]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/crypto/scheduler/scheduler_multicore.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / crypto / scheduler / scheduler_multicore.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
3 */
4 #include <unistd.h>
5
6 #include <rte_cryptodev.h>
7 #include <rte_malloc.h>
8
9 #include "rte_cryptodev_scheduler_operations.h"
10 #include "scheduler_pmd_private.h"
11
12 #define MC_SCHED_ENQ_RING_NAME_PREFIX "MCS_ENQR_"
13 #define MC_SCHED_DEQ_RING_NAME_PREFIX "MCS_DEQR_"
14
15 #define MC_SCHED_BUFFER_SIZE 32
16
17 #define CRYPTO_OP_STATUS_BIT_COMPLETE 0x80
18
19 /** multi-core scheduler context */
20 struct mc_scheduler_ctx {
21 uint32_t num_workers; /**< Number of workers polling */
22 uint32_t stop_signal;
23
24 struct rte_ring *sched_enq_ring[RTE_MAX_LCORE];
25 struct rte_ring *sched_deq_ring[RTE_MAX_LCORE];
26 };
27
28 struct mc_scheduler_qp_ctx {
29 struct scheduler_slave slaves[RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES];
30 uint32_t nb_slaves;
31
32 uint32_t last_enq_worker_idx;
33 uint32_t last_deq_worker_idx;
34
35 struct mc_scheduler_ctx *mc_private_ctx;
36 };
37
38 static uint16_t
39 schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
40 {
41 struct mc_scheduler_qp_ctx *mc_qp_ctx =
42 ((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
43 struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
44 uint32_t worker_idx = mc_qp_ctx->last_enq_worker_idx;
45 uint16_t i, processed_ops = 0;
46
47 if (unlikely(nb_ops == 0))
48 return 0;
49
50 for (i = 0; i < mc_ctx->num_workers && nb_ops != 0; i++) {
51 struct rte_ring *enq_ring = mc_ctx->sched_enq_ring[worker_idx];
52 uint16_t nb_queue_ops = rte_ring_enqueue_burst(enq_ring,
53 (void *)(&ops[processed_ops]), nb_ops, NULL);
54
55 nb_ops -= nb_queue_ops;
56 processed_ops += nb_queue_ops;
57
58 if (++worker_idx == mc_ctx->num_workers)
59 worker_idx = 0;
60 }
61 mc_qp_ctx->last_enq_worker_idx = worker_idx;
62
63 return processed_ops;
64 }
65
66 static uint16_t
67 schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
68 uint16_t nb_ops)
69 {
70 struct rte_ring *order_ring =
71 ((struct scheduler_qp_ctx *)qp)->order_ring;
72 uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
73 nb_ops);
74 uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
75 nb_ops_to_enq);
76
77 scheduler_order_insert(order_ring, ops, nb_ops_enqd);
78
79 return nb_ops_enqd;
80 }
81
82
83 static uint16_t
84 schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
85 {
86 struct mc_scheduler_qp_ctx *mc_qp_ctx =
87 ((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
88 struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
89 uint32_t worker_idx = mc_qp_ctx->last_deq_worker_idx;
90 uint16_t i, processed_ops = 0;
91
92 for (i = 0; i < mc_ctx->num_workers && nb_ops != 0; i++) {
93 struct rte_ring *deq_ring = mc_ctx->sched_deq_ring[worker_idx];
94 uint16_t nb_deq_ops = rte_ring_dequeue_burst(deq_ring,
95 (void *)(&ops[processed_ops]), nb_ops, NULL);
96
97 nb_ops -= nb_deq_ops;
98 processed_ops += nb_deq_ops;
99 if (++worker_idx == mc_ctx->num_workers)
100 worker_idx = 0;
101 }
102
103 mc_qp_ctx->last_deq_worker_idx = worker_idx;
104
105 return processed_ops;
106
107 }
108
109 static uint16_t
110 schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
111 uint16_t nb_ops)
112 {
113 struct rte_ring *order_ring = ((struct scheduler_qp_ctx *)qp)->order_ring;
114 struct rte_crypto_op *op;
115 uint32_t nb_objs = rte_ring_count(order_ring);
116 uint32_t nb_ops_to_deq = 0;
117 uint32_t nb_ops_deqd = 0;
118
119 if (nb_objs > nb_ops)
120 nb_objs = nb_ops;
121
122 while (nb_ops_to_deq < nb_objs) {
123 SCHEDULER_GET_RING_OBJ(order_ring, nb_ops_to_deq, op);
124
125 if (!(op->status & CRYPTO_OP_STATUS_BIT_COMPLETE))
126 break;
127
128 op->status &= ~CRYPTO_OP_STATUS_BIT_COMPLETE;
129 nb_ops_to_deq++;
130 }
131
132 if (nb_ops_to_deq) {
133 nb_ops_deqd = rte_ring_sc_dequeue_bulk(order_ring,
134 (void **)ops, nb_ops_to_deq, NULL);
135 }
136
137 return nb_ops_deqd;
138 }
139
140 static int
141 slave_attach(__rte_unused struct rte_cryptodev *dev,
142 __rte_unused uint8_t slave_id)
143 {
144 return 0;
145 }
146
147 static int
148 slave_detach(__rte_unused struct rte_cryptodev *dev,
149 __rte_unused uint8_t slave_id)
150 {
151 return 0;
152 }
153
154 static int
155 mc_scheduler_worker(struct rte_cryptodev *dev)
156 {
157 struct scheduler_ctx *sched_ctx = dev->data->dev_private;
158 struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
159 struct rte_ring *enq_ring;
160 struct rte_ring *deq_ring;
161 uint32_t core_id = rte_lcore_id();
162 int i, worker_idx = -1;
163 struct scheduler_slave *slave;
164 struct rte_crypto_op *enq_ops[MC_SCHED_BUFFER_SIZE];
165 struct rte_crypto_op *deq_ops[MC_SCHED_BUFFER_SIZE];
166 uint16_t processed_ops;
167 uint16_t pending_enq_ops = 0;
168 uint16_t pending_enq_ops_idx = 0;
169 uint16_t pending_deq_ops = 0;
170 uint16_t pending_deq_ops_idx = 0;
171 uint16_t inflight_ops = 0;
172 const uint8_t reordering_enabled = sched_ctx->reordering_enabled;
173
174 for (i = 0; i < (int)sched_ctx->nb_wc; i++) {
175 if (sched_ctx->wc_pool[i] == core_id) {
176 worker_idx = i;
177 break;
178 }
179 }
180 if (worker_idx == -1) {
181 CR_SCHED_LOG(ERR, "worker on core %u:cannot find worker index!",
182 core_id);
183 return -1;
184 }
185
186 slave = &sched_ctx->slaves[worker_idx];
187 enq_ring = mc_ctx->sched_enq_ring[worker_idx];
188 deq_ring = mc_ctx->sched_deq_ring[worker_idx];
189
190 while (!mc_ctx->stop_signal) {
191 if (pending_enq_ops) {
192 processed_ops =
193 rte_cryptodev_enqueue_burst(slave->dev_id,
194 slave->qp_id, &enq_ops[pending_enq_ops_idx],
195 pending_enq_ops);
196 pending_enq_ops -= processed_ops;
197 pending_enq_ops_idx += processed_ops;
198 inflight_ops += processed_ops;
199 } else {
200 processed_ops = rte_ring_dequeue_burst(enq_ring, (void *)enq_ops,
201 MC_SCHED_BUFFER_SIZE, NULL);
202 if (processed_ops) {
203 pending_enq_ops_idx = rte_cryptodev_enqueue_burst(
204 slave->dev_id, slave->qp_id,
205 enq_ops, processed_ops);
206 pending_enq_ops = processed_ops - pending_enq_ops_idx;
207 inflight_ops += pending_enq_ops_idx;
208 }
209 }
210
211 if (pending_deq_ops) {
212 processed_ops = rte_ring_enqueue_burst(
213 deq_ring, (void *)&deq_ops[pending_deq_ops_idx],
214 pending_deq_ops, NULL);
215 pending_deq_ops -= processed_ops;
216 pending_deq_ops_idx += processed_ops;
217 } else if (inflight_ops) {
218 processed_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
219 slave->qp_id, deq_ops, MC_SCHED_BUFFER_SIZE);
220 if (processed_ops) {
221 inflight_ops -= processed_ops;
222 if (reordering_enabled) {
223 uint16_t j;
224
225 for (j = 0; j < processed_ops; j++) {
226 deq_ops[j]->status |=
227 CRYPTO_OP_STATUS_BIT_COMPLETE;
228 }
229 } else {
230 pending_deq_ops_idx = rte_ring_enqueue_burst(
231 deq_ring, (void *)deq_ops, processed_ops,
232 NULL);
233 pending_deq_ops = processed_ops -
234 pending_deq_ops_idx;
235 }
236 }
237 }
238
239 rte_pause();
240 }
241
242 return 0;
243 }
244
245 static int
246 scheduler_start(struct rte_cryptodev *dev)
247 {
248 struct scheduler_ctx *sched_ctx = dev->data->dev_private;
249 struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
250 uint16_t i;
251
252 mc_ctx->stop_signal = 0;
253
254 for (i = 0; i < sched_ctx->nb_wc; i++)
255 rte_eal_remote_launch(
256 (lcore_function_t *)mc_scheduler_worker, dev,
257 sched_ctx->wc_pool[i]);
258
259 if (sched_ctx->reordering_enabled) {
260 dev->enqueue_burst = &schedule_enqueue_ordering;
261 dev->dequeue_burst = &schedule_dequeue_ordering;
262 } else {
263 dev->enqueue_burst = &schedule_enqueue;
264 dev->dequeue_burst = &schedule_dequeue;
265 }
266
267 for (i = 0; i < dev->data->nb_queue_pairs; i++) {
268 struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
269 struct mc_scheduler_qp_ctx *mc_qp_ctx =
270 qp_ctx->private_qp_ctx;
271 uint32_t j;
272
273 memset(mc_qp_ctx->slaves, 0,
274 RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES *
275 sizeof(struct scheduler_slave));
276 for (j = 0; j < sched_ctx->nb_slaves; j++) {
277 mc_qp_ctx->slaves[j].dev_id =
278 sched_ctx->slaves[j].dev_id;
279 mc_qp_ctx->slaves[j].qp_id = i;
280 }
281
282 mc_qp_ctx->nb_slaves = sched_ctx->nb_slaves;
283
284 mc_qp_ctx->last_enq_worker_idx = 0;
285 mc_qp_ctx->last_deq_worker_idx = 0;
286 }
287
288 return 0;
289 }
290
291 static int
292 scheduler_stop(struct rte_cryptodev *dev)
293 {
294 struct scheduler_ctx *sched_ctx = dev->data->dev_private;
295 struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
296 uint16_t i;
297
298 mc_ctx->stop_signal = 1;
299
300 for (i = 0; i < sched_ctx->nb_wc; i++)
301 rte_eal_wait_lcore(sched_ctx->wc_pool[i]);
302
303 return 0;
304 }
305
306 static int
307 scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
308 {
309 struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
310 struct mc_scheduler_qp_ctx *mc_qp_ctx;
311 struct scheduler_ctx *sched_ctx = dev->data->dev_private;
312 struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
313
314 mc_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*mc_qp_ctx), 0,
315 rte_socket_id());
316 if (!mc_qp_ctx) {
317 CR_SCHED_LOG(ERR, "failed allocate memory for private queue pair");
318 return -ENOMEM;
319 }
320
321 mc_qp_ctx->mc_private_ctx = mc_ctx;
322 qp_ctx->private_qp_ctx = (void *)mc_qp_ctx;
323
324
325 return 0;
326 }
327
328 static int
329 scheduler_create_private_ctx(struct rte_cryptodev *dev)
330 {
331 struct scheduler_ctx *sched_ctx = dev->data->dev_private;
332 struct mc_scheduler_ctx *mc_ctx = NULL;
333 uint16_t i;
334
335 if (sched_ctx->private_ctx) {
336 rte_free(sched_ctx->private_ctx);
337 sched_ctx->private_ctx = NULL;
338 }
339
340 mc_ctx = rte_zmalloc_socket(NULL, sizeof(struct mc_scheduler_ctx), 0,
341 rte_socket_id());
342 if (!mc_ctx) {
343 CR_SCHED_LOG(ERR, "failed allocate memory");
344 return -ENOMEM;
345 }
346
347 mc_ctx->num_workers = sched_ctx->nb_wc;
348 for (i = 0; i < sched_ctx->nb_wc; i++) {
349 char r_name[16];
350
351 snprintf(r_name, sizeof(r_name), MC_SCHED_ENQ_RING_NAME_PREFIX
352 "%u_%u", dev->data->dev_id, i);
353 mc_ctx->sched_enq_ring[i] = rte_ring_lookup(r_name);
354 if (!mc_ctx->sched_enq_ring[i]) {
355 mc_ctx->sched_enq_ring[i] = rte_ring_create(r_name,
356 PER_SLAVE_BUFF_SIZE,
357 rte_socket_id(),
358 RING_F_SC_DEQ | RING_F_SP_ENQ);
359 if (!mc_ctx->sched_enq_ring[i]) {
360 CR_SCHED_LOG(ERR, "Cannot create ring for worker %u",
361 i);
362 goto exit;
363 }
364 }
365 snprintf(r_name, sizeof(r_name), MC_SCHED_DEQ_RING_NAME_PREFIX
366 "%u_%u", dev->data->dev_id, i);
367 mc_ctx->sched_deq_ring[i] = rte_ring_lookup(r_name);
368 if (!mc_ctx->sched_deq_ring[i]) {
369 mc_ctx->sched_deq_ring[i] = rte_ring_create(r_name,
370 PER_SLAVE_BUFF_SIZE,
371 rte_socket_id(),
372 RING_F_SC_DEQ | RING_F_SP_ENQ);
373 if (!mc_ctx->sched_deq_ring[i]) {
374 CR_SCHED_LOG(ERR, "Cannot create ring for worker %u",
375 i);
376 goto exit;
377 }
378 }
379 }
380
381 sched_ctx->private_ctx = (void *)mc_ctx;
382
383 return 0;
384
385 exit:
386 for (i = 0; i < sched_ctx->nb_wc; i++) {
387 rte_ring_free(mc_ctx->sched_enq_ring[i]);
388 rte_ring_free(mc_ctx->sched_deq_ring[i]);
389 }
390 rte_free(mc_ctx);
391
392 return -1;
393 }
394
395 static struct rte_cryptodev_scheduler_ops scheduler_mc_ops = {
396 slave_attach,
397 slave_detach,
398 scheduler_start,
399 scheduler_stop,
400 scheduler_config_qp,
401 scheduler_create_private_ctx,
402 NULL, /* option_set */
403 NULL /* option_get */
404 };
405
406 static struct rte_cryptodev_scheduler mc_scheduler = {
407 .name = "multicore-scheduler",
408 .description = "scheduler which will run burst across multiple cpu cores",
409 .mode = CDEV_SCHED_MODE_MULTICORE,
410 .ops = &scheduler_mc_ops
411 };
412
413 struct rte_cryptodev_scheduler *crypto_scheduler_multicore = &mc_scheduler;