]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/crypto/scheduler/scheduler_failover.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / drivers / crypto / scheduler / scheduler_failover.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2017 Intel Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 * * Neither the name of Intel Corporation nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <rte_cryptodev.h>
34 #include <rte_malloc.h>
35
36 #include "rte_cryptodev_scheduler_operations.h"
37 #include "scheduler_pmd_private.h"
38
39 #define PRIMARY_SLAVE_IDX 0
40 #define SECONDARY_SLAVE_IDX 1
41 #define NB_FAILOVER_SLAVES 2
42 #define SLAVE_SWITCH_MASK (0x01)
43
44 struct fo_scheduler_qp_ctx {
45 struct scheduler_slave primary_slave;
46 struct scheduler_slave secondary_slave;
47
48 uint8_t deq_idx;
49 };
50
51 static inline uint16_t __attribute__((always_inline))
52 failover_slave_enqueue(struct scheduler_slave *slave, uint8_t slave_idx,
53 struct rte_crypto_op **ops, uint16_t nb_ops)
54 {
55 uint16_t i, processed_ops;
56 struct rte_cryptodev_sym_session *sessions[nb_ops];
57 struct scheduler_session *sess0, *sess1, *sess2, *sess3;
58
59 for (i = 0; i < nb_ops && i < 4; i++)
60 rte_prefetch0(ops[i]->sym->session);
61
62 for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) {
63 rte_prefetch0(ops[i + 4]->sym->session);
64 rte_prefetch0(ops[i + 5]->sym->session);
65 rte_prefetch0(ops[i + 6]->sym->session);
66 rte_prefetch0(ops[i + 7]->sym->session);
67
68 sess0 = (struct scheduler_session *)
69 ops[i]->sym->session->_private;
70 sess1 = (struct scheduler_session *)
71 ops[i+1]->sym->session->_private;
72 sess2 = (struct scheduler_session *)
73 ops[i+2]->sym->session->_private;
74 sess3 = (struct scheduler_session *)
75 ops[i+3]->sym->session->_private;
76
77 sessions[i] = ops[i]->sym->session;
78 sessions[i + 1] = ops[i + 1]->sym->session;
79 sessions[i + 2] = ops[i + 2]->sym->session;
80 sessions[i + 3] = ops[i + 3]->sym->session;
81
82 ops[i]->sym->session = sess0->sessions[slave_idx];
83 ops[i + 1]->sym->session = sess1->sessions[slave_idx];
84 ops[i + 2]->sym->session = sess2->sessions[slave_idx];
85 ops[i + 3]->sym->session = sess3->sessions[slave_idx];
86 }
87
88 for (; i < nb_ops; i++) {
89 sess0 = (struct scheduler_session *)
90 ops[i]->sym->session->_private;
91 sessions[i] = ops[i]->sym->session;
92 ops[i]->sym->session = sess0->sessions[slave_idx];
93 }
94
95 processed_ops = rte_cryptodev_enqueue_burst(slave->dev_id,
96 slave->qp_id, ops, nb_ops);
97 slave->nb_inflight_cops += processed_ops;
98
99 if (unlikely(processed_ops < nb_ops))
100 for (i = processed_ops; i < nb_ops; i++)
101 ops[i]->sym->session = sessions[i];
102
103 return processed_ops;
104 }
105
106 static uint16_t
107 schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
108 {
109 struct fo_scheduler_qp_ctx *qp_ctx =
110 ((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
111 uint16_t enqueued_ops;
112
113 if (unlikely(nb_ops == 0))
114 return 0;
115
116 enqueued_ops = failover_slave_enqueue(&qp_ctx->primary_slave,
117 PRIMARY_SLAVE_IDX, ops, nb_ops);
118
119 if (enqueued_ops < nb_ops)
120 enqueued_ops += failover_slave_enqueue(&qp_ctx->secondary_slave,
121 SECONDARY_SLAVE_IDX, &ops[enqueued_ops],
122 nb_ops - enqueued_ops);
123
124 return enqueued_ops;
125 }
126
127
128 static uint16_t
129 schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
130 uint16_t nb_ops)
131 {
132 struct rte_ring *order_ring =
133 ((struct scheduler_qp_ctx *)qp)->order_ring;
134 uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
135 nb_ops);
136 uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
137 nb_ops_to_enq);
138
139 scheduler_order_insert(order_ring, ops, nb_ops_enqd);
140
141 return nb_ops_enqd;
142 }
143
144 static uint16_t
145 schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
146 {
147 struct fo_scheduler_qp_ctx *qp_ctx =
148 ((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
149 struct scheduler_slave *slaves[NB_FAILOVER_SLAVES] = {
150 &qp_ctx->primary_slave, &qp_ctx->secondary_slave};
151 struct scheduler_slave *slave = slaves[qp_ctx->deq_idx];
152 uint16_t nb_deq_ops = 0, nb_deq_ops2 = 0;
153
154 if (slave->nb_inflight_cops) {
155 nb_deq_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
156 slave->qp_id, ops, nb_ops);
157 slave->nb_inflight_cops -= nb_deq_ops;
158 }
159
160 qp_ctx->deq_idx = (~qp_ctx->deq_idx) & SLAVE_SWITCH_MASK;
161
162 if (nb_deq_ops == nb_ops)
163 return nb_deq_ops;
164
165 slave = slaves[qp_ctx->deq_idx];
166
167 if (slave->nb_inflight_cops) {
168 nb_deq_ops2 = rte_cryptodev_dequeue_burst(slave->dev_id,
169 slave->qp_id, &ops[nb_deq_ops], nb_ops - nb_deq_ops);
170 slave->nb_inflight_cops -= nb_deq_ops2;
171 }
172
173 return nb_deq_ops + nb_deq_ops2;
174 }
175
176 static uint16_t
177 schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
178 uint16_t nb_ops)
179 {
180 struct rte_ring *order_ring =
181 ((struct scheduler_qp_ctx *)qp)->order_ring;
182
183 schedule_dequeue(qp, ops, nb_ops);
184
185 return scheduler_order_drain(order_ring, ops, nb_ops);
186 }
187
188 static int
189 slave_attach(__rte_unused struct rte_cryptodev *dev,
190 __rte_unused uint8_t slave_id)
191 {
192 return 0;
193 }
194
195 static int
196 slave_detach(__rte_unused struct rte_cryptodev *dev,
197 __rte_unused uint8_t slave_id)
198 {
199 return 0;
200 }
201
202 static int
203 scheduler_start(struct rte_cryptodev *dev)
204 {
205 struct scheduler_ctx *sched_ctx = dev->data->dev_private;
206 uint16_t i;
207
208 if (sched_ctx->nb_slaves < 2) {
209 CS_LOG_ERR("Number of slaves shall no less than 2");
210 return -ENOMEM;
211 }
212
213 if (sched_ctx->reordering_enabled) {
214 dev->enqueue_burst = schedule_enqueue_ordering;
215 dev->dequeue_burst = schedule_dequeue_ordering;
216 } else {
217 dev->enqueue_burst = schedule_enqueue;
218 dev->dequeue_burst = schedule_dequeue;
219 }
220
221 for (i = 0; i < dev->data->nb_queue_pairs; i++) {
222 struct fo_scheduler_qp_ctx *qp_ctx =
223 ((struct scheduler_qp_ctx *)
224 dev->data->queue_pairs[i])->private_qp_ctx;
225
226 rte_memcpy(&qp_ctx->primary_slave,
227 &sched_ctx->slaves[PRIMARY_SLAVE_IDX],
228 sizeof(struct scheduler_slave));
229 rte_memcpy(&qp_ctx->secondary_slave,
230 &sched_ctx->slaves[SECONDARY_SLAVE_IDX],
231 sizeof(struct scheduler_slave));
232 }
233
234 return 0;
235 }
236
237 static int
238 scheduler_stop(__rte_unused struct rte_cryptodev *dev)
239 {
240 return 0;
241 }
242
243 static int
244 scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
245 {
246 struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
247 struct fo_scheduler_qp_ctx *fo_qp_ctx;
248
249 fo_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*fo_qp_ctx), 0,
250 rte_socket_id());
251 if (!fo_qp_ctx) {
252 CS_LOG_ERR("failed allocate memory for private queue pair");
253 return -ENOMEM;
254 }
255
256 qp_ctx->private_qp_ctx = (void *)fo_qp_ctx;
257
258 return 0;
259 }
260
261 static int
262 scheduler_create_private_ctx(__rte_unused struct rte_cryptodev *dev)
263 {
264 return 0;
265 }
266
267 struct rte_cryptodev_scheduler_ops scheduler_fo_ops = {
268 slave_attach,
269 slave_detach,
270 scheduler_start,
271 scheduler_stop,
272 scheduler_config_qp,
273 scheduler_create_private_ctx,
274 NULL, /* option_set */
275 NULL /*option_get */
276 };
277
278 struct rte_cryptodev_scheduler fo_scheduler = {
279 .name = "failover-scheduler",
280 .description = "scheduler which enqueues to the primary slave, "
281 "and only then enqueues to the secondary slave "
282 "upon failing on enqueuing to primary",
283 .mode = CDEV_SCHED_MODE_FAILOVER,
284 .ops = &scheduler_fo_ops
285 };
286
287 struct rte_cryptodev_scheduler *failover_scheduler = &fo_scheduler;