LOCKED)) \
38 spin_unlock(&__fq478->fqlock); \
39 } while (0)
40
41 static inline void fq_set(struct qman_fq *fq, u32 mask)
42 {
43 dpaa_set_bits(mask, &fq->flags);
44 }
45
46 static inline void fq_clear(struct qman_fq *fq, u32 mask)
47 {
48 dpaa_clear_bits(mask, &fq->flags);
49 }
50
51 static inline int fq_isset(struct qman_fq *fq, u32 mask)
52 {
53 return fq->flags & mask;
54 }
55
56 static inline int fq_isclear(struct qman_fq *fq, u32 mask)
57 {
58 return !(fq->flags & mask);
59 }
60
61 struct qman_portal {
62 struct qm_portal p;
63 /* PORTAL_BITS_*** - dynamic, strictly internal */
64 unsigned long bits;
65 /* interrupt sources processed by portal_isr(), configurable */
66 unsigned long irq_sources;
67 u32 use_eqcr_ci_stashing;
68 u32 slowpoll; /* only used when interrupts are off */
69 /* only 1 volatile dequeue at a time */
70 struct qman_fq *vdqcr_owned;
71 u32 sdqcr;
72 int dqrr_disable_ref;
73 /* A portal-specific handler for DCP ERNs. If this is NULL, the global
74 * handler is called instead.
75 */
76 qman_cb_dc_ern cb_dc_ern;
77 /* When the cpu-affine portal is activated, this is non-NULL */
78 const struct qm_portal_config *config;
79 struct dpa_rbtree retire_table;
80 char irqname[MAX_IRQNAME];
81 /* 2-element array. cgrs[0] is mask, cgrs[1] is snapshot. */
82 struct qman_cgrs *cgrs;
83 /* linked-list of CSCN handlers. */
84 struct list_head cgr_cbs;
85 /* list lock */
86 spinlock_t cgr_lock;
87 /* track if memory was allocated by the driver */
88 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
89 /* Keep a shadow copy of the DQRR on LE systems as the SW needs to
90 * do byte swaps of DQRR read only memory. First entry must be aligned
91 * to 2 ** 10 to ensure DQRR index calculations based shadow copy
92 * address (6 bits for address shift + 4 bits for the DQRR size).
93 */
94 struct qm_dqrr_entry shadow_dqrr[QM_DQRR_SIZE]
95 __attribute__((aligned(1024)));
96 #endif
97 };
98
99 /* Global handler for DCP ERNs. Used when the portal receiving the message does
100 * not have a portal-specific handler.
101 */
102 static qman_cb_dc_ern cb_dc_ern;
103
104 static cpumask_t affine_mask;
105 static DEFINE_SPINLOCK(affine_mask_lock);
106 static u16 affine_channels[NR_CPUS];
107 static RTE_DEFINE_PER_LCORE(struct qman_portal, qman_affine_portal);
108
109 static inline struct qman_portal *get_affine_portal(void)
110 {
111 return &RTE_PER_LCORE(qman_affine_portal);
112 }
113
114 /* This gives a FQID->FQ lookup to cover the fact that we can't directly demux
115 * retirement notifications (the fact they are sometimes h/w-consumed means that
116 * contextB isn't always a s/w demux - and as we can't know which case it is
117 * when looking at the notification, we have to use the slow lookup for all of
118 * them). NB, it's possible to have multiple FQ objects refer to the same FQID
119 * (though at most one of them should be the consumer), so this table isn't for
120 * all FQs - FQs are added when retirement commands are issued, and removed when
121 * they complete, which also massively reduces the size of this table.
122 */
123 IMPLEMENT_DPAA_RBTREE(fqtree, struct qman_fq, node, fqid);
124 /*
125 * This is what everything can wait on, even if it migrates to a different cpu
126 * to the one whose affine portal it is waiting on.
127 */
128 static DECLARE_WAIT_QUEUE_HEAD(affine_queue);
129
130 static inline int table_push_fq(struct qman_portal *p, struct qman_fq *fq)
131 {
132 int ret = fqtree_push(&p->retire_table, fq);
133
134 if (ret)
135 pr_err("ERROR: double FQ-retirement %d\n", fq->fqid);
136 return ret;
137 }
138
139 static inline void table_del_fq(struct qman_portal *p, struct qman_fq *fq)
140 {
141 fqtree_del(&p->retire_table, fq);
142 }
143
144 static inline struct qman_fq *table_find_fq(struct qman_portal *p, u32 fqid)
145 {
146 return fqtree_find(&p->retire_table, fqid);
147 }
148
149 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
150 static void **qman_fq_lookup_table;
151 static size_t qman_fq_lookup_table_size;
152
153 int qman_setup_fq_lookup_table(size_t num_entries)
154 {
155 num_entries++;
156 /* Allocate 1 more entry since the first entry is not used */
157 qman_fq_lookup_table = vmalloc((num_entries * sizeof(void *)));
158 if (!qman_fq_lookup_table) {
159 pr_err("QMan: Could not allocate fq lookup table\n");
160 return -ENOMEM;
161 }
162 memset(qman_fq_lookup_table, 0, num_entries * sizeof(void *));
163 qman_fq_lookup_table_size = num_entries;
164 pr_debug("QMan: Allocated lookup table at %p, entry count %lu\n",
165 qman_fq_lookup_table,
166 (unsigned long)qman_fq_lookup_table_size);
167 return 0;
168 }
169
170 void qman_set_fq_lookup_table(void **fq_table)
171 {
172 qman_fq_lookup_table = fq_table;
173 }
174
175 /* global structure that maintains fq object mapping */
176 static DEFINE_SPINLOCK(fq_hash_table_lock);
177
178 static int find_empty_fq_table_entry(u32 *entry, struct qman_fq *fq)
179 {
180 u32 i;
181
182 spin_lock(&fq_hash_table_lock);
183 /* Can't use index zero because this has special meaning
184 * in context_b field.
185 */
186 for (i = 1; i < qman_fq_lookup_table_size; i++) {
187 if (qman_fq_lookup_table[i] == NULL) {
188 *entry = i;
189 qman_fq_lookup_table[i] = fq;
190 spin_unlock(&fq_hash_table_lock);
191 return 0;
192 }
193 }
194 spin_unlock(&fq_hash_table_lock);
195 return -ENOMEM;
196 }
197
198 static void clear_fq_table_entry(u32 entry)
199 {
200 spin_lock(&fq_hash_table_lock);
201 DPAA_BUG_ON(entry >= qman_fq_lookup_table_size);
202 qman_fq_lookup_table[entry] = NULL;
203 spin_unlock(&fq_hash_table_lock);
204 }
205
206 static inline struct qman_fq *get_fq_table_entry(u32 entry)
207 {
208 DPAA_BUG_ON(entry >= qman_fq_lookup_table_size);
209 return qman_fq_lookup_table[entry];
210 }
211 #endif
212
213 static inline void cpu_to_hw_fqd(struct qm_fqd *fqd)
214 {
215 /* Byteswap the FQD to HW format */
216 fqd->fq_ctrl = cpu_to_be16(fqd->fq_ctrl);
217 fqd->dest_wq = cpu_to_be16(fqd->dest_wq);
218 fqd->ics_cred = cpu_to_be16(fqd->ics_cred);
219 fqd->context_b = cpu_to_be32(fqd->context_b);
220 fqd->context_a.opaque = cpu_to_be64(fqd->context_a.opaque);
221 fqd->opaque_td = cpu_to_be16(fqd->opaque_td);
222 }
223
224 static inline void hw_fqd_to_cpu(struct qm_fqd *fqd)
225 {
226 /* Byteswap the FQD to CPU format */
227 fqd->fq_ctrl = be16_to_cpu(fqd->fq_ctrl);
228 fqd->dest_wq = be16_to_cpu(fqd->dest_wq);
229 fqd->ics_cred = be16_to_cpu(fqd->ics_cred);
230 fqd->context_b = be32_to_cpu(fqd->context_b);
231 fqd->context_a.opaque = be64_to_cpu(fqd->context_a.opaque);
232 }
233
234 static inline void cpu_to_hw_fd(struct qm_fd *fd)
235 {
236 fd->addr = cpu_to_be40(fd->addr);
237 fd->status = cpu_to_be32(fd->status);
238 fd->opaque = cpu_to_be32(fd->opaque);
239 }
240
241 static inline void hw_fd_to_cpu(struct qm_fd *fd)
242 {
243 fd->addr = be40_to_cpu(fd->addr);
244 fd->status = be32_to_cpu(fd->status);
245 fd->opaque = be32_to_cpu(fd->opaque);
246 }
247
248 /* In the case that slow- and fast-path handling are both done by qman_poll()
249 * (ie. because there is no interrupt handling), we ought to balance how often
250 * we do the fast-path poll versus the slow-path poll. We'll use two decrementer
251 * sources, so we call the fast poll 'n' times before calling the slow poll
252 * once. The idle decrementer constant is used when the last slow-poll detected
253 * no work to do, and the busy decrementer constant when the last slow-poll had
254 * work to do.
255 */
256 #define SLOW_POLL_IDLE 1000
257 #define SLOW_POLL_BUSY 10
258 static u32 __poll_portal_slow(struct qman_portal *p, u32 is);
259 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
260 unsigned int poll_limit);
261
262 /* Portal interrupt handler */
263 static irqreturn_t portal_isr(__always_unused int irq, void *ptr)
264 {
265 struct qman_portal *p = ptr;
266 /*
267 * The CSCI/CCSCI source is cleared inside __poll_portal_slow(), because
268 * it could race against a Query Congestion State command also given
269 * as part of the handling of this interrupt source. We mustn't
270 * clear it a second time in this top-level function.
271 */
272 u32 clear = QM_DQAVAIL_MASK | (p->irq_sources &
273 ~(QM_PIRQ_CSCI | QM_PIRQ_CCSCI));
274 u32 is = qm_isr_status_read(&p->p) & p->irq_sources;
275 /* DQRR-handling if it's interrupt-driven */
276 if (is & QM_PIRQ_DQRI)
277 __poll_portal_fast(p, FSL_QMAN_POLL_LIMIT);
278 /* Handling of anything else that's interrupt-driven */
279 clear |= __poll_portal_slow(p, is);
280 qm_isr_status_clear(&p->p, clear);
281 return IRQ_HANDLED;
282 }
283
284 /* This inner version is used privately by qman_create_affine_portal(), as well
285 * as by the exported qman_stop_dequeues().
286 */
287 static inline void qman_stop_dequeues_ex(struct qman_portal *p)
288 {
289 if (!(p->dqrr_disable_ref++))
290 qm_dqrr_set_maxfill(&p->p, 0);
291 }
292
293 static int drain_mr_fqrni(struct qm_portal *p)
294 {
295 const struct qm_mr_entry *msg;
296 loop:
297 msg = qm_mr_current(p);
298 if (!msg) {
299 /*
300 * if MR was full and h/w had other FQRNI entries to produce, we
301 * need to allow it time to produce those entries once the
302 * existing entries are consumed. A worst-case situation
303 * (fully-loaded system) means h/w sequencers may have to do 3-4
304 * other things before servicing the portal's MR pump, each of
305 * which (if slow) may take ~50 qman cycles (which is ~200
306 * processor cycles). So rounding up and then multiplying this
307 * worst-case estimate by a factor of 10, just to be
308 * ultra-paranoid, goes as high as 10,000 cycles. NB, we consume
309 * one entry at a time, so h/w has an opportunity to produce new
310 * entries well before the ring has been fully consumed, so
311 * we're being *really* paranoid here.
312 */
313 u64 now, then = mfatb();
314
315 do {
316 now = mfatb();
317 } while ((then + 10000) > now);
318 msg = qm_mr_current(p);
319 if (!msg)
320 return 0;
321 }
322 if ((msg->ern.verb & QM_MR_VERB_TYPE_MASK) != QM_MR_VERB_FQRNI) {
323 /* We aren't draining anything but FQRNIs */
324 pr_err("Found verb 0x%x in MR\n", msg->ern.verb);
325 return -1;
326 }
327 qm_mr_next(p);
328 qm_mr_cci_consume(p, 1);
329 goto loop;
330 }
331
332 static inline int qm_eqcr_init(struct qm_portal *portal,
333 enum qm_eqcr_pmode pmode,
334 unsigned int eq_stash_thresh,
335 int eq_stash_prio)
336 {
337 /* This use of 'register', as well as all other occurrences, is because
338 * it has been observed to generate much faster code with gcc than is
339 * otherwise the case.
340 */
341 register struct qm_eqcr *eqcr = &portal->eqcr;
342 u32 cfg;
343 u8 pi;
344
345 eqcr->ring = portal->addr.ce + QM_CL_EQCR;
346 eqcr->ci = qm_in(EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
347 qm_cl_invalidate(EQCR_CI);
348 pi = qm_in(EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
349 eqcr->cursor = eqcr->ring + pi;
350 eqcr->vbit = (qm_in(EQCR_PI_CINH) & QM_EQCR_SIZE) ?
351 QM_EQCR_VERB_VBIT : 0;
352 eqcr->available = QM_EQCR_SIZE - 1 -
353 qm_cyc_diff(QM_EQCR_SIZE, eqcr->ci, pi);
354 eqcr->ithresh = qm_in(EQCR_ITR);
355 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
356 eqcr->busy = 0;
357 eqcr->pmode = pmode;
358 #endif
359 cfg = (qm_in(CFG) & 0x00ffffff) |
360 (eq_stash_thresh << 28) | /* QCSP_CFG: EST */
361 (eq_stash_prio << 26) | /* QCSP_CFG: EP */
362 ((pmode & 0x3) << 24); /* QCSP_CFG::EPM */
363 qm_out(CFG, cfg);
364 return 0;
365 }
366
367 static inline void qm_eqcr_finish(struct qm_portal *portal)
368 {
369 register struct qm_eqcr *eqcr = &portal->eqcr;
370 u8 pi, ci;
371 u32 cfg;
372
373 /*
374 * Disable EQCI stashing because the QMan only
375 * presents the value it previously stashed to
376 * maintain coherency. Setting the stash threshold
377 * to 1 then 0 ensures that QMan has resyncronized
378 * its internal copy so that the portal is clean
379 * when it is reinitialized in the future
380 */
381 cfg = (qm_in(CFG) & 0x0fffffff) |
382 (1 << 28); /* QCSP_CFG: EST */
383 qm_out(CFG, cfg);
384 cfg &= 0x0fffffff; /* stash threshold = 0 */
385 qm_out(CFG, cfg);
386
387 pi = qm_in(EQCR_PI_CINH) & (QM_EQCR_SIZE - 1);
388 ci = qm_in(EQCR_CI_CINH) & (QM_EQCR_SIZE - 1);
389
390 /* Refresh EQCR CI cache value */
391 qm_cl_invalidate(EQCR_CI);
392 eqcr->ci = qm_cl_in(EQCR_CI) & (QM_EQCR_SIZE - 1);
393
394 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
395 DPAA_ASSERT(!eqcr->busy);
396 #endif
397 if (pi != EQCR_PTR2IDX(eqcr->cursor))
398 pr_crit("losing uncommitted EQCR entries\n");
399 if (ci != eqcr->ci)
400 pr_crit("missing existing EQCR completions\n");
401 if (eqcr->ci != EQCR_PTR2IDX(eqcr->cursor))
402 pr_crit("EQCR destroyed unquiesced\n");
403 }
404
405 static inline int qm_dqrr_init(struct qm_portal *portal,
406 __maybe_unused const struct qm_portal_config *config,
407 enum qm_dqrr_dmode dmode,
408 __maybe_unused enum qm_dqrr_pmode pmode,
409 enum qm_dqrr_cmode cmode, u8 max_fill)
410 {
411 register struct qm_dqrr *dqrr = &portal->dqrr;
412 u32 cfg;
413
414 /* Make sure the DQRR will be idle when we enable */
415 qm_out(DQRR_SDQCR, 0);
416 qm_out(DQRR_VDQCR, 0);
417 qm_out(DQRR_PDQCR, 0);
418 dqrr->ring = portal->addr.ce + QM_CL_DQRR;
419 dqrr->pi = qm_in(DQRR_PI_CINH) & (QM_DQRR_SIZE - 1);
420 dqrr->ci = qm_in(DQRR_CI_CINH) & (QM_DQRR_SIZE - 1);
421 dqrr->cursor = dqrr->ring + dqrr->ci;
422 dqrr->fill = qm_cyc_diff(QM_DQRR_SIZE, dqrr->ci, dqrr->pi);
423 dqrr->vbit = (qm_in(DQRR_PI_CINH) & QM_DQRR_SIZE) ?
424 QM_DQRR_VERB_VBIT : 0;
425 dqrr->ithresh = qm_in(DQRR_ITR);
426 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
427 dqrr->dmode = dmode;
428 dqrr->pmode = pmode;
429 dqrr->cmode = cmode;
430 #endif
431 /* Invalidate every ring entry before beginning */
432 for (cfg = 0; cfg < QM_DQRR_SIZE; cfg++)
433 dccivac(qm_cl(dqrr->ring, cfg));
434 cfg = (qm_in(CFG) & 0xff000f00) |
435 ((max_fill & (QM_DQRR_SIZE - 1)) << 20) | /* DQRR_MF */
436 ((dmode & 1) << 18) | /* DP */
437 ((cmode & 3) << 16) | /* DCM */
438 0xa0 | /* RE+SE */
439 (0 ? 0x40 : 0) | /* Ignore RP */
440 (0 ? 0x10 : 0); /* Ignore SP */
441 qm_out(CFG, cfg);
442 qm_dqrr_set_maxfill(portal, max_fill);
443 return 0;
444 }
445
446 static inline void qm_dqrr_finish(struct qm_portal *portal)
447 {
448 __maybe_unused register struct qm_dqrr *dqrr = &portal->dqrr;
449 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
450 if ((dqrr->cmode != qm_dqrr_cdc) &&
451 (dqrr->ci != DQRR_PTR2IDX(dqrr->cursor)))
452 pr_crit("Ignoring completed DQRR entries\n");
453 #endif
454 }
455
456 static inline int qm_mr_init(struct qm_portal *portal,
457 __maybe_unused enum qm_mr_pmode pmode,
458 enum qm_mr_cmode cmode)
459 {
460 register struct qm_mr *mr = &portal->mr;
461 u32 cfg;
462
463 mr->ring = portal->addr.ce + QM_CL_MR;
464 mr->pi = qm_in(MR_PI_CINH) & (QM_MR_SIZE - 1);
465 mr->ci = qm_in(MR_CI_CINH) & (QM_MR_SIZE - 1);
466 mr->cursor = mr->ring + mr->ci;
467 mr->fill = qm_cyc_diff(QM_MR_SIZE, mr->ci, mr->pi);
468 mr->vbit = (qm_in(MR_PI_CINH) & QM_MR_SIZE) ? QM_MR_VERB_VBIT : 0;
469 mr->ithresh = qm_in(MR_ITR);
470 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
471 mr->pmode = pmode;
472 mr->cmode = cmode;
473 #endif
474 cfg = (qm_in(CFG) & 0xfffff0ff) |
475 ((cmode & 1) << 8); /* QCSP_CFG:MM */
476 qm_out(CFG, cfg);
477 return 0;
478 }
479
480 static inline void qm_mr_pvb_update(struct qm_portal *portal)
481 {
482 register struct qm_mr *mr = &portal->mr;
483 const struct qm_mr_entry *res = qm_cl(mr->ring, mr->pi);
484
485 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
486 DPAA_ASSERT(mr->pmode == qm_mr_pvb);
487 #endif
488 /* when accessing 'verb', use __raw_readb() to ensure that compiler
489 * inlining doesn't try to optimise out "excess reads".
490 */
491 if ((__raw_readb(&res->ern.verb) & QM_MR_VERB_VBIT) == mr->vbit) {
492 mr->pi = (mr->pi + 1) & (QM_MR_SIZE - 1);
493 if (!mr->pi)
494 mr->vbit ^= QM_MR_VERB_VBIT;
495 mr->fill++;
496 res = MR_INC(res);
497 }
498 dcbit_ro(res);
499 }
500
501 static inline
502 struct qman_portal *qman_create_portal(
503 struct qman_portal *portal,
504 const struct qm_portal_config *c,
505 const struct qman_cgrs *cgrs)
506 {
507 struct qm_portal *p;
508 char buf[16];
509 int ret;
510 u32 isdr;
511
512 p = &portal->p;
513
514 if (dpaa_svr_family == SVR_LS1043A_FAMILY)
515 portal->use_eqcr_ci_stashing = 3;
516 else
517 portal->use_eqcr_ci_stashing =
518 ((qman_ip_rev >= QMAN_REV30) ? 1 : 0);
519
520 /*
521 * prep the low-level portal struct with the mapped addresses from the
522 * config, everything that follows depends on it and "config" is more
523 * for (de)reference
524 */
525 p->addr.ce = c->addr_virt[DPAA_PORTAL_CE];
526 p->addr.ci = c->addr_virt[DPAA_PORTAL_CI];
527 /*
528 * If CI-stashing is used, the current defaults use a threshold of 3,
529 * and stash with high-than-DQRR priority.
530 */
531 if (qm_eqcr_init(p, qm_eqcr_pvb,
532 portal->use_eqcr_ci_stashing, 1)) {
533 pr_err("Qman EQCR initialisation failed\n");
534 goto fail_eqcr;
535 }
536 if (qm_dqrr_init(p, c, qm_dqrr_dpush, qm_dqrr_pvb,
537 qm_dqrr_cdc, DQRR_MAXFILL)) {
538 pr_err("Qman DQRR initialisation failed\n");
539 goto fail_dqrr;
540 }
541 if (qm_mr_init(p, qm_mr_pvb, qm_mr_cci)) {
542 pr_err("Qman MR initialisation failed\n");
543 goto fail_mr;
544 }
545 if (qm_mc_init(p)) {
546 pr_err("Qman MC initialisation failed\n");
547 goto fail_mc;
548 }
549
550 /* static interrupt-gating controls */
551 qm_dqrr_set_ithresh(p, 0);
552 qm_mr_set_ithresh(p, 0);
553 qm_isr_set_iperiod(p, 0);
554 portal->cgrs = kmalloc(2 * sizeof(*cgrs), GFP_KERNEL);
555 if (!portal->cgrs)
556 goto fail_cgrs;
557 /* initial snapshot is no-depletion */
558 qman_cgrs_init(&portal->cgrs[1]);
559 if (cgrs)
560 portal->cgrs[0] = *cgrs;
561 else
562 /* if the given mask is NULL, assume all CGRs can be seen */
563 qman_cgrs_fill(&portal->cgrs[0]);
564 INIT_LIST_HEAD(&portal->cgr_cbs);
565 spin_lock_init(&portal->cgr_lock);
566 portal->bits = 0;
567 portal->slowpoll = 0;
568 portal->sdqcr = QM_SDQCR_SOURCE_CHANNELS | QM_SDQCR_COUNT_UPTO3 |
569 QM_SDQCR_DEDICATED_PRECEDENCE | QM_SDQCR_TYPE_PRIO_QOS |
570 QM_SDQCR_TOKEN_SET(0xab) | QM_SDQCR_CHANNELS_DEDICATED;
571 portal->dqrr_disable_ref = 0;
572 portal->cb_dc_ern = NULL;
573 sprintf(buf, "qportal-%d", c->channel);
574 dpa_rbtree_init(&portal->retire_table);
575 isdr = 0xffffffff;
576 qm_isr_disable_write(p, isdr);
577 portal->irq_sources = 0;
578 qm_isr_enable_write(p, portal->irq_sources);
579 qm_isr_status_clear(p, 0xffffffff);
580 snprintf(portal->irqname, MAX_IRQNAME, IRQNAME, c->cpu);
581 if (request_irq(c->irq, portal_isr, 0, portal->irqname,
582 portal)) {
583 pr_err("request_irq() failed\n");
584 goto fail_irq;
585 }
586
587 /* Need EQCR to be empty before continuing */
588 isdr &= ~QM_PIRQ_EQCI;
589 qm_isr_disable_write(p, isdr);
590 ret = qm_eqcr_get_fill(p);
591 if (ret) {
592 pr_err("Qman EQCR unclean\n");
593 goto fail_eqcr_empty;
594 }
595 isdr &= ~(QM_PIRQ_DQRI | QM_PIRQ_MRI);
596 qm_isr_disable_write(p, isdr);
597 if (qm_dqrr_current(p)) {
598 pr_err("Qman DQRR unclean\n");
599 qm_dqrr_cdc_consume_n(p, 0xffff);
600 }
601 if (qm_mr_current(p) && drain_mr_fqrni(p)) {
602 /* special handling, drain just in case it's a few FQRNIs */
603 if (drain_mr_fqrni(p))
604 goto fail_dqrr_mr_empty;
605 }
606 /* Success */
607 portal->config = c;
608 qm_isr_disable_write(p, 0);
609 qm_isr_uninhibit(p);
610 /* Write a sane SDQCR */
611 qm_dqrr_sdqcr_set(p, portal->sdqcr);
612 return portal;
613 fail_dqrr_mr_empty:
614 fail_eqcr_empty:
615 free_irq(c->irq, portal);
616 fail_irq:
617 kfree(portal->cgrs);
618 spin_lock_destroy(&portal->cgr_lock);
619 fail_cgrs:
620 qm_mc_finish(p);
621 fail_mc:
622 qm_mr_finish(p);
623 fail_mr:
624 qm_dqrr_finish(p);
625 fail_dqrr:
626 qm_eqcr_finish(p);
627 fail_eqcr:
628 return NULL;
629 }
630
631 #define MAX_GLOBAL_PORTALS 8
632 static struct qman_portal global_portals[MAX_GLOBAL_PORTALS];
633 static rte_atomic16_t global_portals_used[MAX_GLOBAL_PORTALS];
634
635 static struct qman_portal *
636 qman_alloc_global_portal(void)
637 {
638 unsigned int i;
639
640 for (i = 0; i < MAX_GLOBAL_PORTALS; i++) {
641 if (rte_atomic16_test_and_set(&global_portals_used[i]))
642 return &global_portals[i];
643 }
644 pr_err("No portal available (%x)\n", MAX_GLOBAL_PORTALS);
645
646 return NULL;
647 }
648
649 static int
650 qman_free_global_portal(struct qman_portal *portal)
651 {
652 unsigned int i;
653
654 for (i = 0; i < MAX_GLOBAL_PORTALS; i++) {
655 if (&global_portals[i] == portal) {
656 rte_atomic16_clear(&global_portals_used[i]);
657 return 0;
658 }
659 }
660 return -1;
661 }
662
663 struct qman_portal *qman_create_affine_portal(const struct qm_portal_config *c,
664 const struct qman_cgrs *cgrs,
665 int alloc)
666 {
667 struct qman_portal *res;
668 struct qman_portal *portal;
669
670 if (alloc)
671 portal = qman_alloc_global_portal();
672 else
673 portal = get_affine_portal();
674
675 /* A criteria for calling this function (from qman_driver.c) is that
676 * we're already affine to the cpu and won't schedule onto another cpu.
677 */
678
679 res = qman_create_portal(portal, c, cgrs);
680 if (res) {
681 spin_lock(&affine_mask_lock);
682 CPU_SET(c->cpu, &affine_mask);
683 affine_channels[c->cpu] =
684 c->channel;
685 spin_unlock(&affine_mask_lock);
686 }
687 return res;
688 }
689
690 static inline
691 void qman_destroy_portal(struct qman_portal *qm)
692 {
693 const struct qm_portal_config *pcfg;
694
695 /* Stop dequeues on the portal */
696 qm_dqrr_sdqcr_set(&qm->p, 0);
697
698 /*
699 * NB we do this to "quiesce" EQCR. If we add enqueue-completions or
700 * something related to QM_PIRQ_EQCI, this may need fixing.
701 * Also, due to the prefetching model used for CI updates in the enqueue
702 * path, this update will only invalidate the CI cacheline *after*
703 * working on it, so we need to call this twice to ensure a full update
704 * irrespective of where the enqueue processing was at when the teardown
705 * began.
706 */
707 qm_eqcr_cce_update(&qm->p);
708 qm_eqcr_cce_update(&qm->p);
709 pcfg = qm->config;
710
711 free_irq(pcfg->irq, qm);
712
713 kfree(qm->cgrs);
714 qm_mc_finish(&qm->p);
715 qm_mr_finish(&qm->p);
716 qm_dqrr_finish(&qm->p);
717 qm_eqcr_finish(&qm->p);
718
719 qm->config = NULL;
720
721 spin_lock_destroy(&qm->cgr_lock);
722 }
723
724 const struct qm_portal_config *
725 qman_destroy_affine_portal(struct qman_portal *qp)
726 {
727 /* We don't want to redirect if we're a slave, use "raw" */
728 struct qman_portal *qm;
729 const struct qm_portal_config *pcfg;
730 int cpu;
731
732 if (qp == NULL)
733 qm = get_affine_portal();
734 else
735 qm = qp;
736 pcfg = qm->config;
737 cpu = pcfg->cpu;
738
739 qman_destroy_portal(qm);
740
741 spin_lock(&affine_mask_lock);
742 CPU_CLR(cpu, &affine_mask);
743 spin_unlock(&affine_mask_lock);
744
745 qman_free_global_portal(qm);
746
747 return pcfg;
748 }
749
750 int qman_get_portal_index(void)
751 {
752 struct qman_portal *p = get_affine_portal();
753 return p->config->index;
754 }
755
756 /* Inline helper to reduce nesting in __poll_portal_slow() */
757 static inline void fq_state_change(struct qman_portal *p, struct qman_fq *fq,
758 const struct qm_mr_entry *msg, u8 verb)
759 {
760 FQLOCK(fq);
761 switch (verb) {
762 case QM_MR_VERB_FQRL:
763 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_ORL));
764 fq_clear(fq, QMAN_FQ_STATE_ORL);
765 table_del_fq(p, fq);
766 break;
767 case QM_MR_VERB_FQRN:
768 DPAA_ASSERT((fq->state == qman_fq_state_parked) ||
769 (fq->state == qman_fq_state_sched));
770 DPAA_ASSERT(fq_isset(fq, QMAN_FQ_STATE_CHANGING));
771 fq_clear(fq, QMAN_FQ_STATE_CHANGING);
772 if (msg->fq.fqs & QM_MR_FQS_NOTEMPTY)
773 fq_set(fq, QMAN_FQ_STATE_NE);
774 if (msg->fq.fqs & QM_MR_FQS_ORLPRESENT)
775 fq_set(fq, QMAN_FQ_STATE_ORL);
776 else
777 table_del_fq(p, fq);
778 fq->state = qman_fq_state_retired;
779 break;
780 case QM_MR_VERB_FQPN:
781 DPAA_ASSERT(fq->state == qman_fq_state_sched);
782 DPAA_ASSERT(fq_isclear(fq, QMAN_FQ_STATE_CHANGING));
783 fq->state = qman_fq_state_parked;
784 }
785 FQUNLOCK(fq);
786 }
787
788 static u32 __poll_portal_slow(struct qman_portal *p, u32 is)
789 {
790 const struct qm_mr_entry *msg;
791 struct qm_mr_entry swapped_msg;
792
793 if (is & QM_PIRQ_CSCI) {
794 struct qman_cgrs rr, c;
795 struct qm_mc_result *mcr;
796 struct qman_cgr *cgr;
797
798 spin_lock(&p->cgr_lock);
799 /*
800 * The CSCI bit must be cleared _before_ issuing the
801 * Query Congestion State command, to ensure that a long
802 * CGR State Change callback cannot miss an intervening
803 * state change.
804 */
805 qm_isr_status_clear(&p->p, QM_PIRQ_CSCI);
806 qm_mc_start(&p->p);
807 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
808 while (!(mcr = qm_mc_result(&p->p)))
809 cpu_relax();
810 /* mask out the ones I'm not interested in */
811 qman_cgrs_and(&rr, (const struct qman_cgrs *)
812 &mcr->querycongestion.state, &p->cgrs[0]);
813 /* check previous snapshot for delta, enter/exit congestion */
814 qman_cgrs_xor(&c, &rr, &p->cgrs[1]);
815 /* update snapshot */
816 qman_cgrs_cp(&p->cgrs[1], &rr);
817 /* Invoke callback */
818 list_for_each_entry(cgr, &p->cgr_cbs, node)
819 if (cgr->cb && qman_cgrs_get(&c, cgr->cgrid))
820 cgr->cb(p, cgr, qman_cgrs_get(&rr, cgr->cgrid));
821 spin_unlock(&p->cgr_lock);
822 }
823
824 if (is & QM_PIRQ_EQRI) {
825 qm_eqcr_cce_update(&p->p);
826 qm_eqcr_set_ithresh(&p->p, 0);
827 wake_up(&affine_queue);
828 }
829
830 if (is & QM_PIRQ_MRI) {
831 struct qman_fq *fq;
832 u8 verb, num = 0;
833 mr_loop:
834 qm_mr_pvb_update(&p->p);
835 msg = qm_mr_current(&p->p);
836 if (!msg)
837 goto mr_done;
838 swapped_msg = *msg;
839 hw_fd_to_cpu(&swapped_msg.ern.fd);
840 verb = msg->ern.verb & QM_MR_VERB_TYPE_MASK;
841 /* The message is a software ERN iff the 0x20 bit is set */
842 if (verb & 0x20) {
843 switch (verb) {
844 case QM_MR_VERB_FQRNI:
845 /* nada, we drop FQRNIs on the floor */
846 break;
847 case QM_MR_VERB_FQRN:
848 case QM_MR_VERB_FQRL:
849 /* Lookup in the retirement table */
850 fq = table_find_fq(p,
851 be32_to_cpu(msg->fq.fqid));
852 DPAA_BUG_ON(!fq);
853 fq_state_change(p, fq, &swapped_msg, verb);
854 if (fq->cb.fqs)
855 fq->cb.fqs(p, fq, &swapped_msg);
856 break;
857 case QM_MR_VERB_FQPN:
858 /* Parked */
859 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
860 fq = get_fq_table_entry(msg->fq.contextB);
861 #else
862 fq = (void *)(uintptr_t)msg->fq.contextB;
863 #endif
864 fq_state_change(p, fq, msg, verb);
865 if (fq->cb.fqs)
866 fq->cb.fqs(p, fq, &swapped_msg);
867 break;
868 case QM_MR_VERB_DC_ERN:
869 /* DCP ERN */
870 if (p->cb_dc_ern)
871 p->cb_dc_ern(p, msg);
872 else if (cb_dc_ern)
873 cb_dc_ern(p, msg);
874 else {
875 static int warn_once;
876
877 if (!warn_once) {
878 pr_crit("Leaking DCP ERNs!\n");
879 warn_once = 1;
880 }
881 }
882 break;
883 default:
884 pr_crit("Invalid MR verb 0x%02x\n", verb);
885 }
886 } else {
887 /* Its a software ERN */
888 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
889 fq = get_fq_table_entry(be32_to_cpu(msg->ern.tag));
890 #else
891 fq = (void *)(uintptr_t)be32_to_cpu(msg->ern.tag);
892 #endif
893 fq->cb.ern(p, fq, &swapped_msg);
894 }
895 num++;
896 qm_mr_next(&p->p);
897 goto mr_loop;
898 mr_done:
899 qm_mr_cci_consume(&p->p, num);
900 }
901 /*
902 * QM_PIRQ_CSCI/CCSCI has already been cleared, as part of its specific
903 * processing. If that interrupt source has meanwhile been re-asserted,
904 * we mustn't clear it here (or in the top-level interrupt handler).
905 */
906 return is & (QM_PIRQ_EQCI | QM_PIRQ_EQRI | QM_PIRQ_MRI);
907 }
908
909 /*
910 * remove some slowish-path stuff from the "fast path" and make sure it isn't
911 * inlined.
912 */
913 static noinline void clear_vdqcr(struct qman_portal *p, struct qman_fq *fq)
914 {
915 p->vdqcr_owned = NULL;
916 FQLOCK(fq);
917 fq_clear(fq, QMAN_FQ_STATE_VDQCR);
918 FQUNLOCK(fq);
919 wake_up(&affine_queue);
920 }
921
922 /*
923 * The only states that would conflict with other things if they ran at the
924 * same time on the same cpu are:
925 *
926 * (i) setting/clearing vdqcr_owned, and
927 * (ii) clearing the NE (Not Empty) flag.
928 *
929 * Both are safe. Because;
930 *
931 * (i) this clearing can only occur after qman_set_vdq() has set the
932 * vdqcr_owned field (which it does before setting VDQCR), and
933 * qman_volatile_dequeue() blocks interrupts and preemption while this is
934 * done so that we can't interfere.
935 * (ii) the NE flag is only cleared after qman_retire_fq() has set it, and as
936 * with (i) that API prevents us from interfering until it's safe.
937 *
938 * The good thing is that qman_set_vdq() and qman_retire_fq() run far
939 * less frequently (ie. per-FQ) than __poll_portal_fast() does, so the nett
940 * advantage comes from this function not having to "lock" anything at all.
941 *
942 * Note also that the callbacks are invoked at points which are safe against the
943 * above potential conflicts, but that this function itself is not re-entrant
944 * (this is because the function tracks one end of each FIFO in the portal and
945 * we do *not* want to lock that). So the consequence is that it is safe for
946 * user callbacks to call into any QMan API.
947 */
948 static inline unsigned int __poll_portal_fast(struct qman_portal *p,
949 unsigned int poll_limit)
950 {
951 const struct qm_dqrr_entry *dq;
952 struct qman_fq *fq;
953 enum qman_cb_dqrr_result res;
954 unsigned int limit = 0;
955 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
956 struct qm_dqrr_entry *shadow;
957 #endif
958 do {
959 qm_dqrr_pvb_update(&p->p);
960 dq = qm_dqrr_current(&p->p);
961 if (unlikely(!dq))
962 break;
963 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
964 /* If running on an LE system the fields of the
965 * dequeue entry must be swapper. Because the
966 * QMan HW will ignore writes the DQRR entry is
967 * copied and the index stored within the copy
968 */
969 shadow = &p->shadow_dqrr[DQRR_PTR2IDX(dq)];
970 *shadow = *dq;
971 dq = shadow;
972 shadow->fqid = be32_to_cpu(shadow->fqid);
973 shadow->seqnum = be16_to_cpu(shadow->seqnum);
974 hw_fd_to_cpu(&shadow->fd);
975 #endif
976
977 if (dq->stat & QM_DQRR_STAT_UNSCHEDULED) {
978 /*
979 * VDQCR: don't trust context_b as the FQ may have
980 * been configured for h/w consumption and we're
981 * draining it post-retirement.
982 */
983 fq = p->vdqcr_owned;
984 /*
985 * We only set QMAN_FQ_STATE_NE when retiring, so we
986 * only need to check for clearing it when doing
987 * volatile dequeues. It's one less thing to check
988 * in the critical path (SDQCR).
989 */
990 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
991 fq_clear(fq, QMAN_FQ_STATE_NE);
992 /*
993 * This is duplicated from the SDQCR code, but we
994 * have stuff to do before *and* after this callback,
995 * and we don't want multiple if()s in the critical
996 * path (SDQCR).
997 */
998 res = fq->cb.dqrr(p, fq, dq);
999 if (res == qman_cb_dqrr_stop)
1000 break;
1001 /* Check for VDQCR completion */
1002 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1003 clear_vdqcr(p, fq);
1004 } else {
1005 /* SDQCR: context_b points to the FQ */
1006 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1007 fq = get_fq_table_entry(dq->contextB);
1008 #else
1009 fq = (void *)(uintptr_t)dq->contextB;
1010 #endif
1011 /* Now let the callback do its stuff */
1012 res = fq->cb.dqrr(p, fq, dq);
1013 /*
1014 * The callback can request that we exit without
1015 * consuming this entry nor advancing;
1016 */
1017 if (res == qman_cb_dqrr_stop)
1018 break;
1019 }
1020 /* Interpret 'dq' from a driver perspective. */
1021 /*
1022 * Parking isn't possible unless HELDACTIVE was set. NB,
1023 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1024 * check for HELDACTIVE to cover both.
1025 */
1026 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1027 (res != qman_cb_dqrr_park));
1028 /* just means "skip it, I'll consume it myself later on" */
1029 if (res != qman_cb_dqrr_defer)
1030 qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1031 res == qman_cb_dqrr_park);
1032 /* Move forward */
1033 qm_dqrr_next(&p->p);
1034 /*
1035 * Entry processed and consumed, increment our counter. The
1036 * callback can request that we exit after consuming the
1037 * entry, and we also exit if we reach our processing limit,
1038 * so loop back only if neither of these conditions is met.
1039 */
1040 } while (++limit < poll_limit && res != qman_cb_dqrr_consume_stop);
1041
1042 return limit;
1043 }
1044
1045 int qman_irqsource_add(u32 bits)
1046 {
1047 struct qman_portal *p = get_affine_portal();
1048
1049 bits = bits & QM_PIRQ_VISIBLE;
1050
1051 /* Clear any previously remaining interrupt conditions in
1052 * QCSP_ISR. This prevents raising a false interrupt when
1053 * interrupt conditions are enabled in QCSP_IER.
1054 */
1055 qm_isr_status_clear(&p->p, bits);
1056 dpaa_set_bits(bits, &p->irq_sources);
1057 qm_isr_enable_write(&p->p, p->irq_sources);
1058
1059
1060 return 0;
1061 }
1062
1063 int qman_irqsource_remove(u32 bits)
1064 {
1065 struct qman_portal *p = get_affine_portal();
1066 u32 ier;
1067
1068 /* Our interrupt handler only processes+clears status register bits that
1069 * are in p->irq_sources. As we're trimming that mask, if one of them
1070 * were to assert in the status register just before we remove it from
1071 * the enable register, there would be an interrupt-storm when we
1072 * release the IRQ lock. So we wait for the enable register update to
1073 * take effect in h/w (by reading it back) and then clear all other bits
1074 * in the status register. Ie. we clear them from ISR once it's certain
1075 * IER won't allow them to reassert.
1076 */
1077
1078 bits &= QM_PIRQ_VISIBLE;
1079 dpaa_clear_bits(bits, &p->irq_sources);
1080 qm_isr_enable_write(&p->p, p->irq_sources);
1081 ier = qm_isr_enable_read(&p->p);
1082 /* Using "~ier" (rather than "bits" or "~p->irq_sources") creates a
1083 * data-dependency, ie. to protect against re-ordering.
1084 */
1085 qm_isr_status_clear(&p->p, ~ier);
1086 return 0;
1087 }
1088
1089 u16 qman_affine_channel(int cpu)
1090 {
1091 if (cpu < 0) {
1092 struct qman_portal *portal = get_affine_portal();
1093
1094 cpu = portal->config->cpu;
1095 }
1096 DPAA_BUG_ON(!CPU_ISSET(cpu, &affine_mask));
1097 return affine_channels[cpu];
1098 }
1099
1100 unsigned int qman_portal_poll_rx(unsigned int poll_limit,
1101 void **bufs,
1102 struct qman_portal *p)
1103 {
1104 struct qm_portal *portal = &p->p;
1105 register struct qm_dqrr *dqrr = &portal->dqrr;
1106 struct qm_dqrr_entry *dq[QM_DQRR_SIZE], *shadow[QM_DQRR_SIZE];
1107 struct qman_fq *fq;
1108 unsigned int limit = 0, rx_number = 0;
1109 uint32_t consume = 0;
1110
1111 do {
1112 qm_dqrr_pvb_update(&p->p);
1113 if (!dqrr->fill)
1114 break;
1115
1116 dq[rx_number] = dqrr->cursor;
1117 dqrr->cursor = DQRR_CARRYCLEAR(dqrr->cursor + 1);
1118 /* Prefetch the next DQRR entry */
1119 rte_prefetch0(dqrr->cursor);
1120
1121 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1122 /* If running on an LE system the fields of the
1123 * dequeue entry must be swapper. Because the
1124 * QMan HW will ignore writes the DQRR entry is
1125 * copied and the index stored within the copy
1126 */
1127 shadow[rx_number] =
1128 &p->shadow_dqrr[DQRR_PTR2IDX(dq[rx_number])];
1129 shadow[rx_number]->fd.opaque_addr =
1130 dq[rx_number]->fd.opaque_addr;
1131 shadow[rx_number]->fd.addr =
1132 be40_to_cpu(dq[rx_number]->fd.addr);
1133 shadow[rx_number]->fd.opaque =
1134 be32_to_cpu(dq[rx_number]->fd.opaque);
1135 #else
1136 shadow[rx_number] = dq[rx_number];
1137 #endif
1138
1139 /* SDQCR: context_b points to the FQ */
1140 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1141 fq = qman_fq_lookup_table[dq[rx_number]->contextB];
1142 #else
1143 fq = (void *)dq[rx_number]->contextB;
1144 #endif
1145 if (fq->cb.dqrr_prepare)
1146 fq->cb.dqrr_prepare(shadow[rx_number],
1147 &bufs[rx_number]);
1148
1149 consume |= (1 << (31 - DQRR_PTR2IDX(shadow[rx_number])));
1150 rx_number++;
1151 --dqrr->fill;
1152 } while (++limit < poll_limit);
1153
1154 if (rx_number)
1155 fq->cb.dqrr_dpdk_pull_cb(&fq, shadow, bufs, rx_number);
1156
1157 /* Consume all the DQRR enries together */
1158 qm_out(DQRR_DCAP, (1 << 8) | consume);
1159
1160 return rx_number;
1161 }
1162
1163 void qman_clear_irq(void)
1164 {
1165 struct qman_portal *p = get_affine_portal();
1166 u32 clear = QM_DQAVAIL_MASK | (p->irq_sources &
1167 ~(QM_PIRQ_CSCI | QM_PIRQ_CCSCI));
1168 qm_isr_status_clear(&p->p, clear);
1169 }
1170
1171 u32 qman_portal_dequeue(struct rte_event ev[], unsigned int poll_limit,
1172 void **bufs)
1173 {
1174 const struct qm_dqrr_entry *dq;
1175 struct qman_fq *fq;
1176 enum qman_cb_dqrr_result res;
1177 unsigned int limit = 0;
1178 struct qman_portal *p = get_affine_portal();
1179 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1180 struct qm_dqrr_entry *shadow;
1181 #endif
1182 unsigned int rx_number = 0;
1183
1184 do {
1185 qm_dqrr_pvb_update(&p->p);
1186 dq = qm_dqrr_current(&p->p);
1187 if (!dq)
1188 break;
1189 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1190 /*
1191 * If running on an LE system the fields of the
1192 * dequeue entry must be swapper. Because the
1193 * QMan HW will ignore writes the DQRR entry is
1194 * copied and the index stored within the copy
1195 */
1196 shadow = &p->shadow_dqrr[DQRR_PTR2IDX(dq)];
1197 *shadow = *dq;
1198 dq = shadow;
1199 shadow->fqid = be32_to_cpu(shadow->fqid);
1200 shadow->seqnum = be16_to_cpu(shadow->seqnum);
1201 hw_fd_to_cpu(&shadow->fd);
1202 #endif
1203
1204 /* SDQCR: context_b points to the FQ */
1205 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1206 fq = get_fq_table_entry(dq->contextB);
1207 #else
1208 fq = (void *)(uintptr_t)dq->contextB;
1209 #endif
1210 /* Now let the callback do its stuff */
1211 res = fq->cb.dqrr_dpdk_cb(&ev[rx_number], p, fq,
1212 dq, &bufs[rx_number]);
1213 rx_number++;
1214 /* Interpret 'dq' from a driver perspective. */
1215 /*
1216 * Parking isn't possible unless HELDACTIVE was set. NB,
1217 * FORCEELIGIBLE implies HELDACTIVE, so we only need to
1218 * check for HELDACTIVE to cover both.
1219 */
1220 DPAA_ASSERT((dq->stat & QM_DQRR_STAT_FQ_HELDACTIVE) ||
1221 (res != qman_cb_dqrr_park));
1222 if (res != qman_cb_dqrr_defer)
1223 qm_dqrr_cdc_consume_1ptr(&p->p, dq,
1224 res == qman_cb_dqrr_park);
1225 /* Move forward */
1226 qm_dqrr_next(&p->p);
1227 /*
1228 * Entry processed and consumed, increment our counter. The
1229 * callback can request that we exit after consuming the
1230 * entry, and we also exit if we reach our processing limit,
1231 * so loop back only if neither of these conditions is met.
1232 */
1233 } while (++limit < poll_limit);
1234
1235 return limit;
1236 }
1237
1238 struct qm_dqrr_entry *qman_dequeue(struct qman_fq *fq)
1239 {
1240 struct qman_portal *p = get_affine_portal();
1241 const struct qm_dqrr_entry *dq;
1242 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1243 struct qm_dqrr_entry *shadow;
1244 #endif
1245
1246 qm_dqrr_pvb_update(&p->p);
1247 dq = qm_dqrr_current(&p->p);
1248 if (!dq)
1249 return NULL;
1250
1251 if (!(dq->stat & QM_DQRR_STAT_FD_VALID)) {
1252 /* Invalid DQRR - put the portal and consume the DQRR.
1253 * Return NULL to user as no packet is seen.
1254 */
1255 qman_dqrr_consume(fq, (struct qm_dqrr_entry *)dq);
1256 return NULL;
1257 }
1258
1259 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1260 shadow = &p->shadow_dqrr[DQRR_PTR2IDX(dq)];
1261 *shadow = *dq;
1262 dq = shadow;
1263 shadow->fqid = be32_to_cpu(shadow->fqid);
1264 shadow->seqnum = be16_to_cpu(shadow->seqnum);
1265 hw_fd_to_cpu(&shadow->fd);
1266 #endif
1267
1268 if (dq->stat & QM_DQRR_STAT_FQ_EMPTY)
1269 fq_clear(fq, QMAN_FQ_STATE_NE);
1270
1271 return (struct qm_dqrr_entry *)dq;
1272 }
1273
1274 void qman_dqrr_consume(struct qman_fq *fq,
1275 struct qm_dqrr_entry *dq)
1276 {
1277 struct qman_portal *p = get_affine_portal();
1278
1279 if (dq->stat & QM_DQRR_STAT_DQCR_EXPIRED)
1280 clear_vdqcr(p, fq);
1281
1282 qm_dqrr_cdc_consume_1ptr(&p->p, dq, 0);
1283 qm_dqrr_next(&p->p);
1284 }
1285
1286 int qman_poll_dqrr(unsigned int limit)
1287 {
1288 struct qman_portal *p = get_affine_portal();
1289 int ret;
1290
1291 ret = __poll_portal_fast(p, limit);
1292 return ret;
1293 }
1294
1295 void qman_poll(void)
1296 {
1297 struct qman_portal *p = get_affine_portal();
1298
1299 if ((~p->irq_sources) & QM_PIRQ_SLOW) {
1300 if (!(p->slowpoll--)) {
1301 u32 is = qm_isr_status_read(&p->p) & ~p->irq_sources;
1302 u32 active = __poll_portal_slow(p, is);
1303
1304 if (active) {
1305 qm_isr_status_clear(&p->p, active);
1306 p->slowpoll = SLOW_POLL_BUSY;
1307 } else
1308 p->slowpoll = SLOW_POLL_IDLE;
1309 }
1310 }
1311 if ((~p->irq_sources) & QM_PIRQ_DQRI)
1312 __poll_portal_fast(p, FSL_QMAN_POLL_LIMIT);
1313 }
1314
1315 void qman_stop_dequeues(void)
1316 {
1317 struct qman_portal *p = get_affine_portal();
1318
1319 qman_stop_dequeues_ex(p);
1320 }
1321
1322 void qman_start_dequeues(void)
1323 {
1324 struct qman_portal *p = get_affine_portal();
1325
1326 DPAA_ASSERT(p->dqrr_disable_ref > 0);
1327 if (!(--p->dqrr_disable_ref))
1328 qm_dqrr_set_maxfill(&p->p, DQRR_MAXFILL);
1329 }
1330
1331 void qman_static_dequeue_add(u32 pools, struct qman_portal *qp)
1332 {
1333 struct qman_portal *p = qp ? qp : get_affine_portal();
1334
1335 pools &= p->config->pools;
1336 p->sdqcr |= pools;
1337 qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1338 }
1339
1340 void qman_static_dequeue_del(u32 pools, struct qman_portal *qp)
1341 {
1342 struct qman_portal *p = qp ? qp : get_affine_portal();
1343
1344 pools &= p->config->pools;
1345 p->sdqcr &= ~pools;
1346 qm_dqrr_sdqcr_set(&p->p, p->sdqcr);
1347 }
1348
1349 u32 qman_static_dequeue_get(struct qman_portal *qp)
1350 {
1351 struct qman_portal *p = qp ? qp : get_affine_portal();
1352 return p->sdqcr;
1353 }
1354
1355 void qman_dca(const struct qm_dqrr_entry *dq, int park_request)
1356 {
1357 struct qman_portal *p = get_affine_portal();
1358
1359 qm_dqrr_cdc_consume_1ptr(&p->p, dq, park_request);
1360 }
1361
1362 void qman_dca_index(u8 index, int park_request)
1363 {
1364 struct qman_portal *p = get_affine_portal();
1365
1366 qm_dqrr_cdc_consume_1(&p->p, index, park_request);
1367 }
1368
1369 /* Frame queue API */
1370 static const char *mcr_result_str(u8 result)
1371 {
1372 switch (result) {
1373 case QM_MCR_RESULT_NULL:
1374 return "QM_MCR_RESULT_NULL";
1375 case QM_MCR_RESULT_OK:
1376 return "QM_MCR_RESULT_OK";
1377 case QM_MCR_RESULT_ERR_FQID:
1378 return "QM_MCR_RESULT_ERR_FQID";
1379 case QM_MCR_RESULT_ERR_FQSTATE:
1380 return "QM_MCR_RESULT_ERR_FQSTATE";
1381 case QM_MCR_RESULT_ERR_NOTEMPTY:
1382 return "QM_MCR_RESULT_ERR_NOTEMPTY";
1383 case QM_MCR_RESULT_PENDING:
1384 return "QM_MCR_RESULT_PENDING";
1385 case QM_MCR_RESULT_ERR_BADCOMMAND:
1386 return "QM_MCR_RESULT_ERR_BADCOMMAND";
1387 }
1388 return "<unknown MCR result>";
1389 }
1390
1391 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq)
1392 {
1393 struct qm_fqd fqd;
1394 struct qm_mcr_queryfq_np np;
1395 struct qm_mc_command *mcc;
1396 struct qm_mc_result *mcr;
1397 struct qman_portal *p;
1398
1399 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID) {
1400 int ret = qman_alloc_fqid(&fqid);
1401
1402 if (ret)
1403 return ret;
1404 }
1405 spin_lock_init(&fq->fqlock);
1406 fq->fqid = fqid;
1407 fq->fqid_le = cpu_to_be32(fqid);
1408 fq->flags = flags;
1409 fq->state = qman_fq_state_oos;
1410 fq->cgr_groupid = 0;
1411 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1412 if (unlikely(find_empty_fq_table_entry(&fq->key, fq))) {
1413 pr_info("Find empty table entry failed\n");
1414 return -ENOMEM;
1415 }
1416 fq->qman_fq_lookup_table = qman_fq_lookup_table;
1417 #endif
1418 if (!(flags & QMAN_FQ_FLAG_AS_IS) || (flags & QMAN_FQ_FLAG_NO_MODIFY))
1419 return 0;
1420 /* Everything else is AS_IS support */
1421 p = get_affine_portal();
1422 mcc = qm_mc_start(&p->p);
1423 mcc->queryfq.fqid = cpu_to_be32(fqid);
1424 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
1425 while (!(mcr = qm_mc_result(&p->p)))
1426 cpu_relax();
1427 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYFQ);
1428 if (mcr->result != QM_MCR_RESULT_OK) {
1429 pr_err("QUERYFQ failed: %s\n", mcr_result_str(mcr->result));
1430 goto err;
1431 }
1432 fqd = mcr->queryfq.fqd;
1433 hw_fqd_to_cpu(&fqd);
1434 mcc = qm_mc_start(&p->p);
1435 mcc->queryfq_np.fqid = cpu_to_be32(fqid);
1436 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
1437 while (!(mcr = qm_mc_result(&p->p)))
1438 cpu_relax();
1439 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYFQ_NP);
1440 if (mcr->result != QM_MCR_RESULT_OK) {
1441 pr_err("QUERYFQ_NP failed: %s\n", mcr_result_str(mcr->result));
1442 goto err;
1443 }
1444 np = mcr->queryfq_np;
1445 /* Phew, have queryfq and queryfq_np results, stitch together
1446 * the FQ object from those.
1447 */
1448 fq->cgr_groupid = fqd.cgid;
1449 switch (np.state & QM_MCR_NP_STATE_MASK) {
1450 case QM_MCR_NP_STATE_OOS:
1451 break;
1452 case QM_MCR_NP_STATE_RETIRED:
1453 fq->state = qman_fq_state_retired;
1454 if (np.frm_cnt)
1455 fq_set(fq, QMAN_FQ_STATE_NE);
1456 break;
1457 case QM_MCR_NP_STATE_TEN_SCHED:
1458 case QM_MCR_NP_STATE_TRU_SCHED:
1459 case QM_MCR_NP_STATE_ACTIVE:
1460 fq->state = qman_fq_state_sched;
1461 if (np.state & QM_MCR_NP_STATE_R)
1462 fq_set(fq, QMAN_FQ_STATE_CHANGING);
1463 break;
1464 case QM_MCR_NP_STATE_PARKED:
1465 fq->state = qman_fq_state_parked;
1466 break;
1467 default:
1468 DPAA_ASSERT(NULL == "invalid FQ state");
1469 }
1470 if (fqd.fq_ctrl & QM_FQCTRL_CGE)
1471 fq->state |= QMAN_FQ_STATE_CGR_EN;
1472 return 0;
1473 err:
1474 if (flags & QMAN_FQ_FLAG_DYNAMIC_FQID)
1475 qman_release_fqid(fqid);
1476 return -EIO;
1477 }
1478
1479 void qman_destroy_fq(struct qman_fq *fq, u32 flags __maybe_unused)
1480 {
1481 /*
1482 * We don't need to lock the FQ as it is a pre-condition that the FQ be
1483 * quiesced. Instead, run some checks.
1484 */
1485 switch (fq->state) {
1486 case qman_fq_state_parked:
1487 DPAA_ASSERT(flags & QMAN_FQ_DESTROY_PARKED);
1488 /* Fallthrough */
1489 case qman_fq_state_oos:
1490 if (fq_isset(fq, QMAN_FQ_FLAG_DYNAMIC_FQID))
1491 qman_release_fqid(fq->fqid);
1492 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1493 clear_fq_table_entry(fq->key);
1494 #endif
1495 return;
1496 default:
1497 break;
1498 }
1499 DPAA_ASSERT(NULL == "qman_free_fq() on unquiesced FQ!");
1500 }
1501
1502 u32 qman_fq_fqid(struct qman_fq *fq)
1503 {
1504 return fq->fqid;
1505 }
1506
1507 void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags)
1508 {
1509 if (state)
1510 *state = fq->state;
1511 if (flags)
1512 *flags = fq->flags;
1513 }
1514
1515 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts)
1516 {
1517 struct qm_mc_command *mcc;
1518 struct qm_mc_result *mcr;
1519 struct qman_portal *p;
1520
1521 u8 res, myverb = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1522 QM_MCC_VERB_INITFQ_SCHED : QM_MCC_VERB_INITFQ_PARKED;
1523
1524 if ((fq->state != qman_fq_state_oos) &&
1525 (fq->state != qman_fq_state_parked))
1526 return -EINVAL;
1527 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1528 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1529 return -EINVAL;
1530 #endif
1531 if (opts && (opts->we_mask & QM_INITFQ_WE_OAC)) {
1532 /* And can't be set at the same time as TDTHRESH */
1533 if (opts->we_mask & QM_INITFQ_WE_TDTHRESH)
1534 return -EINVAL;
1535 }
1536 /* Issue an INITFQ_[PARKED|SCHED] management command */
1537 p = get_affine_portal();
1538 FQLOCK(fq);
1539 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_CHANGING)) ||
1540 ((fq->state != qman_fq_state_oos) &&
1541 (fq->state != qman_fq_state_parked)))) {
1542 FQUNLOCK(fq);
1543 return -EBUSY;
1544 }
1545 mcc = qm_mc_start(&p->p);
1546 if (opts)
1547 mcc->initfq = *opts;
1548 mcc->initfq.fqid = cpu_to_be32(fq->fqid);
1549 mcc->initfq.count = 0;
1550 /*
1551 * If the FQ does *not* have the TO_DCPORTAL flag, context_b is set as a
1552 * demux pointer. Otherwise, the caller-provided value is allowed to
1553 * stand, don't overwrite it.
1554 */
1555 if (fq_isclear(fq, QMAN_FQ_FLAG_TO_DCPORTAL)) {
1556 dma_addr_t phys_fq;
1557
1558 mcc->initfq.we_mask |= QM_INITFQ_WE_CONTEXTB;
1559 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1560 mcc->initfq.fqd.context_b = cpu_to_be32(fq->key);
1561 #else
1562 mcc->initfq.fqd.context_b = (u32)(uintptr_t)fq;
1563 #endif
1564 /*
1565 * and the physical address - NB, if the user wasn't trying to
1566 * set CONTEXTA, clear the stashing settings.
1567 */
1568 if (!(mcc->initfq.we_mask & QM_INITFQ_WE_CONTEXTA)) {
1569 mcc->initfq.we_mask |= QM_INITFQ_WE_CONTEXTA;
1570 memset(&mcc->initfq.fqd.context_a, 0,
1571 sizeof(mcc->initfq.fqd.context_a));
1572 } else {
1573 phys_fq = rte_mem_virt2iova(fq);
1574 qm_fqd_stashing_set64(&mcc->initfq.fqd, phys_fq);
1575 }
1576 }
1577 if (flags & QMAN_INITFQ_FLAG_LOCAL) {
1578 mcc->initfq.fqd.dest.channel = p->config->channel;
1579 if (!(mcc->initfq.we_mask & QM_INITFQ_WE_DESTWQ)) {
1580 mcc->initfq.we_mask |= QM_INITFQ_WE_DESTWQ;
1581 mcc->initfq.fqd.dest.wq = 4;
1582 }
1583 }
1584 mcc->initfq.we_mask = cpu_to_be16(mcc->initfq.we_mask);
1585 cpu_to_hw_fqd(&mcc->initfq.fqd);
1586 qm_mc_commit(&p->p, myverb);
1587 while (!(mcr = qm_mc_result(&p->p)))
1588 cpu_relax();
1589 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1590 res = mcr->result;
1591 if (res != QM_MCR_RESULT_OK) {
1592 FQUNLOCK(fq);
1593 return -EIO;
1594 }
1595 if (opts) {
1596 if (opts->we_mask & QM_INITFQ_WE_FQCTRL) {
1597 if (opts->fqd.fq_ctrl & QM_FQCTRL_CGE)
1598 fq_set(fq, QMAN_FQ_STATE_CGR_EN);
1599 else
1600 fq_clear(fq, QMAN_FQ_STATE_CGR_EN);
1601 }
1602 if (opts->we_mask & QM_INITFQ_WE_CGID)
1603 fq->cgr_groupid = opts->fqd.cgid;
1604 }
1605 fq->state = (flags & QMAN_INITFQ_FLAG_SCHED) ?
1606 qman_fq_state_sched : qman_fq_state_parked;
1607 FQUNLOCK(fq);
1608 return 0;
1609 }
1610
1611 int qman_schedule_fq(struct qman_fq *fq)
1612 {
1613 struct qm_mc_command *mcc;
1614 struct qm_mc_result *mcr;
1615 struct qman_portal *p;
1616
1617 int ret = 0;
1618 u8 res;
1619
1620 if (fq->state != qman_fq_state_parked)
1621 return -EINVAL;
1622 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1623 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1624 return -EINVAL;
1625 #endif
1626 /* Issue a ALTERFQ_SCHED management command */
1627 p = get_affine_portal();
1628
1629 FQLOCK(fq);
1630 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_CHANGING)) ||
1631 (fq->state != qman_fq_state_parked))) {
1632 ret = -EBUSY;
1633 goto out;
1634 }
1635 mcc = qm_mc_start(&p->p);
1636 mcc->alterfq.fqid = cpu_to_be32(fq->fqid);
1637 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_SCHED);
1638 while (!(mcr = qm_mc_result(&p->p)))
1639 cpu_relax();
1640 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_SCHED);
1641 res = mcr->result;
1642 if (res != QM_MCR_RESULT_OK) {
1643 ret = -EIO;
1644 goto out;
1645 }
1646 fq->state = qman_fq_state_sched;
1647 out:
1648 FQUNLOCK(fq);
1649
1650 return ret;
1651 }
1652
1653 int qman_retire_fq(struct qman_fq *fq, u32 *flags)
1654 {
1655 struct qm_mc_command *mcc;
1656 struct qm_mc_result *mcr;
1657 struct qman_portal *p;
1658
1659 int rval;
1660 u8 res;
1661
1662 if ((fq->state != qman_fq_state_parked) &&
1663 (fq->state != qman_fq_state_sched))
1664 return -EINVAL;
1665 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1666 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1667 return -EINVAL;
1668 #endif
1669 p = get_affine_portal();
1670
1671 FQLOCK(fq);
1672 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_CHANGING)) ||
1673 (fq->state == qman_fq_state_retired) ||
1674 (fq->state == qman_fq_state_oos))) {
1675 rval = -EBUSY;
1676 goto out;
1677 }
1678 rval = table_push_fq(p, fq);
1679 if (rval)
1680 goto out;
1681 mcc = qm_mc_start(&p->p);
1682 mcc->alterfq.fqid = cpu_to_be32(fq->fqid);
1683 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_RETIRE);
1684 while (!(mcr = qm_mc_result(&p->p)))
1685 cpu_relax();
1686 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_RETIRE);
1687 res = mcr->result;
1688 /*
1689 * "Elegant" would be to treat OK/PENDING the same way; set CHANGING,
1690 * and defer the flags until FQRNI or FQRN (respectively) show up. But
1691 * "Friendly" is to process OK immediately, and not set CHANGING. We do
1692 * friendly, otherwise the caller doesn't necessarily have a fully
1693 * "retired" FQ on return even if the retirement was immediate. However
1694 * this does mean some code duplication between here and
1695 * fq_state_change().
1696 */
1697 if (likely(res == QM_MCR_RESULT_OK)) {
1698 rval = 0;
1699 /* Process 'fq' right away, we'll ignore FQRNI */
1700 if (mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY)
1701 fq_set(fq, QMAN_FQ_STATE_NE);
1702 if (mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)
1703 fq_set(fq, QMAN_FQ_STATE_ORL);
1704 else
1705 table_del_fq(p, fq);
1706 if (flags)
1707 *flags = fq->flags;
1708 fq->state = qman_fq_state_retired;
1709 if (fq->cb.fqs) {
1710 /*
1711 * Another issue with supporting "immediate" retirement
1712 * is that we're forced to drop FQRNIs, because by the
1713 * time they're seen it may already be "too late" (the
1714 * fq may have been OOS'd and free()'d already). But if
1715 * the upper layer wants a callback whether it's
1716 * immediate or not, we have to fake a "MR" entry to
1717 * look like an FQRNI...
1718 */
1719 struct qm_mr_entry msg;
1720
1721 msg.ern.verb = QM_MR_VERB_FQRNI;
1722 msg.fq.fqs = mcr->alterfq.fqs;
1723 msg.fq.fqid = fq->fqid;
1724 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
1725 msg.fq.contextB = fq->key;
1726 #else
1727 msg.fq.contextB = (u32)(uintptr_t)fq;
1728 #endif
1729 fq->cb.fqs(p, fq, &msg);
1730 }
1731 } else if (res == QM_MCR_RESULT_PENDING) {
1732 rval = 1;
1733 fq_set(fq, QMAN_FQ_STATE_CHANGING);
1734 } else {
1735 rval = -EIO;
1736 table_del_fq(p, fq);
1737 }
1738 out:
1739 FQUNLOCK(fq);
1740 return rval;
1741 }
1742
1743 int qman_oos_fq(struct qman_fq *fq)
1744 {
1745 struct qm_mc_command *mcc;
1746 struct qm_mc_result *mcr;
1747 struct qman_portal *p;
1748
1749 int ret = 0;
1750 u8 res;
1751
1752 if (fq->state != qman_fq_state_retired)
1753 return -EINVAL;
1754 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1755 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1756 return -EINVAL;
1757 #endif
1758 p = get_affine_portal();
1759 FQLOCK(fq);
1760 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_BLOCKOOS)) ||
1761 (fq->state != qman_fq_state_retired))) {
1762 ret = -EBUSY;
1763 goto out;
1764 }
1765 mcc = qm_mc_start(&p->p);
1766 mcc->alterfq.fqid = cpu_to_be32(fq->fqid);
1767 qm_mc_commit(&p->p, QM_MCC_VERB_ALTER_OOS);
1768 while (!(mcr = qm_mc_result(&p->p)))
1769 cpu_relax();
1770 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_ALTER_OOS);
1771 res = mcr->result;
1772 if (res != QM_MCR_RESULT_OK) {
1773 ret = -EIO;
1774 goto out;
1775 }
1776 fq->state = qman_fq_state_oos;
1777 out:
1778 FQUNLOCK(fq);
1779 return ret;
1780 }
1781
1782 int qman_fq_flow_control(struct qman_fq *fq, int xon)
1783 {
1784 struct qm_mc_command *mcc;
1785 struct qm_mc_result *mcr;
1786 struct qman_portal *p;
1787
1788 int ret = 0;
1789 u8 res;
1790 u8 myverb;
1791
1792 if ((fq->state == qman_fq_state_oos) ||
1793 (fq->state == qman_fq_state_retired) ||
1794 (fq->state == qman_fq_state_parked))
1795 return -EINVAL;
1796
1797 #ifdef RTE_LIBRTE_DPAA_HWDEBUG
1798 if (unlikely(fq_isset(fq, QMAN_FQ_FLAG_NO_MODIFY)))
1799 return -EINVAL;
1800 #endif
1801 /* Issue a ALTER_FQXON or ALTER_FQXOFF management command */
1802 p = get_affine_portal();
1803 FQLOCK(fq);
1804 if (unlikely((fq_isset(fq, QMAN_FQ_STATE_CHANGING)) ||
1805 (fq->state == qman_fq_state_parked) ||
1806 (fq->state == qman_fq_state_oos) ||
1807 (fq->state == qman_fq_state_retired))) {
1808 ret = -EBUSY;
1809 goto out;
1810 }
1811 mcc = qm_mc_start(&p->p);
1812 mcc->alterfq.fqid = fq->fqid;
1813 mcc->alterfq.count = 0;
1814 myverb = xon ? QM_MCC_VERB_ALTER_FQXON : QM_MCC_VERB_ALTER_FQXOFF;
1815
1816 qm_mc_commit(&p->p, myverb);
1817 while (!(mcr = qm_mc_result(&p->p)))
1818 cpu_relax();
1819 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1820
1821 res = mcr->result;
1822 if (res != QM_MCR_RESULT_OK) {
1823 ret = -EIO;
1824 goto out;
1825 }
1826 out:
1827 FQUNLOCK(fq);
1828 return ret;
1829 }
1830
1831 int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd)
1832 {
1833 struct qm_mc_command *mcc;
1834 struct qm_mc_result *mcr;
1835 struct qman_portal *p = get_affine_portal();
1836
1837 u8 res;
1838
1839 mcc = qm_mc_start(&p->p);
1840 mcc->queryfq.fqid = cpu_to_be32(fq->fqid);
1841 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ);
1842 while (!(mcr = qm_mc_result(&p->p)))
1843 cpu_relax();
1844 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
1845 res = mcr->result;
1846 if (res == QM_MCR_RESULT_OK)
1847 *fqd = mcr->queryfq.fqd;
1848 hw_fqd_to_cpu(fqd);
1849 if (res != QM_MCR_RESULT_OK)
1850 return -EIO;
1851 return 0;
1852 }
1853
1854 int qman_query_fq_has_pkts(struct qman_fq *fq)
1855 {
1856 struct qm_mc_command *mcc;
1857 struct qm_mc_result *mcr;
1858 struct qman_portal *p = get_affine_portal();
1859
1860 int ret = 0;
1861 u8 res;
1862
1863 mcc = qm_mc_start(&p->p);
1864 mcc->queryfq.fqid = cpu_to_be32(fq->fqid);
1865 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
1866 while (!(mcr = qm_mc_result(&p->p)))
1867 cpu_relax();
1868 res = mcr->result;
1869 if (res == QM_MCR_RESULT_OK)
1870 ret = !!mcr->queryfq_np.frm_cnt;
1871 return ret;
1872 }
1873
1874 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np)
1875 {
1876 struct qm_mc_command *mcc;
1877 struct qm_mc_result *mcr;
1878 struct qman_portal *p = get_affine_portal();
1879
1880 u8 res;
1881
1882 mcc = qm_mc_start(&p->p);
1883 mcc->queryfq.fqid = cpu_to_be32(fq->fqid);
1884 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
1885 while (!(mcr = qm_mc_result(&p->p)))
1886 cpu_relax();
1887 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
1888 res = mcr->result;
1889 if (res == QM_MCR_RESULT_OK) {
1890 *np = mcr->queryfq_np;
1891 np->fqd_link = be24_to_cpu(np->fqd_link);
1892 np->odp_seq = be16_to_cpu(np->odp_seq);
1893 np->orp_nesn = be16_to_cpu(np->orp_nesn);
1894 np->orp_ea_hseq = be16_to_cpu(np->orp_ea_hseq);
1895 np->orp_ea_tseq = be16_to_cpu(np->orp_ea_tseq);
1896 np->orp_ea_hptr = be24_to_cpu(np->orp_ea_hptr);
1897 np->orp_ea_tptr = be24_to_cpu(np->orp_ea_tptr);
1898 np->pfdr_hptr = be24_to_cpu(np->pfdr_hptr);
1899 np->pfdr_tptr = be24_to_cpu(np->pfdr_tptr);
1900 np->ics_surp = be16_to_cpu(np->ics_surp);
1901 np->byte_cnt = be32_to_cpu(np->byte_cnt);
1902 np->frm_cnt = be24_to_cpu(np->frm_cnt);
1903 np->ra1_sfdr = be16_to_cpu(np->ra1_sfdr);
1904 np->ra2_sfdr = be16_to_cpu(np->ra2_sfdr);
1905 np->od1_sfdr = be16_to_cpu(np->od1_sfdr);
1906 np->od2_sfdr = be16_to_cpu(np->od2_sfdr);
1907 np->od3_sfdr = be16_to_cpu(np->od3_sfdr);
1908 }
1909 if (res == QM_MCR_RESULT_ERR_FQID)
1910 return -ERANGE;
1911 else if (res != QM_MCR_RESULT_OK)
1912 return -EIO;
1913 return 0;
1914 }
1915
1916 int qman_query_fq_frm_cnt(struct qman_fq *fq, u32 *frm_cnt)
1917 {
1918 struct qm_mc_command *mcc;
1919 struct qm_mc_result *mcr;
1920 struct qman_portal *p = get_affine_portal();
1921
1922 mcc = qm_mc_start(&p->p);
1923 mcc->queryfq.fqid = cpu_to_be32(fq->fqid);
1924 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYFQ_NP);
1925 while (!(mcr = qm_mc_result(&p->p)))
1926 cpu_relax();
1927 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
1928
1929 if (mcr->result == QM_MCR_RESULT_OK)
1930 *frm_cnt = be24_to_cpu(mcr->queryfq_np.frm_cnt);
1931 else if (mcr->result == QM_MCR_RESULT_ERR_FQID)
1932 return -ERANGE;
1933 else if (mcr->result != QM_MCR_RESULT_OK)
1934 return -EIO;
1935 return 0;
1936 }
1937
1938 int qman_query_wq(u8 query_dedicated, struct qm_mcr_querywq *wq)
1939 {
1940 struct qm_mc_command *mcc;
1941 struct qm_mc_result *mcr;
1942 struct qman_portal *p = get_affine_portal();
1943
1944 u8 res, myverb;
1945
1946 myverb = (query_dedicated) ? QM_MCR_VERB_QUERYWQ_DEDICATED :
1947 QM_MCR_VERB_QUERYWQ;
1948 mcc = qm_mc_start(&p->p);
1949 mcc->querywq.channel.id = cpu_to_be16(wq->channel.id);
1950 qm_mc_commit(&p->p, myverb);
1951 while (!(mcr = qm_mc_result(&p->p)))
1952 cpu_relax();
1953 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == myverb);
1954 res = mcr->result;
1955 if (res == QM_MCR_RESULT_OK) {
1956 int i, array_len;
1957
1958 wq->channel.id = be16_to_cpu(mcr->querywq.channel.id);
1959 array_len = ARRAY_SIZE(mcr->querywq.wq_len);
1960 for (i = 0; i < array_len; i++)
1961 wq->wq_len[i] = be32_to_cpu(mcr->querywq.wq_len[i]);
1962 }
1963 if (res != QM_MCR_RESULT_OK) {
1964 pr_err("QUERYWQ failed: %s\n", mcr_result_str(res));
1965 return -EIO;
1966 }
1967 return 0;
1968 }
1969
1970 int qman_testwrite_cgr(struct qman_cgr *cgr, u64 i_bcnt,
1971 struct qm_mcr_cgrtestwrite *result)
1972 {
1973 struct qm_mc_command *mcc;
1974 struct qm_mc_result *mcr;
1975 struct qman_portal *p = get_affine_portal();
1976
1977 u8 res;
1978
1979 mcc = qm_mc_start(&p->p);
1980 mcc->cgrtestwrite.cgid = cgr->cgrid;
1981 mcc->cgrtestwrite.i_bcnt_hi = (u8)(i_bcnt >> 32);
1982 mcc->cgrtestwrite.i_bcnt_lo = (u32)i_bcnt;
1983 qm_mc_commit(&p->p, QM_MCC_VERB_CGRTESTWRITE);
1984 while (!(mcr = qm_mc_result(&p->p)))
1985 cpu_relax();
1986 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_CGRTESTWRITE);
1987 res = mcr->result;
1988 if (res == QM_MCR_RESULT_OK)
1989 *result = mcr->cgrtestwrite;
1990 if (res != QM_MCR_RESULT_OK) {
1991 pr_err("CGR TEST WRITE failed: %s\n", mcr_result_str(res));
1992 return -EIO;
1993 }
1994 return 0;
1995 }
1996
1997 int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *cgrd)
1998 {
1999 struct qm_mc_command *mcc;
2000 struct qm_mc_result *mcr;
2001 struct qman_portal *p = get_affine_portal();
2002 u8 res;
2003 unsigned int i;
2004
2005 mcc = qm_mc_start(&p->p);
2006 mcc->querycgr.cgid = cgr->cgrid;
2007 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCGR);
2008 while (!(mcr = qm_mc_result(&p->p)))
2009 cpu_relax();
2010 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCC_VERB_QUERYCGR);
2011 res = mcr->result;
2012 if (res == QM_MCR_RESULT_OK)
2013 *cgrd = mcr->querycgr;
2014 if (res != QM_MCR_RESULT_OK) {
2015 pr_err("QUERY_CGR failed: %s\n", mcr_result_str(res));
2016 return -EIO;
2017 }
2018 cgrd->cgr.wr_parm_g.word =
2019 be32_to_cpu(cgrd->cgr.wr_parm_g.word);
2020 cgrd->cgr.wr_parm_y.word =
2021 be32_to_cpu(cgrd->cgr.wr_parm_y.word);
2022 cgrd->cgr.wr_parm_r.word =
2023 be32_to_cpu(cgrd->cgr.wr_parm_r.word);
2024 cgrd->cgr.cscn_targ = be32_to_cpu(cgrd->cgr.cscn_targ);
2025 cgrd->cgr.__cs_thres = be16_to_cpu(cgrd->cgr.__cs_thres);
2026 for (i = 0; i < ARRAY_SIZE(cgrd->cscn_targ_swp); i++)
2027 cgrd->cscn_targ_swp[i] =
2028 be32_to_cpu(cgrd->cscn_targ_swp[i]);
2029 return 0;
2030 }
2031
2032 int qman_query_congestion(struct qm_mcr_querycongestion *congestion)
2033 {
2034 struct qm_mc_result *mcr;
2035 struct qman_portal *p = get_affine_portal();
2036 u8 res;
2037 unsigned int i;
2038
2039 qm_mc_start(&p->p);
2040 qm_mc_commit(&p->p, QM_MCC_VERB_QUERYCONGESTION);
2041 while (!(mcr = qm_mc_result(&p->p)))
2042 cpu_relax();
2043 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2044 QM_MCC_VERB_QUERYCONGESTION);
2045 res = mcr->result;
2046 if (res == QM_MCR_RESULT_OK)
2047 *congestion = mcr->querycongestion;
2048 if (res != QM_MCR_RESULT_OK) {
2049 pr_err("QUERY_CONGESTION failed: %s\n", mcr_result_str(res));
2050 return -EIO;
2051 }
2052 for (i = 0; i < ARRAY_SIZE(congestion->state.state); i++)
2053 congestion->state.state[i] =
2054 be32_to_cpu(congestion->state.state[i]);
2055 return 0;
2056 }
2057
2058 int qman_set_vdq(struct qman_fq *fq, u16 num, uint32_t vdqcr_flags)
2059 {
2060 struct qman_portal *p = get_affine_portal();
2061 uint32_t vdqcr;
2062 int ret = -EBUSY;
2063
2064 vdqcr = vdqcr_flags;
2065 vdqcr |= QM_VDQCR_NUMFRAMES_SET(num);
2066
2067 if ((fq->state != qman_fq_state_parked) &&
2068 (fq->state != qman_fq_state_retired)) {
2069 ret = -EINVAL;
2070 goto out;
2071 }
2072 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR)) {
2073 ret = -EBUSY;
2074 goto out;
2075 }
2076 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2077
2078 if (!p->vdqcr_owned) {
2079 FQLOCK(fq);
2080 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2081 goto escape;
2082 fq_set(fq, QMAN_FQ_STATE_VDQCR);
2083 FQUNLOCK(fq);
2084 p->vdqcr_owned = fq;
2085 ret = 0;
2086 }
2087 escape:
2088 if (!ret)
2089 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2090
2091 out:
2092 return ret;
2093 }
2094
2095 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags __maybe_unused,
2096 u32 vdqcr)
2097 {
2098 struct qman_portal *p;
2099 int ret = -EBUSY;
2100
2101 if ((fq->state != qman_fq_state_parked) &&
2102 (fq->state != qman_fq_state_retired))
2103 return -EINVAL;
2104 if (vdqcr & QM_VDQCR_FQID_MASK)
2105 return -EINVAL;
2106 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2107 return -EBUSY;
2108 vdqcr = (vdqcr & ~QM_VDQCR_FQID_MASK) | fq->fqid;
2109
2110 p = get_affine_portal();
2111
2112 if (!p->vdqcr_owned) {
2113 FQLOCK(fq);
2114 if (fq_isset(fq, QMAN_FQ_STATE_VDQCR))
2115 goto escape;
2116 fq_set(fq, QMAN_FQ_STATE_VDQCR);
2117 FQUNLOCK(fq);
2118 p->vdqcr_owned = fq;
2119 ret = 0;
2120 }
2121 escape:
2122 if (ret)
2123 return ret;
2124
2125 /* VDQCR is set */
2126 qm_dqrr_vdqcr_set(&p->p, vdqcr);
2127 return 0;
2128 }
2129
2130 static noinline void update_eqcr_ci(struct qman_portal *p, u8 avail)
2131 {
2132 if (avail)
2133 qm_eqcr_cce_prefetch(&p->p);
2134 else
2135 qm_eqcr_cce_update(&p->p);
2136 }
2137
2138 int qman_eqcr_is_empty(void)
2139 {
2140 struct qman_portal *p = get_affine_portal();
2141 u8 avail;
2142
2143 update_eqcr_ci(p, 0);
2144 avail = qm_eqcr_get_fill(&p->p);
2145 return (avail == 0);
2146 }
2147
2148 void qman_set_dc_ern(qman_cb_dc_ern handler, int affine)
2149 {
2150 if (affine) {
2151 struct qman_portal *p = get_affine_portal();
2152
2153 p->cb_dc_ern = handler;
2154 } else
2155 cb_dc_ern = handler;
2156 }
2157
2158 static inline struct qm_eqcr_entry *try_p_eq_start(struct qman_portal *p,
2159 struct qman_fq *fq,
2160 const struct qm_fd *fd,
2161 u32 flags)
2162 {
2163 struct qm_eqcr_entry *eq;
2164 u8 avail;
2165
2166 if (p->use_eqcr_ci_stashing) {
2167 /*
2168 * The stashing case is easy, only update if we need to in
2169 * order to try and liberate ring entries.
2170 */
2171 eq = qm_eqcr_start_stash(&p->p);
2172 } else {
2173 /*
2174 * The non-stashing case is harder, need to prefetch ahead of
2175 * time.
2176 */
2177 avail = qm_eqcr_get_avail(&p->p);
2178 if (avail < 2)
2179 update_eqcr_ci(p, avail);
2180 eq = qm_eqcr_start_no_stash(&p->p);
2181 }
2182
2183 if (unlikely(!eq))
2184 return NULL;
2185
2186 if (flags & QMAN_ENQUEUE_FLAG_DCA)
2187 eq->dca = QM_EQCR_DCA_ENABLE |
2188 ((flags & QMAN_ENQUEUE_FLAG_DCA_PARK) ?
2189 QM_EQCR_DCA_PARK : 0) |
2190 ((flags >> 8) & QM_EQCR_DCA_IDXMASK);
2191 eq->fqid = cpu_to_be32(fq->fqid);
2192 #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
2193 eq->tag = cpu_to_be32(fq->key);
2194 #else
2195 eq->tag = cpu_to_be32((u32)(uintptr_t)fq);
2196 #endif
2197 eq->fd = *fd;
2198 cpu_to_hw_fd(&eq->fd);
2199 return eq;
2200 }
2201
2202 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags)
2203 {
2204 struct qman_portal *p = get_affine_portal();
2205 struct qm_eqcr_entry *eq;
2206
2207 eq = try_p_eq_start(p, fq, fd, flags);
2208 if (!eq)
2209 return -EBUSY;
2210 /* Note: QM_EQCR_VERB_INTERRUPT == QMAN_ENQUEUE_FLAG_WAIT_SYNC */
2211 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_CMD_ENQUEUE |
2212 (flags & (QM_EQCR_VERB_COLOUR_MASK | QM_EQCR_VERB_INTERRUPT)));
2213 /* Factor the below out, it's used from qman_enqueue_orp() too */
2214 return 0;
2215 }
2216
2217 int qman_enqueue_multi(struct qman_fq *fq,
2218 const struct qm_fd *fd, u32 *flags,
2219 int frames_to_send)
2220 {
2221 struct qman_portal *p = get_affine_portal();
2222 struct qm_portal *portal = &p->p;
2223
2224 register struct qm_eqcr *eqcr = &portal->eqcr;
2225 struct qm_eqcr_entry *eq = eqcr->cursor, *prev_eq;
2226
2227 u8 i = 0, diff, old_ci, sent = 0;
2228
2229 /* Update the available entries if no entry is free */
2230 if (!eqcr->available) {
2231 old_ci = eqcr->ci;
2232 eqcr->ci = qm_cl_in(EQCR_CI) & (QM_EQCR_SIZE - 1);
2233 diff = qm_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
2234 eqcr->available += diff;
2235 if (!diff)
2236 return 0;
2237 }
2238
2239 /* try to send as many frames as possible */
2240 while (eqcr->available && frames_to_send--) {
2241 eq->fqid = fq->fqid_le;
2242 eq->fd.opaque_addr = fd->opaque_addr;
2243 eq->fd.addr = cpu_to_be40(fd->addr);
2244 eq->fd.status = cpu_to_be32(fd->status);
2245 eq->fd.opaque = cpu_to_be32(fd->opaque);
2246 if (flags && (flags[i] & QMAN_ENQUEUE_FLAG_DCA)) {
2247 eq->dca = QM_EQCR_DCA_ENABLE |
2248 ((flags[i] >> 8) & QM_EQCR_DCA_IDXMASK);
2249 }
2250 i++;
2251 eq = (void *)((unsigned long)(eq + 1) &
2252 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2253 eqcr->available--;
2254 sent++;
2255 fd++;
2256 }
2257 lwsync();
2258
2259 /* In order for flushes to complete faster, all lines are recorded in
2260 * 32 bit word.
2261 */
2262 eq = eqcr->cursor;
2263 for (i = 0; i < sent; i++) {
2264 eq->__dont_write_directly__verb =
2265 QM_EQCR_VERB_CMD_ENQUEUE | eqcr->vbit;
2266 prev_eq = eq;
2267 eq = (void *)((unsigned long)(eq + 1) &
2268 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2269 if (unlikely((prev_eq + 1) != eq))
2270 eqcr->vbit ^= QM_EQCR_VERB_VBIT;
2271 }
2272
2273 /* We need to flush all the lines but without load/store operations
2274 * between them
2275 */
2276 eq = eqcr->cursor;
2277 for (i = 0; i < sent; i++) {
2278 dcbf(eq);
2279 eq = (void *)((unsigned long)(eq + 1) &
2280 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2281 }
2282 /* Update cursor for the next call */
2283 eqcr->cursor = eq;
2284 return sent;
2285 }
2286
2287 int
2288 qman_enqueue_multi_fq(struct qman_fq *fq[], const struct qm_fd *fd,
2289 int frames_to_send)
2290 {
2291 struct qman_portal *p = get_affine_portal();
2292 struct qm_portal *portal = &p->p;
2293
2294 register struct qm_eqcr *eqcr = &portal->eqcr;
2295 struct qm_eqcr_entry *eq = eqcr->cursor, *prev_eq;
2296
2297 u8 i, diff, old_ci, sent = 0;
2298
2299 /* Update the available entries if no entry is free */
2300 if (!eqcr->available) {
2301 old_ci = eqcr->ci;
2302 eqcr->ci = qm_cl_in(EQCR_CI) & (QM_EQCR_SIZE - 1);
2303 diff = qm_cyc_diff(QM_EQCR_SIZE, old_ci, eqcr->ci);
2304 eqcr->available += diff;
2305 if (!diff)
2306 return 0;
2307 }
2308
2309 /* try to send as many frames as possible */
2310 while (eqcr->available && frames_to_send--) {
2311 eq->fqid = fq[sent]->fqid_le;
2312 eq->fd.opaque_addr = fd->opaque_addr;
2313 eq->fd.addr = cpu_to_be40(fd->addr);
2314 eq->fd.status = cpu_to_be32(fd->status);
2315 eq->fd.opaque = cpu_to_be32(fd->opaque);
2316
2317 eq = (void *)((unsigned long)(eq + 1) &
2318 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2319 eqcr->available--;
2320 sent++;
2321 fd++;
2322 }
2323 lwsync();
2324
2325 /* In order for flushes to complete faster, all lines are recorded in
2326 * 32 bit word.
2327 */
2328 eq = eqcr->cursor;
2329 for (i = 0; i < sent; i++) {
2330 eq->__dont_write_directly__verb =
2331 QM_EQCR_VERB_CMD_ENQUEUE | eqcr->vbit;
2332 prev_eq = eq;
2333 eq = (void *)((unsigned long)(eq + 1) &
2334 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2335 if (unlikely((prev_eq + 1) != eq))
2336 eqcr->vbit ^= QM_EQCR_VERB_VBIT;
2337 }
2338
2339 /* We need to flush all the lines but without load/store operations
2340 * between them
2341 */
2342 eq = eqcr->cursor;
2343 for (i = 0; i < sent; i++) {
2344 dcbf(eq);
2345 eq = (void *)((unsigned long)(eq + 1) &
2346 (~(unsigned long)(QM_EQCR_SIZE << 6)));
2347 }
2348 /* Update cursor for the next call */
2349 eqcr->cursor = eq;
2350 return sent;
2351 }
2352
2353 int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags,
2354 struct qman_fq *orp, u16 orp_seqnum)
2355 {
2356 struct qman_portal *p = get_affine_portal();
2357 struct qm_eqcr_entry *eq;
2358
2359 eq = try_p_eq_start(p, fq, fd, flags);
2360 if (!eq)
2361 return -EBUSY;
2362 /* Process ORP-specifics here */
2363 if (flags & QMAN_ENQUEUE_FLAG_NLIS)
2364 orp_seqnum |= QM_EQCR_SEQNUM_NLIS;
2365 else {
2366 orp_seqnum &= ~QM_EQCR_SEQNUM_NLIS;
2367 if (flags & QMAN_ENQUEUE_FLAG_NESN)
2368 orp_seqnum |= QM_EQCR_SEQNUM_NESN;
2369 else
2370 /* No need to check 4 QMAN_ENQUEUE_FLAG_HOLE */
2371 orp_seqnum &= ~QM_EQCR_SEQNUM_NESN;
2372 }
2373 eq->seqnum = cpu_to_be16(orp_seqnum);
2374 eq->orp = cpu_to_be32(orp->fqid);
2375 /* Note: QM_EQCR_VERB_INTERRUPT == QMAN_ENQUEUE_FLAG_WAIT_SYNC */
2376 qm_eqcr_pvb_commit(&p->p, QM_EQCR_VERB_ORP |
2377 ((flags & (QMAN_ENQUEUE_FLAG_HOLE | QMAN_ENQUEUE_FLAG_NESN)) ?
2378 0 : QM_EQCR_VERB_CMD_ENQUEUE) |
2379 (flags & (QM_EQCR_VERB_COLOUR_MASK | QM_EQCR_VERB_INTERRUPT)));
2380
2381 return 0;
2382 }
2383
2384 int qman_modify_cgr(struct qman_cgr *cgr, u32 flags,
2385 struct qm_mcc_initcgr *opts)
2386 {
2387 struct qm_mc_command *mcc;
2388 struct qm_mc_result *mcr;
2389 struct qman_portal *p = get_affine_portal();
2390
2391 u8 res;
2392 u8 verb = QM_MCC_VERB_MODIFYCGR;
2393
2394 mcc = qm_mc_start(&p->p);
2395 if (opts)
2396 mcc->initcgr = *opts;
2397 mcc->initcgr.we_mask = cpu_to_be16(mcc->initcgr.we_mask);
2398 mcc->initcgr.cgr.wr_parm_g.word =
2399 cpu_to_be32(mcc->initcgr.cgr.wr_parm_g.word);
2400 mcc->initcgr.cgr.wr_parm_y.word =
2401 cpu_to_be32(mcc->initcgr.cgr.wr_parm_y.word);
2402 mcc->initcgr.cgr.wr_parm_r.word =
2403 cpu_to_be32(mcc->initcgr.cgr.wr_parm_r.word);
2404 mcc->initcgr.cgr.cscn_targ = cpu_to_be32(mcc->initcgr.cgr.cscn_targ);
2405 mcc->initcgr.cgr.__cs_thres = cpu_to_be16(mcc->initcgr.cgr.__cs_thres);
2406
2407 mcc->initcgr.cgid = cgr->cgrid;
2408 if (flags & QMAN_CGR_FLAG_USE_INIT)
2409 verb = QM_MCC_VERB_INITCGR;
2410 qm_mc_commit(&p->p, verb);
2411 while (!(mcr = qm_mc_result(&p->p)))
2412 cpu_relax();
2413
2414 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == verb);
2415 res = mcr->result;
2416 return (res == QM_MCR_RESULT_OK) ? 0 : -EIO;
2417 }
2418
2419 #define TARG_MASK(n) (0x80000000 >> (n->config->channel - \
2420 QM_CHANNEL_SWPORTAL0))
2421 #define TARG_DCP_MASK(n) (0x80000000 >> (10 + n))
2422 #define PORTAL_IDX(n) (n->config->channel - QM_CHANNEL_SWPORTAL0)
2423
2424 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
2425 struct qm_mcc_initcgr *opts)
2426 {
2427 struct qm_mcr_querycgr cgr_state;
2428 struct qm_mcc_initcgr local_opts;
2429 int ret;
2430 struct qman_portal *p;
2431
2432 /* We have to check that the provided CGRID is within the limits of the
2433 * data-structures, for obvious reasons. However we'll let h/w take
2434 * care of determining whether it's within the limits of what exists on
2435 * the SoC.
2436 */
2437 if (cgr->cgrid >= __CGR_NUM)
2438 return -EINVAL;
2439
2440 p = get_affine_portal();
2441
2442 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2443 cgr->chan = p->config->channel;
2444 spin_lock(&p->cgr_lock);
2445
2446 /* if no opts specified, just add it to the list */
2447 if (!opts)
2448 goto add_list;
2449
2450 ret = qman_query_cgr(cgr, &cgr_state);
2451 if (ret)
2452 goto release_lock;
2453 if (opts)
2454 local_opts = *opts;
2455 if ((qman_ip_rev & 0xFF00) >= QMAN_REV30)
2456 local_opts.cgr.cscn_targ_upd_ctrl =
2457 QM_CGR_TARG_UDP_CTRL_WRITE_BIT | PORTAL_IDX(p);
2458 else
2459 /* Overwrite TARG */
2460 local_opts.cgr.cscn_targ = cgr_state.cgr.cscn_targ |
2461 TARG_MASK(p);
2462 local_opts.we_mask |= QM_CGR_WE_CSCN_TARG;
2463
2464 /* send init if flags indicate so */
2465 if (opts && (flags & QMAN_CGR_FLAG_USE_INIT))
2466 ret = qman_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT, &local_opts);
2467 else
2468 ret = qman_modify_cgr(cgr, 0, &local_opts);
2469 if (ret)
2470 goto release_lock;
2471 add_list:
2472 list_add(&cgr->node, &p->cgr_cbs);
2473
2474 /* Determine if newly added object requires its callback to be called */
2475 ret = qman_query_cgr(cgr, &cgr_state);
2476 if (ret) {
2477 /* we can't go back, so proceed and return success, but screen
2478 * and wail to the log file.
2479 */
2480 pr_crit("CGR HW state partially modified\n");
2481 ret = 0;
2482 goto release_lock;
2483 }
2484 if (cgr->cb && cgr_state.cgr.cscn_en && qman_cgrs_get(&p->cgrs[1],
2485 cgr->cgrid))
2486 cgr->cb(p, cgr, 1);
2487 release_lock:
2488 spin_unlock(&p->cgr_lock);
2489 return ret;
2490 }
2491
2492 int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal,
2493 struct qm_mcc_initcgr *opts)
2494 {
2495 struct qm_mcc_initcgr local_opts;
2496 struct qm_mcr_querycgr cgr_state;
2497 int ret;
2498
2499 if ((qman_ip_rev & 0xFF00) < QMAN_REV30) {
2500 pr_warn("QMan version doesn't support CSCN => DCP portal\n");
2501 return -EINVAL;
2502 }
2503 /* We have to check that the provided CGRID is within the limits of the
2504 * data-structures, for obvious reasons. However we'll let h/w take
2505 * care of determining whether it's within the limits of what exists on
2506 * the SoC.
2507 */
2508 if (cgr->cgrid >= __CGR_NUM)
2509 return -EINVAL;
2510
2511 ret = qman_query_cgr(cgr, &cgr_state);
2512 if (ret)
2513 return ret;
2514
2515 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2516 if (opts)
2517 local_opts = *opts;
2518
2519 if ((qman_ip_rev & 0xFF00) >= QMAN_REV30)
2520 local_opts.cgr.cscn_targ_upd_ctrl =
2521 QM_CGR_TARG_UDP_CTRL_WRITE_BIT |
2522 QM_CGR_TARG_UDP_CTRL_DCP | dcp_portal;
2523 else
2524 local_opts.cgr.cscn_targ = cgr_state.cgr.cscn_targ |
2525 TARG_DCP_MASK(dcp_portal);
2526 local_opts.we_mask |= QM_CGR_WE_CSCN_TARG;
2527
2528 /* send init if flags indicate so */
2529 if (opts && (flags & QMAN_CGR_FLAG_USE_INIT))
2530 ret = qman_modify_cgr(cgr, QMAN_CGR_FLAG_USE_INIT,
2531 &local_opts);
2532 else
2533 ret = qman_modify_cgr(cgr, 0, &local_opts);
2534
2535 return ret;
2536 }
2537
2538 int qman_delete_cgr(struct qman_cgr *cgr)
2539 {
2540 struct qm_mcr_querycgr cgr_state;
2541 struct qm_mcc_initcgr local_opts;
2542 int ret = 0;
2543 struct qman_cgr *i;
2544 struct qman_portal *p = get_affine_portal();
2545
2546 if (cgr->chan != p->config->channel) {
2547 pr_crit("Attempting to delete cgr from different portal than"
2548 " it was create: create 0x%x, delete 0x%x\n",
2549 cgr->chan, p->config->channel);
2550 ret = -EINVAL;
2551 goto put_portal;
2552 }
2553 memset(&local_opts, 0, sizeof(struct qm_mcc_initcgr));
2554 spin_lock(&p->cgr_lock);
2555 list_del(&cgr->node);
2556 /*
2557 * If there are no other CGR objects for this CGRID in the list,
2558 * update CSCN_TARG accordingly
2559 */
2560 list_for_each_entry(i, &p->cgr_cbs, node)
2561 if ((i->cgrid == cgr->cgrid) && i->cb)
2562 goto release_lock;
2563 ret = qman_query_cgr(cgr, &cgr_state);
2564 if (ret) {
2565 /* add back to the list */
2566 list_add(&cgr->node, &p->cgr_cbs);
2567 goto release_lock;
2568 }
2569 /* Overwrite TARG */
2570 local_opts.we_mask = QM_CGR_WE_CSCN_TARG;
2571 if ((qman_ip_rev & 0xFF00) >= QMAN_REV30)
2572 local_opts.cgr.cscn_targ_upd_ctrl = PORTAL_IDX(p);
2573 else
2574 local_opts.cgr.cscn_targ = cgr_state.cgr.cscn_targ &
2575 ~(TARG_MASK(p));
2576 ret = qman_modify_cgr(cgr, 0, &local_opts);
2577 if (ret)
2578 /* add back to the list */
2579 list_add(&cgr->node, &p->cgr_cbs);
2580 release_lock:
2581 spin_unlock(&p->cgr_lock);
2582 put_portal:
2583 return ret;
2584 }
2585
2586 int qman_shutdown_fq(u32 fqid)
2587 {
2588 struct qman_portal *p;
2589 struct qm_portal *low_p;
2590 struct qm_mc_command *mcc;
2591 struct qm_mc_result *mcr;
2592 u8 state;
2593 int orl_empty, fq_empty, drain = 0;
2594 u32 result;
2595 u32 channel, wq;
2596 u16 dest_wq;
2597
2598 p = get_affine_portal();
2599 low_p = &p->p;
2600
2601 /* Determine the state of the FQID */
2602 mcc = qm_mc_start(low_p);
2603 mcc->queryfq_np.fqid = cpu_to_be32(fqid);
2604 qm_mc_commit(low_p, QM_MCC_VERB_QUERYFQ_NP);
2605 while (!(mcr = qm_mc_result(low_p)))
2606 cpu_relax();
2607 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ_NP);
2608 state = mcr->queryfq_np.state & QM_MCR_NP_STATE_MASK;
2609 if (state == QM_MCR_NP_STATE_OOS)
2610 return 0; /* Already OOS, no need to do anymore checks */
2611
2612 /* Query which channel the FQ is using */
2613 mcc = qm_mc_start(low_p);
2614 mcc->queryfq.fqid = cpu_to_be32(fqid);
2615 qm_mc_commit(low_p, QM_MCC_VERB_QUERYFQ);
2616 while (!(mcr = qm_mc_result(low_p)))
2617 cpu_relax();
2618 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) == QM_MCR_VERB_QUERYFQ);
2619
2620 /* Need to store these since the MCR gets reused */
2621 dest_wq = be16_to_cpu(mcr->queryfq.fqd.dest_wq);
2622 channel = dest_wq & 0x7;
2623 wq = dest_wq >> 3;
2624
2625 switch (state) {
2626 case QM_MCR_NP_STATE_TEN_SCHED:
2627 case QM_MCR_NP_STATE_TRU_SCHED:
2628 case QM_MCR_NP_STATE_ACTIVE:
2629 case QM_MCR_NP_STATE_PARKED:
2630 orl_empty = 0;
2631 mcc = qm_mc_start(low_p);
2632 mcc->alterfq.fqid = cpu_to_be32(fqid);
2633 qm_mc_commit(low_p, QM_MCC_VERB_ALTER_RETIRE);
2634 while (!(mcr = qm_mc_result(low_p)))
2635 cpu_relax();
2636 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2637 QM_MCR_VERB_ALTER_RETIRE);
2638 result = mcr->result; /* Make a copy as we reuse MCR below */
2639
2640 if (result == QM_MCR_RESULT_PENDING) {
2641 /* Need to wait for the FQRN in the message ring, which
2642 * will only occur once the FQ has been drained. In
2643 * order for the FQ to drain the portal needs to be set
2644 * to dequeue from the channel the FQ is scheduled on
2645 */
2646 const struct qm_mr_entry *msg;
2647 const struct qm_dqrr_entry *dqrr = NULL;
2648 int found_fqrn = 0;
2649 __maybe_unused u16 dequeue_wq = 0;
2650
2651 /* Flag that we need to drain FQ */
2652 drain = 1;
2653
2654 if (channel >= qm_channel_pool1 &&
2655 channel < (u16)(qm_channel_pool1 + 15)) {
2656 /* Pool channel, enable the bit in the portal */
2657 dequeue_wq = (channel -
2658 qm_channel_pool1 + 1) << 4 | wq;
2659 } else if (channel < qm_channel_pool1) {
2660 /* Dedicated channel */
2661 dequeue_wq = wq;
2662 } else {
2663 pr_info("Cannot recover FQ 0x%x,"
2664 " it is scheduled on channel 0x%x",
2665 fqid, channel);
2666 return -EBUSY;
2667 }
2668 /* Set the sdqcr to drain this channel */
2669 if (channel < qm_channel_pool1)
2670 qm_dqrr_sdqcr_set(low_p,
2671 QM_SDQCR_TYPE_ACTIVE |
2672 QM_SDQCR_CHANNELS_DEDICATED);
2673 else
2674 qm_dqrr_sdqcr_set(low_p,
2675 QM_SDQCR_TYPE_ACTIVE |
2676 QM_SDQCR_CHANNELS_POOL_CONV
2677 (channel));
2678 while (!found_fqrn) {
2679 /* Keep draining DQRR while checking the MR*/
2680 qm_dqrr_pvb_update(low_p);
2681 dqrr = qm_dqrr_current(low_p);
2682 while (dqrr) {
2683 qm_dqrr_cdc_consume_1ptr(
2684 low_p, dqrr, 0);
2685 qm_dqrr_pvb_update(low_p);
2686 qm_dqrr_next(low_p);
2687 dqrr = qm_dqrr_current(low_p);
2688 }
2689 /* Process message ring too */
2690 qm_mr_pvb_update(low_p);
2691 msg = qm_mr_current(low_p);
2692 while (msg) {
2693 if ((msg->ern.verb &
2694 QM_MR_VERB_TYPE_MASK)
2695 == QM_MR_VERB_FQRN)
2696 found_fqrn = 1;
2697 qm_mr_next(low_p);
2698 qm_mr_cci_consume_to_current(low_p);
2699 qm_mr_pvb_update(low_p);
2700 msg = qm_mr_current(low_p);
2701 }
2702 cpu_relax();
2703 }
2704 }
2705 if (result != QM_MCR_RESULT_OK &&
2706 result != QM_MCR_RESULT_PENDING) {
2707 /* error */
2708 pr_err("qman_retire_fq failed on FQ 0x%x,"
2709 " result=0x%x\n", fqid, result);
2710 return -1;
2711 }
2712 if (!(mcr->alterfq.fqs & QM_MCR_FQS_ORLPRESENT)) {
2713 /* ORL had no entries, no need to wait until the
2714 * ERNs come in.
2715 */
2716 orl_empty = 1;
2717 }
2718 /* Retirement succeeded, check to see if FQ needs
2719 * to be drained.
2720 */
2721 if (drain || mcr->alterfq.fqs & QM_MCR_FQS_NOTEMPTY) {
2722 /* FQ is Not Empty, drain using volatile DQ commands */
2723 fq_empty = 0;
2724 do {
2725 const struct qm_dqrr_entry *dqrr = NULL;
2726 u32 vdqcr = fqid | QM_VDQCR_NUMFRAMES_SET(3);
2727
2728 qm_dqrr_vdqcr_set(low_p, vdqcr);
2729
2730 /* Wait for a dequeue to occur */
2731 while (dqrr == NULL) {
2732 qm_dqrr_pvb_update(low_p);
2733 dqrr = qm_dqrr_current(low_p);
2734 if (!dqrr)
2735 cpu_relax();
2736 }
2737 /* Process the dequeues, making sure to
2738 * empty the ring completely.
2739 */
2740 while (dqrr) {
2741 if (dqrr->fqid == fqid &&
2742 dqrr->stat & QM_DQRR_STAT_FQ_EMPTY)
2743 fq_empty = 1;
2744 qm_dqrr_cdc_consume_1ptr(low_p,
2745 dqrr, 0);
2746 qm_dqrr_pvb_update(low_p);
2747 qm_dqrr_next(low_p);
2748 dqrr = qm_dqrr_current(low_p);
2749 }
2750 } while (fq_empty == 0);
2751 }
2752 qm_dqrr_sdqcr_set(low_p, 0);
2753
2754 /* Wait for the ORL to have been completely drained */
2755 while (orl_empty == 0) {
2756 const struct qm_mr_entry *msg;
2757
2758 qm_mr_pvb_update(low_p);
2759 msg = qm_mr_current(low_p);
2760 while (msg) {
2761 if ((msg->ern.verb & QM_MR_VERB_TYPE_MASK) ==
2762 QM_MR_VERB_FQRL)
2763 orl_empty = 1;
2764 qm_mr_next(low_p);
2765 qm_mr_cci_consume_to_current(low_p);
2766 qm_mr_pvb_update(low_p);
2767 msg = qm_mr_current(low_p);
2768 }
2769 cpu_relax();
2770 }
2771 mcc = qm_mc_start(low_p);
2772 mcc->alterfq.fqid = cpu_to_be32(fqid);
2773 qm_mc_commit(low_p, QM_MCC_VERB_ALTER_OOS);
2774 while (!(mcr = qm_mc_result(low_p)))
2775 cpu_relax();
2776 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2777 QM_MCR_VERB_ALTER_OOS);
2778 if (mcr->result != QM_MCR_RESULT_OK) {
2779 pr_err(
2780 "OOS after drain Failed on FQID 0x%x, result 0x%x\n",
2781 fqid, mcr->result);
2782 return -1;
2783 }
2784 return 0;
2785
2786 case QM_MCR_NP_STATE_RETIRED:
2787 /* Send OOS Command */
2788 mcc = qm_mc_start(low_p);
2789 mcc->alterfq.fqid = cpu_to_be32(fqid);
2790 qm_mc_commit(low_p, QM_MCC_VERB_ALTER_OOS);
2791 while (!(mcr = qm_mc_result(low_p)))
2792 cpu_relax();
2793 DPAA_ASSERT((mcr->verb & QM_MCR_VERB_MASK) ==
2794 QM_MCR_VERB_ALTER_OOS);
2795 if (mcr->result) {
2796 pr_err("OOS Failed on FQID 0x%x\n", fqid);
2797 return -1;
2798 }
2799 return 0;
2800
2801 }
2802 return -1;
2803 }