]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/bnx2x/bnx2x.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / bnx2x / bnx2x.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright (c) 2007-2013 Broadcom Corporation.
3 *
4 * Eric Davis <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano <zambrano@broadcom.com>
7 *
8 * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9 * Copyright (c) 2015-2018 Cavium Inc.
10 * All rights reserved.
11 * www.cavium.com
12 */
13
14 #define BNX2X_DRIVER_VERSION "1.78.18"
15
16 #include "bnx2x.h"
17 #include "bnx2x_vfpf.h"
18 #include "ecore_sp.h"
19 #include "ecore_init.h"
20 #include "ecore_init_ops.h"
21
22 #include "rte_version.h"
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <zlib.h>
28 #include <rte_string_fns.h>
29
30 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
31 #define BNX2X_PMD_VERSION_MAJOR 1
32 #define BNX2X_PMD_VERSION_MINOR 0
33 #define BNX2X_PMD_VERSION_REVISION 7
34 #define BNX2X_PMD_VERSION_PATCH 1
35
36 static inline const char *
37 bnx2x_pmd_version(void)
38 {
39 static char version[32];
40
41 snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
42 BNX2X_PMD_VER_PREFIX,
43 BNX2X_DRIVER_VERSION,
44 BNX2X_PMD_VERSION_MAJOR,
45 BNX2X_PMD_VERSION_MINOR,
46 BNX2X_PMD_VERSION_REVISION,
47 BNX2X_PMD_VERSION_PATCH);
48
49 return version;
50 }
51
52 static z_stream zlib_stream;
53
54 #define EVL_VLID_MASK 0x0FFF
55
56 #define BNX2X_DEF_SB_ATT_IDX 0x0001
57 #define BNX2X_DEF_SB_IDX 0x0002
58
59 /*
60 * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
61 * function HW initialization.
62 */
63 #define FLR_WAIT_USEC 10000 /* 10 msecs */
64 #define FLR_WAIT_INTERVAL 50 /* usecs */
65 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
66
67 struct pbf_pN_buf_regs {
68 int pN;
69 uint32_t init_crd;
70 uint32_t crd;
71 uint32_t crd_freed;
72 };
73
74 struct pbf_pN_cmd_regs {
75 int pN;
76 uint32_t lines_occup;
77 uint32_t lines_freed;
78 };
79
80 /* resources needed for unloading a previously loaded device */
81
82 #define BNX2X_PREV_WAIT_NEEDED 1
83 rte_spinlock_t bnx2x_prev_mtx;
84 struct bnx2x_prev_list_node {
85 LIST_ENTRY(bnx2x_prev_list_node) node;
86 uint8_t bus;
87 uint8_t slot;
88 uint8_t path;
89 uint8_t aer;
90 uint8_t undi;
91 };
92
93 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
94 = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
95
96 static int load_count[2][3] = { { 0 } };
97 /* per-path: 0-common, 1-port0, 2-port1 */
98
99 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
100 uint8_t cmng_type);
101 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
102 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
103 uint8_t port);
104 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
105 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
106 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
107 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
108 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
109 uint8_t print);
110 static void bnx2x_int_disable(struct bnx2x_softc *sc);
111 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
112 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
113 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
114 struct bnx2x_fastpath *fp,
115 uint16_t rx_bd_prod, uint16_t rx_cq_prod);
116 static void bnx2x_link_report_locked(struct bnx2x_softc *sc);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __rte_noinline
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
125
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp);
128 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
129 uint8_t storm, uint16_t index, uint8_t op,
130 uint8_t update);
131
132 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
133 {
134 int res;
135
136 mb();
137 res = ((*addr) & (1UL << nr)) != 0;
138 mb();
139 return res;
140 }
141
142 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
143 {
144 __sync_fetch_and_or(addr, (1UL << nr));
145 }
146
147 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
148 {
149 __sync_fetch_and_and(addr, ~(1UL << nr));
150 }
151
152 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
153 {
154 unsigned long mask = (1UL << nr);
155 return __sync_fetch_and_and(addr, ~mask) & mask;
156 }
157
158 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
159 {
160 return __sync_val_compare_and_swap(addr, old, new);
161 }
162
163 int
164 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
165 const char *msg, uint32_t align)
166 {
167 char mz_name[RTE_MEMZONE_NAMESIZE];
168 const struct rte_memzone *z;
169
170 dma->sc = sc;
171 if (IS_PF(sc))
172 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
173 rte_get_timer_cycles());
174 else
175 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
176 rte_get_timer_cycles());
177
178 /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
179 z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
180 SOCKET_ID_ANY,
181 RTE_MEMZONE_IOVA_CONTIG, align);
182 if (z == NULL) {
183 PMD_DRV_LOG(ERR, sc, "DMA alloc failed for %s", msg);
184 return -ENOMEM;
185 }
186 dma->paddr = (uint64_t) z->iova;
187 dma->vaddr = z->addr;
188 dma->mzone = (const void *)z;
189
190 PMD_DRV_LOG(DEBUG, sc,
191 "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
192
193 return 0;
194 }
195
196 void bnx2x_dma_free(struct bnx2x_dma *dma)
197 {
198 if (dma->mzone == NULL)
199 return;
200
201 rte_memzone_free((const struct rte_memzone *)dma->mzone);
202 dma->sc = NULL;
203 dma->paddr = 0;
204 dma->vaddr = NULL;
205 dma->nseg = 0;
206 dma->mzone = NULL;
207 }
208
209 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
210 {
211 uint32_t lock_status;
212 uint32_t resource_bit = (1 << resource);
213 int func = SC_FUNC(sc);
214 uint32_t hw_lock_control_reg;
215 int cnt;
216
217 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
218 if (resource)
219 PMD_INIT_FUNC_TRACE(sc);
220 #else
221 PMD_INIT_FUNC_TRACE(sc);
222 #endif
223
224 /* validate the resource is within range */
225 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
226 PMD_DRV_LOG(NOTICE, sc,
227 "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
228 resource);
229 return -1;
230 }
231
232 if (func <= 5) {
233 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
234 } else {
235 hw_lock_control_reg =
236 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
237 }
238
239 /* validate the resource is not already taken */
240 lock_status = REG_RD(sc, hw_lock_control_reg);
241 if (lock_status & resource_bit) {
242 PMD_DRV_LOG(NOTICE, sc,
243 "resource in use (status 0x%x bit 0x%x)",
244 lock_status, resource_bit);
245 return -1;
246 }
247
248 /* try every 5ms for 5 seconds */
249 for (cnt = 0; cnt < 1000; cnt++) {
250 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
251 lock_status = REG_RD(sc, hw_lock_control_reg);
252 if (lock_status & resource_bit) {
253 return 0;
254 }
255 DELAY(5000);
256 }
257
258 PMD_DRV_LOG(NOTICE, sc, "Resource 0x%x resource_bit 0x%x lock timeout!",
259 resource, resource_bit);
260 return -1;
261 }
262
263 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
264 {
265 uint32_t lock_status;
266 uint32_t resource_bit = (1 << resource);
267 int func = SC_FUNC(sc);
268 uint32_t hw_lock_control_reg;
269
270 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
271 if (resource)
272 PMD_INIT_FUNC_TRACE(sc);
273 #else
274 PMD_INIT_FUNC_TRACE(sc);
275 #endif
276
277 /* validate the resource is within range */
278 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
279 PMD_DRV_LOG(NOTICE, sc,
280 "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
281 " resource_bit 0x%x", resource, resource_bit);
282 return -1;
283 }
284
285 if (func <= 5) {
286 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
287 } else {
288 hw_lock_control_reg =
289 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
290 }
291
292 /* validate the resource is currently taken */
293 lock_status = REG_RD(sc, hw_lock_control_reg);
294 if (!(lock_status & resource_bit)) {
295 PMD_DRV_LOG(NOTICE, sc,
296 "resource not in use (status 0x%x bit 0x%x)",
297 lock_status, resource_bit);
298 return -1;
299 }
300
301 REG_WR(sc, hw_lock_control_reg, resource_bit);
302 return 0;
303 }
304
305 static void bnx2x_acquire_phy_lock(struct bnx2x_softc *sc)
306 {
307 BNX2X_PHY_LOCK(sc);
308 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
309 }
310
311 static void bnx2x_release_phy_lock(struct bnx2x_softc *sc)
312 {
313 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
314 BNX2X_PHY_UNLOCK(sc);
315 }
316
317 /* copy command into DMAE command memory and set DMAE command Go */
318 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
319 {
320 uint32_t cmd_offset;
321 uint32_t i;
322
323 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
324 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
325 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
326 }
327
328 REG_WR(sc, dmae_reg_go_c[idx], 1);
329 }
330
331 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
332 {
333 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
334 DMAE_COMMAND_C_TYPE_ENABLE);
335 }
336
337 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
338 {
339 return opcode & ~DMAE_COMMAND_SRC_RESET;
340 }
341
342 uint32_t
343 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
344 uint8_t with_comp, uint8_t comp_type)
345 {
346 uint32_t opcode = 0;
347
348 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
349 (dst_type << DMAE_COMMAND_DST_SHIFT));
350
351 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
352
353 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
354
355 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
356 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
357
358 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
359
360 #ifdef __BIG_ENDIAN
361 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
362 #else
363 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
364 #endif
365
366 if (with_comp) {
367 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
368 }
369
370 return opcode;
371 }
372
373 static void
374 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
375 uint8_t src_type, uint8_t dst_type)
376 {
377 memset(dmae, 0, sizeof(struct dmae_command));
378
379 /* set the opcode */
380 dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
381 TRUE, DMAE_COMP_PCI);
382
383 /* fill in the completion parameters */
384 dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
385 dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
386 dmae->comp_val = DMAE_COMP_VAL;
387 }
388
389 /* issue a DMAE command over the init channel and wait for completion */
390 static int
391 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
392 {
393 uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
394 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
395
396 /* reset completion */
397 *wb_comp = 0;
398
399 /* post the command on the channel used for initializations */
400 bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
401
402 /* wait for completion */
403 DELAY(500);
404
405 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
406 if (!timeout ||
407 (sc->recovery_state != BNX2X_RECOVERY_DONE &&
408 sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
409 PMD_DRV_LOG(INFO, sc, "DMAE timeout!");
410 return DMAE_TIMEOUT;
411 }
412
413 timeout--;
414 DELAY(50);
415 }
416
417 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
418 PMD_DRV_LOG(INFO, sc, "DMAE PCI error!");
419 return DMAE_PCI_ERROR;
420 }
421
422 return 0;
423 }
424
425 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
426 {
427 struct dmae_command dmae;
428 uint32_t *data;
429 uint32_t i;
430 int rc;
431
432 if (!sc->dmae_ready) {
433 data = BNX2X_SP(sc, wb_data[0]);
434
435 for (i = 0; i < len32; i++) {
436 data[i] = REG_RD(sc, (src_addr + (i * 4)));
437 }
438
439 return;
440 }
441
442 /* set opcode and fixed command fields */
443 bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
444
445 /* fill in addresses and len */
446 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
447 dmae.src_addr_hi = 0;
448 dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
449 dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
450 dmae.len = len32;
451
452 /* issue the command and wait for completion */
453 if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
454 rte_panic("DMAE failed (%d)", rc);
455 };
456 }
457
458 void
459 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
460 uint32_t len32)
461 {
462 struct dmae_command dmae;
463 int rc;
464
465 if (!sc->dmae_ready) {
466 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
467 return;
468 }
469
470 /* set opcode and fixed command fields */
471 bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
472
473 /* fill in addresses and len */
474 dmae.src_addr_lo = U64_LO(dma_addr);
475 dmae.src_addr_hi = U64_HI(dma_addr);
476 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
477 dmae.dst_addr_hi = 0;
478 dmae.len = len32;
479
480 /* issue the command and wait for completion */
481 if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
482 rte_panic("DMAE failed (%d)", rc);
483 }
484 }
485
486 static void
487 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
488 uint32_t addr, uint32_t len)
489 {
490 uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
491 uint32_t offset = 0;
492
493 while (len > dmae_wr_max) {
494 bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */
495 (addr + offset), /* dst GRC address */
496 dmae_wr_max);
497 offset += (dmae_wr_max * 4);
498 len -= dmae_wr_max;
499 }
500
501 bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */
502 (addr + offset), /* dst GRC address */
503 len);
504 }
505
506 void
507 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
508 uint32_t cid)
509 {
510 /* ustorm cxt validation */
511 cxt->ustorm_ag_context.cdu_usage =
512 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
513 CDU_REGION_NUMBER_UCM_AG,
514 ETH_CONNECTION_TYPE);
515 /* xcontext validation */
516 cxt->xstorm_ag_context.cdu_reserved =
517 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
518 CDU_REGION_NUMBER_XCM_AG,
519 ETH_CONNECTION_TYPE);
520 }
521
522 static void
523 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
524 uint8_t sb_index, uint8_t ticks)
525 {
526 uint32_t addr =
527 (BAR_CSTRORM_INTMEM +
528 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
529
530 REG_WR8(sc, addr, ticks);
531 }
532
533 static void
534 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
535 uint8_t sb_index, uint8_t disable)
536 {
537 uint32_t enable_flag =
538 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
539 uint32_t addr =
540 (BAR_CSTRORM_INTMEM +
541 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
542 uint8_t flags;
543
544 /* clear and set */
545 flags = REG_RD8(sc, addr);
546 flags &= ~HC_INDEX_DATA_HC_ENABLED;
547 flags |= enable_flag;
548 REG_WR8(sc, addr, flags);
549 }
550
551 void
552 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
553 uint8_t sb_index, uint8_t disable, uint16_t usec)
554 {
555 uint8_t ticks = (usec / 4);
556
557 bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
558
559 disable = (disable) ? 1 : ((usec) ? 0 : 1);
560 bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
561 }
562
563 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
564 {
565 return REG_RD(sc, reg_addr);
566 }
567
568 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
569 {
570 REG_WR(sc, reg_addr, val);
571 }
572
573 void
574 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
575 __rte_unused const elink_log_id_t elink_log_id, ...)
576 {
577 PMD_DRV_LOG(DEBUG, sc, "ELINK EVENT LOG (%d)", elink_log_id);
578 }
579
580 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
581 {
582 uint32_t spio_reg;
583
584 /* Only 2 SPIOs are configurable */
585 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
586 PMD_DRV_LOG(NOTICE, sc, "Invalid SPIO 0x%x", spio);
587 return -1;
588 }
589
590 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
591
592 /* read SPIO and mask except the float bits */
593 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
594
595 switch (mode) {
596 case MISC_SPIO_OUTPUT_LOW:
597 /* clear FLOAT and set CLR */
598 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
599 spio_reg |= (spio << MISC_SPIO_CLR_POS);
600 break;
601
602 case MISC_SPIO_OUTPUT_HIGH:
603 /* clear FLOAT and set SET */
604 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
605 spio_reg |= (spio << MISC_SPIO_SET_POS);
606 break;
607
608 case MISC_SPIO_INPUT_HI_Z:
609 /* set FLOAT */
610 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
611 break;
612
613 default:
614 break;
615 }
616
617 REG_WR(sc, MISC_REG_SPIO, spio_reg);
618 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
619
620 return 0;
621 }
622
623 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
624 {
625 /* The GPIO should be swapped if swap register is set and active */
626 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
627 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
628 int gpio_shift = gpio_num;
629 if (gpio_port)
630 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
631
632 uint32_t gpio_mask = (1 << gpio_shift);
633 uint32_t gpio_reg;
634
635 if (gpio_num > MISC_REGISTERS_GPIO_3) {
636 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
637 return -1;
638 }
639
640 /* read GPIO value */
641 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
642
643 /* get the requested pin value */
644 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
645 }
646
647 static int
648 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
649 {
650 /* The GPIO should be swapped if swap register is set and active */
651 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
652 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
653 int gpio_shift = gpio_num;
654 if (gpio_port)
655 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
656
657 uint32_t gpio_mask = (1 << gpio_shift);
658 uint32_t gpio_reg;
659
660 if (gpio_num > MISC_REGISTERS_GPIO_3) {
661 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
662 return -1;
663 }
664
665 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
666
667 /* read GPIO and mask except the float bits */
668 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
669
670 switch (mode) {
671 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
672 /* clear FLOAT and set CLR */
673 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
674 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
675 break;
676
677 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
678 /* clear FLOAT and set SET */
679 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
680 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
681 break;
682
683 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
684 /* set FLOAT */
685 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
686 break;
687
688 default:
689 break;
690 }
691
692 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
693 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
694
695 return 0;
696 }
697
698 static int
699 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
700 {
701 uint32_t gpio_reg;
702
703 /* any port swapping should be handled by caller */
704
705 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
706
707 /* read GPIO and mask except the float bits */
708 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
709 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
710 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
711 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
712
713 switch (mode) {
714 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
715 /* set CLR */
716 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
717 break;
718
719 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
720 /* set SET */
721 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
722 break;
723
724 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
725 /* set FLOAT */
726 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
727 break;
728
729 default:
730 PMD_DRV_LOG(NOTICE, sc,
731 "Invalid GPIO mode assignment %d", mode);
732 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
733 return -1;
734 }
735
736 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
737 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
738
739 return 0;
740 }
741
742 static int
743 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
744 uint8_t port)
745 {
746 /* The GPIO should be swapped if swap register is set and active */
747 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
748 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
749 int gpio_shift = gpio_num;
750 if (gpio_port)
751 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
752
753 uint32_t gpio_mask = (1 << gpio_shift);
754 uint32_t gpio_reg;
755
756 if (gpio_num > MISC_REGISTERS_GPIO_3) {
757 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
758 return -1;
759 }
760
761 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
762
763 /* read GPIO int */
764 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
765
766 switch (mode) {
767 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
768 /* clear SET and set CLR */
769 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
770 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
771 break;
772
773 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
774 /* clear CLR and set SET */
775 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
776 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
777 break;
778
779 default:
780 break;
781 }
782
783 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
784 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
785
786 return 0;
787 }
788
789 uint32_t
790 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
791 {
792 return bnx2x_gpio_read(sc, gpio_num, port);
793 }
794
795 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */
796 uint8_t port)
797 {
798 return bnx2x_gpio_write(sc, gpio_num, mode, port);
799 }
800
801 uint8_t
802 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
803 uint8_t mode /* 0=low 1=high */ )
804 {
805 return bnx2x_gpio_mult_write(sc, pins, mode);
806 }
807
808 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */
809 uint8_t port)
810 {
811 return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
812 }
813
814 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
815 {
816 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
817 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
818 }
819
820 /* send the MCP a request, block until there is a reply */
821 uint32_t
822 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
823 {
824 int mb_idx = SC_FW_MB_IDX(sc);
825 uint32_t seq;
826 uint32_t rc = 0;
827 uint32_t cnt = 1;
828 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
829
830 seq = ++sc->fw_seq;
831 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
832 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
833
834 PMD_DRV_LOG(DEBUG, sc,
835 "wrote command 0x%08x to FW MB param 0x%08x",
836 (command | seq), param);
837
838 /* Let the FW do it's magic. GIve it up to 5 seconds... */
839 do {
840 DELAY(delay * 1000);
841 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
842 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
843
844 /* is this a reply to our command? */
845 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
846 rc &= FW_MSG_CODE_MASK;
847 } else {
848 /* Ruh-roh! */
849 PMD_DRV_LOG(NOTICE, sc, "FW failed to respond!");
850 rc = 0;
851 }
852
853 return rc;
854 }
855
856 static uint32_t
857 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
858 {
859 return elink_cb_fw_command(sc, command, param);
860 }
861
862 static void
863 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
864 rte_iova_t mapping)
865 {
866 REG_WR(sc, addr, U64_LO(mapping));
867 REG_WR(sc, (addr + 4), U64_HI(mapping));
868 }
869
870 static void
871 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
872 uint16_t abs_fid)
873 {
874 uint32_t addr = (XSEM_REG_FAST_MEMORY +
875 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
876 __storm_memset_dma_mapping(sc, addr, mapping);
877 }
878
879 static void
880 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
881 {
882 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
883 pf_id);
884 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
885 pf_id);
886 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
887 pf_id);
888 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
889 pf_id);
890 }
891
892 static void
893 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
894 {
895 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
896 enable);
897 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
898 enable);
899 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
900 enable);
901 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
902 enable);
903 }
904
905 static void
906 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
907 uint16_t pfid)
908 {
909 uint32_t addr;
910 size_t size;
911
912 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
913 size = sizeof(struct event_ring_data);
914 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
915 }
916
917 static void
918 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
919 {
920 uint32_t addr = (BAR_CSTRORM_INTMEM +
921 CSTORM_EVENT_RING_PROD_OFFSET(pfid));
922 REG_WR16(sc, addr, eq_prod);
923 }
924
925 /*
926 * Post a slowpath command.
927 *
928 * A slowpath command is used to propagate a configuration change through
929 * the controller in a controlled manner, allowing each STORM processor and
930 * other H/W blocks to phase in the change. The commands sent on the
931 * slowpath are referred to as ramrods. Depending on the ramrod used the
932 * completion of the ramrod will occur in different ways. Here's a
933 * breakdown of ramrods and how they complete:
934 *
935 * RAMROD_CMD_ID_ETH_PORT_SETUP
936 * Used to setup the leading connection on a port. Completes on the
937 * Receive Completion Queue (RCQ) of that port (typically fp[0]).
938 *
939 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
940 * Used to setup an additional connection on a port. Completes on the
941 * RCQ of the multi-queue/RSS connection being initialized.
942 *
943 * RAMROD_CMD_ID_ETH_STAT_QUERY
944 * Used to force the storm processors to update the statistics database
945 * in host memory. This ramrod is send on the leading connection CID and
946 * completes as an index increment of the CSTORM on the default status
947 * block.
948 *
949 * RAMROD_CMD_ID_ETH_UPDATE
950 * Used to update the state of the leading connection, usually to udpate
951 * the RSS indirection table. Completes on the RCQ of the leading
952 * connection. (Not currently used under FreeBSD until OS support becomes
953 * available.)
954 *
955 * RAMROD_CMD_ID_ETH_HALT
956 * Used when tearing down a connection prior to driver unload. Completes
957 * on the RCQ of the multi-queue/RSS connection being torn down. Don't
958 * use this on the leading connection.
959 *
960 * RAMROD_CMD_ID_ETH_SET_MAC
961 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on
962 * the RCQ of the leading connection.
963 *
964 * RAMROD_CMD_ID_ETH_CFC_DEL
965 * Used when tearing down a conneciton prior to driver unload. Completes
966 * on the RCQ of the leading connection (since the current connection
967 * has been completely removed from controller memory).
968 *
969 * RAMROD_CMD_ID_ETH_PORT_DEL
970 * Used to tear down the leading connection prior to driver unload,
971 * typically fp[0]. Completes as an index increment of the CSTORM on the
972 * default status block.
973 *
974 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
975 * Used for connection offload. Completes on the RCQ of the multi-queue
976 * RSS connection that is being offloaded. (Not currently used under
977 * FreeBSD.)
978 *
979 * There can only be one command pending per function.
980 *
981 * Returns:
982 * 0 = Success, !0 = Failure.
983 */
984
985 /* must be called under the spq lock */
986 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
987 {
988 struct eth_spe *next_spe = sc->spq_prod_bd;
989
990 if (sc->spq_prod_bd == sc->spq_last_bd) {
991 /* wrap back to the first eth_spq */
992 sc->spq_prod_bd = sc->spq;
993 sc->spq_prod_idx = 0;
994 } else {
995 sc->spq_prod_bd++;
996 sc->spq_prod_idx++;
997 }
998
999 return next_spe;
1000 }
1001
1002 /* must be called under the spq lock */
1003 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
1004 {
1005 int func = SC_FUNC(sc);
1006
1007 /*
1008 * Make sure that BD data is updated before writing the producer.
1009 * BD data is written to the memory, the producer is read from the
1010 * memory, thus we need a full memory barrier to ensure the ordering.
1011 */
1012 mb();
1013
1014 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
1015 sc->spq_prod_idx);
1016
1017 mb();
1018 }
1019
1020 /**
1021 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
1022 *
1023 * @cmd: command to check
1024 * @cmd_type: command type
1025 */
1026 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
1027 {
1028 if ((cmd_type == NONE_CONNECTION_TYPE) ||
1029 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
1030 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
1031 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
1032 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
1033 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
1034 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1035 return TRUE;
1036 } else {
1037 return FALSE;
1038 }
1039 }
1040
1041 /**
1042 * bnx2x_sp_post - place a single command on an SP ring
1043 *
1044 * @sc: driver handle
1045 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
1046 * @cid: SW CID the command is related to
1047 * @data_hi: command private data address (high 32 bits)
1048 * @data_lo: command private data address (low 32 bits)
1049 * @cmd_type: command type (e.g. NONE, ETH)
1050 *
1051 * SP data is handled as if it's always an address pair, thus data fields are
1052 * not swapped to little endian in upper functions. Instead this function swaps
1053 * data as if it's two uint32 fields.
1054 */
1055 int
1056 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1057 uint32_t data_lo, int cmd_type)
1058 {
1059 struct eth_spe *spe;
1060 uint16_t type;
1061 int common;
1062
1063 common = bnx2x_is_contextless_ramrod(command, cmd_type);
1064
1065 if (common) {
1066 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1067 PMD_DRV_LOG(INFO, sc, "EQ ring is full!");
1068 return -1;
1069 }
1070 } else {
1071 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1072 PMD_DRV_LOG(INFO, sc, "SPQ ring is full!");
1073 return -1;
1074 }
1075 }
1076
1077 spe = bnx2x_sp_get_next(sc);
1078
1079 /* CID needs port number to be encoded int it */
1080 spe->hdr.conn_and_cmd_data =
1081 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1082
1083 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1084
1085 /* TBD: Check if it works for VFs */
1086 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1087 SPE_HDR_FUNCTION_ID);
1088
1089 spe->hdr.type = htole16(type);
1090
1091 spe->data.update_data_addr.hi = htole32(data_hi);
1092 spe->data.update_data_addr.lo = htole32(data_lo);
1093
1094 /*
1095 * It's ok if the actual decrement is issued towards the memory
1096 * somewhere between the lock and unlock. Thus no more explict
1097 * memory barrier is needed.
1098 */
1099 if (common) {
1100 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1101 } else {
1102 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1103 }
1104
1105 PMD_DRV_LOG(DEBUG, sc,
1106 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1107 "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1108 sc->spq_prod_idx,
1109 (uint32_t) U64_HI(sc->spq_dma.paddr),
1110 (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1111 (uint8_t *) sc->spq_prod_bd -
1112 (uint8_t *) sc->spq), command, common,
1113 HW_CID(sc, cid), data_hi, data_lo, type,
1114 atomic_load_acq_long(&sc->cq_spq_left),
1115 atomic_load_acq_long(&sc->eq_spq_left));
1116
1117 /* RAMROD completion is processed in bnx2x_intr_legacy()
1118 * which can run from different contexts.
1119 * Ask bnx2x_intr_intr() to process RAMROD
1120 * completion whenever it gets scheduled.
1121 */
1122 rte_atomic32_set(&sc->scan_fp, 1);
1123 bnx2x_sp_prod_update(sc);
1124
1125 return 0;
1126 }
1127
1128 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1129 {
1130 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1131 sc->fw_drv_pulse_wr_seq);
1132 }
1133
1134 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1135 {
1136 uint16_t hw_cons;
1137 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1138
1139 if (unlikely(!txq)) {
1140 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1141 return 0;
1142 }
1143
1144 mb(); /* status block fields can change */
1145 hw_cons = le16toh(*fp->tx_cons_sb);
1146 return hw_cons != txq->tx_pkt_head;
1147 }
1148
1149 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1150 {
1151 /* expand this for multi-cos if ever supported */
1152 return bnx2x_tx_queue_has_work(fp);
1153 }
1154
1155 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1156 {
1157 uint16_t rx_cq_cons_sb;
1158 struct bnx2x_rx_queue *rxq;
1159 rxq = fp->sc->rx_queues[fp->index];
1160 if (unlikely(!rxq)) {
1161 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1162 return 0;
1163 }
1164
1165 mb(); /* status block fields can change */
1166 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1167 if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1168 MAX_RCQ_ENTRIES(rxq)))
1169 rx_cq_cons_sb++;
1170 return rxq->rx_cq_head != rx_cq_cons_sb;
1171 }
1172
1173 static void
1174 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1175 union eth_rx_cqe *rr_cqe)
1176 {
1177 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1178 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1179 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1180 struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1181
1182 PMD_DRV_LOG(DEBUG, sc,
1183 "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1184 fp->index, cid, command, sc->state,
1185 rr_cqe->ramrod_cqe.ramrod_type);
1186
1187 switch (command) {
1188 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1189 PMD_DRV_LOG(DEBUG, sc, "got UPDATE ramrod. CID %d", cid);
1190 drv_cmd = ECORE_Q_CMD_UPDATE;
1191 break;
1192
1193 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1194 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] setup ramrod", cid);
1195 drv_cmd = ECORE_Q_CMD_SETUP;
1196 break;
1197
1198 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1199 PMD_DRV_LOG(DEBUG, sc,
1200 "got MULTI[%d] tx-only setup ramrod", cid);
1201 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1202 break;
1203
1204 case (RAMROD_CMD_ID_ETH_HALT):
1205 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] halt ramrod", cid);
1206 drv_cmd = ECORE_Q_CMD_HALT;
1207 break;
1208
1209 case (RAMROD_CMD_ID_ETH_TERMINATE):
1210 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] teminate ramrod", cid);
1211 drv_cmd = ECORE_Q_CMD_TERMINATE;
1212 break;
1213
1214 case (RAMROD_CMD_ID_ETH_EMPTY):
1215 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] empty ramrod", cid);
1216 drv_cmd = ECORE_Q_CMD_EMPTY;
1217 break;
1218
1219 default:
1220 PMD_DRV_LOG(DEBUG, sc,
1221 "ERROR: unexpected MC reply (%d)"
1222 "on fp[%d]", command, fp->index);
1223 return;
1224 }
1225
1226 if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1227 q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1228 /*
1229 * q_obj->complete_cmd() failure means that this was
1230 * an unexpected completion.
1231 *
1232 * In this case we don't want to increase the sc->spq_left
1233 * because apparently we haven't sent this command the first
1234 * place.
1235 */
1236 // rte_panic("Unexpected SP completion");
1237 return;
1238 }
1239
1240 atomic_add_acq_long(&sc->cq_spq_left, 1);
1241
1242 PMD_DRV_LOG(DEBUG, sc, "sc->cq_spq_left 0x%lx",
1243 atomic_load_acq_long(&sc->cq_spq_left));
1244 }
1245
1246 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1247 {
1248 struct bnx2x_rx_queue *rxq;
1249 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1250 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1251
1252 rxq = sc->rx_queues[fp->index];
1253 if (!rxq) {
1254 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1255 return 0;
1256 }
1257
1258 /* CQ "next element" is of the size of the regular element */
1259 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1260 if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1261 USABLE_RCQ_ENTRIES_PER_PAGE)) {
1262 hw_cq_cons++;
1263 }
1264
1265 bd_cons = rxq->rx_bd_head;
1266 bd_prod = rxq->rx_bd_tail;
1267 bd_prod_fw = bd_prod;
1268 sw_cq_cons = rxq->rx_cq_head;
1269 sw_cq_prod = rxq->rx_cq_tail;
1270
1271 /*
1272 * Memory barrier necessary as speculative reads of the rx
1273 * buffer can be ahead of the index in the status block
1274 */
1275 rmb();
1276
1277 while (sw_cq_cons != hw_cq_cons) {
1278 union eth_rx_cqe *cqe;
1279 struct eth_fast_path_rx_cqe *cqe_fp;
1280 uint8_t cqe_fp_flags;
1281 enum eth_rx_cqe_type cqe_fp_type;
1282
1283 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1284 bd_prod = RX_BD(bd_prod, rxq);
1285 bd_cons = RX_BD(bd_cons, rxq);
1286
1287 cqe = &rxq->cq_ring[comp_ring_cons];
1288 cqe_fp = &cqe->fast_path_cqe;
1289 cqe_fp_flags = cqe_fp->type_error_flags;
1290 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1291
1292 /* is this a slowpath msg? */
1293 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1294 bnx2x_sp_event(sc, fp, cqe);
1295 goto next_cqe;
1296 }
1297
1298 /* is this an error packet? */
1299 if (unlikely(cqe_fp_flags &
1300 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1301 PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1302 cqe_fp_flags, sw_cq_cons);
1303 goto next_rx;
1304 }
1305
1306 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1307
1308 next_rx:
1309 bd_cons = NEXT_RX_BD(bd_cons);
1310 bd_prod = NEXT_RX_BD(bd_prod);
1311 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1312
1313 next_cqe:
1314 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1315 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1316
1317 } /* while work to do */
1318
1319 rxq->rx_bd_head = bd_cons;
1320 rxq->rx_bd_tail = bd_prod_fw;
1321 rxq->rx_cq_head = sw_cq_cons;
1322 rxq->rx_cq_tail = sw_cq_prod;
1323
1324 /* Update producers */
1325 bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1326
1327 return sw_cq_cons != hw_cq_cons;
1328 }
1329
1330 static uint16_t
1331 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1332 uint16_t pkt_idx, uint16_t bd_idx)
1333 {
1334 struct eth_tx_start_bd *tx_start_bd =
1335 &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1336 uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1337 struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1338
1339 if (likely(tx_mbuf != NULL)) {
1340 rte_pktmbuf_free_seg(tx_mbuf);
1341 } else {
1342 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1343 fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1344 }
1345
1346 txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1347 txq->nb_tx_avail += nbd;
1348
1349 while (nbd--)
1350 bd_idx = NEXT_TX_BD(bd_idx);
1351
1352 return bd_idx;
1353 }
1354
1355 /* processes transmit completions */
1356 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1357 {
1358 uint16_t bd_cons, hw_cons, sw_cons;
1359 __rte_unused uint16_t tx_bd_avail;
1360
1361 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1362
1363 if (unlikely(!txq)) {
1364 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1365 return 0;
1366 }
1367
1368 bd_cons = txq->tx_bd_head;
1369 hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1370 sw_cons = txq->tx_pkt_head;
1371
1372 while (sw_cons != hw_cons) {
1373 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1374 sw_cons++;
1375 }
1376
1377 txq->tx_pkt_head = sw_cons;
1378 txq->tx_bd_head = bd_cons;
1379
1380 tx_bd_avail = txq->nb_tx_avail;
1381
1382 PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1383 "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1384 fp->index, tx_bd_avail, hw_cons,
1385 txq->tx_pkt_head, txq->tx_pkt_tail,
1386 txq->tx_bd_head, txq->tx_bd_tail);
1387 return TRUE;
1388 }
1389
1390 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1391 {
1392 struct bnx2x_fastpath *fp;
1393 int i, count;
1394
1395 /* wait until all TX fastpath tasks have completed */
1396 for (i = 0; i < sc->num_queues; i++) {
1397 fp = &sc->fp[i];
1398
1399 count = 1000;
1400
1401 while (bnx2x_has_tx_work(fp)) {
1402 bnx2x_txeof(sc, fp);
1403
1404 if (count == 0) {
1405 PMD_TX_LOG(ERR,
1406 "Timeout waiting for fp[%d] "
1407 "transmits to complete!", i);
1408 rte_panic("tx drain failure");
1409 return;
1410 }
1411
1412 count--;
1413 DELAY(1000);
1414 rmb();
1415 }
1416 }
1417
1418 return;
1419 }
1420
1421 static int
1422 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1423 int mac_type, uint8_t wait_for_comp)
1424 {
1425 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1426 int rc;
1427
1428 /* wait for completion of requested */
1429 if (wait_for_comp) {
1430 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1431 }
1432
1433 /* Set the mac type of addresses we want to clear */
1434 bnx2x_set_bit(mac_type, &vlan_mac_flags);
1435
1436 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1437 if (rc < 0)
1438 PMD_DRV_LOG(ERR, sc, "Failed to delete MACs (%d)", rc);
1439
1440 return rc;
1441 }
1442
1443 static int
1444 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1445 unsigned long *rx_accept_flags,
1446 unsigned long *tx_accept_flags)
1447 {
1448 /* Clear the flags first */
1449 *rx_accept_flags = 0;
1450 *tx_accept_flags = 0;
1451
1452 switch (rx_mode) {
1453 case BNX2X_RX_MODE_NONE:
1454 /*
1455 * 'drop all' supersedes any accept flags that may have been
1456 * passed to the function.
1457 */
1458 break;
1459
1460 case BNX2X_RX_MODE_NORMAL:
1461 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1462 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1463 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1464
1465 /* internal switching mode */
1466 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1467 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1468 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1469
1470 break;
1471
1472 case BNX2X_RX_MODE_ALLMULTI:
1473 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1474 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1475 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1476
1477 /* internal switching mode */
1478 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1479 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1480 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1481
1482 break;
1483
1484 case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1485 case BNX2X_RX_MODE_PROMISC:
1486 /*
1487 * According to deffinition of SI mode, iface in promisc mode
1488 * should receive matched and unmatched (in resolution of port)
1489 * unicast packets.
1490 */
1491 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1492 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1493 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1494 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1495
1496 /* internal switching mode */
1497 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1498 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1499
1500 if (IS_MF_SI(sc)) {
1501 bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1502 } else {
1503 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1504 }
1505
1506 break;
1507
1508 default:
1509 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1510 return -1;
1511 }
1512
1513 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1514 if (rx_mode != BNX2X_RX_MODE_NONE) {
1515 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1516 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1517 }
1518
1519 return 0;
1520 }
1521
1522 static int
1523 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1524 unsigned long rx_mode_flags,
1525 unsigned long rx_accept_flags,
1526 unsigned long tx_accept_flags, unsigned long ramrod_flags)
1527 {
1528 struct ecore_rx_mode_ramrod_params ramrod_param;
1529 int rc;
1530
1531 memset(&ramrod_param, 0, sizeof(ramrod_param));
1532
1533 /* Prepare ramrod parameters */
1534 ramrod_param.cid = 0;
1535 ramrod_param.cl_id = cl_id;
1536 ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1537 ramrod_param.func_id = SC_FUNC(sc);
1538
1539 ramrod_param.pstate = &sc->sp_state;
1540 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1541
1542 ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1543 ramrod_param.rdata_mapping =
1544 (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1545 bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1546
1547 ramrod_param.ramrod_flags = ramrod_flags;
1548 ramrod_param.rx_mode_flags = rx_mode_flags;
1549
1550 ramrod_param.rx_accept_flags = rx_accept_flags;
1551 ramrod_param.tx_accept_flags = tx_accept_flags;
1552
1553 rc = ecore_config_rx_mode(sc, &ramrod_param);
1554 if (rc < 0) {
1555 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1556 return rc;
1557 }
1558
1559 return 0;
1560 }
1561
1562 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1563 {
1564 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1565 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1566 int rc;
1567
1568 rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1569 &tx_accept_flags);
1570 if (rc) {
1571 return rc;
1572 }
1573
1574 bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1575 bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1576 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1577
1578 return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1579 rx_accept_flags, tx_accept_flags,
1580 ramrod_flags);
1581 }
1582
1583 /* returns the "mcp load_code" according to global load_count array */
1584 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1585 {
1586 int path = SC_PATH(sc);
1587 int port = SC_PORT(sc);
1588
1589 PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d] %d, %d, %d",
1590 path, load_count[path][0], load_count[path][1],
1591 load_count[path][2]);
1592
1593 load_count[path][0]++;
1594 load_count[path][1 + port]++;
1595 PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d] %d, %d, %d",
1596 path, load_count[path][0], load_count[path][1],
1597 load_count[path][2]);
1598 if (load_count[path][0] == 1)
1599 return FW_MSG_CODE_DRV_LOAD_COMMON;
1600 else if (load_count[path][1 + port] == 1)
1601 return FW_MSG_CODE_DRV_LOAD_PORT;
1602 else
1603 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1604 }
1605
1606 /* returns the "mcp load_code" according to global load_count array */
1607 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1608 {
1609 int port = SC_PORT(sc);
1610 int path = SC_PATH(sc);
1611
1612 PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d] %d, %d, %d",
1613 path, load_count[path][0], load_count[path][1],
1614 load_count[path][2]);
1615 load_count[path][0]--;
1616 load_count[path][1 + port]--;
1617 PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d] %d, %d, %d",
1618 path, load_count[path][0], load_count[path][1],
1619 load_count[path][2]);
1620 if (load_count[path][0] == 0) {
1621 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1622 } else if (load_count[path][1 + port] == 0) {
1623 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1624 } else {
1625 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1626 }
1627 }
1628
1629 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1630 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1631 {
1632 uint32_t reset_code = 0;
1633
1634 /* Select the UNLOAD request mode */
1635 if (unload_mode == UNLOAD_NORMAL) {
1636 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1637 } else {
1638 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1639 }
1640
1641 /* Send the request to the MCP */
1642 if (!BNX2X_NOMCP(sc)) {
1643 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1644 } else {
1645 reset_code = bnx2x_nic_unload_no_mcp(sc);
1646 }
1647
1648 return reset_code;
1649 }
1650
1651 /* send UNLOAD_DONE command to the MCP */
1652 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1653 {
1654 uint32_t reset_param =
1655 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1656
1657 /* Report UNLOAD_DONE to MCP */
1658 if (!BNX2X_NOMCP(sc)) {
1659 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1660 }
1661 }
1662
1663 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1664 {
1665 int tout = 50;
1666
1667 if (!sc->port.pmf) {
1668 return 0;
1669 }
1670
1671 /*
1672 * (assumption: No Attention from MCP at this stage)
1673 * PMF probably in the middle of TX disable/enable transaction
1674 * 1. Sync IRS for default SB
1675 * 2. Sync SP queue - this guarantees us that attention handling started
1676 * 3. Wait, that TX disable/enable transaction completes
1677 *
1678 * 1+2 guarantee that if DCBX attention was scheduled it already changed
1679 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1680 * received completion for the transaction the state is TX_STOPPED.
1681 * State will return to STARTED after completion of TX_STOPPED-->STARTED
1682 * transaction.
1683 */
1684
1685 while (ecore_func_get_state(sc, &sc->func_obj) !=
1686 ECORE_F_STATE_STARTED && tout--) {
1687 DELAY(20000);
1688 }
1689
1690 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1691 /*
1692 * Failed to complete the transaction in a "good way"
1693 * Force both transactions with CLR bit.
1694 */
1695 struct ecore_func_state_params func_params = { NULL };
1696
1697 PMD_DRV_LOG(NOTICE, sc, "Unexpected function state! "
1698 "Forcing STARTED-->TX_STOPPED-->STARTED");
1699
1700 func_params.f_obj = &sc->func_obj;
1701 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1702
1703 /* STARTED-->TX_STOPPED */
1704 func_params.cmd = ECORE_F_CMD_TX_STOP;
1705 ecore_func_state_change(sc, &func_params);
1706
1707 /* TX_STOPPED-->STARTED */
1708 func_params.cmd = ECORE_F_CMD_TX_START;
1709 return ecore_func_state_change(sc, &func_params);
1710 }
1711
1712 return 0;
1713 }
1714
1715 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1716 {
1717 struct bnx2x_fastpath *fp = &sc->fp[index];
1718 struct ecore_queue_state_params q_params = { NULL };
1719 int rc;
1720
1721 PMD_DRV_LOG(DEBUG, sc, "stopping queue %d cid %d", index, fp->index);
1722
1723 q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1724 /* We want to wait for completion in this context */
1725 bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1726
1727 /* Stop the primary connection: */
1728
1729 /* ...halt the connection */
1730 q_params.cmd = ECORE_Q_CMD_HALT;
1731 rc = ecore_queue_state_change(sc, &q_params);
1732 if (rc) {
1733 return rc;
1734 }
1735
1736 /* ...terminate the connection */
1737 q_params.cmd = ECORE_Q_CMD_TERMINATE;
1738 memset(&q_params.params.terminate, 0,
1739 sizeof(q_params.params.terminate));
1740 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1741 rc = ecore_queue_state_change(sc, &q_params);
1742 if (rc) {
1743 return rc;
1744 }
1745
1746 /* ...delete cfc entry */
1747 q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1748 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1749 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1750 return ecore_queue_state_change(sc, &q_params);
1751 }
1752
1753 /* wait for the outstanding SP commands */
1754 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1755 {
1756 unsigned long tmp;
1757 int tout = 5000; /* wait for 5 secs tops */
1758
1759 while (tout--) {
1760 mb();
1761 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1762 return TRUE;
1763 }
1764
1765 DELAY(1000);
1766 }
1767
1768 mb();
1769
1770 tmp = atomic_load_acq_long(&sc->sp_state);
1771 if (tmp & mask) {
1772 PMD_DRV_LOG(INFO, sc, "Filtering completion timed out: "
1773 "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1774 return FALSE;
1775 }
1776
1777 return FALSE;
1778 }
1779
1780 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1781 {
1782 struct ecore_func_state_params func_params = { NULL };
1783 int rc;
1784
1785 /* prepare parameters for function state transitions */
1786 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1787 func_params.f_obj = &sc->func_obj;
1788 func_params.cmd = ECORE_F_CMD_STOP;
1789
1790 /*
1791 * Try to stop the function the 'good way'. If it fails (in case
1792 * of a parity error during bnx2x_chip_cleanup()) and we are
1793 * not in a debug mode, perform a state transaction in order to
1794 * enable further HW_RESET transaction.
1795 */
1796 rc = ecore_func_state_change(sc, &func_params);
1797 if (rc) {
1798 PMD_DRV_LOG(NOTICE, sc, "FUNC_STOP ramrod failed. "
1799 "Running a dry transaction");
1800 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1801 return ecore_func_state_change(sc, &func_params);
1802 }
1803
1804 return 0;
1805 }
1806
1807 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1808 {
1809 struct ecore_func_state_params func_params = { NULL };
1810
1811 /* Prepare parameters for function state transitions */
1812 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1813
1814 func_params.f_obj = &sc->func_obj;
1815 func_params.cmd = ECORE_F_CMD_HW_RESET;
1816
1817 func_params.params.hw_init.load_phase = load_code;
1818
1819 return ecore_func_state_change(sc, &func_params);
1820 }
1821
1822 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1823 {
1824 if (disable_hw) {
1825 /* prevent the HW from sending interrupts */
1826 bnx2x_int_disable(sc);
1827 }
1828 }
1829
1830 static void
1831 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1832 {
1833 int port = SC_PORT(sc);
1834 struct ecore_mcast_ramrod_params rparam = { NULL };
1835 uint32_t reset_code;
1836 int i, rc = 0;
1837
1838 bnx2x_drain_tx_queues(sc);
1839
1840 /* give HW time to discard old tx messages */
1841 DELAY(1000);
1842
1843 /* Clean all ETH MACs */
1844 rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1845 FALSE);
1846 if (rc < 0) {
1847 PMD_DRV_LOG(NOTICE, sc,
1848 "Failed to delete all ETH MACs (%d)", rc);
1849 }
1850
1851 /* Clean up UC list */
1852 rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1853 TRUE);
1854 if (rc < 0) {
1855 PMD_DRV_LOG(NOTICE, sc,
1856 "Failed to delete UC MACs list (%d)", rc);
1857 }
1858
1859 /* Disable LLH */
1860 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1861
1862 /* Set "drop all" to stop Rx */
1863
1864 /*
1865 * We need to take the if_maddr_lock() here in order to prevent
1866 * a race between the completion code and this code.
1867 */
1868
1869 if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1870 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1871 } else {
1872 bnx2x_set_storm_rx_mode(sc);
1873 }
1874
1875 /* Clean up multicast configuration */
1876 rparam.mcast_obj = &sc->mcast_obj;
1877 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1878 if (rc < 0) {
1879 PMD_DRV_LOG(NOTICE, sc,
1880 "Failed to send DEL MCAST command (%d)", rc);
1881 }
1882
1883 /*
1884 * Send the UNLOAD_REQUEST to the MCP. This will return if
1885 * this function should perform FUNCTION, PORT, or COMMON HW
1886 * reset.
1887 */
1888 reset_code = bnx2x_send_unload_req(sc, unload_mode);
1889
1890 /*
1891 * (assumption: No Attention from MCP at this stage)
1892 * PMF probably in the middle of TX disable/enable transaction
1893 */
1894 rc = bnx2x_func_wait_started(sc);
1895 if (rc) {
1896 PMD_DRV_LOG(NOTICE, sc, "bnx2x_func_wait_started failed");
1897 }
1898
1899 /*
1900 * Close multi and leading connections
1901 * Completions for ramrods are collected in a synchronous way
1902 */
1903 for (i = 0; i < sc->num_queues; i++) {
1904 if (bnx2x_stop_queue(sc, i)) {
1905 goto unload_error;
1906 }
1907 }
1908
1909 /*
1910 * If SP settings didn't get completed so far - something
1911 * very wrong has happen.
1912 */
1913 if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1914 PMD_DRV_LOG(NOTICE, sc, "Common slow path ramrods got stuck!");
1915 }
1916
1917 unload_error:
1918
1919 rc = bnx2x_func_stop(sc);
1920 if (rc) {
1921 PMD_DRV_LOG(NOTICE, sc, "Function stop failed!");
1922 }
1923
1924 /* disable HW interrupts */
1925 bnx2x_int_disable_sync(sc, TRUE);
1926
1927 /* Reset the chip */
1928 rc = bnx2x_reset_hw(sc, reset_code);
1929 if (rc) {
1930 PMD_DRV_LOG(NOTICE, sc, "Hardware reset failed");
1931 }
1932
1933 /* Report UNLOAD_DONE to MCP */
1934 bnx2x_send_unload_done(sc, keep_link);
1935 }
1936
1937 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1938 {
1939 uint32_t val;
1940
1941 PMD_DRV_LOG(DEBUG, sc, "Disabling 'close the gates'");
1942
1943 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1944 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1945 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1946 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1947 }
1948
1949 /*
1950 * Cleans the object that have internal lists without sending
1951 * ramrods. Should be run when interrutps are disabled.
1952 */
1953 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1954 {
1955 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1956 struct ecore_mcast_ramrod_params rparam = { NULL };
1957 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1958 int rc;
1959
1960 /* Cleanup MACs' object first... */
1961
1962 /* Wait for completion of requested */
1963 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1964 /* Perform a dry cleanup */
1965 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1966
1967 /* Clean ETH primary MAC */
1968 bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1969 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1970 &ramrod_flags);
1971 if (rc != 0) {
1972 PMD_DRV_LOG(NOTICE, sc, "Failed to clean ETH MACs (%d)", rc);
1973 }
1974
1975 /* Cleanup UC list */
1976 vlan_mac_flags = 0;
1977 bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1978 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1979 if (rc != 0) {
1980 PMD_DRV_LOG(NOTICE, sc,
1981 "Failed to clean UC list MACs (%d)", rc);
1982 }
1983
1984 /* Now clean mcast object... */
1985
1986 rparam.mcast_obj = &sc->mcast_obj;
1987 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1988
1989 /* Add a DEL command... */
1990 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1991 if (rc < 0) {
1992 PMD_DRV_LOG(NOTICE, sc,
1993 "Failed to send DEL MCAST command (%d)", rc);
1994 }
1995
1996 /* now wait until all pending commands are cleared */
1997
1998 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1999 while (rc != 0) {
2000 if (rc < 0) {
2001 PMD_DRV_LOG(NOTICE, sc,
2002 "Failed to clean MCAST object (%d)", rc);
2003 return;
2004 }
2005
2006 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
2007 }
2008 }
2009
2010 /* stop the controller */
2011 __rte_noinline
2012 int
2013 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
2014 {
2015 uint8_t global = FALSE;
2016 uint32_t val;
2017
2018 PMD_DRV_LOG(DEBUG, sc, "Starting NIC unload...");
2019
2020 /* mark driver as unloaded in shmem2 */
2021 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
2022 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
2023 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
2024 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2025 }
2026
2027 if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
2028 (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
2029 /*
2030 * We can get here if the driver has been unloaded
2031 * during parity error recovery and is either waiting for a
2032 * leader to complete or for other functions to unload and
2033 * then ifconfig down has been issued. In this case we want to
2034 * unload and let other functions to complete a recovery
2035 * process.
2036 */
2037 sc->recovery_state = BNX2X_RECOVERY_DONE;
2038 sc->is_leader = 0;
2039 bnx2x_release_leader_lock(sc);
2040 mb();
2041
2042 PMD_DRV_LOG(NOTICE, sc, "Can't unload in closed or error state");
2043 return -1;
2044 }
2045
2046 /*
2047 * Nothing to do during unload if previous bnx2x_nic_load()
2048 * did not completed successfully - all resourses are released.
2049 */
2050 if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2051 return 0;
2052 }
2053
2054 sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2055 mb();
2056
2057 sc->rx_mode = BNX2X_RX_MODE_NONE;
2058 bnx2x_set_rx_mode(sc);
2059 mb();
2060
2061 if (IS_PF(sc)) {
2062 /* set ALWAYS_ALIVE bit in shmem */
2063 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2064
2065 bnx2x_drv_pulse(sc);
2066
2067 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2068 bnx2x_save_statistics(sc);
2069 }
2070
2071 /* wait till consumers catch up with producers in all queues */
2072 bnx2x_drain_tx_queues(sc);
2073
2074 /* if VF indicate to PF this function is going down (PF will delete sp
2075 * elements and clear initializations
2076 */
2077 if (IS_VF(sc)) {
2078 bnx2x_vf_unload(sc);
2079 } else if (unload_mode != UNLOAD_RECOVERY) {
2080 /* if this is a normal/close unload need to clean up chip */
2081 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2082 } else {
2083 /* Send the UNLOAD_REQUEST to the MCP */
2084 bnx2x_send_unload_req(sc, unload_mode);
2085
2086 /*
2087 * Prevent transactions to host from the functions on the
2088 * engine that doesn't reset global blocks in case of global
2089 * attention once gloabl blocks are reset and gates are opened
2090 * (the engine which leader will perform the recovery
2091 * last).
2092 */
2093 if (!CHIP_IS_E1x(sc)) {
2094 bnx2x_pf_disable(sc);
2095 }
2096
2097 /* disable HW interrupts */
2098 bnx2x_int_disable_sync(sc, TRUE);
2099
2100 /* Report UNLOAD_DONE to MCP */
2101 bnx2x_send_unload_done(sc, FALSE);
2102 }
2103
2104 /*
2105 * At this stage no more interrupts will arrive so we may safely clean
2106 * the queue'able objects here in case they failed to get cleaned so far.
2107 */
2108 if (IS_PF(sc)) {
2109 bnx2x_squeeze_objects(sc);
2110 }
2111
2112 /* There should be no more pending SP commands at this stage */
2113 sc->sp_state = 0;
2114
2115 sc->port.pmf = 0;
2116
2117 if (IS_PF(sc)) {
2118 bnx2x_free_mem(sc);
2119 }
2120
2121 bnx2x_free_fw_stats_mem(sc);
2122
2123 sc->state = BNX2X_STATE_CLOSED;
2124
2125 /*
2126 * Check if there are pending parity attentions. If there are - set
2127 * RECOVERY_IN_PROGRESS.
2128 */
2129 if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2130 bnx2x_set_reset_in_progress(sc);
2131
2132 /* Set RESET_IS_GLOBAL if needed */
2133 if (global) {
2134 bnx2x_set_reset_global(sc);
2135 }
2136 }
2137
2138 /*
2139 * The last driver must disable a "close the gate" if there is no
2140 * parity attention or "process kill" pending.
2141 */
2142 if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2143 bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2144 bnx2x_disable_close_the_gate(sc);
2145 }
2146
2147 PMD_DRV_LOG(DEBUG, sc, "Ended NIC unload");
2148
2149 return 0;
2150 }
2151
2152 /*
2153 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2154 * visible to the controller.
2155 *
2156 * If an mbuf is submitted to this routine and cannot be given to the
2157 * controller (e.g. it has too many fragments) then the function may free
2158 * the mbuf and return to the caller.
2159 *
2160 * Returns:
2161 * int: Number of TX BDs used for the mbuf
2162 *
2163 * Note the side effect that an mbuf may be freed if it causes a problem.
2164 */
2165 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2166 {
2167 struct eth_tx_start_bd *tx_start_bd;
2168 uint16_t bd_prod, pkt_prod;
2169 struct bnx2x_softc *sc;
2170 uint32_t nbds = 0;
2171
2172 sc = txq->sc;
2173 bd_prod = txq->tx_bd_tail;
2174 pkt_prod = txq->tx_pkt_tail;
2175
2176 txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2177
2178 tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2179
2180 tx_start_bd->addr =
2181 rte_cpu_to_le_64(rte_mbuf_data_iova(m0));
2182 tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2183 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2184 tx_start_bd->general_data =
2185 (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2186
2187 tx_start_bd->nbd = rte_cpu_to_le_16(2);
2188
2189 if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2190 tx_start_bd->vlan_or_ethertype =
2191 rte_cpu_to_le_16(m0->vlan_tci);
2192 tx_start_bd->bd_flags.as_bitfield |=
2193 (X_ETH_OUTBAND_VLAN <<
2194 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2195 } else {
2196 if (IS_PF(sc))
2197 tx_start_bd->vlan_or_ethertype =
2198 rte_cpu_to_le_16(pkt_prod);
2199 else {
2200 struct ether_hdr *eh =
2201 rte_pktmbuf_mtod(m0, struct ether_hdr *);
2202
2203 tx_start_bd->vlan_or_ethertype =
2204 rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2205 }
2206 }
2207
2208 bd_prod = NEXT_TX_BD(bd_prod);
2209 if (IS_VF(sc)) {
2210 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2211 const struct ether_hdr *eh =
2212 rte_pktmbuf_mtod(m0, struct ether_hdr *);
2213 uint8_t mac_type = UNICAST_ADDRESS;
2214
2215 tx_parse_bd =
2216 &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2217 if (is_multicast_ether_addr(&eh->d_addr)) {
2218 if (is_broadcast_ether_addr(&eh->d_addr))
2219 mac_type = BROADCAST_ADDRESS;
2220 else
2221 mac_type = MULTICAST_ADDRESS;
2222 }
2223 tx_parse_bd->parsing_data =
2224 (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2225
2226 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2227 &eh->d_addr.addr_bytes[0], 2);
2228 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2229 &eh->d_addr.addr_bytes[2], 2);
2230 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2231 &eh->d_addr.addr_bytes[4], 2);
2232 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2233 &eh->s_addr.addr_bytes[0], 2);
2234 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2235 &eh->s_addr.addr_bytes[2], 2);
2236 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2237 &eh->s_addr.addr_bytes[4], 2);
2238
2239 tx_parse_bd->data.mac_addr.dst_hi =
2240 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2241 tx_parse_bd->data.mac_addr.dst_mid =
2242 rte_cpu_to_be_16(tx_parse_bd->data.
2243 mac_addr.dst_mid);
2244 tx_parse_bd->data.mac_addr.dst_lo =
2245 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2246 tx_parse_bd->data.mac_addr.src_hi =
2247 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2248 tx_parse_bd->data.mac_addr.src_mid =
2249 rte_cpu_to_be_16(tx_parse_bd->data.
2250 mac_addr.src_mid);
2251 tx_parse_bd->data.mac_addr.src_lo =
2252 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2253
2254 PMD_TX_LOG(DEBUG,
2255 "PBD dst %x %x %x src %x %x %x p_data %x",
2256 tx_parse_bd->data.mac_addr.dst_hi,
2257 tx_parse_bd->data.mac_addr.dst_mid,
2258 tx_parse_bd->data.mac_addr.dst_lo,
2259 tx_parse_bd->data.mac_addr.src_hi,
2260 tx_parse_bd->data.mac_addr.src_mid,
2261 tx_parse_bd->data.mac_addr.src_lo,
2262 tx_parse_bd->parsing_data);
2263 }
2264
2265 PMD_TX_LOG(DEBUG,
2266 "start bd: nbytes %d flags %x vlan %x",
2267 tx_start_bd->nbytes,
2268 tx_start_bd->bd_flags.as_bitfield,
2269 tx_start_bd->vlan_or_ethertype);
2270
2271 bd_prod = NEXT_TX_BD(bd_prod);
2272 pkt_prod++;
2273
2274 if (TX_IDX(bd_prod) < 2)
2275 nbds++;
2276
2277 txq->nb_tx_avail -= 2;
2278 txq->tx_bd_tail = bd_prod;
2279 txq->tx_pkt_tail = pkt_prod;
2280
2281 return nbds + 2;
2282 }
2283
2284 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2285 {
2286 return L2_ILT_LINES(sc);
2287 }
2288
2289 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2290 {
2291 struct ilt_client_info *ilt_client;
2292 struct ecore_ilt *ilt = sc->ilt;
2293 uint16_t line = 0;
2294
2295 PMD_INIT_FUNC_TRACE(sc);
2296
2297 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2298
2299 /* CDU */
2300 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2301 ilt_client->client_num = ILT_CLIENT_CDU;
2302 ilt_client->page_size = CDU_ILT_PAGE_SZ;
2303 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2304 ilt_client->start = line;
2305 line += bnx2x_cid_ilt_lines(sc);
2306
2307 if (CNIC_SUPPORT(sc)) {
2308 line += CNIC_ILT_LINES;
2309 }
2310
2311 ilt_client->end = (line - 1);
2312
2313 /* QM */
2314 if (QM_INIT(sc->qm_cid_count)) {
2315 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2316 ilt_client->client_num = ILT_CLIENT_QM;
2317 ilt_client->page_size = QM_ILT_PAGE_SZ;
2318 ilt_client->flags = 0;
2319 ilt_client->start = line;
2320
2321 /* 4 bytes for each cid */
2322 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2323 QM_ILT_PAGE_SZ);
2324
2325 ilt_client->end = (line - 1);
2326 }
2327
2328 if (CNIC_SUPPORT(sc)) {
2329 /* SRC */
2330 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2331 ilt_client->client_num = ILT_CLIENT_SRC;
2332 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2333 ilt_client->flags = 0;
2334 ilt_client->start = line;
2335 line += SRC_ILT_LINES;
2336 ilt_client->end = (line - 1);
2337
2338 /* TM */
2339 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2340 ilt_client->client_num = ILT_CLIENT_TM;
2341 ilt_client->page_size = TM_ILT_PAGE_SZ;
2342 ilt_client->flags = 0;
2343 ilt_client->start = line;
2344 line += TM_ILT_LINES;
2345 ilt_client->end = (line - 1);
2346 }
2347
2348 assert((line <= ILT_MAX_LINES));
2349 }
2350
2351 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2352 {
2353 int i;
2354
2355 for (i = 0; i < sc->num_queues; i++) {
2356 /* get the Rx buffer size for RX frames */
2357 sc->fp[i].rx_buf_size =
2358 (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2359 }
2360 }
2361
2362 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2363 {
2364
2365 sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2366
2367 return sc->ilt == NULL;
2368 }
2369
2370 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2371 {
2372 sc->ilt->lines = rte_calloc("",
2373 sizeof(struct ilt_line), ILT_MAX_LINES,
2374 RTE_CACHE_LINE_SIZE);
2375 return sc->ilt->lines == NULL;
2376 }
2377
2378 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2379 {
2380 rte_free(sc->ilt);
2381 sc->ilt = NULL;
2382 }
2383
2384 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2385 {
2386 if (sc->ilt->lines != NULL) {
2387 rte_free(sc->ilt->lines);
2388 sc->ilt->lines = NULL;
2389 }
2390 }
2391
2392 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2393 {
2394 uint32_t i;
2395
2396 for (i = 0; i < L2_ILT_LINES(sc); i++) {
2397 sc->context[i].vcxt = NULL;
2398 sc->context[i].size = 0;
2399 }
2400
2401 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2402
2403 bnx2x_free_ilt_lines_mem(sc);
2404 }
2405
2406 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2407 {
2408 int context_size;
2409 int allocated;
2410 int i;
2411 char cdu_name[RTE_MEMZONE_NAMESIZE];
2412
2413 /*
2414 * Allocate memory for CDU context:
2415 * This memory is allocated separately and not in the generic ILT
2416 * functions because CDU differs in few aspects:
2417 * 1. There can be multiple entities allocating memory for context -
2418 * regular L2, CNIC, and SRIOV drivers. Each separately controls
2419 * its own ILT lines.
2420 * 2. Since CDU page-size is not a single 4KB page (which is the case
2421 * for the other ILT clients), to be efficient we want to support
2422 * allocation of sub-page-size in the last entry.
2423 * 3. Context pointers are used by the driver to pass to FW / update
2424 * the context (for the other ILT clients the pointers are used just to
2425 * free the memory during unload).
2426 */
2427 context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2428 for (i = 0, allocated = 0; allocated < context_size; i++) {
2429 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2430 (context_size - allocated));
2431
2432 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2433 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2434 &sc->context[i].vcxt_dma,
2435 cdu_name, BNX2X_PAGE_SIZE) != 0) {
2436 bnx2x_free_mem(sc);
2437 return -1;
2438 }
2439
2440 sc->context[i].vcxt =
2441 (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2442
2443 allocated += sc->context[i].size;
2444 }
2445
2446 bnx2x_alloc_ilt_lines_mem(sc);
2447
2448 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2449 PMD_DRV_LOG(NOTICE, sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2450 bnx2x_free_mem(sc);
2451 return -1;
2452 }
2453
2454 return 0;
2455 }
2456
2457 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2458 {
2459 bnx2x_dma_free(&sc->fw_stats_dma);
2460 sc->fw_stats_num = 0;
2461
2462 sc->fw_stats_req_size = 0;
2463 sc->fw_stats_req = NULL;
2464 sc->fw_stats_req_mapping = 0;
2465
2466 sc->fw_stats_data_size = 0;
2467 sc->fw_stats_data = NULL;
2468 sc->fw_stats_data_mapping = 0;
2469 }
2470
2471 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2472 {
2473 uint8_t num_queue_stats;
2474 int num_groups, vf_headroom = 0;
2475
2476 /* number of queues for statistics is number of eth queues */
2477 num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2478
2479 /*
2480 * Total number of FW statistics requests =
2481 * 1 for port stats + 1 for PF stats + num of queues
2482 */
2483 sc->fw_stats_num = (2 + num_queue_stats);
2484
2485 /*
2486 * Request is built from stats_query_header and an array of
2487 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2488 * rules. The real number or requests is configured in the
2489 * stats_query_header.
2490 */
2491 num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2492 if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2493 num_groups++;
2494
2495 sc->fw_stats_req_size =
2496 (sizeof(struct stats_query_header) +
2497 (num_groups * sizeof(struct stats_query_cmd_group)));
2498
2499 /*
2500 * Data for statistics requests + stats_counter.
2501 * stats_counter holds per-STORM counters that are incremented when
2502 * STORM has finished with the current request. Memory for FCoE
2503 * offloaded statistics are counted anyway, even if they will not be sent.
2504 * VF stats are not accounted for here as the data of VF stats is stored
2505 * in memory allocated by the VF, not here.
2506 */
2507 sc->fw_stats_data_size =
2508 (sizeof(struct stats_counter) +
2509 sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2510 /* sizeof(struct fcoe_statistics_params) + */
2511 (sizeof(struct per_queue_stats) * num_queue_stats));
2512
2513 if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2514 &sc->fw_stats_dma, "fw_stats",
2515 RTE_CACHE_LINE_SIZE) != 0) {
2516 bnx2x_free_fw_stats_mem(sc);
2517 return -1;
2518 }
2519
2520 /* set up the shortcuts */
2521
2522 sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2523 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2524
2525 sc->fw_stats_data =
2526 (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2527 sc->fw_stats_req_size);
2528 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2529 sc->fw_stats_req_size);
2530
2531 return 0;
2532 }
2533
2534 /*
2535 * Bits map:
2536 * 0-7 - Engine0 load counter.
2537 * 8-15 - Engine1 load counter.
2538 * 16 - Engine0 RESET_IN_PROGRESS bit.
2539 * 17 - Engine1 RESET_IN_PROGRESS bit.
2540 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
2541 * function on the engine
2542 * 19 - Engine1 ONE_IS_LOADED.
2543 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
2544 * leader to complete (check for both RESET_IN_PROGRESS bits and not
2545 * for just the one belonging to its engine).
2546 */
2547 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
2548 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
2549 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
2550 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
2551 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
2552 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2553 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2554 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
2555
2556 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2557 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2558 {
2559 uint32_t val;
2560 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2561 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2562 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2563 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2564 }
2565
2566 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2567 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2568 {
2569 uint32_t val;
2570 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2571 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2572 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2573 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2574 }
2575
2576 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2577 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2578 {
2579 return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2580 }
2581
2582 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2583 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2584 {
2585 uint32_t val;
2586 uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2587 BNX2X_PATH0_RST_IN_PROG_BIT;
2588
2589 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2590
2591 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2592 /* Clear the bit */
2593 val &= ~bit;
2594 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2595
2596 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2597 }
2598
2599 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2600 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2601 {
2602 uint32_t val;
2603 uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2604 BNX2X_PATH0_RST_IN_PROG_BIT;
2605
2606 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2607
2608 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2609 /* Set the bit */
2610 val |= bit;
2611 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2612
2613 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2614 }
2615
2616 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2617 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2618 {
2619 uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2620 uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2621 BNX2X_PATH0_RST_IN_PROG_BIT;
2622
2623 /* return false if bit is set */
2624 return (val & bit) ? FALSE : TRUE;
2625 }
2626
2627 /* get the load status for an engine, should be run under rtnl lock */
2628 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2629 {
2630 uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2631 BNX2X_PATH0_LOAD_CNT_MASK;
2632 uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2633 BNX2X_PATH0_LOAD_CNT_SHIFT;
2634 uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2635
2636 val = ((val & mask) >> shift);
2637
2638 return val != 0;
2639 }
2640
2641 /* set pf load mark */
2642 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2643 {
2644 uint32_t val;
2645 uint32_t val1;
2646 uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2647 BNX2X_PATH0_LOAD_CNT_MASK;
2648 uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2649 BNX2X_PATH0_LOAD_CNT_SHIFT;
2650
2651 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2652
2653 PMD_INIT_FUNC_TRACE(sc);
2654
2655 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2656
2657 /* get the current counter value */
2658 val1 = ((val & mask) >> shift);
2659
2660 /* set bit of this PF */
2661 val1 |= (1 << SC_ABS_FUNC(sc));
2662
2663 /* clear the old value */
2664 val &= ~mask;
2665
2666 /* set the new one */
2667 val |= ((val1 << shift) & mask);
2668
2669 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2670
2671 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2672 }
2673
2674 /* clear pf load mark */
2675 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2676 {
2677 uint32_t val1, val;
2678 uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2679 BNX2X_PATH0_LOAD_CNT_MASK;
2680 uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2681 BNX2X_PATH0_LOAD_CNT_SHIFT;
2682
2683 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2684 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2685
2686 /* get the current counter value */
2687 val1 = (val & mask) >> shift;
2688
2689 /* clear bit of that PF */
2690 val1 &= ~(1 << SC_ABS_FUNC(sc));
2691
2692 /* clear the old value */
2693 val &= ~mask;
2694
2695 /* set the new one */
2696 val |= ((val1 << shift) & mask);
2697
2698 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2699 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2700 return val1 != 0;
2701 }
2702
2703 /* send load requrest to mcp and analyze response */
2704 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2705 {
2706 PMD_INIT_FUNC_TRACE(sc);
2707
2708 /* init fw_seq */
2709 sc->fw_seq =
2710 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2711 DRV_MSG_SEQ_NUMBER_MASK);
2712
2713 PMD_DRV_LOG(DEBUG, sc, "initial fw_seq 0x%04x", sc->fw_seq);
2714
2715 #ifdef BNX2X_PULSE
2716 /* get the current FW pulse sequence */
2717 sc->fw_drv_pulse_wr_seq =
2718 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2719 DRV_PULSE_SEQ_MASK);
2720 #else
2721 /* set ALWAYS_ALIVE bit in shmem */
2722 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2723 bnx2x_drv_pulse(sc);
2724 #endif
2725
2726 /* load request */
2727 (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2728 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2729
2730 /* if the MCP fails to respond we must abort */
2731 if (!(*load_code)) {
2732 PMD_DRV_LOG(NOTICE, sc, "MCP response failure!");
2733 return -1;
2734 }
2735
2736 /* if MCP refused then must abort */
2737 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2738 PMD_DRV_LOG(NOTICE, sc, "MCP refused load request");
2739 return -1;
2740 }
2741
2742 return 0;
2743 }
2744
2745 /*
2746 * Check whether another PF has already loaded FW to chip. In virtualized
2747 * environments a pf from anoth VM may have already initialized the device
2748 * including loading FW.
2749 */
2750 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2751 {
2752 uint32_t my_fw, loaded_fw;
2753
2754 /* is another pf loaded on this engine? */
2755 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2756 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2757 /* build my FW version dword */
2758 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2759 (BNX2X_5710_FW_MINOR_VERSION << 8) +
2760 (BNX2X_5710_FW_REVISION_VERSION << 16) +
2761 (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2762
2763 /* read loaded FW from chip */
2764 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2765 PMD_DRV_LOG(DEBUG, sc, "loaded FW 0x%08x / my FW 0x%08x",
2766 loaded_fw, my_fw);
2767
2768 /* abort nic load if version mismatch */
2769 if (my_fw != loaded_fw) {
2770 PMD_DRV_LOG(NOTICE, sc,
2771 "FW 0x%08x already loaded (mine is 0x%08x)",
2772 loaded_fw, my_fw);
2773 return -1;
2774 }
2775 }
2776
2777 return 0;
2778 }
2779
2780 /* mark PMF if applicable */
2781 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2782 {
2783 uint32_t ncsi_oem_data_addr;
2784
2785 PMD_INIT_FUNC_TRACE(sc);
2786
2787 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2788 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2789 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2790 /*
2791 * Barrier here for ordering between the writing to sc->port.pmf here
2792 * and reading it from the periodic task.
2793 */
2794 sc->port.pmf = 1;
2795 mb();
2796 } else {
2797 sc->port.pmf = 0;
2798 }
2799
2800 PMD_DRV_LOG(DEBUG, sc, "pmf %d", sc->port.pmf);
2801
2802 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2803 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2804 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2805 if (ncsi_oem_data_addr) {
2806 REG_WR(sc,
2807 (ncsi_oem_data_addr +
2808 offsetof(struct glob_ncsi_oem_data,
2809 driver_version)), 0);
2810 }
2811 }
2812 }
2813 }
2814
2815 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2816 {
2817 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2818 int abs_func;
2819 int vn;
2820
2821 if (BNX2X_NOMCP(sc)) {
2822 return; /* what should be the default bvalue in this case */
2823 }
2824
2825 /*
2826 * The formula for computing the absolute function number is...
2827 * For 2 port configuration (4 functions per port):
2828 * abs_func = 2 * vn + SC_PORT + SC_PATH
2829 * For 4 port configuration (2 functions per port):
2830 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2831 */
2832 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2833 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2834 if (abs_func >= E1H_FUNC_MAX) {
2835 break;
2836 }
2837 sc->devinfo.mf_info.mf_config[vn] =
2838 MFCFG_RD(sc, func_mf_config[abs_func].config);
2839 }
2840
2841 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2842 FUNC_MF_CFG_FUNC_DISABLED) {
2843 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
2844 sc->flags |= BNX2X_MF_FUNC_DIS;
2845 } else {
2846 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
2847 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2848 }
2849 }
2850
2851 /* acquire split MCP access lock register */
2852 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2853 {
2854 uint32_t j, val;
2855
2856 for (j = 0; j < 1000; j++) {
2857 val = (1UL << 31);
2858 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2859 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2860 if (val & (1L << 31))
2861 break;
2862
2863 DELAY(5000);
2864 }
2865
2866 if (!(val & (1L << 31))) {
2867 PMD_DRV_LOG(NOTICE, sc, "Cannot acquire MCP access lock register");
2868 return -1;
2869 }
2870
2871 return 0;
2872 }
2873
2874 /* release split MCP access lock register */
2875 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2876 {
2877 REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2878 }
2879
2880 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2881 {
2882 int port = SC_PORT(sc);
2883 uint32_t ext_phy_config;
2884
2885 /* mark the failure */
2886 ext_phy_config =
2887 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2888
2889 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2890 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2891 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2892 ext_phy_config);
2893
2894 /* log the failure */
2895 PMD_DRV_LOG(INFO, sc,
2896 "Fan Failure has caused the driver to shutdown "
2897 "the card to prevent permanent damage. "
2898 "Please contact OEM Support for assistance");
2899
2900 rte_panic("Schedule task to handle fan failure");
2901 }
2902
2903 /* this function is called upon a link interrupt */
2904 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2905 {
2906 uint32_t pause_enabled = 0;
2907 struct host_port_stats *pstats;
2908 int cmng_fns;
2909
2910 /* Make sure that we are synced with the current statistics */
2911 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2912
2913 elink_link_update(&sc->link_params, &sc->link_vars);
2914
2915 if (sc->link_vars.link_up) {
2916
2917 /* dropless flow control */
2918 if (sc->dropless_fc) {
2919 pause_enabled = 0;
2920
2921 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2922 pause_enabled = 1;
2923 }
2924
2925 REG_WR(sc,
2926 (BAR_USTRORM_INTMEM +
2927 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2928 pause_enabled);
2929 }
2930
2931 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2932 pstats = BNX2X_SP(sc, port_stats);
2933 /* reset old mac stats */
2934 memset(&(pstats->mac_stx[0]), 0,
2935 sizeof(struct mac_stx));
2936 }
2937
2938 if (sc->state == BNX2X_STATE_OPEN) {
2939 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2940 }
2941 }
2942
2943 if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2944 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2945
2946 if (cmng_fns != CMNG_FNS_NONE) {
2947 bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2948 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2949 }
2950 }
2951
2952 bnx2x_link_report_locked(sc);
2953
2954 if (IS_MF(sc)) {
2955 bnx2x_link_sync_notify(sc);
2956 }
2957 }
2958
2959 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2960 {
2961 int port = SC_PORT(sc);
2962 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2963 MISC_REG_AEU_MASK_ATTN_FUNC_0;
2964 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2965 NIG_REG_MASK_INTERRUPT_PORT0;
2966 uint32_t aeu_mask;
2967 uint32_t nig_mask = 0;
2968 uint32_t reg_addr;
2969 uint32_t igu_acked;
2970 uint32_t cnt;
2971
2972 if (sc->attn_state & asserted) {
2973 PMD_DRV_LOG(ERR, sc, "IGU ERROR attn=0x%08x", asserted);
2974 }
2975
2976 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2977
2978 aeu_mask = REG_RD(sc, aeu_addr);
2979
2980 aeu_mask &= ~(asserted & 0x3ff);
2981
2982 REG_WR(sc, aeu_addr, aeu_mask);
2983
2984 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2985
2986 sc->attn_state |= asserted;
2987
2988 if (asserted & ATTN_HARD_WIRED_MASK) {
2989 if (asserted & ATTN_NIG_FOR_FUNC) {
2990
2991 bnx2x_acquire_phy_lock(sc);
2992 /* save nig interrupt mask */
2993 nig_mask = REG_RD(sc, nig_int_mask_addr);
2994
2995 /* If nig_mask is not set, no need to call the update function */
2996 if (nig_mask) {
2997 REG_WR(sc, nig_int_mask_addr, 0);
2998
2999 bnx2x_link_attn(sc);
3000 }
3001
3002 /* handle unicore attn? */
3003 }
3004
3005 if (asserted & ATTN_SW_TIMER_4_FUNC) {
3006 PMD_DRV_LOG(DEBUG, sc, "ATTN_SW_TIMER_4_FUNC!");
3007 }
3008
3009 if (asserted & GPIO_2_FUNC) {
3010 PMD_DRV_LOG(DEBUG, sc, "GPIO_2_FUNC!");
3011 }
3012
3013 if (asserted & GPIO_3_FUNC) {
3014 PMD_DRV_LOG(DEBUG, sc, "GPIO_3_FUNC!");
3015 }
3016
3017 if (asserted & GPIO_4_FUNC) {
3018 PMD_DRV_LOG(DEBUG, sc, "GPIO_4_FUNC!");
3019 }
3020
3021 if (port == 0) {
3022 if (asserted & ATTN_GENERAL_ATTN_1) {
3023 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_1!");
3024 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3025 }
3026 if (asserted & ATTN_GENERAL_ATTN_2) {
3027 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_2!");
3028 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3029 }
3030 if (asserted & ATTN_GENERAL_ATTN_3) {
3031 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_3!");
3032 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3033 }
3034 } else {
3035 if (asserted & ATTN_GENERAL_ATTN_4) {
3036 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_4!");
3037 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3038 }
3039 if (asserted & ATTN_GENERAL_ATTN_5) {
3040 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_5!");
3041 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3042 }
3043 if (asserted & ATTN_GENERAL_ATTN_6) {
3044 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_6!");
3045 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3046 }
3047 }
3048 }
3049 /* hardwired */
3050 if (sc->devinfo.int_block == INT_BLOCK_HC) {
3051 reg_addr =
3052 (HC_REG_COMMAND_REG + port * 32 +
3053 COMMAND_REG_ATTN_BITS_SET);
3054 } else {
3055 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3056 }
3057
3058 PMD_DRV_LOG(DEBUG, sc, "about to mask 0x%08x at %s addr 0x%08x",
3059 asserted,
3060 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3061 reg_addr);
3062 REG_WR(sc, reg_addr, asserted);
3063
3064 /* now set back the mask */
3065 if (asserted & ATTN_NIG_FOR_FUNC) {
3066 /*
3067 * Verify that IGU ack through BAR was written before restoring
3068 * NIG mask. This loop should exit after 2-3 iterations max.
3069 */
3070 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3071 cnt = 0;
3072
3073 do {
3074 igu_acked =
3075 REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3076 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3077 && (++cnt < MAX_IGU_ATTN_ACK_TO));
3078
3079 if (!igu_acked) {
3080 PMD_DRV_LOG(ERR, sc,
3081 "Failed to verify IGU ack on time");
3082 }
3083
3084 mb();
3085 }
3086
3087 REG_WR(sc, nig_int_mask_addr, nig_mask);
3088
3089 bnx2x_release_phy_lock(sc);
3090 }
3091 }
3092
3093 static void
3094 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3095 __rte_unused const char *blk)
3096 {
3097 PMD_DRV_LOG(INFO, sc, "%s%s", idx ? ", " : "", blk);
3098 }
3099
3100 static int
3101 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3102 uint8_t print)
3103 {
3104 uint32_t cur_bit = 0;
3105 int i = 0;
3106
3107 for (i = 0; sig; i++) {
3108 cur_bit = ((uint32_t) 0x1 << i);
3109 if (sig & cur_bit) {
3110 switch (cur_bit) {
3111 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3112 if (print)
3113 bnx2x_print_next_block(sc, par_num++,
3114 "BRB");
3115 break;
3116 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3117 if (print)
3118 bnx2x_print_next_block(sc, par_num++,
3119 "PARSER");
3120 break;
3121 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3122 if (print)
3123 bnx2x_print_next_block(sc, par_num++,
3124 "TSDM");
3125 break;
3126 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3127 if (print)
3128 bnx2x_print_next_block(sc, par_num++,
3129 "SEARCHER");
3130 break;
3131 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3132 if (print)
3133 bnx2x_print_next_block(sc, par_num++,
3134 "TCM");
3135 break;
3136 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3137 if (print)
3138 bnx2x_print_next_block(sc, par_num++,
3139 "TSEMI");
3140 break;
3141 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3142 if (print)
3143 bnx2x_print_next_block(sc, par_num++,
3144 "XPB");
3145 break;
3146 }
3147
3148 /* Clear the bit */
3149 sig &= ~cur_bit;
3150 }
3151 }
3152
3153 return par_num;
3154 }
3155
3156 static int
3157 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3158 uint8_t * global, uint8_t print)
3159 {
3160 int i = 0;
3161 uint32_t cur_bit = 0;
3162 for (i = 0; sig; i++) {
3163 cur_bit = ((uint32_t) 0x1 << i);
3164 if (sig & cur_bit) {
3165 switch (cur_bit) {
3166 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3167 if (print)
3168 bnx2x_print_next_block(sc, par_num++,
3169 "PBF");
3170 break;
3171 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3172 if (print)
3173 bnx2x_print_next_block(sc, par_num++,
3174 "QM");
3175 break;
3176 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3177 if (print)
3178 bnx2x_print_next_block(sc, par_num++,
3179 "TM");
3180 break;
3181 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3182 if (print)
3183 bnx2x_print_next_block(sc, par_num++,
3184 "XSDM");
3185 break;
3186 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3187 if (print)
3188 bnx2x_print_next_block(sc, par_num++,
3189 "XCM");
3190 break;
3191 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3192 if (print)
3193 bnx2x_print_next_block(sc, par_num++,
3194 "XSEMI");
3195 break;
3196 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3197 if (print)
3198 bnx2x_print_next_block(sc, par_num++,
3199 "DOORBELLQ");
3200 break;
3201 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3202 if (print)
3203 bnx2x_print_next_block(sc, par_num++,
3204 "NIG");
3205 break;
3206 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3207 if (print)
3208 bnx2x_print_next_block(sc, par_num++,
3209 "VAUX PCI CORE");
3210 *global = TRUE;
3211 break;
3212 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3213 if (print)
3214 bnx2x_print_next_block(sc, par_num++,
3215 "DEBUG");
3216 break;
3217 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3218 if (print)
3219 bnx2x_print_next_block(sc, par_num++,
3220 "USDM");
3221 break;
3222 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3223 if (print)
3224 bnx2x_print_next_block(sc, par_num++,
3225 "UCM");
3226 break;
3227 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3228 if (print)
3229 bnx2x_print_next_block(sc, par_num++,
3230 "USEMI");
3231 break;
3232 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3233 if (print)
3234 bnx2x_print_next_block(sc, par_num++,
3235 "UPB");
3236 break;
3237 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3238 if (print)
3239 bnx2x_print_next_block(sc, par_num++,
3240 "CSDM");
3241 break;
3242 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3243 if (print)
3244 bnx2x_print_next_block(sc, par_num++,
3245 "CCM");
3246 break;
3247 }
3248
3249 /* Clear the bit */
3250 sig &= ~cur_bit;
3251 }
3252 }
3253
3254 return par_num;
3255 }
3256
3257 static int
3258 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3259 uint8_t print)
3260 {
3261 uint32_t cur_bit = 0;
3262 int i = 0;
3263
3264 for (i = 0; sig; i++) {
3265 cur_bit = ((uint32_t) 0x1 << i);
3266 if (sig & cur_bit) {
3267 switch (cur_bit) {
3268 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3269 if (print)
3270 bnx2x_print_next_block(sc, par_num++,
3271 "CSEMI");
3272 break;
3273 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3274 if (print)
3275 bnx2x_print_next_block(sc, par_num++,
3276 "PXP");
3277 break;
3278 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3279 if (print)
3280 bnx2x_print_next_block(sc, par_num++,
3281 "PXPPCICLOCKCLIENT");
3282 break;
3283 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3284 if (print)
3285 bnx2x_print_next_block(sc, par_num++,
3286 "CFC");
3287 break;
3288 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3289 if (print)
3290 bnx2x_print_next_block(sc, par_num++,
3291 "CDU");
3292 break;
3293 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3294 if (print)
3295 bnx2x_print_next_block(sc, par_num++,
3296 "DMAE");
3297 break;
3298 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3299 if (print)
3300 bnx2x_print_next_block(sc, par_num++,
3301 "IGU");
3302 break;
3303 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3304 if (print)
3305 bnx2x_print_next_block(sc, par_num++,
3306 "MISC");
3307 break;
3308 }
3309
3310 /* Clear the bit */
3311 sig &= ~cur_bit;
3312 }
3313 }
3314
3315 return par_num;
3316 }
3317
3318 static int
3319 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3320 uint8_t * global, uint8_t print)
3321 {
3322 uint32_t cur_bit = 0;
3323 int i = 0;
3324
3325 for (i = 0; sig; i++) {
3326 cur_bit = ((uint32_t) 0x1 << i);
3327 if (sig & cur_bit) {
3328 switch (cur_bit) {
3329 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3330 if (print)
3331 bnx2x_print_next_block(sc, par_num++,
3332 "MCP ROM");
3333 *global = TRUE;
3334 break;
3335 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3336 if (print)
3337 bnx2x_print_next_block(sc, par_num++,
3338 "MCP UMP RX");
3339 *global = TRUE;
3340 break;
3341 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3342 if (print)
3343 bnx2x_print_next_block(sc, par_num++,
3344 "MCP UMP TX");
3345 *global = TRUE;
3346 break;
3347 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3348 if (print)
3349 bnx2x_print_next_block(sc, par_num++,
3350 "MCP SCPAD");
3351 *global = TRUE;
3352 break;
3353 }
3354
3355 /* Clear the bit */
3356 sig &= ~cur_bit;
3357 }
3358 }
3359
3360 return par_num;
3361 }
3362
3363 static int
3364 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3365 uint8_t print)
3366 {
3367 uint32_t cur_bit = 0;
3368 int i = 0;
3369
3370 for (i = 0; sig; i++) {
3371 cur_bit = ((uint32_t) 0x1 << i);
3372 if (sig & cur_bit) {
3373 switch (cur_bit) {
3374 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3375 if (print)
3376 bnx2x_print_next_block(sc, par_num++,
3377 "PGLUE_B");
3378 break;
3379 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3380 if (print)
3381 bnx2x_print_next_block(sc, par_num++,
3382 "ATC");
3383 break;
3384 }
3385
3386 /* Clear the bit */
3387 sig &= ~cur_bit;
3388 }
3389 }
3390
3391 return par_num;
3392 }
3393
3394 static uint8_t
3395 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3396 uint32_t * sig)
3397 {
3398 int par_num = 0;
3399
3400 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3401 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3402 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3403 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3404 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3405 PMD_DRV_LOG(ERR, sc,
3406 "Parity error: HW block parity attention:"
3407 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3408 (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3409 (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3410 (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3411 (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3412 (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3413
3414 if (print)
3415 PMD_DRV_LOG(INFO, sc, "Parity errors detected in blocks: ");
3416
3417 par_num =
3418 bnx2x_check_blocks_with_parity0(sc, sig[0] &
3419 HW_PRTY_ASSERT_SET_0,
3420 par_num, print);
3421 par_num =
3422 bnx2x_check_blocks_with_parity1(sc, sig[1] &
3423 HW_PRTY_ASSERT_SET_1,
3424 par_num, global, print);
3425 par_num =
3426 bnx2x_check_blocks_with_parity2(sc, sig[2] &
3427 HW_PRTY_ASSERT_SET_2,
3428 par_num, print);
3429 par_num =
3430 bnx2x_check_blocks_with_parity3(sc, sig[3] &
3431 HW_PRTY_ASSERT_SET_3,
3432 par_num, global, print);
3433 par_num =
3434 bnx2x_check_blocks_with_parity4(sc, sig[4] &
3435 HW_PRTY_ASSERT_SET_4,
3436 par_num, print);
3437
3438 if (print)
3439 PMD_DRV_LOG(INFO, sc, "");
3440
3441 return TRUE;
3442 }
3443
3444 return FALSE;
3445 }
3446
3447 static uint8_t
3448 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3449 {
3450 struct attn_route attn = { {0} };
3451 int port = SC_PORT(sc);
3452
3453 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3454 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3455 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3456 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3457
3458 if (!CHIP_IS_E1x(sc))
3459 attn.sig[4] =
3460 REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3461
3462 return bnx2x_parity_attn(sc, global, print, attn.sig);
3463 }
3464
3465 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3466 {
3467 uint32_t val;
3468
3469 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3470 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3471 PMD_DRV_LOG(INFO, sc, "ERROR: PGLUE hw attention 0x%08x", val);
3472 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3473 PMD_DRV_LOG(INFO, sc,
3474 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3475 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3476 PMD_DRV_LOG(INFO, sc,
3477 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3478 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3479 PMD_DRV_LOG(INFO, sc,
3480 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3481 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3482 PMD_DRV_LOG(INFO, sc,
3483 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3484 if (val &
3485 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3486 PMD_DRV_LOG(INFO, sc,
3487 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3488 if (val &
3489 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3490 PMD_DRV_LOG(INFO, sc,
3491 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3492 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3493 PMD_DRV_LOG(INFO, sc,
3494 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3495 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3496 PMD_DRV_LOG(INFO, sc,
3497 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3498 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3499 PMD_DRV_LOG(INFO, sc,
3500 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3501 }
3502
3503 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3504 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3505 PMD_DRV_LOG(INFO, sc, "ERROR: ATC hw attention 0x%08x", val);
3506 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3507 PMD_DRV_LOG(INFO, sc,
3508 "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3509 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3510 PMD_DRV_LOG(INFO, sc,
3511 "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3512 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3513 PMD_DRV_LOG(INFO, sc,
3514 "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3515 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3516 PMD_DRV_LOG(INFO, sc,
3517 "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3518 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3519 PMD_DRV_LOG(INFO, sc,
3520 "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3521 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3522 PMD_DRV_LOG(INFO, sc,
3523 "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3524 }
3525
3526 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3527 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3528 PMD_DRV_LOG(INFO, sc,
3529 "ERROR: FATAL parity attention set4 0x%08x",
3530 (uint32_t) (attn &
3531 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3532 |
3533 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3534 }
3535 }
3536
3537 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3538 {
3539 int port = SC_PORT(sc);
3540
3541 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3542 }
3543
3544 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3545 {
3546 int port = SC_PORT(sc);
3547
3548 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3549 }
3550
3551 /*
3552 * called due to MCP event (on pmf):
3553 * reread new bandwidth configuration
3554 * configure FW
3555 * notify others function about the change
3556 */
3557 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3558 {
3559 if (sc->link_vars.link_up) {
3560 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3561 bnx2x_link_sync_notify(sc);
3562 }
3563
3564 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3565 }
3566
3567 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3568 {
3569 bnx2x_config_mf_bw(sc);
3570 bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3571 }
3572
3573 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3574 {
3575 bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3576 }
3577
3578 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3579
3580 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3581 {
3582 struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3583
3584 strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3585 ETH_STAT_INFO_VERSION_LEN);
3586
3587 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3588 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3589 ether_stat->mac_local + MAC_PAD,
3590 MAC_PAD, ETH_ALEN);
3591
3592 ether_stat->mtu_size = sc->mtu;
3593
3594 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3595 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
3596
3597 ether_stat->txq_size = sc->tx_ring_size;
3598 ether_stat->rxq_size = sc->rx_ring_size;
3599 }
3600
3601 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3602 {
3603 enum drv_info_opcode op_code;
3604 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3605
3606 /* if drv_info version supported by MFW doesn't match - send NACK */
3607 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3608 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3609 return;
3610 }
3611
3612 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3613 DRV_INFO_CONTROL_OP_CODE_SHIFT);
3614
3615 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3616
3617 switch (op_code) {
3618 case ETH_STATS_OPCODE:
3619 bnx2x_drv_info_ether_stat(sc);
3620 break;
3621 case FCOE_STATS_OPCODE:
3622 case ISCSI_STATS_OPCODE:
3623 default:
3624 /* if op code isn't supported - send NACK */
3625 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3626 return;
3627 }
3628
3629 /*
3630 * If we got drv_info attn from MFW then these fields are defined in
3631 * shmem2 for sure
3632 */
3633 SHMEM2_WR(sc, drv_info_host_addr_lo,
3634 U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3635 SHMEM2_WR(sc, drv_info_host_addr_hi,
3636 U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3637
3638 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3639 }
3640
3641 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3642 {
3643 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3644 /*
3645 * This is the only place besides the function initialization
3646 * where the sc->flags can change so it is done without any
3647 * locks
3648 */
3649 if (sc->devinfo.
3650 mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3651 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
3652 sc->flags |= BNX2X_MF_FUNC_DIS;
3653 bnx2x_e1h_disable(sc);
3654 } else {
3655 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
3656 sc->flags &= ~BNX2X_MF_FUNC_DIS;
3657 bnx2x_e1h_enable(sc);
3658 }
3659 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3660 }
3661
3662 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3663 bnx2x_config_mf_bw(sc);
3664 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3665 }
3666
3667 /* Report results to MCP */
3668 if (dcc_event)
3669 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3670 else
3671 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3672 }
3673
3674 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3675 {
3676 int port = SC_PORT(sc);
3677 uint32_t val;
3678
3679 sc->port.pmf = 1;
3680
3681 /*
3682 * We need the mb() to ensure the ordering between the writing to
3683 * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3684 */
3685 mb();
3686
3687 /* enable nig attention */
3688 val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3689 if (sc->devinfo.int_block == INT_BLOCK_HC) {
3690 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3691 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3692 } else if (!CHIP_IS_E1x(sc)) {
3693 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3694 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3695 }
3696
3697 bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3698 }
3699
3700 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3701 {
3702 char last_idx;
3703 int i, rc = 0;
3704 __rte_unused uint32_t row0, row1, row2, row3;
3705
3706 /* XSTORM */
3707 last_idx =
3708 REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3709 if (last_idx)
3710 PMD_DRV_LOG(ERR, sc, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3711
3712 /* print the asserts */
3713 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3714
3715 row0 =
3716 REG_RD(sc,
3717 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3718 row1 =
3719 REG_RD(sc,
3720 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3721 4);
3722 row2 =
3723 REG_RD(sc,
3724 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3725 8);
3726 row3 =
3727 REG_RD(sc,
3728 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3729 12);
3730
3731 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3732 PMD_DRV_LOG(ERR, sc,
3733 "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3734 i, row3, row2, row1, row0);
3735 rc++;
3736 } else {
3737 break;
3738 }
3739 }
3740
3741 /* TSTORM */
3742 last_idx =
3743 REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3744 if (last_idx) {
3745 PMD_DRV_LOG(ERR, sc, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3746 }
3747
3748 /* print the asserts */
3749 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3750
3751 row0 =
3752 REG_RD(sc,
3753 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3754 row1 =
3755 REG_RD(sc,
3756 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3757 4);
3758 row2 =
3759 REG_RD(sc,
3760 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3761 8);
3762 row3 =
3763 REG_RD(sc,
3764 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3765 12);
3766
3767 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3768 PMD_DRV_LOG(ERR, sc,
3769 "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3770 i, row3, row2, row1, row0);
3771 rc++;
3772 } else {
3773 break;
3774 }
3775 }
3776
3777 /* CSTORM */
3778 last_idx =
3779 REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3780 if (last_idx) {
3781 PMD_DRV_LOG(ERR, sc, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3782 }
3783
3784 /* print the asserts */
3785 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3786
3787 row0 =
3788 REG_RD(sc,
3789 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3790 row1 =
3791 REG_RD(sc,
3792 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3793 4);
3794 row2 =
3795 REG_RD(sc,
3796 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3797 8);
3798 row3 =
3799 REG_RD(sc,
3800 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3801 12);
3802
3803 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3804 PMD_DRV_LOG(ERR, sc,
3805 "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3806 i, row3, row2, row1, row0);
3807 rc++;
3808 } else {
3809 break;
3810 }
3811 }
3812
3813 /* USTORM */
3814 last_idx =
3815 REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3816 if (last_idx) {
3817 PMD_DRV_LOG(ERR, sc, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3818 }
3819
3820 /* print the asserts */
3821 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3822
3823 row0 =
3824 REG_RD(sc,
3825 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3826 row1 =
3827 REG_RD(sc,
3828 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3829 4);
3830 row2 =
3831 REG_RD(sc,
3832 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3833 8);
3834 row3 =
3835 REG_RD(sc,
3836 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3837 12);
3838
3839 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3840 PMD_DRV_LOG(ERR, sc,
3841 "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3842 i, row3, row2, row1, row0);
3843 rc++;
3844 } else {
3845 break;
3846 }
3847 }
3848
3849 return rc;
3850 }
3851
3852 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3853 {
3854 int func = SC_FUNC(sc);
3855 uint32_t val;
3856
3857 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3858
3859 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3860
3861 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3862 bnx2x_read_mf_cfg(sc);
3863 sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3864 MFCFG_RD(sc,
3865 func_mf_config[SC_ABS_FUNC(sc)].config);
3866 val =
3867 SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3868
3869 if (val & DRV_STATUS_DCC_EVENT_MASK)
3870 bnx2x_dcc_event(sc,
3871 (val &
3872 DRV_STATUS_DCC_EVENT_MASK));
3873
3874 if (val & DRV_STATUS_SET_MF_BW)
3875 bnx2x_set_mf_bw(sc);
3876
3877 if (val & DRV_STATUS_DRV_INFO_REQ)
3878 bnx2x_handle_drv_info_req(sc);
3879
3880 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3881 bnx2x_pmf_update(sc);
3882
3883 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3884 bnx2x_handle_eee_event(sc);
3885
3886 if (sc->link_vars.periodic_flags &
3887 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3888 /* sync with link */
3889 bnx2x_acquire_phy_lock(sc);
3890 sc->link_vars.periodic_flags &=
3891 ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3892 bnx2x_release_phy_lock(sc);
3893 if (IS_MF(sc)) {
3894 bnx2x_link_sync_notify(sc);
3895 }
3896 bnx2x_link_report(sc);
3897 }
3898
3899 /*
3900 * Always call it here: bnx2x_link_report() will
3901 * prevent the link indication duplication.
3902 */
3903 bnx2x_link_status_update(sc);
3904
3905 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3906
3907 PMD_DRV_LOG(ERR, sc, "MC assert!");
3908 bnx2x_mc_assert(sc);
3909 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3910 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3911 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3912 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3913 rte_panic("MC assert!");
3914
3915 } else if (attn & BNX2X_MCP_ASSERT) {
3916
3917 PMD_DRV_LOG(ERR, sc, "MCP assert!");
3918 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3919
3920 } else {
3921 PMD_DRV_LOG(ERR, sc,
3922 "Unknown HW assert! (attn 0x%08x)", attn);
3923 }
3924 }
3925
3926 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3927 PMD_DRV_LOG(ERR, sc, "LATCHED attention 0x%08x (masked)", attn);
3928 if (attn & BNX2X_GRC_TIMEOUT) {
3929 val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3930 PMD_DRV_LOG(ERR, sc, "GRC time-out 0x%08x", val);
3931 }
3932 if (attn & BNX2X_GRC_RSV) {
3933 val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3934 PMD_DRV_LOG(ERR, sc, "GRC reserved 0x%08x", val);
3935 }
3936 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3937 }
3938 }
3939
3940 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3941 {
3942 int port = SC_PORT(sc);
3943 int reg_offset;
3944 uint32_t val0, mask0, val1, mask1;
3945 uint32_t val;
3946
3947 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3948 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3949 PMD_DRV_LOG(ERR, sc, "CFC hw attention 0x%08x", val);
3950 /* CFC error attention */
3951 if (val & 0x2) {
3952 PMD_DRV_LOG(ERR, sc, "FATAL error from CFC");
3953 }
3954 }
3955
3956 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3957 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3958 PMD_DRV_LOG(ERR, sc, "PXP hw attention-0 0x%08x", val);
3959 /* RQ_USDMDP_FIFO_OVERFLOW */
3960 if (val & 0x18000) {
3961 PMD_DRV_LOG(ERR, sc, "FATAL error from PXP");
3962 }
3963
3964 if (!CHIP_IS_E1x(sc)) {
3965 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3966 PMD_DRV_LOG(ERR, sc, "PXP hw attention-1 0x%08x", val);
3967 }
3968 }
3969 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3970 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3971
3972 if (attn & AEU_PXP2_HW_INT_BIT) {
3973 /* CQ47854 workaround do not panic on
3974 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3975 */
3976 if (!CHIP_IS_E1x(sc)) {
3977 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3978 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3979 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3980 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3981 /*
3982 * If the only PXP2_EOP_ERROR_BIT is set in
3983 * STS0 and STS1 - clear it
3984 *
3985 * probably we lose additional attentions between
3986 * STS0 and STS_CLR0, in this case user will not
3987 * be notified about them
3988 */
3989 if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3990 !(val1 & mask1))
3991 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3992
3993 /* print the register, since no one can restore it */
3994 PMD_DRV_LOG(ERR, sc,
3995 "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
3996
3997 /*
3998 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3999 * then notify
4000 */
4001 if (val0 & PXP2_EOP_ERROR_BIT) {
4002 PMD_DRV_LOG(ERR, sc, "PXP2_WR_PGLUE_EOP_ERROR");
4003
4004 /*
4005 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
4006 * set then clear attention from PXP2 block without panic
4007 */
4008 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
4009 ((val1 & mask1) == 0))
4010 attn &= ~AEU_PXP2_HW_INT_BIT;
4011 }
4012 }
4013 }
4014
4015 if (attn & HW_INTERRUT_ASSERT_SET_2) {
4016 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4017 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4018
4019 val = REG_RD(sc, reg_offset);
4020 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4021 REG_WR(sc, reg_offset, val);
4022
4023 PMD_DRV_LOG(ERR, sc,
4024 "FATAL HW block attention set2 0x%x",
4025 (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4026 rte_panic("HW block attention set2");
4027 }
4028 }
4029
4030 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4031 {
4032 int port = SC_PORT(sc);
4033 int reg_offset;
4034 uint32_t val;
4035
4036 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4037 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4038 PMD_DRV_LOG(ERR, sc, "DB hw attention 0x%08x", val);
4039 /* DORQ discard attention */
4040 if (val & 0x2) {
4041 PMD_DRV_LOG(ERR, sc, "FATAL error from DORQ");
4042 }
4043 }
4044
4045 if (attn & HW_INTERRUT_ASSERT_SET_1) {
4046 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4047 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4048
4049 val = REG_RD(sc, reg_offset);
4050 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4051 REG_WR(sc, reg_offset, val);
4052
4053 PMD_DRV_LOG(ERR, sc,
4054 "FATAL HW block attention set1 0x%08x",
4055 (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4056 rte_panic("HW block attention set1");
4057 }
4058 }
4059
4060 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4061 {
4062 int port = SC_PORT(sc);
4063 int reg_offset;
4064 uint32_t val;
4065
4066 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4067 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4068
4069 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4070 val = REG_RD(sc, reg_offset);
4071 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4072 REG_WR(sc, reg_offset, val);
4073
4074 PMD_DRV_LOG(WARNING, sc, "SPIO5 hw attention");
4075
4076 /* Fan failure attention */
4077 elink_hw_reset_phy(&sc->link_params);
4078 bnx2x_fan_failure(sc);
4079 }
4080
4081 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4082 bnx2x_acquire_phy_lock(sc);
4083 elink_handle_module_detect_int(&sc->link_params);
4084 bnx2x_release_phy_lock(sc);
4085 }
4086
4087 if (attn & HW_INTERRUT_ASSERT_SET_0) {
4088 val = REG_RD(sc, reg_offset);
4089 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4090 REG_WR(sc, reg_offset, val);
4091
4092 rte_panic("FATAL HW block attention set0 0x%lx",
4093 (attn & HW_INTERRUT_ASSERT_SET_0));
4094 }
4095 }
4096
4097 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4098 {
4099 struct attn_route attn;
4100 struct attn_route *group_mask;
4101 int port = SC_PORT(sc);
4102 int index;
4103 uint32_t reg_addr;
4104 uint32_t val;
4105 uint32_t aeu_mask;
4106 uint8_t global = FALSE;
4107
4108 /*
4109 * Need to take HW lock because MCP or other port might also
4110 * try to handle this event.
4111 */
4112 bnx2x_acquire_alr(sc);
4113
4114 if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4115 sc->recovery_state = BNX2X_RECOVERY_INIT;
4116
4117 /* disable HW interrupts */
4118 bnx2x_int_disable(sc);
4119 bnx2x_release_alr(sc);
4120 return;
4121 }
4122
4123 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4124 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4125 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4126 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4127 if (!CHIP_IS_E1x(sc)) {
4128 attn.sig[4] =
4129 REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4130 } else {
4131 attn.sig[4] = 0;
4132 }
4133
4134 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4135 if (deasserted & (1 << index)) {
4136 group_mask = &sc->attn_group[index];
4137
4138 bnx2x_attn_int_deasserted4(sc,
4139 attn.
4140 sig[4] & group_mask->sig[4]);
4141 bnx2x_attn_int_deasserted3(sc,
4142 attn.
4143 sig[3] & group_mask->sig[3]);
4144 bnx2x_attn_int_deasserted1(sc,
4145 attn.
4146 sig[1] & group_mask->sig[1]);
4147 bnx2x_attn_int_deasserted2(sc,
4148 attn.
4149 sig[2] & group_mask->sig[2]);
4150 bnx2x_attn_int_deasserted0(sc,
4151 attn.
4152 sig[0] & group_mask->sig[0]);
4153 }
4154 }
4155
4156 bnx2x_release_alr(sc);
4157
4158 if (sc->devinfo.int_block == INT_BLOCK_HC) {
4159 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4160 COMMAND_REG_ATTN_BITS_CLR);
4161 } else {
4162 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4163 }
4164
4165 val = ~deasserted;
4166 PMD_DRV_LOG(DEBUG, sc,
4167 "about to mask 0x%08x at %s addr 0x%08x", val,
4168 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4169 reg_addr);
4170 REG_WR(sc, reg_addr, val);
4171
4172 if (~sc->attn_state & deasserted) {
4173 PMD_DRV_LOG(ERR, sc, "IGU error");
4174 }
4175
4176 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4177 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4178
4179 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4180
4181 aeu_mask = REG_RD(sc, reg_addr);
4182
4183 aeu_mask |= (deasserted & 0x3ff);
4184
4185 REG_WR(sc, reg_addr, aeu_mask);
4186 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4187
4188 sc->attn_state &= ~deasserted;
4189 }
4190
4191 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4192 {
4193 /* read local copy of bits */
4194 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4195 uint32_t attn_ack =
4196 le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4197 uint32_t attn_state = sc->attn_state;
4198
4199 /* look for changed bits */
4200 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4201 uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4202
4203 PMD_DRV_LOG(DEBUG, sc,
4204 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4205 attn_bits, attn_ack, asserted, deasserted);
4206
4207 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4208 PMD_DRV_LOG(ERR, sc, "BAD attention state");
4209 }
4210
4211 /* handle bits that were raised */
4212 if (asserted) {
4213 bnx2x_attn_int_asserted(sc, asserted);
4214 }
4215
4216 if (deasserted) {
4217 bnx2x_attn_int_deasserted(sc, deasserted);
4218 }
4219 }
4220
4221 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4222 {
4223 struct host_sp_status_block *def_sb = sc->def_sb;
4224 uint16_t rc = 0;
4225
4226 if (!def_sb)
4227 return 0;
4228
4229 mb(); /* status block is written to by the chip */
4230
4231 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4232 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4233 rc |= BNX2X_DEF_SB_ATT_IDX;
4234 }
4235
4236 if (sc->def_idx != def_sb->sp_sb.running_index) {
4237 sc->def_idx = def_sb->sp_sb.running_index;
4238 rc |= BNX2X_DEF_SB_IDX;
4239 }
4240
4241 mb();
4242
4243 return rc;
4244 }
4245
4246 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4247 uint32_t cid)
4248 {
4249 return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4250 }
4251
4252 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4253 {
4254 struct ecore_mcast_ramrod_params rparam;
4255 int rc;
4256
4257 memset(&rparam, 0, sizeof(rparam));
4258
4259 rparam.mcast_obj = &sc->mcast_obj;
4260
4261 /* clear pending state for the last command */
4262 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4263
4264 /* if there are pending mcast commands - send them */
4265 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4266 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4267 if (rc < 0) {
4268 PMD_DRV_LOG(INFO, sc,
4269 "Failed to send pending mcast commands (%d)",
4270 rc);
4271 }
4272 }
4273 }
4274
4275 static void
4276 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4277 {
4278 unsigned long ramrod_flags = 0;
4279 int rc = 0;
4280 uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4281 struct ecore_vlan_mac_obj *vlan_mac_obj;
4282
4283 /* always push next commands out, don't wait here */
4284 bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4285
4286 switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4287 case ECORE_FILTER_MAC_PENDING:
4288 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MAC completions");
4289 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4290 break;
4291
4292 case ECORE_FILTER_MCAST_PENDING:
4293 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MCAST completions");
4294 bnx2x_handle_mcast_eqe(sc);
4295 return;
4296
4297 default:
4298 PMD_DRV_LOG(NOTICE, sc, "Unsupported classification command: %d",
4299 elem->message.data.eth_event.echo);
4300 return;
4301 }
4302
4303 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4304
4305 if (rc < 0) {
4306 PMD_DRV_LOG(NOTICE, sc,
4307 "Failed to schedule new commands (%d)", rc);
4308 } else if (rc > 0) {
4309 PMD_DRV_LOG(DEBUG, sc, "Scheduled next pending commands...");
4310 }
4311 }
4312
4313 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4314 {
4315 bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4316
4317 /* send rx_mode command again if was requested */
4318 if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4319 bnx2x_set_storm_rx_mode(sc);
4320 }
4321 }
4322
4323 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4324 {
4325 storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4326 wmb(); /* keep prod updates ordered */
4327 }
4328
4329 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4330 {
4331 uint16_t hw_cons, sw_cons, sw_prod;
4332 union event_ring_elem *elem;
4333 uint8_t echo;
4334 uint32_t cid;
4335 uint8_t opcode;
4336 int spqe_cnt = 0;
4337 struct ecore_queue_sp_obj *q_obj;
4338 struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4339 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4340
4341 hw_cons = le16toh(*sc->eq_cons_sb);
4342
4343 /*
4344 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4345 * when we get to the next-page we need to adjust so the loop
4346 * condition below will be met. The next element is the size of a
4347 * regular element and hence incrementing by 1
4348 */
4349 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4350 hw_cons++;
4351 }
4352
4353 /*
4354 * This function may never run in parallel with itself for a
4355 * specific sc and no need for a read memory barrier here.
4356 */
4357 sw_cons = sc->eq_cons;
4358 sw_prod = sc->eq_prod;
4359
4360 for (;
4361 sw_cons != hw_cons;
4362 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4363
4364 elem = &sc->eq[EQ_DESC(sw_cons)];
4365
4366 /* elem CID originates from FW, actually LE */
4367 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4368 opcode = elem->message.opcode;
4369
4370 /* handle eq element */
4371 switch (opcode) {
4372 case EVENT_RING_OPCODE_STAT_QUERY:
4373 PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "got statistics completion event %d",
4374 sc->stats_comp++);
4375 /* nothing to do with stats comp */
4376 goto next_spqe;
4377
4378 case EVENT_RING_OPCODE_CFC_DEL:
4379 /* handle according to cid range */
4380 /* we may want to verify here that the sc state is HALTING */
4381 PMD_DRV_LOG(DEBUG, sc, "got delete ramrod for MULTI[%d]",
4382 cid);
4383 q_obj = bnx2x_cid_to_q_obj(sc, cid);
4384 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4385 break;
4386 }
4387 goto next_spqe;
4388
4389 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4390 PMD_DRV_LOG(DEBUG, sc, "got STOP TRAFFIC");
4391 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4392 break;
4393 }
4394 goto next_spqe;
4395
4396 case EVENT_RING_OPCODE_START_TRAFFIC:
4397 PMD_DRV_LOG(DEBUG, sc, "got START TRAFFIC");
4398 if (f_obj->complete_cmd
4399 (sc, f_obj, ECORE_F_CMD_TX_START)) {
4400 break;
4401 }
4402 goto next_spqe;
4403
4404 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4405 echo = elem->message.data.function_update_event.echo;
4406 if (echo == SWITCH_UPDATE) {
4407 PMD_DRV_LOG(DEBUG, sc,
4408 "got FUNC_SWITCH_UPDATE ramrod");
4409 if (f_obj->complete_cmd(sc, f_obj,
4410 ECORE_F_CMD_SWITCH_UPDATE))
4411 {
4412 break;
4413 }
4414 } else {
4415 PMD_DRV_LOG(DEBUG, sc,
4416 "AFEX: ramrod completed FUNCTION_UPDATE");
4417 f_obj->complete_cmd(sc, f_obj,
4418 ECORE_F_CMD_AFEX_UPDATE);
4419 }
4420 goto next_spqe;
4421
4422 case EVENT_RING_OPCODE_FORWARD_SETUP:
4423 q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4424 if (q_obj->complete_cmd(sc, q_obj,
4425 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4426 break;
4427 }
4428 goto next_spqe;
4429
4430 case EVENT_RING_OPCODE_FUNCTION_START:
4431 PMD_DRV_LOG(DEBUG, sc, "got FUNC_START ramrod");
4432 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4433 break;
4434 }
4435 goto next_spqe;
4436
4437 case EVENT_RING_OPCODE_FUNCTION_STOP:
4438 PMD_DRV_LOG(DEBUG, sc, "got FUNC_STOP ramrod");
4439 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4440 break;
4441 }
4442 goto next_spqe;
4443 }
4444
4445 switch (opcode | sc->state) {
4446 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4447 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4448 cid =
4449 elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4450 PMD_DRV_LOG(DEBUG, sc, "got RSS_UPDATE ramrod. CID %d",
4451 cid);
4452 rss_raw->clear_pending(rss_raw);
4453 break;
4454
4455 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4456 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4457 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4458 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4459 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4460 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4461 PMD_DRV_LOG(DEBUG, sc,
4462 "got (un)set mac ramrod");
4463 bnx2x_handle_classification_eqe(sc, elem);
4464 break;
4465
4466 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4467 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4468 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4469 PMD_DRV_LOG(DEBUG, sc,
4470 "got mcast ramrod");
4471 bnx2x_handle_mcast_eqe(sc);
4472 break;
4473
4474 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4475 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4476 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4477 PMD_DRV_LOG(DEBUG, sc,
4478 "got rx_mode ramrod");
4479 bnx2x_handle_rx_mode_eqe(sc);
4480 break;
4481
4482 default:
4483 /* unknown event log error and continue */
4484 PMD_DRV_LOG(INFO, sc, "Unknown EQ event %d, sc->state 0x%x",
4485 elem->message.opcode, sc->state);
4486 }
4487
4488 next_spqe:
4489 spqe_cnt++;
4490 } /* for */
4491
4492 mb();
4493 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4494
4495 sc->eq_cons = sw_cons;
4496 sc->eq_prod = sw_prod;
4497
4498 /* make sure that above mem writes were issued towards the memory */
4499 wmb();
4500
4501 /* update producer */
4502 bnx2x_update_eq_prod(sc, sc->eq_prod);
4503 }
4504
4505 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4506 {
4507 uint16_t status;
4508 int rc = 0;
4509
4510 PMD_DRV_LOG(DEBUG, sc, "---> SP TASK <---");
4511
4512 /* what work needs to be performed? */
4513 status = bnx2x_update_dsb_idx(sc);
4514
4515 PMD_DRV_LOG(DEBUG, sc, "dsb status 0x%04x", status);
4516
4517 /* HW attentions */
4518 if (status & BNX2X_DEF_SB_ATT_IDX) {
4519 PMD_DRV_LOG(DEBUG, sc, "---> ATTN INTR <---");
4520 bnx2x_attn_int(sc);
4521 status &= ~BNX2X_DEF_SB_ATT_IDX;
4522 rc = 1;
4523 }
4524
4525 /* SP events: STAT_QUERY and others */
4526 if (status & BNX2X_DEF_SB_IDX) {
4527 /* handle EQ completions */
4528 PMD_DRV_LOG(DEBUG, sc, "---> EQ INTR <---");
4529 bnx2x_eq_int(sc);
4530 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4531 le16toh(sc->def_idx), IGU_INT_NOP, 1);
4532 status &= ~BNX2X_DEF_SB_IDX;
4533 }
4534
4535 /* if status is non zero then something went wrong */
4536 if (unlikely(status)) {
4537 PMD_DRV_LOG(INFO, sc,
4538 "Got an unknown SP interrupt! (0x%04x)", status);
4539 }
4540
4541 /* ack status block only if something was actually handled */
4542 bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4543 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4544
4545 return rc;
4546 }
4547
4548 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp)
4549 {
4550 struct bnx2x_softc *sc = fp->sc;
4551 uint8_t more_rx = FALSE;
4552
4553 /* Make sure FP is initialized */
4554 if (!fp->sb_running_index)
4555 return;
4556
4557 PMD_DEBUG_PERIODIC_LOG(DEBUG, sc,
4558 "---> FP TASK QUEUE (%d) <--", fp->index);
4559
4560 /* update the fastpath index */
4561 bnx2x_update_fp_sb_idx(fp);
4562
4563 if (rte_atomic32_read(&sc->scan_fp) == 1) {
4564 if (bnx2x_has_rx_work(fp)) {
4565 more_rx = bnx2x_rxeof(sc, fp);
4566 }
4567
4568 if (more_rx) {
4569 /* still more work to do */
4570 bnx2x_handle_fp_tq(fp);
4571 return;
4572 }
4573 }
4574
4575 bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4576 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4577 }
4578
4579 /*
4580 * Legacy interrupt entry point.
4581 *
4582 * Verifies that the controller generated the interrupt and
4583 * then calls a separate routine to handle the various
4584 * interrupt causes: link, RX, and TX.
4585 */
4586 int bnx2x_intr_legacy(struct bnx2x_softc *sc)
4587 {
4588 struct bnx2x_fastpath *fp;
4589 uint32_t status, mask;
4590 int i, rc = 0;
4591
4592 /*
4593 * 0 for ustorm, 1 for cstorm
4594 * the bits returned from ack_int() are 0-15
4595 * bit 0 = attention status block
4596 * bit 1 = fast path status block
4597 * a mask of 0x2 or more = tx/rx event
4598 * a mask of 1 = slow path event
4599 */
4600
4601 status = bnx2x_ack_int(sc);
4602
4603 /* the interrupt is not for us */
4604 if (unlikely(status == 0)) {
4605 return 0;
4606 }
4607
4608 PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "Interrupt status 0x%04x", status);
4609 //bnx2x_dump_status_block(sc);
4610
4611 FOR_EACH_ETH_QUEUE(sc, i) {
4612 fp = &sc->fp[i];
4613 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4614 if (status & mask) {
4615 /* acknowledge and disable further fastpath interrupts */
4616 bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4617 0, IGU_INT_DISABLE, 0);
4618 bnx2x_handle_fp_tq(fp);
4619 status &= ~mask;
4620 }
4621 }
4622
4623 if (unlikely(status & 0x1)) {
4624 /* acknowledge and disable further slowpath interrupts */
4625 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4626 0, IGU_INT_DISABLE, 0);
4627 rc = bnx2x_handle_sp_tq(sc);
4628 status &= ~0x1;
4629 }
4630
4631 if (unlikely(status)) {
4632 PMD_DRV_LOG(WARNING, sc,
4633 "Unexpected fastpath status (0x%08x)!", status);
4634 }
4635
4636 return rc;
4637 }
4638
4639 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4640 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4641 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4642 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4643 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4644 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4645 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4646 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4647 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4648
4649 static struct
4650 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4651 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4652 .init_hw_cmn = bnx2x_init_hw_common,
4653 .init_hw_port = bnx2x_init_hw_port,
4654 .init_hw_func = bnx2x_init_hw_func,
4655
4656 .reset_hw_cmn = bnx2x_reset_common,
4657 .reset_hw_port = bnx2x_reset_port,
4658 .reset_hw_func = bnx2x_reset_func,
4659
4660 .init_fw = bnx2x_init_firmware,
4661 .release_fw = bnx2x_release_firmware,
4662 };
4663
4664 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4665 {
4666 sc->dmae_ready = 0;
4667
4668 PMD_INIT_FUNC_TRACE(sc);
4669
4670 ecore_init_func_obj(sc,
4671 &sc->func_obj,
4672 BNX2X_SP(sc, func_rdata),
4673 (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4674 BNX2X_SP(sc, func_afex_rdata),
4675 (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4676 &bnx2x_func_sp_drv);
4677 }
4678
4679 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4680 {
4681 struct ecore_func_state_params func_params = { NULL };
4682 int rc;
4683
4684 PMD_INIT_FUNC_TRACE(sc);
4685
4686 /* prepare the parameters for function state transitions */
4687 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4688
4689 func_params.f_obj = &sc->func_obj;
4690 func_params.cmd = ECORE_F_CMD_HW_INIT;
4691
4692 func_params.params.hw_init.load_phase = load_code;
4693
4694 /*
4695 * Via a plethora of function pointers, we will eventually reach
4696 * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4697 */
4698 rc = ecore_func_state_change(sc, &func_params);
4699
4700 return rc;
4701 }
4702
4703 static void
4704 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4705 {
4706 uint32_t i;
4707
4708 if (!(len % 4) && !(addr % 4)) {
4709 for (i = 0; i < len; i += 4) {
4710 REG_WR(sc, (addr + i), fill);
4711 }
4712 } else {
4713 for (i = 0; i < len; i++) {
4714 REG_WR8(sc, (addr + i), fill);
4715 }
4716 }
4717 }
4718
4719 /* writes FP SP data to FW - data_size in dwords */
4720 static void
4721 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4722 uint32_t data_size)
4723 {
4724 uint32_t index;
4725
4726 for (index = 0; index < data_size; index++) {
4727 REG_WR(sc,
4728 (BAR_CSTRORM_INTMEM +
4729 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4730 (sizeof(uint32_t) * index)), *(sb_data_p + index));
4731 }
4732 }
4733
4734 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4735 {
4736 struct hc_status_block_data_e2 sb_data_e2;
4737 struct hc_status_block_data_e1x sb_data_e1x;
4738 uint32_t *sb_data_p;
4739 uint32_t data_size = 0;
4740
4741 if (!CHIP_IS_E1x(sc)) {
4742 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4743 sb_data_e2.common.state = SB_DISABLED;
4744 sb_data_e2.common.p_func.vf_valid = FALSE;
4745 sb_data_p = (uint32_t *) & sb_data_e2;
4746 data_size = (sizeof(struct hc_status_block_data_e2) /
4747 sizeof(uint32_t));
4748 } else {
4749 memset(&sb_data_e1x, 0,
4750 sizeof(struct hc_status_block_data_e1x));
4751 sb_data_e1x.common.state = SB_DISABLED;
4752 sb_data_e1x.common.p_func.vf_valid = FALSE;
4753 sb_data_p = (uint32_t *) & sb_data_e1x;
4754 data_size = (sizeof(struct hc_status_block_data_e1x) /
4755 sizeof(uint32_t));
4756 }
4757
4758 bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4759
4760 bnx2x_fill(sc,
4761 (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4762 CSTORM_STATUS_BLOCK_SIZE);
4763 bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4764 0, CSTORM_SYNC_BLOCK_SIZE);
4765 }
4766
4767 static void
4768 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4769 struct hc_sp_status_block_data *sp_sb_data)
4770 {
4771 uint32_t i;
4772
4773 for (i = 0;
4774 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4775 i++) {
4776 REG_WR(sc,
4777 (BAR_CSTRORM_INTMEM +
4778 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4779 (i * sizeof(uint32_t))),
4780 *((uint32_t *) sp_sb_data + i));
4781 }
4782 }
4783
4784 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4785 {
4786 struct hc_sp_status_block_data sp_sb_data;
4787
4788 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4789
4790 sp_sb_data.state = SB_DISABLED;
4791 sp_sb_data.p_func.vf_valid = FALSE;
4792
4793 bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4794
4795 bnx2x_fill(sc,
4796 (BAR_CSTRORM_INTMEM +
4797 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4798 0, CSTORM_SP_STATUS_BLOCK_SIZE);
4799 bnx2x_fill(sc,
4800 (BAR_CSTRORM_INTMEM +
4801 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4802 0, CSTORM_SP_SYNC_BLOCK_SIZE);
4803 }
4804
4805 static void
4806 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4807 int igu_seg_id)
4808 {
4809 hc_sm->igu_sb_id = igu_sb_id;
4810 hc_sm->igu_seg_id = igu_seg_id;
4811 hc_sm->timer_value = 0xFF;
4812 hc_sm->time_to_expire = 0xFFFFFFFF;
4813 }
4814
4815 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4816 {
4817 /* zero out state machine indices */
4818
4819 /* rx indices */
4820 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4821
4822 /* tx indices */
4823 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4824 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4825 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4826 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4827
4828 /* map indices */
4829
4830 /* rx indices */
4831 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4832 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4833
4834 /* tx indices */
4835 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4836 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4837 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4838 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4839 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4840 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4841 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4842 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4843 }
4844
4845 static void
4846 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4847 uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4848 {
4849 struct hc_status_block_data_e2 sb_data_e2;
4850 struct hc_status_block_data_e1x sb_data_e1x;
4851 struct hc_status_block_sm *hc_sm_p;
4852 uint32_t *sb_data_p;
4853 int igu_seg_id;
4854 int data_size;
4855
4856 if (CHIP_INT_MODE_IS_BC(sc)) {
4857 igu_seg_id = HC_SEG_ACCESS_NORM;
4858 } else {
4859 igu_seg_id = IGU_SEG_ACCESS_NORM;
4860 }
4861
4862 bnx2x_zero_fp_sb(sc, fw_sb_id);
4863
4864 if (!CHIP_IS_E1x(sc)) {
4865 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4866 sb_data_e2.common.state = SB_ENABLED;
4867 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4868 sb_data_e2.common.p_func.vf_id = vfid;
4869 sb_data_e2.common.p_func.vf_valid = vf_valid;
4870 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4871 sb_data_e2.common.same_igu_sb_1b = TRUE;
4872 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4873 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4874 hc_sm_p = sb_data_e2.common.state_machine;
4875 sb_data_p = (uint32_t *) & sb_data_e2;
4876 data_size = (sizeof(struct hc_status_block_data_e2) /
4877 sizeof(uint32_t));
4878 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4879 } else {
4880 memset(&sb_data_e1x, 0,
4881 sizeof(struct hc_status_block_data_e1x));
4882 sb_data_e1x.common.state = SB_ENABLED;
4883 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4884 sb_data_e1x.common.p_func.vf_id = 0xff;
4885 sb_data_e1x.common.p_func.vf_valid = FALSE;
4886 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4887 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4888 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4889 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4890 hc_sm_p = sb_data_e1x.common.state_machine;
4891 sb_data_p = (uint32_t *) & sb_data_e1x;
4892 data_size = (sizeof(struct hc_status_block_data_e1x) /
4893 sizeof(uint32_t));
4894 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4895 }
4896
4897 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4898 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4899
4900 /* write indices to HW - PCI guarantees endianity of regpairs */
4901 bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4902 }
4903
4904 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4905 {
4906 if (CHIP_IS_E1x(fp->sc)) {
4907 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4908 } else {
4909 return fp->cl_id;
4910 }
4911 }
4912
4913 static uint32_t
4914 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4915 {
4916 uint32_t offset = BAR_USTRORM_INTMEM;
4917
4918 if (IS_VF(sc)) {
4919 return PXP_VF_ADDR_USDM_QUEUES_START +
4920 (sc->acquire_resp.resc.hw_qid[fp->index] *
4921 sizeof(struct ustorm_queue_zone_data));
4922 } else if (!CHIP_IS_E1x(sc)) {
4923 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4924 } else {
4925 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4926 }
4927
4928 return offset;
4929 }
4930
4931 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4932 {
4933 struct bnx2x_fastpath *fp = &sc->fp[idx];
4934 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4935 unsigned long q_type = 0;
4936 int cos;
4937
4938 fp->sc = sc;
4939 fp->index = idx;
4940
4941 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4942 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4943
4944 if (CHIP_IS_E1x(sc))
4945 fp->cl_id = SC_L_ID(sc) + idx;
4946 else
4947 /* want client ID same as IGU SB ID for non-E1 */
4948 fp->cl_id = fp->igu_sb_id;
4949 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4950
4951 /* setup sb indices */
4952 if (!CHIP_IS_E1x(sc)) {
4953 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4954 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4955 } else {
4956 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4957 fp->sb_running_index =
4958 fp->status_block.e1x_sb->sb.running_index;
4959 }
4960
4961 /* init shortcut */
4962 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4963
4964 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4965
4966 for (cos = 0; cos < sc->max_cos; cos++) {
4967 cids[cos] = idx;
4968 }
4969 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4970
4971 /* nothing more for a VF to do */
4972 if (IS_VF(sc)) {
4973 return;
4974 }
4975
4976 bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4977 fp->fw_sb_id, fp->igu_sb_id);
4978
4979 bnx2x_update_fp_sb_idx(fp);
4980
4981 /* Configure Queue State object */
4982 bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4983 bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4984
4985 ecore_init_queue_obj(sc,
4986 &sc->sp_objs[idx].q_obj,
4987 fp->cl_id,
4988 cids,
4989 sc->max_cos,
4990 SC_FUNC(sc),
4991 BNX2X_SP(sc, q_rdata),
4992 (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
4993 q_type);
4994
4995 /* configure classification DBs */
4996 ecore_init_mac_obj(sc,
4997 &sc->sp_objs[idx].mac_obj,
4998 fp->cl_id,
4999 idx,
5000 SC_FUNC(sc),
5001 BNX2X_SP(sc, mac_rdata),
5002 (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
5003 ECORE_FILTER_MAC_PENDING, &sc->sp_state,
5004 ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
5005 }
5006
5007 static void
5008 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
5009 uint16_t rx_bd_prod, uint16_t rx_cq_prod)
5010 {
5011 union ustorm_eth_rx_producers rx_prods;
5012 uint32_t i;
5013
5014 /* update producers */
5015 rx_prods.prod.bd_prod = rx_bd_prod;
5016 rx_prods.prod.cqe_prod = rx_cq_prod;
5017 rx_prods.prod.reserved = 0;
5018
5019 /*
5020 * Make sure that the BD and SGE data is updated before updating the
5021 * producers since FW might read the BD/SGE right after the producer
5022 * is updated.
5023 * This is only applicable for weak-ordered memory model archs such
5024 * as IA-64. The following barrier is also mandatory since FW will
5025 * assumes BDs must have buffers.
5026 */
5027 wmb();
5028
5029 for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
5030 REG_WR(sc,
5031 (fp->ustorm_rx_prods_offset + (i * 4)),
5032 rx_prods.raw_data[i]);
5033 }
5034
5035 wmb(); /* keep prod updates ordered */
5036 }
5037
5038 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
5039 {
5040 struct bnx2x_fastpath *fp;
5041 int i;
5042 struct bnx2x_rx_queue *rxq;
5043
5044 for (i = 0; i < sc->num_queues; i++) {
5045 fp = &sc->fp[i];
5046 rxq = sc->rx_queues[fp->index];
5047 if (!rxq) {
5048 PMD_RX_LOG(ERR, "RX queue is NULL");
5049 return;
5050 }
5051
5052 rxq->rx_bd_head = 0;
5053 rxq->rx_bd_tail = rxq->nb_rx_desc;
5054 rxq->rx_cq_head = 0;
5055 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5056 *fp->rx_cq_cons_sb = 0;
5057
5058 /*
5059 * Activate the BD ring...
5060 * Warning, this will generate an interrupt (to the TSTORM)
5061 * so this can only be done after the chip is initialized
5062 */
5063 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5064
5065 if (i != 0) {
5066 continue;
5067 }
5068 }
5069 }
5070
5071 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5072 {
5073 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5074
5075 fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5076 fp->tx_db.data.zero_fill1 = 0;
5077 fp->tx_db.data.prod = 0;
5078
5079 if (!txq) {
5080 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5081 return;
5082 }
5083
5084 txq->tx_pkt_tail = 0;
5085 txq->tx_pkt_head = 0;
5086 txq->tx_bd_tail = 0;
5087 txq->tx_bd_head = 0;
5088 }
5089
5090 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5091 {
5092 int i;
5093
5094 for (i = 0; i < sc->num_queues; i++) {
5095 bnx2x_init_tx_ring_one(&sc->fp[i]);
5096 }
5097 }
5098
5099 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5100 {
5101 struct host_sp_status_block *def_sb = sc->def_sb;
5102 rte_iova_t mapping = sc->def_sb_dma.paddr;
5103 int igu_sp_sb_index;
5104 int igu_seg_id;
5105 int port = SC_PORT(sc);
5106 int func = SC_FUNC(sc);
5107 int reg_offset, reg_offset_en5;
5108 uint64_t section;
5109 int index, sindex;
5110 struct hc_sp_status_block_data sp_sb_data;
5111
5112 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5113
5114 if (CHIP_INT_MODE_IS_BC(sc)) {
5115 igu_sp_sb_index = DEF_SB_IGU_ID;
5116 igu_seg_id = HC_SEG_ACCESS_DEF;
5117 } else {
5118 igu_sp_sb_index = sc->igu_dsb_id;
5119 igu_seg_id = IGU_SEG_ACCESS_DEF;
5120 }
5121
5122 /* attentions */
5123 section = ((uint64_t) mapping +
5124 offsetof(struct host_sp_status_block, atten_status_block));
5125 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5126 sc->attn_state = 0;
5127
5128 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5129 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5130
5131 reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5132 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5133
5134 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5135 /* take care of sig[0]..sig[4] */
5136 for (sindex = 0; sindex < 4; sindex++) {
5137 sc->attn_group[index].sig[sindex] =
5138 REG_RD(sc,
5139 (reg_offset + (sindex * 0x4) +
5140 (0x10 * index)));
5141 }
5142
5143 if (!CHIP_IS_E1x(sc)) {
5144 /*
5145 * enable5 is separate from the rest of the registers,
5146 * and the address skip is 4 and not 16 between the
5147 * different groups
5148 */
5149 sc->attn_group[index].sig[4] =
5150 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5151 } else {
5152 sc->attn_group[index].sig[4] = 0;
5153 }
5154 }
5155
5156 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5157 reg_offset =
5158 port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5159 REG_WR(sc, reg_offset, U64_LO(section));
5160 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5161 } else if (!CHIP_IS_E1x(sc)) {
5162 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5163 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5164 }
5165
5166 section = ((uint64_t) mapping +
5167 offsetof(struct host_sp_status_block, sp_sb));
5168
5169 bnx2x_zero_sp_sb(sc);
5170
5171 /* PCI guarantees endianity of regpair */
5172 sp_sb_data.state = SB_ENABLED;
5173 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5174 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5175 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5176 sp_sb_data.igu_seg_id = igu_seg_id;
5177 sp_sb_data.p_func.pf_id = func;
5178 sp_sb_data.p_func.vnic_id = SC_VN(sc);
5179 sp_sb_data.p_func.vf_id = 0xff;
5180
5181 bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5182
5183 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5184 }
5185
5186 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5187 {
5188 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5189 sc->spq_prod_idx = 0;
5190 sc->dsb_sp_prod =
5191 &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5192 sc->spq_prod_bd = sc->spq;
5193 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5194 }
5195
5196 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5197 {
5198 union event_ring_elem *elem;
5199 int i;
5200
5201 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5202 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5203
5204 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5205 BNX2X_PAGE_SIZE *
5206 (i % NUM_EQ_PAGES)));
5207 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5208 BNX2X_PAGE_SIZE *
5209 (i % NUM_EQ_PAGES)));
5210 }
5211
5212 sc->eq_cons = 0;
5213 sc->eq_prod = NUM_EQ_DESC;
5214 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5215
5216 atomic_store_rel_long(&sc->eq_spq_left,
5217 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5218 NUM_EQ_DESC) - 1));
5219 }
5220
5221 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5222 {
5223 int i;
5224
5225 if (IS_MF_SI(sc)) {
5226 /*
5227 * In switch independent mode, the TSTORM needs to accept
5228 * packets that failed classification, since approximate match
5229 * mac addresses aren't written to NIG LLH.
5230 */
5231 REG_WR8(sc,
5232 (BAR_TSTRORM_INTMEM +
5233 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5234 } else
5235 REG_WR8(sc,
5236 (BAR_TSTRORM_INTMEM +
5237 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5238
5239 /*
5240 * Zero this manually as its initialization is currently missing
5241 * in the initTool.
5242 */
5243 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5244 REG_WR(sc,
5245 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5246 0);
5247 }
5248
5249 if (!CHIP_IS_E1x(sc)) {
5250 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5251 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5252 HC_IGU_NBC_MODE);
5253 }
5254 }
5255
5256 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5257 {
5258 switch (load_code) {
5259 case FW_MSG_CODE_DRV_LOAD_COMMON:
5260 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5261 bnx2x_init_internal_common(sc);
5262 /* no break */
5263
5264 case FW_MSG_CODE_DRV_LOAD_PORT:
5265 /* nothing to do */
5266 /* no break */
5267
5268 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5269 /* internal memory per function is initialized inside bnx2x_pf_init */
5270 break;
5271
5272 default:
5273 PMD_DRV_LOG(NOTICE, sc, "Unknown load_code (0x%x) from MCP",
5274 load_code);
5275 break;
5276 }
5277 }
5278
5279 static void
5280 storm_memset_func_cfg(struct bnx2x_softc *sc,
5281 struct tstorm_eth_function_common_config *tcfg,
5282 uint16_t abs_fid)
5283 {
5284 uint32_t addr;
5285 size_t size;
5286
5287 addr = (BAR_TSTRORM_INTMEM +
5288 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5289 size = sizeof(struct tstorm_eth_function_common_config);
5290 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5291 }
5292
5293 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5294 {
5295 struct tstorm_eth_function_common_config tcfg = { 0 };
5296
5297 if (CHIP_IS_E1x(sc)) {
5298 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5299 }
5300
5301 /* Enable the function in the FW */
5302 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5303 storm_memset_func_en(sc, p->func_id, 1);
5304
5305 /* spq */
5306 if (p->func_flgs & FUNC_FLG_SPQ) {
5307 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5308 REG_WR(sc,
5309 (XSEM_REG_FAST_MEMORY +
5310 XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5311 }
5312 }
5313
5314 /*
5315 * Calculates the sum of vn_min_rates.
5316 * It's needed for further normalizing of the min_rates.
5317 * Returns:
5318 * sum of vn_min_rates.
5319 * or
5320 * 0 - if all the min_rates are 0.
5321 * In the later case fainess algorithm should be deactivated.
5322 * If all min rates are not zero then those that are zeroes will be set to 1.
5323 */
5324 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5325 {
5326 uint32_t vn_cfg;
5327 uint32_t vn_min_rate;
5328 int all_zero = 1;
5329 int vn;
5330
5331 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5332 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5333 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5334 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5335
5336 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5337 /* skip hidden VNs */
5338 vn_min_rate = 0;
5339 } else if (!vn_min_rate) {
5340 /* If min rate is zero - set it to 100 */
5341 vn_min_rate = DEF_MIN_RATE;
5342 } else {
5343 all_zero = 0;
5344 }
5345
5346 input->vnic_min_rate[vn] = vn_min_rate;
5347 }
5348
5349 /* if ETS or all min rates are zeros - disable fairness */
5350 if (all_zero) {
5351 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5352 } else {
5353 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5354 }
5355 }
5356
5357 static uint16_t
5358 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5359 {
5360 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5361 FUNC_MF_CFG_MAX_BW_SHIFT);
5362
5363 if (!max_cfg) {
5364 PMD_DRV_LOG(DEBUG, sc,
5365 "Max BW configured to 0 - using 100 instead");
5366 max_cfg = 100;
5367 }
5368
5369 return max_cfg;
5370 }
5371
5372 static void
5373 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5374 {
5375 uint16_t vn_max_rate;
5376 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5377 uint32_t max_cfg;
5378
5379 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5380 vn_max_rate = 0;
5381 } else {
5382 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5383
5384 if (IS_MF_SI(sc)) {
5385 /* max_cfg in percents of linkspeed */
5386 vn_max_rate =
5387 ((sc->link_vars.line_speed * max_cfg) / 100);
5388 } else { /* SD modes */
5389 /* max_cfg is absolute in 100Mb units */
5390 vn_max_rate = (max_cfg * 100);
5391 }
5392 }
5393
5394 input->vnic_max_rate[vn] = vn_max_rate;
5395 }
5396
5397 static void
5398 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5399 {
5400 struct cmng_init_input input;
5401 int vn;
5402
5403 memset(&input, 0, sizeof(struct cmng_init_input));
5404
5405 input.port_rate = sc->link_vars.line_speed;
5406
5407 if (cmng_type == CMNG_FNS_MINMAX) {
5408 /* read mf conf from shmem */
5409 if (read_cfg) {
5410 bnx2x_read_mf_cfg(sc);
5411 }
5412
5413 /* get VN min rate and enable fairness if not 0 */
5414 bnx2x_calc_vn_min(sc, &input);
5415
5416 /* get VN max rate */
5417 if (sc->port.pmf) {
5418 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5419 bnx2x_calc_vn_max(sc, vn, &input);
5420 }
5421 }
5422
5423 /* always enable rate shaping and fairness */
5424 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5425
5426 ecore_init_cmng(&input, &sc->cmng);
5427 return;
5428 }
5429 }
5430
5431 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5432 {
5433 if (CHIP_REV_IS_SLOW(sc)) {
5434 return CMNG_FNS_NONE;
5435 }
5436
5437 if (IS_MF(sc)) {
5438 return CMNG_FNS_MINMAX;
5439 }
5440
5441 return CMNG_FNS_NONE;
5442 }
5443
5444 static void
5445 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5446 {
5447 int vn;
5448 int func;
5449 uint32_t addr;
5450 size_t size;
5451
5452 addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5453 size = sizeof(struct cmng_struct_per_port);
5454 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5455
5456 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5457 func = func_by_vn(sc, vn);
5458
5459 addr = (BAR_XSTRORM_INTMEM +
5460 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5461 size = sizeof(struct rate_shaping_vars_per_vn);
5462 ecore_storm_memset_struct(sc, addr, size,
5463 (uint32_t *) & cmng->
5464 vnic.vnic_max_rate[vn]);
5465
5466 addr = (BAR_XSTRORM_INTMEM +
5467 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5468 size = sizeof(struct fairness_vars_per_vn);
5469 ecore_storm_memset_struct(sc, addr, size,
5470 (uint32_t *) & cmng->
5471 vnic.vnic_min_rate[vn]);
5472 }
5473 }
5474
5475 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5476 {
5477 struct bnx2x_func_init_params func_init;
5478 struct event_ring_data eq_data;
5479 uint16_t flags;
5480
5481 memset(&eq_data, 0, sizeof(struct event_ring_data));
5482 memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5483
5484 if (!CHIP_IS_E1x(sc)) {
5485 /* reset IGU PF statistics: MSIX + ATTN */
5486 /* PF */
5487 REG_WR(sc,
5488 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5489 (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5490 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5491 4)), 0);
5492 /* ATTN */
5493 REG_WR(sc,
5494 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5495 (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5496 (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5497 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5498 4)), 0);
5499 }
5500
5501 /* function setup flags */
5502 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5503
5504 func_init.func_flgs = flags;
5505 func_init.pf_id = SC_FUNC(sc);
5506 func_init.func_id = SC_FUNC(sc);
5507 func_init.spq_map = sc->spq_dma.paddr;
5508 func_init.spq_prod = sc->spq_prod_idx;
5509
5510 bnx2x_func_init(sc, &func_init);
5511
5512 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5513
5514 /*
5515 * Congestion management values depend on the link rate.
5516 * There is no active link so initial link rate is set to 10Gbps.
5517 * When the link comes up the congestion management values are
5518 * re-calculated according to the actual link rate.
5519 */
5520 sc->link_vars.line_speed = SPEED_10000;
5521 bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5522
5523 /* Only the PMF sets the HW */
5524 if (sc->port.pmf) {
5525 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5526 }
5527
5528 /* init Event Queue - PCI bus guarantees correct endainity */
5529 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5530 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5531 eq_data.producer = sc->eq_prod;
5532 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5533 eq_data.sb_id = DEF_SB_ID;
5534 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5535 }
5536
5537 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5538 {
5539 int port = SC_PORT(sc);
5540 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5541 uint32_t val = REG_RD(sc, addr);
5542 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5543 || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5544 uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5545 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5546
5547 if (msix) {
5548 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5549 HC_CONFIG_0_REG_INT_LINE_EN_0);
5550 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5551 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5552 if (single_msix) {
5553 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5554 }
5555 } else if (msi) {
5556 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5557 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5558 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5559 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5560 } else {
5561 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5562 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5563 HC_CONFIG_0_REG_INT_LINE_EN_0 |
5564 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5565
5566 REG_WR(sc, addr, val);
5567
5568 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5569 }
5570
5571 REG_WR(sc, addr, val);
5572
5573 /* ensure that HC_CONFIG is written before leading/trailing edge config */
5574 mb();
5575
5576 /* init leading/trailing edge */
5577 if (IS_MF(sc)) {
5578 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5579 if (sc->port.pmf) {
5580 /* enable nig and gpio3 attention */
5581 val |= 0x1100;
5582 }
5583 } else {
5584 val = 0xffff;
5585 }
5586
5587 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5588 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5589
5590 /* make sure that interrupts are indeed enabled from here on */
5591 mb();
5592 }
5593
5594 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5595 {
5596 uint32_t val;
5597 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5598 || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5599 uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5600 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5601
5602 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5603
5604 if (msix) {
5605 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5606 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5607 if (single_msix) {
5608 val |= IGU_PF_CONF_SINGLE_ISR_EN;
5609 }
5610 } else if (msi) {
5611 val &= ~IGU_PF_CONF_INT_LINE_EN;
5612 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5613 IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5614 } else {
5615 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5616 val |= (IGU_PF_CONF_INT_LINE_EN |
5617 IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5618 }
5619
5620 /* clean previous status - need to configure igu prior to ack */
5621 if ((!msix) || single_msix) {
5622 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5623 bnx2x_ack_int(sc);
5624 }
5625
5626 val |= IGU_PF_CONF_FUNC_EN;
5627
5628 PMD_DRV_LOG(DEBUG, sc, "write 0x%x to IGU mode %s",
5629 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5630
5631 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5632
5633 mb();
5634
5635 /* init leading/trailing edge */
5636 if (IS_MF(sc)) {
5637 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5638 if (sc->port.pmf) {
5639 /* enable nig and gpio3 attention */
5640 val |= 0x1100;
5641 }
5642 } else {
5643 val = 0xffff;
5644 }
5645
5646 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5647 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5648
5649 /* make sure that interrupts are indeed enabled from here on */
5650 mb();
5651 }
5652
5653 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5654 {
5655 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5656 bnx2x_hc_int_enable(sc);
5657 } else {
5658 bnx2x_igu_int_enable(sc);
5659 }
5660 }
5661
5662 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5663 {
5664 int port = SC_PORT(sc);
5665 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5666 uint32_t val = REG_RD(sc, addr);
5667
5668 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5669 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5670 HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5671 /* flush all outstanding writes */
5672 mb();
5673
5674 REG_WR(sc, addr, val);
5675 if (REG_RD(sc, addr) != val) {
5676 PMD_DRV_LOG(ERR, sc, "proper val not read from HC IGU!");
5677 }
5678 }
5679
5680 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5681 {
5682 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5683
5684 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5685 IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5686
5687 PMD_DRV_LOG(DEBUG, sc, "write %x to IGU", val);
5688
5689 /* flush all outstanding writes */
5690 mb();
5691
5692 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5693 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5694 PMD_DRV_LOG(ERR, sc, "proper val not read from IGU!");
5695 }
5696 }
5697
5698 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5699 {
5700 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5701 bnx2x_hc_int_disable(sc);
5702 } else {
5703 bnx2x_igu_int_disable(sc);
5704 }
5705 }
5706
5707 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5708 {
5709 int i;
5710
5711 PMD_INIT_FUNC_TRACE(sc);
5712
5713 for (i = 0; i < sc->num_queues; i++) {
5714 bnx2x_init_eth_fp(sc, i);
5715 }
5716
5717 rmb(); /* ensure status block indices were read */
5718
5719 bnx2x_init_rx_rings(sc);
5720 bnx2x_init_tx_rings(sc);
5721
5722 if (IS_VF(sc)) {
5723 bnx2x_memset_stats(sc);
5724 return;
5725 }
5726
5727 /* initialize MOD_ABS interrupts */
5728 elink_init_mod_abs_int(sc, &sc->link_vars,
5729 sc->devinfo.chip_id,
5730 sc->devinfo.shmem_base,
5731 sc->devinfo.shmem2_base, SC_PORT(sc));
5732
5733 bnx2x_init_def_sb(sc);
5734 bnx2x_update_dsb_idx(sc);
5735 bnx2x_init_sp_ring(sc);
5736 bnx2x_init_eq_ring(sc);
5737 bnx2x_init_internal(sc, load_code);
5738 bnx2x_pf_init(sc);
5739 bnx2x_stats_init(sc);
5740
5741 /* flush all before enabling interrupts */
5742 mb();
5743
5744 bnx2x_int_enable(sc);
5745
5746 /* check for SPIO5 */
5747 bnx2x_attn_int_deasserted0(sc,
5748 REG_RD(sc,
5749 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5750 SC_PORT(sc) * 4)) &
5751 AEU_INPUTS_ATTN_BITS_SPIO5);
5752 }
5753
5754 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5755 {
5756 /* mcast rules must be added to tx if tx switching is enabled */
5757 ecore_obj_type o_type;
5758 if (sc->flags & BNX2X_TX_SWITCHING)
5759 o_type = ECORE_OBJ_TYPE_RX_TX;
5760 else
5761 o_type = ECORE_OBJ_TYPE_RX;
5762
5763 /* RX_MODE controlling object */
5764 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5765
5766 /* multicast configuration controlling object */
5767 ecore_init_mcast_obj(sc,
5768 &sc->mcast_obj,
5769 sc->fp[0].cl_id,
5770 sc->fp[0].index,
5771 SC_FUNC(sc),
5772 SC_FUNC(sc),
5773 BNX2X_SP(sc, mcast_rdata),
5774 (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5775 ECORE_FILTER_MCAST_PENDING,
5776 &sc->sp_state, o_type);
5777
5778 /* Setup CAM credit pools */
5779 ecore_init_mac_credit_pool(sc,
5780 &sc->macs_pool,
5781 SC_FUNC(sc),
5782 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5783 VNICS_PER_PATH(sc));
5784
5785 ecore_init_vlan_credit_pool(sc,
5786 &sc->vlans_pool,
5787 SC_ABS_FUNC(sc) >> 1,
5788 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5789 VNICS_PER_PATH(sc));
5790
5791 /* RSS configuration object */
5792 ecore_init_rss_config_obj(&sc->rss_conf_obj,
5793 sc->fp[0].cl_id,
5794 sc->fp[0].index,
5795 SC_FUNC(sc),
5796 SC_FUNC(sc),
5797 BNX2X_SP(sc, rss_rdata),
5798 (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5799 ECORE_FILTER_RSS_CONF_PENDING,
5800 &sc->sp_state, ECORE_OBJ_TYPE_RX);
5801 }
5802
5803 /*
5804 * Initialize the function. This must be called before sending CLIENT_SETUP
5805 * for the first client.
5806 */
5807 static int bnx2x_func_start(struct bnx2x_softc *sc)
5808 {
5809 struct ecore_func_state_params func_params = { NULL };
5810 struct ecore_func_start_params *start_params =
5811 &func_params.params.start;
5812
5813 /* Prepare parameters for function state transitions */
5814 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5815
5816 func_params.f_obj = &sc->func_obj;
5817 func_params.cmd = ECORE_F_CMD_START;
5818
5819 /* Function parameters */
5820 start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5821 start_params->sd_vlan_tag = OVLAN(sc);
5822
5823 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5824 start_params->network_cos_mode = STATIC_COS;
5825 } else { /* CHIP_IS_E1X */
5826 start_params->network_cos_mode = FW_WRR;
5827 }
5828
5829 start_params->gre_tunnel_mode = 0;
5830 start_params->gre_tunnel_rss = 0;
5831
5832 return ecore_func_state_change(sc, &func_params);
5833 }
5834
5835 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5836 {
5837 uint16_t pmcsr;
5838
5839 /* If there is no power capability, silently succeed */
5840 if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5841 PMD_DRV_LOG(INFO, sc, "No power capability");
5842 return 0;
5843 }
5844
5845 pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5846 2);
5847
5848 switch (state) {
5849 case PCI_PM_D0:
5850 pci_write_word(sc,
5851 (sc->devinfo.pcie_pm_cap_reg +
5852 PCIR_POWER_STATUS),
5853 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5854
5855 if (pmcsr & PCIM_PSTAT_DMASK) {
5856 /* delay required during transition out of D3hot */
5857 DELAY(20000);
5858 }
5859
5860 break;
5861
5862 case PCI_PM_D3hot:
5863 /* don't shut down the power for emulation and FPGA */
5864 if (CHIP_REV_IS_SLOW(sc)) {
5865 return 0;
5866 }
5867
5868 pmcsr &= ~PCIM_PSTAT_DMASK;
5869 pmcsr |= PCIM_PSTAT_D3;
5870
5871 if (sc->wol) {
5872 pmcsr |= PCIM_PSTAT_PMEENABLE;
5873 }
5874
5875 pci_write_long(sc,
5876 (sc->devinfo.pcie_pm_cap_reg +
5877 PCIR_POWER_STATUS), pmcsr);
5878
5879 /*
5880 * No more memory access after this point until device is brought back
5881 * to D0 state.
5882 */
5883 break;
5884
5885 default:
5886 PMD_DRV_LOG(NOTICE, sc, "Can't support PCI power state = %d",
5887 state);
5888 return -1;
5889 }
5890
5891 return 0;
5892 }
5893
5894 /* return true if succeeded to acquire the lock */
5895 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5896 {
5897 uint32_t lock_status;
5898 uint32_t resource_bit = (1 << resource);
5899 int func = SC_FUNC(sc);
5900 uint32_t hw_lock_control_reg;
5901
5902 /* Validating that the resource is within range */
5903 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5904 PMD_DRV_LOG(INFO, sc,
5905 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5906 resource, HW_LOCK_MAX_RESOURCE_VALUE);
5907 return FALSE;
5908 }
5909
5910 if (func <= 5) {
5911 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5912 } else {
5913 hw_lock_control_reg =
5914 (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5915 }
5916
5917 /* try to acquire the lock */
5918 REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5919 lock_status = REG_RD(sc, hw_lock_control_reg);
5920 if (lock_status & resource_bit) {
5921 return TRUE;
5922 }
5923
5924 PMD_DRV_LOG(NOTICE, sc, "Failed to get a resource lock 0x%x", resource);
5925
5926 return FALSE;
5927 }
5928
5929 /*
5930 * Get the recovery leader resource id according to the engine this function
5931 * belongs to. Currently only only 2 engines is supported.
5932 */
5933 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5934 {
5935 if (SC_PATH(sc)) {
5936 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5937 } else {
5938 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5939 }
5940 }
5941
5942 /* try to acquire a leader lock for current engine */
5943 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5944 {
5945 return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5946 }
5947
5948 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5949 {
5950 return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5951 }
5952
5953 /* close gates #2, #3 and #4 */
5954 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5955 {
5956 uint32_t val;
5957
5958 /* gates #2 and #4a are closed/opened */
5959 /* #4 */
5960 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5961 /* #2 */
5962 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5963
5964 /* #3 */
5965 if (CHIP_IS_E1x(sc)) {
5966 /* prevent interrupts from HC on both ports */
5967 val = REG_RD(sc, HC_REG_CONFIG_1);
5968 if (close)
5969 REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5970 HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5971 else
5972 REG_WR(sc, HC_REG_CONFIG_1,
5973 (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5974
5975 val = REG_RD(sc, HC_REG_CONFIG_0);
5976 if (close)
5977 REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5978 HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5979 else
5980 REG_WR(sc, HC_REG_CONFIG_0,
5981 (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5982
5983 } else {
5984 /* Prevent incoming interrupts in IGU */
5985 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5986
5987 if (close)
5988 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5989 (val & ~(uint32_t)
5990 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5991 else
5992 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5993 (val |
5994 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5995 }
5996
5997 wmb();
5998 }
5999
6000 /* poll for pending writes bit, it should get cleared in no more than 1s */
6001 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
6002 {
6003 uint32_t cnt = 1000;
6004 uint32_t pend_bits = 0;
6005
6006 do {
6007 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
6008
6009 if (pend_bits == 0) {
6010 break;
6011 }
6012
6013 DELAY(1000);
6014 } while (cnt-- > 0);
6015
6016 if (cnt <= 0) {
6017 PMD_DRV_LOG(NOTICE, sc, "Still pending IGU requests bits=0x%08x!",
6018 pend_bits);
6019 return -1;
6020 }
6021
6022 return 0;
6023 }
6024
6025 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
6026
6027 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6028 {
6029 /* Do some magic... */
6030 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6031 *magic_val = val & SHARED_MF_CLP_MAGIC;
6032 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
6033 }
6034
6035 /* restore the value of the 'magic' bit */
6036 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
6037 {
6038 /* Restore the 'magic' bit value... */
6039 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6040 MFCFG_WR(sc, shared_mf_config.clp_mb,
6041 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
6042 }
6043
6044 /* prepare for MCP reset, takes care of CLP configurations */
6045 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6046 {
6047 uint32_t shmem;
6048 uint32_t validity_offset;
6049
6050 /* set `magic' bit in order to save MF config */
6051 bnx2x_clp_reset_prep(sc, magic_val);
6052
6053 /* get shmem offset */
6054 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6055 validity_offset =
6056 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6057
6058 /* Clear validity map flags */
6059 if (shmem > 0) {
6060 REG_WR(sc, shmem + validity_offset, 0);
6061 }
6062 }
6063
6064 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
6065 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
6066
6067 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6068 {
6069 /* special handling for emulation and FPGA (10 times longer) */
6070 if (CHIP_REV_IS_SLOW(sc)) {
6071 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6072 } else {
6073 DELAY((MCP_ONE_TIMEOUT) * 1000);
6074 }
6075 }
6076
6077 /* initialize shmem_base and waits for validity signature to appear */
6078 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6079 {
6080 int cnt = 0;
6081 uint32_t val = 0;
6082
6083 do {
6084 sc->devinfo.shmem_base =
6085 sc->link_params.shmem_base =
6086 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6087
6088 if (sc->devinfo.shmem_base) {
6089 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6090 if (val & SHR_MEM_VALIDITY_MB)
6091 return 0;
6092 }
6093
6094 bnx2x_mcp_wait_one(sc);
6095
6096 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6097
6098 PMD_DRV_LOG(NOTICE, sc, "BAD MCP validity signature");
6099
6100 return -1;
6101 }
6102
6103 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6104 {
6105 int rc = bnx2x_init_shmem(sc);
6106
6107 /* Restore the `magic' bit value */
6108 bnx2x_clp_reset_done(sc, magic_val);
6109
6110 return rc;
6111 }
6112
6113 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6114 {
6115 REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6116 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6117 wmb();
6118 }
6119
6120 /*
6121 * Reset the whole chip except for:
6122 * - PCIE core
6123 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6124 * - IGU
6125 * - MISC (including AEU)
6126 * - GRC
6127 * - RBCN, RBCP
6128 */
6129 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6130 {
6131 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6132 uint32_t global_bits2, stay_reset2;
6133
6134 /*
6135 * Bits that have to be set in reset_mask2 if we want to reset 'global'
6136 * (per chip) blocks.
6137 */
6138 global_bits2 =
6139 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6140 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6141
6142 /*
6143 * Don't reset the following blocks.
6144 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6145 * reset, as in 4 port device they might still be owned
6146 * by the MCP (there is only one leader per path).
6147 */
6148 not_reset_mask1 =
6149 MISC_REGISTERS_RESET_REG_1_RST_HC |
6150 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6151 MISC_REGISTERS_RESET_REG_1_RST_PXP;
6152
6153 not_reset_mask2 =
6154 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6155 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6156 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6157 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6158 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6159 MISC_REGISTERS_RESET_REG_2_RST_GRC |
6160 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6161 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6162 MISC_REGISTERS_RESET_REG_2_RST_ATC |
6163 MISC_REGISTERS_RESET_REG_2_PGLC |
6164 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6165 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6166 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6167 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6168 MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6169
6170 /*
6171 * Keep the following blocks in reset:
6172 * - all xxMACs are handled by the elink code.
6173 */
6174 stay_reset2 =
6175 MISC_REGISTERS_RESET_REG_2_XMAC |
6176 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6177
6178 /* Full reset masks according to the chip */
6179 reset_mask1 = 0xffffffff;
6180
6181 if (CHIP_IS_E1H(sc))
6182 reset_mask2 = 0x1ffff;
6183 else if (CHIP_IS_E2(sc))
6184 reset_mask2 = 0xfffff;
6185 else /* CHIP_IS_E3 */
6186 reset_mask2 = 0x3ffffff;
6187
6188 /* Don't reset global blocks unless we need to */
6189 if (!global)
6190 reset_mask2 &= ~global_bits2;
6191
6192 /*
6193 * In case of attention in the QM, we need to reset PXP
6194 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6195 * because otherwise QM reset would release 'close the gates' shortly
6196 * before resetting the PXP, then the PSWRQ would send a write
6197 * request to PGLUE. Then when PXP is reset, PGLUE would try to
6198 * read the payload data from PSWWR, but PSWWR would not
6199 * respond. The write queue in PGLUE would stuck, dmae commands
6200 * would not return. Therefore it's important to reset the second
6201 * reset register (containing the
6202 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6203 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6204 * bit).
6205 */
6206 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6207 reset_mask2 & (~not_reset_mask2));
6208
6209 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6210 reset_mask1 & (~not_reset_mask1));
6211
6212 mb();
6213 wmb();
6214
6215 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6216 reset_mask2 & (~stay_reset2));
6217
6218 mb();
6219 wmb();
6220
6221 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6222 wmb();
6223 }
6224
6225 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6226 {
6227 int cnt = 1000;
6228 uint32_t val = 0;
6229 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6230 uint32_t tags_63_32 = 0;
6231
6232 /* Empty the Tetris buffer, wait for 1s */
6233 do {
6234 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6235 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6236 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6237 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6238 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6239 if (CHIP_IS_E3(sc)) {
6240 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6241 }
6242
6243 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6244 ((port_is_idle_0 & 0x1) == 0x1) &&
6245 ((port_is_idle_1 & 0x1) == 0x1) &&
6246 (pgl_exp_rom2 == 0xffffffff) &&
6247 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6248 break;
6249 DELAY(1000);
6250 } while (cnt-- > 0);
6251
6252 if (cnt <= 0) {
6253 PMD_DRV_LOG(NOTICE, sc,
6254 "ERROR: Tetris buffer didn't get empty or there "
6255 "are still outstanding read requests after 1s! "
6256 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6257 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6258 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6259 pgl_exp_rom2);
6260 return -1;
6261 }
6262
6263 mb();
6264
6265 /* Close gates #2, #3 and #4 */
6266 bnx2x_set_234_gates(sc, TRUE);
6267
6268 /* Poll for IGU VQs for 57712 and newer chips */
6269 if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6270 return -1;
6271 }
6272
6273 /* clear "unprepared" bit */
6274 REG_WR(sc, MISC_REG_UNPREPARED, 0);
6275 mb();
6276
6277 /* Make sure all is written to the chip before the reset */
6278 wmb();
6279
6280 /*
6281 * Wait for 1ms to empty GLUE and PCI-E core queues,
6282 * PSWHST, GRC and PSWRD Tetris buffer.
6283 */
6284 DELAY(1000);
6285
6286 /* Prepare to chip reset: */
6287 /* MCP */
6288 if (global) {
6289 bnx2x_reset_mcp_prep(sc, &val);
6290 }
6291
6292 /* PXP */
6293 bnx2x_pxp_prep(sc);
6294 mb();
6295
6296 /* reset the chip */
6297 bnx2x_process_kill_chip_reset(sc, global);
6298 mb();
6299
6300 /* Recover after reset: */
6301 /* MCP */
6302 if (global && bnx2x_reset_mcp_comp(sc, val)) {
6303 return -1;
6304 }
6305
6306 /* Open the gates #2, #3 and #4 */
6307 bnx2x_set_234_gates(sc, FALSE);
6308
6309 return 0;
6310 }
6311
6312 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6313 {
6314 int rc = 0;
6315 uint8_t global = bnx2x_reset_is_global(sc);
6316 uint32_t load_code;
6317
6318 /*
6319 * If not going to reset MCP, load "fake" driver to reset HW while
6320 * driver is owner of the HW.
6321 */
6322 if (!global && !BNX2X_NOMCP(sc)) {
6323 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6324 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6325 if (!load_code) {
6326 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6327 rc = -1;
6328 goto exit_leader_reset;
6329 }
6330
6331 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6332 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6333 PMD_DRV_LOG(NOTICE, sc,
6334 "MCP unexpected response, aborting");
6335 rc = -1;
6336 goto exit_leader_reset2;
6337 }
6338
6339 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6340 if (!load_code) {
6341 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6342 rc = -1;
6343 goto exit_leader_reset2;
6344 }
6345 }
6346
6347 /* try to recover after the failure */
6348 if (bnx2x_process_kill(sc, global)) {
6349 PMD_DRV_LOG(NOTICE, sc, "Something bad occurred on engine %d!",
6350 SC_PATH(sc));
6351 rc = -1;
6352 goto exit_leader_reset2;
6353 }
6354
6355 /*
6356 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6357 * state.
6358 */
6359 bnx2x_set_reset_done(sc);
6360 if (global) {
6361 bnx2x_clear_reset_global(sc);
6362 }
6363
6364 exit_leader_reset2:
6365
6366 /* unload "fake driver" if it was loaded */
6367 if (!global &&!BNX2X_NOMCP(sc)) {
6368 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6369 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6370 }
6371
6372 exit_leader_reset:
6373
6374 sc->is_leader = 0;
6375 bnx2x_release_leader_lock(sc);
6376
6377 mb();
6378 return rc;
6379 }
6380
6381 /*
6382 * prepare INIT transition, parameters configured:
6383 * - HC configuration
6384 * - Queue's CDU context
6385 */
6386 static void
6387 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6388 struct ecore_queue_init_params *init_params)
6389 {
6390 uint8_t cos;
6391 int cxt_index, cxt_offset;
6392
6393 bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6394 bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6395
6396 bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6397 bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6398
6399 /* HC rate */
6400 init_params->rx.hc_rate =
6401 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6402 init_params->tx.hc_rate =
6403 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6404
6405 /* FW SB ID */
6406 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6407
6408 /* CQ index among the SB indices */
6409 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6410 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6411
6412 /* set maximum number of COSs supported by this queue */
6413 init_params->max_cos = sc->max_cos;
6414
6415 /* set the context pointers queue object */
6416 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6417 cxt_index = fp->index / ILT_PAGE_CIDS;
6418 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6419 init_params->cxts[cos] =
6420 &sc->context[cxt_index].vcxt[cxt_offset].eth;
6421 }
6422 }
6423
6424 /* set flags that are common for the Tx-only and not normal connections */
6425 static unsigned long
6426 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6427 {
6428 unsigned long flags = 0;
6429
6430 /* PF driver will always initialize the Queue to an ACTIVE state */
6431 bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6432
6433 /*
6434 * tx only connections collect statistics (on the same index as the
6435 * parent connection). The statistics are zeroed when the parent
6436 * connection is initialized.
6437 */
6438
6439 bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6440 if (zero_stats) {
6441 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6442 }
6443
6444 /*
6445 * tx only connections can support tx-switching, though their
6446 * CoS-ness doesn't survive the loopback
6447 */
6448 if (sc->flags & BNX2X_TX_SWITCHING) {
6449 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6450 }
6451
6452 bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6453
6454 return flags;
6455 }
6456
6457 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6458 {
6459 unsigned long flags = 0;
6460
6461 if (IS_MF_SD(sc)) {
6462 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6463 }
6464
6465 if (leading) {
6466 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6467 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6468 }
6469
6470 bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6471
6472 /* merge with common flags */
6473 return flags | bnx2x_get_common_flags(sc, TRUE);
6474 }
6475
6476 static void
6477 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6478 struct ecore_general_setup_params *gen_init, uint8_t cos)
6479 {
6480 gen_init->stat_id = bnx2x_stats_id(fp);
6481 gen_init->spcl_id = fp->cl_id;
6482 gen_init->mtu = sc->mtu;
6483 gen_init->cos = cos;
6484 }
6485
6486 static void
6487 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6488 struct rxq_pause_params *pause,
6489 struct ecore_rxq_setup_params *rxq_init)
6490 {
6491 struct bnx2x_rx_queue *rxq;
6492
6493 rxq = sc->rx_queues[fp->index];
6494 if (!rxq) {
6495 PMD_RX_LOG(ERR, "RX queue is NULL");
6496 return;
6497 }
6498 /* pause */
6499 pause->bd_th_lo = BD_TH_LO(sc);
6500 pause->bd_th_hi = BD_TH_HI(sc);
6501
6502 pause->rcq_th_lo = RCQ_TH_LO(sc);
6503 pause->rcq_th_hi = RCQ_TH_HI(sc);
6504
6505 /* validate rings have enough entries to cross high thresholds */
6506 if (sc->dropless_fc &&
6507 pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6508 PMD_DRV_LOG(WARNING, sc, "rx bd ring threshold limit");
6509 }
6510
6511 if (sc->dropless_fc &&
6512 pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6513 PMD_DRV_LOG(WARNING, sc, "rcq ring threshold limit");
6514 }
6515
6516 pause->pri_map = 1;
6517
6518 /* rxq setup */
6519 rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6520 rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6521 rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6522 BNX2X_PAGE_SIZE);
6523
6524 /*
6525 * This should be a maximum number of data bytes that may be
6526 * placed on the BD (not including paddings).
6527 */
6528 rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6529
6530 rxq_init->cl_qzone_id = fp->cl_qzone_id;
6531 rxq_init->rss_engine_id = SC_FUNC(sc);
6532 rxq_init->mcast_engine_id = SC_FUNC(sc);
6533
6534 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6535 rxq_init->fw_sb_id = fp->fw_sb_id;
6536
6537 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6538
6539 /*
6540 * configure silent vlan removal
6541 * if multi function mode is afex, then mask default vlan
6542 */
6543 if (IS_MF_AFEX(sc)) {
6544 rxq_init->silent_removal_value =
6545 sc->devinfo.mf_info.afex_def_vlan_tag;
6546 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6547 }
6548 }
6549
6550 static void
6551 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6552 struct ecore_txq_setup_params *txq_init, uint8_t cos)
6553 {
6554 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6555
6556 if (!txq) {
6557 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6558 return;
6559 }
6560 txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6561 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6562 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6563 txq_init->fw_sb_id = fp->fw_sb_id;
6564
6565 /*
6566 * set the TSS leading client id for TX classfication to the
6567 * leading RSS client id
6568 */
6569 txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6570 }
6571
6572 /*
6573 * This function performs 2 steps in a queue state machine:
6574 * 1) RESET->INIT
6575 * 2) INIT->SETUP
6576 */
6577 static int
6578 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6579 {
6580 struct ecore_queue_state_params q_params = { NULL };
6581 struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6582 int rc;
6583
6584 PMD_DRV_LOG(DEBUG, sc, "setting up queue %d", fp->index);
6585
6586 bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6587
6588 q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6589
6590 /* we want to wait for completion in this context */
6591 bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6592
6593 /* prepare the INIT parameters */
6594 bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6595
6596 /* Set the command */
6597 q_params.cmd = ECORE_Q_CMD_INIT;
6598
6599 /* Change the state to INIT */
6600 rc = ecore_queue_state_change(sc, &q_params);
6601 if (rc) {
6602 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) INIT failed", fp->index);
6603 return rc;
6604 }
6605
6606 PMD_DRV_LOG(DEBUG, sc, "init complete");
6607
6608 /* now move the Queue to the SETUP state */
6609 memset(setup_params, 0, sizeof(*setup_params));
6610
6611 /* set Queue flags */
6612 setup_params->flags = bnx2x_get_q_flags(sc, leading);
6613
6614 /* set general SETUP parameters */
6615 bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6616 FIRST_TX_COS_INDEX);
6617
6618 bnx2x_pf_rx_q_prep(sc, fp,
6619 &setup_params->pause_params,
6620 &setup_params->rxq_params);
6621
6622 bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6623
6624 /* Set the command */
6625 q_params.cmd = ECORE_Q_CMD_SETUP;
6626
6627 /* change the state to SETUP */
6628 rc = ecore_queue_state_change(sc, &q_params);
6629 if (rc) {
6630 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) SETUP failed", fp->index);
6631 return rc;
6632 }
6633
6634 return rc;
6635 }
6636
6637 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6638 {
6639 if (IS_PF(sc))
6640 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6641 else /* VF */
6642 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6643 }
6644
6645 static int
6646 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6647 uint8_t config_hash)
6648 {
6649 struct ecore_config_rss_params params = { NULL };
6650 uint32_t i;
6651
6652 /*
6653 * Although RSS is meaningless when there is a single HW queue we
6654 * still need it enabled in order to have HW Rx hash generated.
6655 */
6656
6657 params.rss_obj = rss_obj;
6658
6659 bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6660
6661 bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6662
6663 /* RSS configuration */
6664 bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6665 bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6666 bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6667 bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6668 if (rss_obj->udp_rss_v4) {
6669 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6670 }
6671 if (rss_obj->udp_rss_v6) {
6672 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6673 }
6674
6675 /* Hash bits */
6676 params.rss_result_mask = MULTI_MASK;
6677
6678 rte_memcpy(params.ind_table, rss_obj->ind_table,
6679 sizeof(params.ind_table));
6680
6681 if (config_hash) {
6682 /* RSS keys */
6683 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6684 params.rss_key[i] = (uint32_t) rte_rand();
6685 }
6686
6687 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6688 }
6689
6690 if (IS_PF(sc))
6691 return ecore_config_rss(sc, &params);
6692 else
6693 return bnx2x_vf_config_rss(sc, &params);
6694 }
6695
6696 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6697 {
6698 return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6699 }
6700
6701 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6702 {
6703 uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6704 uint32_t i;
6705
6706 /*
6707 * Prepare the initial contents of the indirection table if
6708 * RSS is enabled
6709 */
6710 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6711 sc->rss_conf_obj.ind_table[i] =
6712 (sc->fp->cl_id + (i % num_eth_queues));
6713 }
6714
6715 if (sc->udp_rss) {
6716 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6717 }
6718
6719 /*
6720 * For 57711 SEARCHER configuration (rss_keys) is
6721 * per-port, so if explicit configuration is needed, do it only
6722 * for a PMF.
6723 *
6724 * For 57712 and newer it's a per-function configuration.
6725 */
6726 return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6727 }
6728
6729 static int
6730 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6731 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6732 unsigned long *ramrod_flags)
6733 {
6734 struct ecore_vlan_mac_ramrod_params ramrod_param;
6735 int rc;
6736
6737 memset(&ramrod_param, 0, sizeof(ramrod_param));
6738
6739 /* fill in general parameters */
6740 ramrod_param.vlan_mac_obj = obj;
6741 ramrod_param.ramrod_flags = *ramrod_flags;
6742
6743 /* fill a user request section if needed */
6744 if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6745 rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6746 ETH_ALEN);
6747
6748 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6749
6750 /* Set the command: ADD or DEL */
6751 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6752 ECORE_VLAN_MAC_DEL;
6753 }
6754
6755 rc = ecore_config_vlan_mac(sc, &ramrod_param);
6756
6757 if (rc == ECORE_EXISTS) {
6758 PMD_DRV_LOG(INFO, sc, "Failed to schedule ADD operations (EEXIST)");
6759 /* do not treat adding same MAC as error */
6760 rc = 0;
6761 } else if (rc < 0) {
6762 PMD_DRV_LOG(ERR, sc,
6763 "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6764 }
6765
6766 return rc;
6767 }
6768
6769 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6770 {
6771 unsigned long ramrod_flags = 0;
6772
6773 PMD_DRV_LOG(DEBUG, sc, "Adding Ethernet MAC");
6774
6775 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6776
6777 /* Eth MAC is set on RSS leading client (fp[0]) */
6778 return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6779 &sc->sp_objs->mac_obj,
6780 set, ECORE_ETH_MAC, &ramrod_flags);
6781 }
6782
6783 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6784 {
6785 uint32_t sel_phy_idx = 0;
6786
6787 if (sc->link_params.num_phys <= 1) {
6788 return ELINK_INT_PHY;
6789 }
6790
6791 if (sc->link_vars.link_up) {
6792 sel_phy_idx = ELINK_EXT_PHY1;
6793 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6794 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6795 (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6796 ELINK_SUPPORTED_FIBRE))
6797 sel_phy_idx = ELINK_EXT_PHY2;
6798 } else {
6799 switch (elink_phy_selection(&sc->link_params)) {
6800 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6801 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6802 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6803 sel_phy_idx = ELINK_EXT_PHY1;
6804 break;
6805 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6806 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6807 sel_phy_idx = ELINK_EXT_PHY2;
6808 break;
6809 }
6810 }
6811
6812 return sel_phy_idx;
6813 }
6814
6815 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6816 {
6817 uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6818
6819 /*
6820 * The selected activated PHY is always after swapping (in case PHY
6821 * swapping is enabled). So when swapping is enabled, we need to reverse
6822 * the configuration
6823 */
6824
6825 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6826 if (sel_phy_idx == ELINK_EXT_PHY1)
6827 sel_phy_idx = ELINK_EXT_PHY2;
6828 else if (sel_phy_idx == ELINK_EXT_PHY2)
6829 sel_phy_idx = ELINK_EXT_PHY1;
6830 }
6831
6832 return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6833 }
6834
6835 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6836 {
6837 /*
6838 * Initialize link parameters structure variables
6839 * It is recommended to turn off RX FC for jumbo frames
6840 * for better performance
6841 */
6842 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6843 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6844 } else {
6845 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6846 }
6847 }
6848
6849 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6850 {
6851 uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6852 switch (sc->link_vars.ieee_fc &
6853 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6854 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6855 default:
6856 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6857 ADVERTISED_Pause);
6858 break;
6859
6860 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6861 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6862 ADVERTISED_Pause);
6863 break;
6864
6865 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6866 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6867 break;
6868 }
6869 }
6870
6871 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6872 {
6873 uint16_t line_speed = sc->link_vars.line_speed;
6874 if (IS_MF(sc)) {
6875 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6876 sc->devinfo.
6877 mf_info.mf_config[SC_VN
6878 (sc)]);
6879
6880 /* calculate the current MAX line speed limit for the MF devices */
6881 if (IS_MF_SI(sc)) {
6882 line_speed = (line_speed * maxCfg) / 100;
6883 } else { /* SD mode */
6884 uint16_t vn_max_rate = maxCfg * 100;
6885
6886 if (vn_max_rate < line_speed) {
6887 line_speed = vn_max_rate;
6888 }
6889 }
6890 }
6891
6892 return line_speed;
6893 }
6894
6895 static void
6896 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6897 {
6898 uint16_t line_speed = bnx2x_get_mf_speed(sc);
6899
6900 memset(data, 0, sizeof(*data));
6901
6902 /* fill the report data with the effective line speed */
6903 data->line_speed = line_speed;
6904
6905 /* Link is down */
6906 if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6907 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6908 &data->link_report_flags);
6909 }
6910
6911 /* Full DUPLEX */
6912 if (sc->link_vars.duplex == DUPLEX_FULL) {
6913 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6914 &data->link_report_flags);
6915 }
6916
6917 /* Rx Flow Control is ON */
6918 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6919 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6920 }
6921
6922 /* Tx Flow Control is ON */
6923 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6924 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6925 }
6926 }
6927
6928 /* report link status to OS, should be called under phy_lock */
6929 static void bnx2x_link_report_locked(struct bnx2x_softc *sc)
6930 {
6931 struct bnx2x_link_report_data cur_data;
6932
6933 /* reread mf_cfg */
6934 if (IS_PF(sc)) {
6935 bnx2x_read_mf_cfg(sc);
6936 }
6937
6938 /* Read the current link report info */
6939 bnx2x_fill_report_data(sc, &cur_data);
6940
6941 /* Don't report link down or exactly the same link status twice */
6942 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6943 (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6944 &sc->last_reported_link.link_report_flags) &&
6945 bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6946 &cur_data.link_report_flags))) {
6947 return;
6948 }
6949
6950 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %lx, last_reported_link = %lx",
6951 cur_data.link_report_flags,
6952 sc->last_reported_link.link_report_flags);
6953
6954 sc->link_cnt++;
6955
6956 ELINK_DEBUG_P1(sc, "link status change count = %x", sc->link_cnt);
6957 /* report new link params and remember the state for the next time */
6958 rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6959
6960 if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6961 &cur_data.link_report_flags)) {
6962 ELINK_DEBUG_P0(sc, "NIC Link is Down");
6963 } else {
6964 __rte_unused const char *duplex;
6965 __rte_unused const char *flow;
6966
6967 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6968 &cur_data.link_report_flags)) {
6969 duplex = "full";
6970 ELINK_DEBUG_P0(sc, "link set to full duplex");
6971 } else {
6972 duplex = "half";
6973 ELINK_DEBUG_P0(sc, "link set to half duplex");
6974 }
6975
6976 /*
6977 * Handle the FC at the end so that only these flags would be
6978 * possibly set. This way we may easily check if there is no FC
6979 * enabled.
6980 */
6981 if (cur_data.link_report_flags) {
6982 if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6983 &cur_data.link_report_flags) &&
6984 bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6985 &cur_data.link_report_flags)) {
6986 flow = "ON - receive & transmit";
6987 } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6988 &cur_data.link_report_flags) &&
6989 !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6990 &cur_data.link_report_flags)) {
6991 flow = "ON - receive";
6992 } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6993 &cur_data.link_report_flags) &&
6994 bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6995 &cur_data.link_report_flags)) {
6996 flow = "ON - transmit";
6997 } else {
6998 flow = "none"; /* possible? */
6999 }
7000 } else {
7001 flow = "none";
7002 }
7003
7004 PMD_DRV_LOG(INFO, sc,
7005 "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
7006 cur_data.line_speed, duplex, flow);
7007 }
7008 }
7009
7010 static void
7011 bnx2x_link_report(struct bnx2x_softc *sc)
7012 {
7013 bnx2x_acquire_phy_lock(sc);
7014 bnx2x_link_report_locked(sc);
7015 bnx2x_release_phy_lock(sc);
7016 }
7017
7018 void bnx2x_link_status_update(struct bnx2x_softc *sc)
7019 {
7020 if (sc->state != BNX2X_STATE_OPEN) {
7021 return;
7022 }
7023
7024 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
7025 elink_link_status_update(&sc->link_params, &sc->link_vars);
7026 } else {
7027 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
7028 ELINK_SUPPORTED_10baseT_Full |
7029 ELINK_SUPPORTED_100baseT_Half |
7030 ELINK_SUPPORTED_100baseT_Full |
7031 ELINK_SUPPORTED_1000baseT_Full |
7032 ELINK_SUPPORTED_2500baseX_Full |
7033 ELINK_SUPPORTED_10000baseT_Full |
7034 ELINK_SUPPORTED_TP |
7035 ELINK_SUPPORTED_FIBRE |
7036 ELINK_SUPPORTED_Autoneg |
7037 ELINK_SUPPORTED_Pause |
7038 ELINK_SUPPORTED_Asym_Pause);
7039 sc->port.advertising[0] = sc->port.supported[0];
7040
7041 sc->link_params.sc = sc;
7042 sc->link_params.port = SC_PORT(sc);
7043 sc->link_params.req_duplex[0] = DUPLEX_FULL;
7044 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
7045 sc->link_params.req_line_speed[0] = SPEED_10000;
7046 sc->link_params.speed_cap_mask[0] = 0x7f0000;
7047 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
7048
7049 if (CHIP_REV_IS_FPGA(sc)) {
7050 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
7051 sc->link_vars.line_speed = ELINK_SPEED_1000;
7052 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7053 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
7054 } else {
7055 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
7056 sc->link_vars.line_speed = ELINK_SPEED_10000;
7057 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7058 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7059 }
7060
7061 sc->link_vars.link_up = 1;
7062
7063 sc->link_vars.duplex = DUPLEX_FULL;
7064 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7065
7066 if (IS_PF(sc)) {
7067 REG_WR(sc,
7068 NIG_REG_EGRESS_DRAIN0_MODE +
7069 sc->link_params.port * 4, 0);
7070 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7071 bnx2x_link_report(sc);
7072 }
7073 }
7074
7075 if (IS_PF(sc)) {
7076 if (sc->link_vars.link_up) {
7077 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7078 } else {
7079 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7080 }
7081 bnx2x_link_report(sc);
7082 } else {
7083 bnx2x_link_report_locked(sc);
7084 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7085 }
7086 }
7087
7088 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7089 {
7090 int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7091 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7092 struct elink_params *lp = &sc->link_params;
7093
7094 bnx2x_set_requested_fc(sc);
7095
7096 bnx2x_acquire_phy_lock(sc);
7097
7098 if (load_mode == LOAD_DIAG) {
7099 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7100 /* Prefer doing PHY loopback at 10G speed, if possible */
7101 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7102 if (lp->speed_cap_mask[cfg_idx] &
7103 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7104 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7105 } else {
7106 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7107 }
7108 }
7109 }
7110
7111 if (load_mode == LOAD_LOOPBACK_EXT) {
7112 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7113 }
7114
7115 rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7116
7117 bnx2x_release_phy_lock(sc);
7118
7119 bnx2x_calc_fc_adv(sc);
7120
7121 if (sc->link_vars.link_up) {
7122 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7123 bnx2x_link_report(sc);
7124 }
7125
7126 sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7127 return rc;
7128 }
7129
7130 /* update flags in shmem */
7131 static void
7132 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7133 {
7134 uint32_t drv_flags;
7135
7136 if (SHMEM2_HAS(sc, drv_flags)) {
7137 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7138 drv_flags = SHMEM2_RD(sc, drv_flags);
7139
7140 if (set) {
7141 drv_flags |= flags;
7142 } else {
7143 drv_flags &= ~flags;
7144 }
7145
7146 SHMEM2_WR(sc, drv_flags, drv_flags);
7147
7148 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7149 }
7150 }
7151
7152 /* periodic timer callout routine, only runs when the interface is up */
7153 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7154 {
7155 if ((sc->state != BNX2X_STATE_OPEN) ||
7156 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7157 PMD_DRV_LOG(DEBUG, sc, "periodic callout exit (state=0x%x)",
7158 sc->state);
7159 return;
7160 }
7161 if (!CHIP_REV_IS_SLOW(sc)) {
7162 /*
7163 * This barrier is needed to ensure the ordering between the writing
7164 * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7165 * the reading here.
7166 */
7167 mb();
7168 if (sc->port.pmf) {
7169 bnx2x_acquire_phy_lock(sc);
7170 elink_period_func(&sc->link_params, &sc->link_vars);
7171 bnx2x_release_phy_lock(sc);
7172 }
7173 }
7174 #ifdef BNX2X_PULSE
7175 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7176 int mb_idx = SC_FW_MB_IDX(sc);
7177 uint32_t drv_pulse;
7178 uint32_t mcp_pulse;
7179
7180 ++sc->fw_drv_pulse_wr_seq;
7181 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7182
7183 drv_pulse = sc->fw_drv_pulse_wr_seq;
7184 bnx2x_drv_pulse(sc);
7185
7186 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7187 MCP_PULSE_SEQ_MASK);
7188
7189 /*
7190 * The delta between driver pulse and mcp response should
7191 * be 1 (before mcp response) or 0 (after mcp response).
7192 */
7193 if ((drv_pulse != mcp_pulse) &&
7194 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7195 /* someone lost a heartbeat... */
7196 PMD_DRV_LOG(ERR, sc,
7197 "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7198 drv_pulse, mcp_pulse);
7199 }
7200 }
7201 #endif
7202 }
7203
7204 /* start the controller */
7205 static __rte_noinline
7206 int bnx2x_nic_load(struct bnx2x_softc *sc)
7207 {
7208 uint32_t val;
7209 uint32_t load_code = 0;
7210 int i, rc = 0;
7211
7212 PMD_INIT_FUNC_TRACE(sc);
7213
7214 sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7215
7216 if (IS_PF(sc)) {
7217 /* must be called before memory allocation and HW init */
7218 bnx2x_ilt_set_info(sc);
7219 }
7220
7221 bnx2x_set_fp_rx_buf_size(sc);
7222
7223 if (IS_PF(sc)) {
7224 if (bnx2x_alloc_mem(sc) != 0) {
7225 sc->state = BNX2X_STATE_CLOSED;
7226 rc = -ENOMEM;
7227 goto bnx2x_nic_load_error0;
7228 }
7229 }
7230
7231 if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7232 sc->state = BNX2X_STATE_CLOSED;
7233 rc = -ENOMEM;
7234 goto bnx2x_nic_load_error0;
7235 }
7236
7237 if (IS_VF(sc)) {
7238 rc = bnx2x_vf_init(sc);
7239 if (rc) {
7240 sc->state = BNX2X_STATE_ERROR;
7241 goto bnx2x_nic_load_error0;
7242 }
7243 }
7244
7245 if (IS_PF(sc)) {
7246 /* set pf load just before approaching the MCP */
7247 bnx2x_set_pf_load(sc);
7248
7249 /* if MCP exists send load request and analyze response */
7250 if (!BNX2X_NOMCP(sc)) {
7251 /* attempt to load pf */
7252 if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7253 sc->state = BNX2X_STATE_CLOSED;
7254 rc = -ENXIO;
7255 goto bnx2x_nic_load_error1;
7256 }
7257
7258 /* what did the MCP say? */
7259 if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7260 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7261 sc->state = BNX2X_STATE_CLOSED;
7262 rc = -ENXIO;
7263 goto bnx2x_nic_load_error2;
7264 }
7265 } else {
7266 PMD_DRV_LOG(INFO, sc, "Device has no MCP!");
7267 load_code = bnx2x_nic_load_no_mcp(sc);
7268 }
7269
7270 /* mark PMF if applicable */
7271 bnx2x_nic_load_pmf(sc, load_code);
7272
7273 /* Init Function state controlling object */
7274 bnx2x_init_func_obj(sc);
7275
7276 /* Initialize HW */
7277 if (bnx2x_init_hw(sc, load_code) != 0) {
7278 PMD_DRV_LOG(NOTICE, sc, "HW init failed");
7279 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7280 sc->state = BNX2X_STATE_CLOSED;
7281 rc = -ENXIO;
7282 goto bnx2x_nic_load_error2;
7283 }
7284 }
7285
7286 bnx2x_nic_init(sc, load_code);
7287
7288 /* Init per-function objects */
7289 if (IS_PF(sc)) {
7290 bnx2x_init_objs(sc);
7291
7292 /* set AFEX default VLAN tag to an invalid value */
7293 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7294
7295 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7296 rc = bnx2x_func_start(sc);
7297 if (rc) {
7298 PMD_DRV_LOG(NOTICE, sc, "Function start failed!");
7299 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7300 sc->state = BNX2X_STATE_ERROR;
7301 goto bnx2x_nic_load_error3;
7302 }
7303
7304 /* send LOAD_DONE command to MCP */
7305 if (!BNX2X_NOMCP(sc)) {
7306 load_code =
7307 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7308 if (!load_code) {
7309 PMD_DRV_LOG(NOTICE, sc,
7310 "MCP response failure, aborting");
7311 sc->state = BNX2X_STATE_ERROR;
7312 rc = -ENXIO;
7313 goto bnx2x_nic_load_error3;
7314 }
7315 }
7316 }
7317
7318 rc = bnx2x_setup_leading(sc);
7319 if (rc) {
7320 PMD_DRV_LOG(NOTICE, sc, "Setup leading failed!");
7321 sc->state = BNX2X_STATE_ERROR;
7322 goto bnx2x_nic_load_error3;
7323 }
7324
7325 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7326 if (IS_PF(sc))
7327 rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7328 else /* IS_VF(sc) */
7329 rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7330
7331 if (rc) {
7332 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) setup failed", i);
7333 sc->state = BNX2X_STATE_ERROR;
7334 goto bnx2x_nic_load_error3;
7335 }
7336 }
7337
7338 rc = bnx2x_init_rss_pf(sc);
7339 if (rc) {
7340 PMD_DRV_LOG(NOTICE, sc, "PF RSS init failed");
7341 sc->state = BNX2X_STATE_ERROR;
7342 goto bnx2x_nic_load_error3;
7343 }
7344
7345 /* now when Clients are configured we are ready to work */
7346 sc->state = BNX2X_STATE_OPEN;
7347
7348 /* Configure a ucast MAC */
7349 if (IS_PF(sc)) {
7350 rc = bnx2x_set_eth_mac(sc, TRUE);
7351 } else { /* IS_VF(sc) */
7352 rc = bnx2x_vf_set_mac(sc, TRUE);
7353 }
7354
7355 if (rc) {
7356 PMD_DRV_LOG(NOTICE, sc, "Setting Ethernet MAC failed");
7357 sc->state = BNX2X_STATE_ERROR;
7358 goto bnx2x_nic_load_error3;
7359 }
7360
7361 if (sc->port.pmf) {
7362 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7363 if (rc) {
7364 sc->state = BNX2X_STATE_ERROR;
7365 goto bnx2x_nic_load_error3;
7366 }
7367 }
7368
7369 sc->link_params.feature_config_flags &=
7370 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7371
7372 /* start the Tx */
7373 switch (LOAD_OPEN) {
7374 case LOAD_NORMAL:
7375 case LOAD_OPEN:
7376 break;
7377
7378 case LOAD_DIAG:
7379 case LOAD_LOOPBACK_EXT:
7380 sc->state = BNX2X_STATE_DIAG;
7381 break;
7382
7383 default:
7384 break;
7385 }
7386
7387 if (sc->port.pmf) {
7388 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7389 } else {
7390 bnx2x_link_status_update(sc);
7391 }
7392
7393 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7394 /* mark driver is loaded in shmem2 */
7395 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7396 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7397 (val |
7398 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7399 DRV_FLAGS_CAPABILITIES_LOADED_L2));
7400 }
7401
7402 /* start fast path */
7403 /* Initialize Rx filter */
7404 bnx2x_set_rx_mode(sc);
7405
7406 /* wait for all pending SP commands to complete */
7407 if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7408 PMD_DRV_LOG(NOTICE, sc, "Timeout waiting for all SPs to complete!");
7409 bnx2x_periodic_stop(sc);
7410 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7411 return -ENXIO;
7412 }
7413
7414 PMD_DRV_LOG(DEBUG, sc, "NIC successfully loaded");
7415
7416 return 0;
7417
7418 bnx2x_nic_load_error3:
7419
7420 if (IS_PF(sc)) {
7421 bnx2x_int_disable_sync(sc, 1);
7422
7423 /* clean out queued objects */
7424 bnx2x_squeeze_objects(sc);
7425 }
7426
7427 bnx2x_nic_load_error2:
7428
7429 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7430 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7431 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7432 }
7433
7434 sc->port.pmf = 0;
7435
7436 bnx2x_nic_load_error1:
7437
7438 /* clear pf_load status, as it was already set */
7439 if (IS_PF(sc)) {
7440 bnx2x_clear_pf_load(sc);
7441 }
7442
7443 bnx2x_nic_load_error0:
7444
7445 bnx2x_free_fw_stats_mem(sc);
7446 bnx2x_free_mem(sc);
7447
7448 return rc;
7449 }
7450
7451 /*
7452 * Handles controller initialization.
7453 */
7454 int bnx2x_init(struct bnx2x_softc *sc)
7455 {
7456 int other_engine = SC_PATH(sc) ? 0 : 1;
7457 uint8_t other_load_status, load_status;
7458 uint8_t global = FALSE;
7459 int rc;
7460
7461 /* Check if the driver is still running and bail out if it is. */
7462 if (sc->state != BNX2X_STATE_CLOSED) {
7463 PMD_DRV_LOG(DEBUG, sc, "Init called while driver is running!");
7464 rc = 0;
7465 goto bnx2x_init_done;
7466 }
7467
7468 bnx2x_set_power_state(sc, PCI_PM_D0);
7469
7470 /*
7471 * If parity occurred during the unload, then attentions and/or
7472 * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7473 * loaded on the current engine to complete the recovery. Parity recovery
7474 * is only relevant for PF driver.
7475 */
7476 if (IS_PF(sc)) {
7477 other_load_status = bnx2x_get_load_status(sc, other_engine);
7478 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7479
7480 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7481 bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7482 do {
7483 /*
7484 * If there are attentions and they are in global blocks, set
7485 * the GLOBAL_RESET bit regardless whether it will be this
7486 * function that will complete the recovery or not.
7487 */
7488 if (global) {
7489 bnx2x_set_reset_global(sc);
7490 }
7491
7492 /*
7493 * Only the first function on the current engine should try
7494 * to recover in open. In case of attentions in global blocks
7495 * only the first in the chip should try to recover.
7496 */
7497 if ((!load_status
7498 && (!global ||!other_load_status))
7499 && bnx2x_trylock_leader_lock(sc)
7500 && !bnx2x_leader_reset(sc)) {
7501 PMD_DRV_LOG(INFO, sc,
7502 "Recovered during init");
7503 break;
7504 }
7505
7506 /* recovery has failed... */
7507 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7508
7509 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7510
7511 PMD_DRV_LOG(NOTICE, sc,
7512 "Recovery flow hasn't properly "
7513 "completed yet, try again later. "
7514 "If you still see this message after a "
7515 "few retries then power cycle is required.");
7516
7517 rc = -ENXIO;
7518 goto bnx2x_init_done;
7519 } while (0);
7520 }
7521 }
7522
7523 sc->recovery_state = BNX2X_RECOVERY_DONE;
7524
7525 rc = bnx2x_nic_load(sc);
7526
7527 bnx2x_init_done:
7528
7529 if (rc) {
7530 PMD_DRV_LOG(NOTICE, sc, "Initialization failed, "
7531 "stack notified driver is NOT running!");
7532 }
7533
7534 return rc;
7535 }
7536
7537 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7538 {
7539 uint32_t val = 0;
7540
7541 /*
7542 * Read the ME register to get the function number. The ME register
7543 * holds the relative-function number and absolute-function number. The
7544 * absolute-function number appears only in E2 and above. Before that
7545 * these bits always contained zero, therefore we cannot blindly use them.
7546 */
7547
7548 val = REG_RD(sc, BAR_ME_REGISTER);
7549
7550 sc->pfunc_rel =
7551 (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7552 sc->path_id =
7553 (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7554 1;
7555
7556 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7557 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7558 } else {
7559 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7560 }
7561
7562 PMD_DRV_LOG(DEBUG, sc,
7563 "Relative function %d, Absolute function %d, Path %d",
7564 sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7565 }
7566
7567 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7568 {
7569 uint32_t shmem2_size;
7570 uint32_t offset;
7571 uint32_t mf_cfg_offset_value;
7572
7573 /* Non 57712 */
7574 offset = (SHMEM_ADDR(sc, func_mb) +
7575 (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7576
7577 /* 57712 plus */
7578 if (sc->devinfo.shmem2_base != 0) {
7579 shmem2_size = SHMEM2_RD(sc, size);
7580 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7581 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7582 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7583 offset = mf_cfg_offset_value;
7584 }
7585 }
7586 }
7587
7588 return offset;
7589 }
7590
7591 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7592 {
7593 uint32_t ret;
7594 struct bnx2x_pci_cap *caps;
7595
7596 /* ensure PCIe capability is enabled */
7597 caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7598 if (NULL != caps) {
7599 PMD_DRV_LOG(DEBUG, sc, "Found PCIe capability: "
7600 "id=0x%04X type=0x%04X addr=0x%08X",
7601 caps->id, caps->type, caps->addr);
7602 pci_read(sc, (caps->addr + reg), &ret, 2);
7603 return ret;
7604 }
7605
7606 PMD_DRV_LOG(WARNING, sc, "PCIe capability NOT FOUND!!!");
7607
7608 return 0;
7609 }
7610
7611 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7612 {
7613 return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7614 PCIM_EXP_STA_TRANSACTION_PND;
7615 }
7616
7617 /*
7618 * Walk the PCI capabiites list for the device to find what features are
7619 * supported. These capabilites may be enabled/disabled by firmware so it's
7620 * best to walk the list rather than make assumptions.
7621 */
7622 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7623 {
7624 PMD_INIT_FUNC_TRACE(sc);
7625
7626 struct bnx2x_pci_cap *caps;
7627 uint16_t link_status;
7628 int reg = 0;
7629
7630 /* check if PCI Power Management is enabled */
7631 caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7632 if (NULL != caps) {
7633 PMD_DRV_LOG(DEBUG, sc, "Found PM capability: "
7634 "id=0x%04X type=0x%04X addr=0x%08X",
7635 caps->id, caps->type, caps->addr);
7636
7637 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7638 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7639 }
7640
7641 link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7642
7643 sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7644 sc->devinfo.pcie_link_width =
7645 ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7646
7647 PMD_DRV_LOG(DEBUG, sc, "PCIe link speed=%d width=%d",
7648 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7649
7650 sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7651
7652 /* check if MSI capability is enabled */
7653 caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7654 if (NULL != caps) {
7655 PMD_DRV_LOG(DEBUG, sc, "Found MSI capability at 0x%04x", reg);
7656
7657 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7658 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7659 }
7660
7661 /* check if MSI-X capability is enabled */
7662 caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7663 if (NULL != caps) {
7664 PMD_DRV_LOG(DEBUG, sc, "Found MSI-X capability at 0x%04x", reg);
7665
7666 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7667 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7668 }
7669 }
7670
7671 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7672 {
7673 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7674 uint32_t val;
7675
7676 /* get the outer vlan if we're in switch-dependent mode */
7677
7678 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7679 mf_info->ext_id = (uint16_t) val;
7680
7681 mf_info->multi_vnics_mode = 1;
7682
7683 if (!VALID_OVLAN(mf_info->ext_id)) {
7684 PMD_DRV_LOG(NOTICE, sc, "Invalid VLAN (%d)", mf_info->ext_id);
7685 return 1;
7686 }
7687
7688 /* get the capabilities */
7689 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7690 FUNC_MF_CFG_PROTOCOL_ISCSI) {
7691 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7692 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7693 == FUNC_MF_CFG_PROTOCOL_FCOE) {
7694 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7695 } else {
7696 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7697 }
7698
7699 mf_info->vnics_per_port =
7700 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7701
7702 return 0;
7703 }
7704
7705 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7706 {
7707 uint32_t retval = 0;
7708 uint32_t val;
7709
7710 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7711
7712 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7713 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7714 retval |= MF_PROTO_SUPPORT_ETHERNET;
7715 }
7716 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7717 retval |= MF_PROTO_SUPPORT_ISCSI;
7718 }
7719 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7720 retval |= MF_PROTO_SUPPORT_FCOE;
7721 }
7722 }
7723
7724 return retval;
7725 }
7726
7727 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7728 {
7729 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7730 uint32_t val;
7731
7732 /*
7733 * There is no outer vlan if we're in switch-independent mode.
7734 * If the mac is valid then assume multi-function.
7735 */
7736
7737 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7738
7739 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7740
7741 mf_info->mf_protos_supported =
7742 bnx2x_get_shmem_ext_proto_support_flags(sc);
7743
7744 mf_info->vnics_per_port =
7745 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7746
7747 return 0;
7748 }
7749
7750 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7751 {
7752 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7753 uint32_t e1hov_tag;
7754 uint32_t func_config;
7755 uint32_t niv_config;
7756
7757 mf_info->multi_vnics_mode = 1;
7758
7759 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7760 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7761 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7762
7763 mf_info->ext_id =
7764 (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7765 FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7766
7767 mf_info->default_vlan =
7768 (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7769 FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7770
7771 mf_info->niv_allowed_priorities =
7772 (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7773 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7774
7775 mf_info->niv_default_cos =
7776 (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7777 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7778
7779 mf_info->afex_vlan_mode =
7780 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7781 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7782
7783 mf_info->niv_mba_enabled =
7784 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7785 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7786
7787 mf_info->mf_protos_supported =
7788 bnx2x_get_shmem_ext_proto_support_flags(sc);
7789
7790 mf_info->vnics_per_port =
7791 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7792
7793 return 0;
7794 }
7795
7796 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7797 {
7798 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7799 uint32_t mf_cfg1;
7800 uint32_t mf_cfg2;
7801 uint32_t ovlan1;
7802 uint32_t ovlan2;
7803 uint8_t i, j;
7804
7805 /* various MF mode sanity checks... */
7806
7807 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7808 PMD_DRV_LOG(NOTICE, sc,
7809 "Enumerated function %d is marked as hidden",
7810 SC_PORT(sc));
7811 return 1;
7812 }
7813
7814 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7815 PMD_DRV_LOG(NOTICE, sc, "vnics_per_port=%d multi_vnics_mode=%d",
7816 mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7817 return 1;
7818 }
7819
7820 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7821 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7822 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7823 PMD_DRV_LOG(NOTICE, sc, "mf_mode=SD vnic_id=%d ovlan=%d",
7824 SC_VN(sc), OVLAN(sc));
7825 return 1;
7826 }
7827
7828 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7829 PMD_DRV_LOG(NOTICE, sc,
7830 "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7831 mf_info->multi_vnics_mode, OVLAN(sc));
7832 return 1;
7833 }
7834
7835 /*
7836 * Verify all functions are either MF or SF mode. If MF, make sure
7837 * sure that all non-hidden functions have a valid ovlan. If SF,
7838 * make sure that all non-hidden functions have an invalid ovlan.
7839 */
7840 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7841 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7842 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7843 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7844 (((mf_info->multi_vnics_mode)
7845 && !VALID_OVLAN(ovlan1))
7846 || ((!mf_info->multi_vnics_mode)
7847 && VALID_OVLAN(ovlan1)))) {
7848 PMD_DRV_LOG(NOTICE, sc,
7849 "mf_mode=SD function %d MF config "
7850 "mismatch, multi_vnics_mode=%d ovlan=%d",
7851 i, mf_info->multi_vnics_mode,
7852 ovlan1);
7853 return 1;
7854 }
7855 }
7856
7857 /* Verify all funcs on the same port each have a different ovlan. */
7858 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7859 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7860 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7861 /* iterate from the next function on the port to the max func */
7862 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7863 mf_cfg2 =
7864 MFCFG_RD(sc, func_mf_config[j].config);
7865 ovlan2 =
7866 MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7867 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7868 && VALID_OVLAN(ovlan1)
7869 && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7870 && VALID_OVLAN(ovlan2)
7871 && (ovlan1 == ovlan2)) {
7872 PMD_DRV_LOG(NOTICE, sc,
7873 "mf_mode=SD functions %d and %d "
7874 "have the same ovlan (%d)",
7875 i, j, ovlan1);
7876 return 1;
7877 }
7878 }
7879 }
7880 }
7881 /* MULTI_FUNCTION_SD */
7882 return 0;
7883 }
7884
7885 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7886 {
7887 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7888 uint32_t val, mac_upper;
7889 uint8_t i, vnic;
7890
7891 /* initialize mf_info defaults */
7892 mf_info->vnics_per_port = 1;
7893 mf_info->multi_vnics_mode = FALSE;
7894 mf_info->path_has_ovlan = FALSE;
7895 mf_info->mf_mode = SINGLE_FUNCTION;
7896
7897 if (!CHIP_IS_MF_CAP(sc)) {
7898 return 0;
7899 }
7900
7901 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7902 PMD_DRV_LOG(NOTICE, sc, "Invalid mf_cfg_base!");
7903 return 1;
7904 }
7905
7906 /* get the MF mode (switch dependent / independent / single-function) */
7907
7908 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7909
7910 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7911 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7912
7913 mac_upper =
7914 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7915
7916 /* check for legal upper mac bytes */
7917 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7918 mf_info->mf_mode = MULTI_FUNCTION_SI;
7919 } else {
7920 PMD_DRV_LOG(NOTICE, sc,
7921 "Invalid config for Switch Independent mode");
7922 }
7923
7924 break;
7925
7926 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7927 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7928
7929 /* get outer vlan configuration */
7930 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7931
7932 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7933 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7934 mf_info->mf_mode = MULTI_FUNCTION_SD;
7935 } else {
7936 PMD_DRV_LOG(NOTICE, sc,
7937 "Invalid config for Switch Dependent mode");
7938 }
7939
7940 break;
7941
7942 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7943
7944 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7945 return 0;
7946
7947 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7948
7949 /*
7950 * Mark MF mode as NIV if MCP version includes NPAR-SD support
7951 * and the MAC address is valid.
7952 */
7953 mac_upper =
7954 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7955
7956 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7957 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7958 mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7959 } else {
7960 PMD_DRV_LOG(NOTICE, sc, "Invalid config for AFEX mode");
7961 }
7962
7963 break;
7964
7965 default:
7966
7967 PMD_DRV_LOG(NOTICE, sc, "Unknown MF mode (0x%08x)",
7968 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7969
7970 return 1;
7971 }
7972
7973 /* set path mf_mode (which could be different than function mf_mode) */
7974 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7975 mf_info->path_has_ovlan = TRUE;
7976 } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7977 /*
7978 * Decide on path multi vnics mode. If we're not in MF mode and in
7979 * 4-port mode, this is good enough to check vnic-0 of the other port
7980 * on the same path
7981 */
7982 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7983 uint8_t other_port = !(PORT_ID(sc) & 1);
7984 uint8_t abs_func_other_port =
7985 (SC_PATH(sc) + (2 * other_port));
7986
7987 val =
7988 MFCFG_RD(sc,
7989 func_mf_config
7990 [abs_func_other_port].e1hov_tag);
7991
7992 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7993 }
7994 }
7995
7996 if (mf_info->mf_mode == SINGLE_FUNCTION) {
7997 /* invalid MF config */
7998 if (SC_VN(sc) >= 1) {
7999 PMD_DRV_LOG(NOTICE, sc, "VNIC ID >= 1 in SF mode");
8000 return 1;
8001 }
8002
8003 return 0;
8004 }
8005
8006 /* get the MF configuration */
8007 mf_info->mf_config[SC_VN(sc)] =
8008 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8009
8010 switch (mf_info->mf_mode) {
8011 case MULTI_FUNCTION_SD:
8012
8013 bnx2x_get_shmem_mf_cfg_info_sd(sc);
8014 break;
8015
8016 case MULTI_FUNCTION_SI:
8017
8018 bnx2x_get_shmem_mf_cfg_info_si(sc);
8019 break;
8020
8021 case MULTI_FUNCTION_AFEX:
8022
8023 bnx2x_get_shmem_mf_cfg_info_niv(sc);
8024 break;
8025
8026 default:
8027
8028 PMD_DRV_LOG(NOTICE, sc, "Get MF config failed (mf_mode=0x%08x)",
8029 mf_info->mf_mode);
8030 return 1;
8031 }
8032
8033 /* get the congestion management parameters */
8034
8035 vnic = 0;
8036 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8037 /* get min/max bw */
8038 val = MFCFG_RD(sc, func_mf_config[i].config);
8039 mf_info->min_bw[vnic] =
8040 ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8041 FUNC_MF_CFG_MIN_BW_SHIFT);
8042 mf_info->max_bw[vnic] =
8043 ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8044 FUNC_MF_CFG_MAX_BW_SHIFT);
8045 vnic++;
8046 }
8047
8048 return bnx2x_check_valid_mf_cfg(sc);
8049 }
8050
8051 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8052 {
8053 int port;
8054 uint32_t mac_hi, mac_lo, val;
8055
8056 PMD_INIT_FUNC_TRACE(sc);
8057
8058 port = SC_PORT(sc);
8059 mac_hi = mac_lo = 0;
8060
8061 sc->link_params.sc = sc;
8062 sc->link_params.port = port;
8063
8064 /* get the hardware config info */
8065 sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8066 sc->devinfo.hw_config2 =
8067 SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8068
8069 sc->link_params.hw_led_mode =
8070 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8071 SHARED_HW_CFG_LED_MODE_SHIFT);
8072
8073 /* get the port feature config */
8074 sc->port.config =
8075 SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8076
8077 /* get the link params */
8078 sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8079 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8080 & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8081 sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8082 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8083 & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8084
8085 /* get the lane config */
8086 sc->link_params.lane_config =
8087 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8088
8089 /* get the link config */
8090 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8091 sc->port.link_config[ELINK_INT_PHY] = val;
8092 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8093 sc->port.link_config[ELINK_EXT_PHY1] =
8094 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8095
8096 /* get the override preemphasis flag and enable it or turn it off */
8097 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8098 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8099 sc->link_params.feature_config_flags |=
8100 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8101 } else {
8102 sc->link_params.feature_config_flags &=
8103 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8104 }
8105
8106 val = sc->devinfo.bc_ver >> 8;
8107 if (val < BNX2X_BC_VER) {
8108 /* for now only warn later we might need to enforce this */
8109 PMD_DRV_LOG(NOTICE, sc, "This driver needs bc_ver %X but found %X, please upgrade BC\n",
8110 BNX2X_BC_VER, val);
8111 }
8112 sc->link_params.feature_config_flags |=
8113 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8114 ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY :
8115 0;
8116
8117 sc->link_params.feature_config_flags |=
8118 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8119 ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8120 sc->link_params.feature_config_flags |=
8121 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
8122 ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
8123 sc->link_params.feature_config_flags |=
8124 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8125 ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8126
8127 /* get the initial value of the link params */
8128 sc->link_params.multi_phy_config =
8129 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8130
8131 /* get external phy info */
8132 sc->port.ext_phy_config =
8133 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8134
8135 /* get the multifunction configuration */
8136 bnx2x_get_mf_cfg_info(sc);
8137
8138 /* get the mac address */
8139 if (IS_MF(sc)) {
8140 mac_hi =
8141 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8142 mac_lo =
8143 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8144 } else {
8145 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8146 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8147 }
8148
8149 if ((mac_lo == 0) && (mac_hi == 0)) {
8150 *sc->mac_addr_str = 0;
8151 PMD_DRV_LOG(NOTICE, sc, "No Ethernet address programmed!");
8152 } else {
8153 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8154 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8155 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8156 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8157 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8158 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8159 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8160 "%02x:%02x:%02x:%02x:%02x:%02x",
8161 sc->link_params.mac_addr[0],
8162 sc->link_params.mac_addr[1],
8163 sc->link_params.mac_addr[2],
8164 sc->link_params.mac_addr[3],
8165 sc->link_params.mac_addr[4],
8166 sc->link_params.mac_addr[5]);
8167 PMD_DRV_LOG(DEBUG, sc,
8168 "Ethernet address: %s", sc->mac_addr_str);
8169 }
8170
8171 return 0;
8172 }
8173
8174 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8175 {
8176 uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8177 switch (sc->link_params.phy[phy_idx].media_type) {
8178 case ELINK_ETH_PHY_SFPP_10G_FIBER:
8179 case ELINK_ETH_PHY_SFP_1G_FIBER:
8180 case ELINK_ETH_PHY_XFP_FIBER:
8181 case ELINK_ETH_PHY_KR:
8182 case ELINK_ETH_PHY_CX4:
8183 PMD_DRV_LOG(INFO, sc, "Found 10GBase-CX4 media.");
8184 sc->media = IFM_10G_CX4;
8185 break;
8186 case ELINK_ETH_PHY_DA_TWINAX:
8187 PMD_DRV_LOG(INFO, sc, "Found 10Gb Twinax media.");
8188 sc->media = IFM_10G_TWINAX;
8189 break;
8190 case ELINK_ETH_PHY_BASE_T:
8191 PMD_DRV_LOG(INFO, sc, "Found 10GBase-T media.");
8192 sc->media = IFM_10G_T;
8193 break;
8194 case ELINK_ETH_PHY_NOT_PRESENT:
8195 PMD_DRV_LOG(INFO, sc, "Media not present.");
8196 sc->media = 0;
8197 break;
8198 case ELINK_ETH_PHY_UNSPECIFIED:
8199 default:
8200 PMD_DRV_LOG(INFO, sc, "Unknown media!");
8201 sc->media = 0;
8202 break;
8203 }
8204 }
8205
8206 #define GET_FIELD(value, fname) \
8207 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8208 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8209 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8210
8211 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8212 {
8213 int pfid = SC_FUNC(sc);
8214 int igu_sb_id;
8215 uint32_t val;
8216 uint8_t fid, igu_sb_cnt = 0;
8217
8218 sc->igu_base_sb = 0xff;
8219
8220 if (CHIP_INT_MODE_IS_BC(sc)) {
8221 int vn = SC_VN(sc);
8222 igu_sb_cnt = sc->igu_sb_cnt;
8223 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8224 FP_SB_MAX_E1x);
8225 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8226 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8227 return 0;
8228 }
8229
8230 /* IGU in normal mode - read CAM */
8231 for (igu_sb_id = 0;
8232 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8233 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8234 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8235 continue;
8236 }
8237 fid = IGU_FID(val);
8238 if (fid & IGU_FID_ENCODE_IS_PF) {
8239 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8240 continue;
8241 }
8242 if (IGU_VEC(val) == 0) {
8243 /* default status block */
8244 sc->igu_dsb_id = igu_sb_id;
8245 } else {
8246 if (sc->igu_base_sb == 0xff) {
8247 sc->igu_base_sb = igu_sb_id;
8248 }
8249 igu_sb_cnt++;
8250 }
8251 }
8252 }
8253
8254 /*
8255 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8256 * that number of CAM entries will not be equal to the value advertised in
8257 * PCI. Driver should use the minimal value of both as the actual status
8258 * block count
8259 */
8260 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8261
8262 if (igu_sb_cnt == 0) {
8263 PMD_DRV_LOG(ERR, sc, "CAM configuration error");
8264 return -1;
8265 }
8266
8267 return 0;
8268 }
8269
8270 /*
8271 * Gather various information from the device config space, the device itself,
8272 * shmem, and the user input.
8273 */
8274 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8275 {
8276 uint32_t val;
8277 int rc;
8278
8279 /* get the chip revision (chip metal comes from pci config space) */
8280 sc->devinfo.chip_id = sc->link_params.chip_id =
8281 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8282 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8283 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8284 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8285
8286 /* force 57811 according to MISC register */
8287 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8288 if (CHIP_IS_57810(sc)) {
8289 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8290 (sc->
8291 devinfo.chip_id & 0x0000ffff));
8292 } else if (CHIP_IS_57810_MF(sc)) {
8293 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8294 (sc->
8295 devinfo.chip_id & 0x0000ffff));
8296 }
8297 sc->devinfo.chip_id |= 0x1;
8298 }
8299
8300 PMD_DRV_LOG(DEBUG, sc,
8301 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8302 sc->devinfo.chip_id,
8303 ((sc->devinfo.chip_id >> 16) & 0xffff),
8304 ((sc->devinfo.chip_id >> 12) & 0xf),
8305 ((sc->devinfo.chip_id >> 4) & 0xff),
8306 ((sc->devinfo.chip_id >> 0) & 0xf));
8307
8308 val = (REG_RD(sc, 0x2874) & 0x55);
8309 if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8310 sc->flags |= BNX2X_ONE_PORT_FLAG;
8311 PMD_DRV_LOG(DEBUG, sc, "single port device");
8312 }
8313
8314 /* set the doorbell size */
8315 sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8316
8317 /* determine whether the device is in 2 port or 4 port mode */
8318 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1h */
8319 if (CHIP_IS_E2E3(sc)) {
8320 /*
8321 * Read port4mode_en_ovwr[0]:
8322 * If 1, four port mode is in port4mode_en_ovwr[1].
8323 * If 0, four port mode is in port4mode_en[0].
8324 */
8325 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8326 if (val & 1) {
8327 val = ((val >> 1) & 1);
8328 } else {
8329 val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8330 }
8331
8332 sc->devinfo.chip_port_mode =
8333 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8334
8335 PMD_DRV_LOG(DEBUG, sc, "Port mode = %s", (val) ? "4" : "2");
8336 }
8337
8338 /* get the function and path info for the device */
8339 bnx2x_get_function_num(sc);
8340
8341 /* get the shared memory base address */
8342 sc->devinfo.shmem_base =
8343 sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8344 sc->devinfo.shmem2_base =
8345 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8346 MISC_REG_GENERIC_CR_0));
8347
8348 if (!sc->devinfo.shmem_base) {
8349 /* this should ONLY prevent upcoming shmem reads */
8350 PMD_DRV_LOG(INFO, sc, "MCP not active");
8351 sc->flags |= BNX2X_NO_MCP_FLAG;
8352 return 0;
8353 }
8354
8355 /* make sure the shared memory contents are valid */
8356 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8357 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8358 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8359 PMD_DRV_LOG(NOTICE, sc, "Invalid SHMEM validity signature: 0x%08x",
8360 val);
8361 return 0;
8362 }
8363
8364 /* get the bootcode version */
8365 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8366 snprintf(sc->devinfo.bc_ver_str,
8367 sizeof(sc->devinfo.bc_ver_str),
8368 "%d.%d.%d",
8369 ((sc->devinfo.bc_ver >> 24) & 0xff),
8370 ((sc->devinfo.bc_ver >> 16) & 0xff),
8371 ((sc->devinfo.bc_ver >> 8) & 0xff));
8372 PMD_DRV_LOG(DEBUG, sc, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8373
8374 /* get the bootcode shmem address */
8375 sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8376
8377 /* clean indirect addresses as they're not used */
8378 pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8379 if (IS_PF(sc)) {
8380 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8381 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8382 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8383 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8384 if (CHIP_IS_E1x(sc)) {
8385 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8386 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8387 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8388 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8389 }
8390 }
8391
8392 /* get the nvram size */
8393 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8394 sc->devinfo.flash_size =
8395 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8396
8397 bnx2x_set_power_state(sc, PCI_PM_D0);
8398 /* get various configuration parameters from shmem */
8399 bnx2x_get_shmem_info(sc);
8400
8401 /* initialize IGU parameters */
8402 if (CHIP_IS_E1x(sc)) {
8403 sc->devinfo.int_block = INT_BLOCK_HC;
8404 sc->igu_dsb_id = DEF_SB_IGU_ID;
8405 sc->igu_base_sb = 0;
8406 } else {
8407 sc->devinfo.int_block = INT_BLOCK_IGU;
8408
8409 /* do not allow device reset during IGU info preocessing */
8410 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8411
8412 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8413
8414 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8415 int tout = 5000;
8416
8417 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8418 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8419 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8420
8421 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8422 tout--;
8423 DELAY(1000);
8424 }
8425
8426 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8427 PMD_DRV_LOG(NOTICE, sc,
8428 "FORCING IGU Normal Mode failed!!!");
8429 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8430 return -1;
8431 }
8432 }
8433
8434 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8435 PMD_DRV_LOG(DEBUG, sc, "IGU Backward Compatible Mode");
8436 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8437 } else {
8438 PMD_DRV_LOG(DEBUG, sc, "IGU Normal Mode");
8439 }
8440
8441 rc = bnx2x_get_igu_cam_info(sc);
8442
8443 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8444
8445 if (rc) {
8446 return rc;
8447 }
8448 }
8449
8450 /*
8451 * Get base FW non-default (fast path) status block ID. This value is
8452 * used to initialize the fw_sb_id saved on the fp/queue structure to
8453 * determine the id used by the FW.
8454 */
8455 if (CHIP_IS_E1x(sc)) {
8456 sc->base_fw_ndsb =
8457 ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8458 } else {
8459 /*
8460 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8461 * the same queue are indicated on the same IGU SB). So we prefer
8462 * FW and IGU SBs to be the same value.
8463 */
8464 sc->base_fw_ndsb = sc->igu_base_sb;
8465 }
8466
8467 elink_phy_probe(&sc->link_params);
8468
8469 return 0;
8470 }
8471
8472 static void
8473 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8474 {
8475 uint32_t cfg_size = 0;
8476 uint32_t idx;
8477 uint8_t port = SC_PORT(sc);
8478
8479 /* aggregation of supported attributes of all external phys */
8480 sc->port.supported[0] = 0;
8481 sc->port.supported[1] = 0;
8482
8483 switch (sc->link_params.num_phys) {
8484 case 1:
8485 sc->port.supported[0] =
8486 sc->link_params.phy[ELINK_INT_PHY].supported;
8487 cfg_size = 1;
8488 break;
8489 case 2:
8490 sc->port.supported[0] =
8491 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8492 cfg_size = 1;
8493 break;
8494 case 3:
8495 if (sc->link_params.multi_phy_config &
8496 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8497 sc->port.supported[1] =
8498 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8499 sc->port.supported[0] =
8500 sc->link_params.phy[ELINK_EXT_PHY2].supported;
8501 } else {
8502 sc->port.supported[0] =
8503 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8504 sc->port.supported[1] =
8505 sc->link_params.phy[ELINK_EXT_PHY2].supported;
8506 }
8507 cfg_size = 2;
8508 break;
8509 }
8510
8511 if (!(sc->port.supported[0] || sc->port.supported[1])) {
8512 PMD_DRV_LOG(ERR, sc,
8513 "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8514 SHMEM_RD(sc,
8515 dev_info.port_hw_config
8516 [port].external_phy_config),
8517 SHMEM_RD(sc,
8518 dev_info.port_hw_config
8519 [port].external_phy_config2));
8520 return;
8521 }
8522
8523 if (CHIP_IS_E3(sc))
8524 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8525 else {
8526 switch (switch_cfg) {
8527 case ELINK_SWITCH_CFG_1G:
8528 sc->port.phy_addr =
8529 REG_RD(sc,
8530 NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8531 break;
8532 case ELINK_SWITCH_CFG_10G:
8533 sc->port.phy_addr =
8534 REG_RD(sc,
8535 NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8536 break;
8537 default:
8538 PMD_DRV_LOG(ERR, sc,
8539 "Invalid switch config in"
8540 "link_config=0x%08x",
8541 sc->port.link_config[0]);
8542 return;
8543 }
8544 }
8545
8546 PMD_DRV_LOG(INFO, sc, "PHY addr 0x%08x", sc->port.phy_addr);
8547
8548 /* mask what we support according to speed_cap_mask per configuration */
8549 for (idx = 0; idx < cfg_size; idx++) {
8550 if (!(sc->link_params.speed_cap_mask[idx] &
8551 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8552 sc->port.supported[idx] &=
8553 ~ELINK_SUPPORTED_10baseT_Half;
8554 }
8555
8556 if (!(sc->link_params.speed_cap_mask[idx] &
8557 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8558 sc->port.supported[idx] &=
8559 ~ELINK_SUPPORTED_10baseT_Full;
8560 }
8561
8562 if (!(sc->link_params.speed_cap_mask[idx] &
8563 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8564 sc->port.supported[idx] &=
8565 ~ELINK_SUPPORTED_100baseT_Half;
8566 }
8567
8568 if (!(sc->link_params.speed_cap_mask[idx] &
8569 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8570 sc->port.supported[idx] &=
8571 ~ELINK_SUPPORTED_100baseT_Full;
8572 }
8573
8574 if (!(sc->link_params.speed_cap_mask[idx] &
8575 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8576 sc->port.supported[idx] &=
8577 ~ELINK_SUPPORTED_1000baseT_Full;
8578 }
8579
8580 if (!(sc->link_params.speed_cap_mask[idx] &
8581 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8582 sc->port.supported[idx] &=
8583 ~ELINK_SUPPORTED_2500baseX_Full;
8584 }
8585
8586 if (!(sc->link_params.speed_cap_mask[idx] &
8587 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8588 sc->port.supported[idx] &=
8589 ~ELINK_SUPPORTED_10000baseT_Full;
8590 }
8591
8592 if (!(sc->link_params.speed_cap_mask[idx] &
8593 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8594 sc->port.supported[idx] &=
8595 ~ELINK_SUPPORTED_20000baseKR2_Full;
8596 }
8597 }
8598
8599 PMD_DRV_LOG(INFO, sc, "PHY supported 0=0x%08x 1=0x%08x",
8600 sc->port.supported[0], sc->port.supported[1]);
8601 }
8602
8603 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8604 {
8605 uint32_t link_config;
8606 uint32_t idx;
8607 uint32_t cfg_size = 0;
8608
8609 sc->port.advertising[0] = 0;
8610 sc->port.advertising[1] = 0;
8611
8612 switch (sc->link_params.num_phys) {
8613 case 1:
8614 case 2:
8615 cfg_size = 1;
8616 break;
8617 case 3:
8618 cfg_size = 2;
8619 break;
8620 }
8621
8622 for (idx = 0; idx < cfg_size; idx++) {
8623 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8624 link_config = sc->port.link_config[idx];
8625
8626 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8627 case PORT_FEATURE_LINK_SPEED_AUTO:
8628 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8629 sc->link_params.req_line_speed[idx] =
8630 ELINK_SPEED_AUTO_NEG;
8631 sc->port.advertising[idx] |=
8632 sc->port.supported[idx];
8633 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8634 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8635 sc->port.advertising[idx] |=
8636 (ELINK_SUPPORTED_100baseT_Half |
8637 ELINK_SUPPORTED_100baseT_Full);
8638 } else {
8639 /* force 10G, no AN */
8640 sc->link_params.req_line_speed[idx] =
8641 ELINK_SPEED_10000;
8642 sc->port.advertising[idx] |=
8643 (ADVERTISED_10000baseT_Full |
8644 ADVERTISED_FIBRE);
8645 continue;
8646 }
8647 break;
8648
8649 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8650 if (sc->
8651 port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8652 {
8653 sc->link_params.req_line_speed[idx] =
8654 ELINK_SPEED_10;
8655 sc->port.advertising[idx] |=
8656 (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8657 } else {
8658 PMD_DRV_LOG(ERR, sc,
8659 "Invalid NVRAM config link_config=0x%08x "
8660 "speed_cap_mask=0x%08x",
8661 link_config,
8662 sc->
8663 link_params.speed_cap_mask[idx]);
8664 return;
8665 }
8666 break;
8667
8668 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8669 if (sc->
8670 port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8671 {
8672 sc->link_params.req_line_speed[idx] =
8673 ELINK_SPEED_10;
8674 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8675 sc->port.advertising[idx] |=
8676 (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8677 } else {
8678 PMD_DRV_LOG(ERR, sc,
8679 "Invalid NVRAM config link_config=0x%08x "
8680 "speed_cap_mask=0x%08x",
8681 link_config,
8682 sc->
8683 link_params.speed_cap_mask[idx]);
8684 return;
8685 }
8686 break;
8687
8688 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8689 if (sc->
8690 port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8691 {
8692 sc->link_params.req_line_speed[idx] =
8693 ELINK_SPEED_100;
8694 sc->port.advertising[idx] |=
8695 (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8696 } else {
8697 PMD_DRV_LOG(ERR, sc,
8698 "Invalid NVRAM config link_config=0x%08x "
8699 "speed_cap_mask=0x%08x",
8700 link_config,
8701 sc->
8702 link_params.speed_cap_mask[idx]);
8703 return;
8704 }
8705 break;
8706
8707 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8708 if (sc->
8709 port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8710 {
8711 sc->link_params.req_line_speed[idx] =
8712 ELINK_SPEED_100;
8713 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8714 sc->port.advertising[idx] |=
8715 (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8716 } else {
8717 PMD_DRV_LOG(ERR, sc,
8718 "Invalid NVRAM config link_config=0x%08x "
8719 "speed_cap_mask=0x%08x",
8720 link_config,
8721 sc->
8722 link_params.speed_cap_mask[idx]);
8723 return;
8724 }
8725 break;
8726
8727 case PORT_FEATURE_LINK_SPEED_1G:
8728 if (sc->port.supported[idx] &
8729 ELINK_SUPPORTED_1000baseT_Full) {
8730 sc->link_params.req_line_speed[idx] =
8731 ELINK_SPEED_1000;
8732 sc->port.advertising[idx] |=
8733 (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8734 } else {
8735 PMD_DRV_LOG(ERR, sc,
8736 "Invalid NVRAM config link_config=0x%08x "
8737 "speed_cap_mask=0x%08x",
8738 link_config,
8739 sc->
8740 link_params.speed_cap_mask[idx]);
8741 return;
8742 }
8743 break;
8744
8745 case PORT_FEATURE_LINK_SPEED_2_5G:
8746 if (sc->port.supported[idx] &
8747 ELINK_SUPPORTED_2500baseX_Full) {
8748 sc->link_params.req_line_speed[idx] =
8749 ELINK_SPEED_2500;
8750 sc->port.advertising[idx] |=
8751 (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8752 } else {
8753 PMD_DRV_LOG(ERR, sc,
8754 "Invalid NVRAM config link_config=0x%08x "
8755 "speed_cap_mask=0x%08x",
8756 link_config,
8757 sc->
8758 link_params.speed_cap_mask[idx]);
8759 return;
8760 }
8761 break;
8762
8763 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8764 if (sc->port.supported[idx] &
8765 ELINK_SUPPORTED_10000baseT_Full) {
8766 sc->link_params.req_line_speed[idx] =
8767 ELINK_SPEED_10000;
8768 sc->port.advertising[idx] |=
8769 (ADVERTISED_10000baseT_Full |
8770 ADVERTISED_FIBRE);
8771 } else {
8772 PMD_DRV_LOG(ERR, sc,
8773 "Invalid NVRAM config link_config=0x%08x "
8774 "speed_cap_mask=0x%08x",
8775 link_config,
8776 sc->
8777 link_params.speed_cap_mask[idx]);
8778 return;
8779 }
8780 break;
8781
8782 case PORT_FEATURE_LINK_SPEED_20G:
8783 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8784 break;
8785
8786 default:
8787 PMD_DRV_LOG(ERR, sc,
8788 "Invalid NVRAM config link_config=0x%08x "
8789 "speed_cap_mask=0x%08x", link_config,
8790 sc->link_params.speed_cap_mask[idx]);
8791 sc->link_params.req_line_speed[idx] =
8792 ELINK_SPEED_AUTO_NEG;
8793 sc->port.advertising[idx] = sc->port.supported[idx];
8794 break;
8795 }
8796
8797 sc->link_params.req_flow_ctrl[idx] =
8798 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8799
8800 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8801 if (!
8802 (sc->
8803 port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8804 sc->link_params.req_flow_ctrl[idx] =
8805 ELINK_FLOW_CTRL_NONE;
8806 } else {
8807 bnx2x_set_requested_fc(sc);
8808 }
8809 }
8810 }
8811 }
8812
8813 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8814 {
8815 uint8_t port = SC_PORT(sc);
8816 uint32_t eee_mode;
8817
8818 PMD_INIT_FUNC_TRACE(sc);
8819
8820 /* shmem data already read in bnx2x_get_shmem_info() */
8821
8822 bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8823 bnx2x_link_settings_requested(sc);
8824
8825 /* configure link feature according to nvram value */
8826 eee_mode =
8827 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8828 & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8829 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8830 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8831 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8832 ELINK_EEE_MODE_ENABLE_LPI |
8833 ELINK_EEE_MODE_OUTPUT_TIME);
8834 } else {
8835 sc->link_params.eee_mode = 0;
8836 }
8837
8838 /* get the media type */
8839 bnx2x_media_detect(sc);
8840 }
8841
8842 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8843 {
8844 uint32_t flags = MODE_ASIC | MODE_PORT2;
8845
8846 if (CHIP_IS_E2(sc)) {
8847 flags |= MODE_E2;
8848 } else if (CHIP_IS_E3(sc)) {
8849 flags |= MODE_E3;
8850 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8851 flags |= MODE_E3_A0;
8852 } else { /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8853
8854 flags |= MODE_E3_B0 | MODE_COS3;
8855 }
8856 }
8857
8858 if (IS_MF(sc)) {
8859 flags |= MODE_MF;
8860 switch (sc->devinfo.mf_info.mf_mode) {
8861 case MULTI_FUNCTION_SD:
8862 flags |= MODE_MF_SD;
8863 break;
8864 case MULTI_FUNCTION_SI:
8865 flags |= MODE_MF_SI;
8866 break;
8867 case MULTI_FUNCTION_AFEX:
8868 flags |= MODE_MF_AFEX;
8869 break;
8870 }
8871 } else {
8872 flags |= MODE_SF;
8873 }
8874
8875 #if defined(__LITTLE_ENDIAN)
8876 flags |= MODE_LITTLE_ENDIAN;
8877 #else /* __BIG_ENDIAN */
8878 flags |= MODE_BIG_ENDIAN;
8879 #endif
8880
8881 INIT_MODE_FLAGS(sc) = flags;
8882 }
8883
8884 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8885 {
8886 struct bnx2x_fastpath *fp;
8887 char buf[32];
8888 uint32_t i;
8889
8890 if (IS_PF(sc)) {
8891 /************************/
8892 /* DEFAULT STATUS BLOCK */
8893 /************************/
8894
8895 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8896 &sc->def_sb_dma, "def_sb",
8897 RTE_CACHE_LINE_SIZE) != 0) {
8898 return -1;
8899 }
8900
8901 sc->def_sb =
8902 (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8903 /***************/
8904 /* EVENT QUEUE */
8905 /***************/
8906
8907 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8908 &sc->eq_dma, "ev_queue",
8909 RTE_CACHE_LINE_SIZE) != 0) {
8910 sc->def_sb = NULL;
8911 return -1;
8912 }
8913
8914 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8915
8916 /*************/
8917 /* SLOW PATH */
8918 /*************/
8919
8920 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8921 &sc->sp_dma, "sp",
8922 RTE_CACHE_LINE_SIZE) != 0) {
8923 sc->eq = NULL;
8924 sc->def_sb = NULL;
8925 return -1;
8926 }
8927
8928 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8929
8930 /*******************/
8931 /* SLOW PATH QUEUE */
8932 /*******************/
8933
8934 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8935 &sc->spq_dma, "sp_queue",
8936 RTE_CACHE_LINE_SIZE) != 0) {
8937 sc->sp = NULL;
8938 sc->eq = NULL;
8939 sc->def_sb = NULL;
8940 return -1;
8941 }
8942
8943 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8944
8945 /***************************/
8946 /* FW DECOMPRESSION BUFFER */
8947 /***************************/
8948
8949 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8950 "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8951 sc->spq = NULL;
8952 sc->sp = NULL;
8953 sc->eq = NULL;
8954 sc->def_sb = NULL;
8955 return -1;
8956 }
8957
8958 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8959 }
8960
8961 /*************/
8962 /* FASTPATHS */
8963 /*************/
8964
8965 /* allocate DMA memory for each fastpath structure */
8966 for (i = 0; i < sc->num_queues; i++) {
8967 fp = &sc->fp[i];
8968 fp->sc = sc;
8969 fp->index = i;
8970
8971 /*******************/
8972 /* FP STATUS BLOCK */
8973 /*******************/
8974
8975 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8976 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8977 &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8978 PMD_DRV_LOG(NOTICE, sc, "Failed to alloc %s", buf);
8979 return -1;
8980 } else {
8981 if (CHIP_IS_E2E3(sc)) {
8982 fp->status_block.e2_sb =
8983 (struct host_hc_status_block_e2 *)
8984 fp->sb_dma.vaddr;
8985 } else {
8986 fp->status_block.e1x_sb =
8987 (struct host_hc_status_block_e1x *)
8988 fp->sb_dma.vaddr;
8989 }
8990 }
8991 }
8992
8993 return 0;
8994 }
8995
8996 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8997 {
8998 struct bnx2x_fastpath *fp;
8999 int i;
9000
9001 for (i = 0; i < sc->num_queues; i++) {
9002 fp = &sc->fp[i];
9003
9004 /*******************/
9005 /* FP STATUS BLOCK */
9006 /*******************/
9007
9008 memset(&fp->status_block, 0, sizeof(fp->status_block));
9009 }
9010
9011 /***************************/
9012 /* FW DECOMPRESSION BUFFER */
9013 /***************************/
9014
9015 sc->gz_buf = NULL;
9016
9017 /*******************/
9018 /* SLOW PATH QUEUE */
9019 /*******************/
9020
9021 sc->spq = NULL;
9022
9023 /*************/
9024 /* SLOW PATH */
9025 /*************/
9026
9027 sc->sp = NULL;
9028
9029 /***************/
9030 /* EVENT QUEUE */
9031 /***************/
9032
9033 sc->eq = NULL;
9034
9035 /************************/
9036 /* DEFAULT STATUS BLOCK */
9037 /************************/
9038
9039 sc->def_sb = NULL;
9040
9041 }
9042
9043 /*
9044 * Previous driver DMAE transaction may have occurred when pre-boot stage
9045 * ended and boot began. This would invalidate the addresses of the
9046 * transaction, resulting in was-error bit set in the PCI causing all
9047 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9048 * the interrupt which detected this from the pglueb and the was-done bit
9049 */
9050 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9051 {
9052 uint32_t val;
9053
9054 if (!CHIP_IS_E1x(sc)) {
9055 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9056 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9057 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9058 1 << SC_FUNC(sc));
9059 }
9060 }
9061 }
9062
9063 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9064 {
9065 uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9066 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9067 if (!rc) {
9068 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9069 return -1;
9070 }
9071
9072 return 0;
9073 }
9074
9075 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9076 {
9077 struct bnx2x_prev_list_node *tmp;
9078
9079 LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9080 if ((sc->pcie_bus == tmp->bus) &&
9081 (sc->pcie_device == tmp->slot) &&
9082 (SC_PATH(sc) == tmp->path)) {
9083 return tmp;
9084 }
9085 }
9086
9087 return NULL;
9088 }
9089
9090 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9091 {
9092 struct bnx2x_prev_list_node *tmp;
9093 int rc = FALSE;
9094
9095 rte_spinlock_lock(&bnx2x_prev_mtx);
9096
9097 tmp = bnx2x_prev_path_get_entry(sc);
9098 if (tmp) {
9099 if (tmp->aer) {
9100 PMD_DRV_LOG(DEBUG, sc,
9101 "Path %d/%d/%d was marked by AER",
9102 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9103 } else {
9104 rc = TRUE;
9105 PMD_DRV_LOG(DEBUG, sc,
9106 "Path %d/%d/%d was already cleaned from previous drivers",
9107 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9108 }
9109 }
9110
9111 rte_spinlock_unlock(&bnx2x_prev_mtx);
9112
9113 return rc;
9114 }
9115
9116 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9117 {
9118 struct bnx2x_prev_list_node *tmp;
9119
9120 rte_spinlock_lock(&bnx2x_prev_mtx);
9121
9122 /* Check whether the entry for this path already exists */
9123 tmp = bnx2x_prev_path_get_entry(sc);
9124 if (tmp) {
9125 if (!tmp->aer) {
9126 PMD_DRV_LOG(DEBUG, sc,
9127 "Re-marking AER in path %d/%d/%d",
9128 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9129 } else {
9130 PMD_DRV_LOG(DEBUG, sc,
9131 "Removing AER indication from path %d/%d/%d",
9132 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9133 tmp->aer = 0;
9134 }
9135
9136 rte_spinlock_unlock(&bnx2x_prev_mtx);
9137 return 0;
9138 }
9139
9140 rte_spinlock_unlock(&bnx2x_prev_mtx);
9141
9142 /* Create an entry for this path and add it */
9143 tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9144 RTE_CACHE_LINE_SIZE);
9145 if (!tmp) {
9146 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate 'bnx2x_prev_list_node'");
9147 return -1;
9148 }
9149
9150 tmp->bus = sc->pcie_bus;
9151 tmp->slot = sc->pcie_device;
9152 tmp->path = SC_PATH(sc);
9153 tmp->aer = 0;
9154 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9155
9156 rte_spinlock_lock(&bnx2x_prev_mtx);
9157
9158 LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9159
9160 rte_spinlock_unlock(&bnx2x_prev_mtx);
9161
9162 return 0;
9163 }
9164
9165 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9166 {
9167 int i;
9168
9169 /* only E2 and onwards support FLR */
9170 if (CHIP_IS_E1x(sc)) {
9171 PMD_DRV_LOG(WARNING, sc, "FLR not supported in E1H");
9172 return -1;
9173 }
9174
9175 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9176 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9177 PMD_DRV_LOG(WARNING, sc,
9178 "FLR not supported by BC_VER: 0x%08x",
9179 sc->devinfo.bc_ver);
9180 return -1;
9181 }
9182
9183 /* Wait for Transaction Pending bit clean */
9184 for (i = 0; i < 4; i++) {
9185 if (i) {
9186 DELAY(((1 << (i - 1)) * 100) * 1000);
9187 }
9188
9189 if (!bnx2x_is_pcie_pending(sc)) {
9190 goto clear;
9191 }
9192 }
9193
9194 PMD_DRV_LOG(NOTICE, sc, "PCIE transaction is not cleared, "
9195 "proceeding with reset anyway");
9196
9197 clear:
9198 bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9199
9200 return 0;
9201 }
9202
9203 struct bnx2x_mac_vals {
9204 uint32_t xmac_addr;
9205 uint32_t xmac_val;
9206 uint32_t emac_addr;
9207 uint32_t emac_val;
9208 uint32_t umac_addr;
9209 uint32_t umac_val;
9210 uint32_t bmac_addr;
9211 uint32_t bmac_val[2];
9212 };
9213
9214 static void
9215 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9216 {
9217 uint32_t val, base_addr, offset, mask, reset_reg;
9218 uint8_t mac_stopped = FALSE;
9219 uint8_t port = SC_PORT(sc);
9220 uint32_t wb_data[2];
9221
9222 /* reset addresses as they also mark which values were changed */
9223 vals->bmac_addr = 0;
9224 vals->umac_addr = 0;
9225 vals->xmac_addr = 0;
9226 vals->emac_addr = 0;
9227
9228 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9229
9230 if (!CHIP_IS_E3(sc)) {
9231 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9232 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9233 if ((mask & reset_reg) && val) {
9234 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9235 : NIG_REG_INGRESS_BMAC0_MEM;
9236 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9237 : BIGMAC_REGISTER_BMAC_CONTROL;
9238
9239 /*
9240 * use rd/wr since we cannot use dmae. This is safe
9241 * since MCP won't access the bus due to the request
9242 * to unload, and no function on the path can be
9243 * loaded at this time.
9244 */
9245 wb_data[0] = REG_RD(sc, base_addr + offset);
9246 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9247 vals->bmac_addr = base_addr + offset;
9248 vals->bmac_val[0] = wb_data[0];
9249 vals->bmac_val[1] = wb_data[1];
9250 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9251 REG_WR(sc, vals->bmac_addr, wb_data[0]);
9252 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9253 }
9254
9255 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9256 vals->emac_val = REG_RD(sc, vals->emac_addr);
9257 REG_WR(sc, vals->emac_addr, 0);
9258 mac_stopped = TRUE;
9259 } else {
9260 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9261 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9262 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9263 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9264 val & ~(1 << 1));
9265 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9266 val | (1 << 1));
9267 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9268 vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9269 REG_WR(sc, vals->xmac_addr, 0);
9270 mac_stopped = TRUE;
9271 }
9272
9273 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9274 if (mask & reset_reg) {
9275 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9276 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9277 vals->umac_val = REG_RD(sc, vals->umac_addr);
9278 REG_WR(sc, vals->umac_addr, 0);
9279 mac_stopped = TRUE;
9280 }
9281 }
9282
9283 if (mac_stopped) {
9284 DELAY(20000);
9285 }
9286 }
9287
9288 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9289 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9290 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9291 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9292
9293 static void
9294 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9295 {
9296 uint16_t rcq, bd;
9297 uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9298
9299 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9300 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9301
9302 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9303 REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9304 }
9305
9306 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9307 {
9308 uint32_t reset_reg, tmp_reg = 0, rc;
9309 uint8_t prev_undi = FALSE;
9310 struct bnx2x_mac_vals mac_vals;
9311 uint32_t timer_count = 1000;
9312 uint32_t prev_brb;
9313
9314 /*
9315 * It is possible a previous function received 'common' answer,
9316 * but hasn't loaded yet, therefore creating a scenario of
9317 * multiple functions receiving 'common' on the same path.
9318 */
9319 memset(&mac_vals, 0, sizeof(mac_vals));
9320
9321 if (bnx2x_prev_is_path_marked(sc)) {
9322 return bnx2x_prev_mcp_done(sc);
9323 }
9324
9325 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9326
9327 /* Reset should be performed after BRB is emptied */
9328 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9329 /* Close the MAC Rx to prevent BRB from filling up */
9330 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9331
9332 /* close LLH filters towards the BRB */
9333 elink_set_rx_filter(&sc->link_params, 0);
9334
9335 /*
9336 * Check if the UNDI driver was previously loaded.
9337 * UNDI driver initializes CID offset for normal bell to 0x7
9338 */
9339 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9340 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9341 if (tmp_reg == 0x7) {
9342 PMD_DRV_LOG(DEBUG, sc, "UNDI previously loaded");
9343 prev_undi = TRUE;
9344 /* clear the UNDI indication */
9345 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9346 /* clear possible idle check errors */
9347 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9348 }
9349 }
9350
9351 /* wait until BRB is empty */
9352 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9353 while (timer_count) {
9354 prev_brb = tmp_reg;
9355
9356 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9357 if (!tmp_reg) {
9358 break;
9359 }
9360
9361 PMD_DRV_LOG(DEBUG, sc, "BRB still has 0x%08x", tmp_reg);
9362
9363 /* reset timer as long as BRB actually gets emptied */
9364 if (prev_brb > tmp_reg) {
9365 timer_count = 1000;
9366 } else {
9367 timer_count--;
9368 }
9369
9370 /* If UNDI resides in memory, manually increment it */
9371 if (prev_undi) {
9372 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9373 }
9374
9375 DELAY(10);
9376 }
9377
9378 if (!timer_count) {
9379 PMD_DRV_LOG(NOTICE, sc, "Failed to empty BRB");
9380 }
9381 }
9382
9383 /* No packets are in the pipeline, path is ready for reset */
9384 bnx2x_reset_common(sc);
9385
9386 if (mac_vals.xmac_addr) {
9387 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9388 }
9389 if (mac_vals.umac_addr) {
9390 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9391 }
9392 if (mac_vals.emac_addr) {
9393 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9394 }
9395 if (mac_vals.bmac_addr) {
9396 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9397 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9398 }
9399
9400 rc = bnx2x_prev_mark_path(sc, prev_undi);
9401 if (rc) {
9402 bnx2x_prev_mcp_done(sc);
9403 return rc;
9404 }
9405
9406 return bnx2x_prev_mcp_done(sc);
9407 }
9408
9409 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9410 {
9411 int rc;
9412
9413 /* Test if previous unload process was already finished for this path */
9414 if (bnx2x_prev_is_path_marked(sc)) {
9415 return bnx2x_prev_mcp_done(sc);
9416 }
9417
9418 /*
9419 * If function has FLR capabilities, and existing FW version matches
9420 * the one required, then FLR will be sufficient to clean any residue
9421 * left by previous driver
9422 */
9423 rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9424 if (!rc) {
9425 /* fw version is good */
9426 rc = bnx2x_do_flr(sc);
9427 }
9428
9429 if (!rc) {
9430 /* FLR was performed */
9431 return 0;
9432 }
9433
9434 PMD_DRV_LOG(INFO, sc, "Could not FLR");
9435
9436 /* Close the MCP request, return failure */
9437 rc = bnx2x_prev_mcp_done(sc);
9438 if (!rc) {
9439 rc = BNX2X_PREV_WAIT_NEEDED;
9440 }
9441
9442 return rc;
9443 }
9444
9445 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9446 {
9447 int time_counter = 10;
9448 uint32_t fw, hw_lock_reg, hw_lock_val;
9449 uint32_t rc = 0;
9450
9451 PMD_INIT_FUNC_TRACE(sc);
9452
9453 /*
9454 * Clear HW from errors which may have resulted from an interrupted
9455 * DMAE transaction.
9456 */
9457 bnx2x_prev_interrupted_dmae(sc);
9458
9459 /* Release previously held locks */
9460 hw_lock_reg = (SC_FUNC(sc) <= 5) ?
9461 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
9462 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9463
9464 hw_lock_val = (REG_RD(sc, hw_lock_reg));
9465 if (hw_lock_val) {
9466 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9467 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held NVRAM lock\n");
9468 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9469 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9470 }
9471 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held HW lock\n");
9472 REG_WR(sc, hw_lock_reg, 0xffffffff);
9473 }
9474
9475 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9476 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held ALR\n");
9477 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9478 }
9479
9480 do {
9481 /* Lock MCP using an unload request */
9482 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9483 if (!fw) {
9484 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9485 rc = -1;
9486 break;
9487 }
9488
9489 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9490 rc = bnx2x_prev_unload_common(sc);
9491 break;
9492 }
9493
9494 /* non-common reply from MCP might require looping */
9495 rc = bnx2x_prev_unload_uncommon(sc);
9496 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9497 break;
9498 }
9499
9500 DELAY(20000);
9501 } while (--time_counter);
9502
9503 if (!time_counter || rc) {
9504 PMD_DRV_LOG(NOTICE, sc, "Failed to unload previous driver!");
9505 rc = -1;
9506 }
9507
9508 return rc;
9509 }
9510
9511 static void
9512 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9513 {
9514 if (!CHIP_IS_E1x(sc)) {
9515 sc->dcb_state = dcb_on;
9516 sc->dcbx_enabled = dcbx_enabled;
9517 } else {
9518 sc->dcb_state = FALSE;
9519 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9520 }
9521 PMD_DRV_LOG(DEBUG, sc,
9522 "DCB state [%s:%s]",
9523 dcb_on ? "ON" : "OFF",
9524 (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9525 (dcbx_enabled ==
9526 BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9527 : (dcbx_enabled ==
9528 BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9529 "on-chip with negotiation" : "invalid");
9530 }
9531
9532 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9533 {
9534 int cid_count = BNX2X_L2_MAX_CID(sc);
9535
9536 if (CNIC_SUPPORT(sc)) {
9537 cid_count += CNIC_CID_MAX;
9538 }
9539
9540 return roundup(cid_count, QM_CID_ROUND);
9541 }
9542
9543 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9544 {
9545 int pri, cos;
9546
9547 uint32_t pri_map = 0;
9548
9549 for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9550 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9551 if (cos < sc->max_cos) {
9552 sc->prio_to_cos[pri] = cos;
9553 } else {
9554 PMD_DRV_LOG(WARNING, sc,
9555 "Invalid COS %d for priority %d "
9556 "(max COS is %d), setting to 0", cos, pri,
9557 (sc->max_cos - 1));
9558 sc->prio_to_cos[pri] = 0;
9559 }
9560 }
9561 }
9562
9563 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9564 {
9565 struct {
9566 uint8_t id;
9567 uint8_t next;
9568 } pci_cap;
9569 uint16_t status;
9570 struct bnx2x_pci_cap *cap;
9571
9572 cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9573 RTE_CACHE_LINE_SIZE);
9574 if (!cap) {
9575 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9576 return -ENOMEM;
9577 }
9578
9579 #ifndef __FreeBSD__
9580 pci_read(sc, PCI_STATUS, &status, 2);
9581 if (!(status & PCI_STATUS_CAP_LIST)) {
9582 #else
9583 pci_read(sc, PCIR_STATUS, &status, 2);
9584 if (!(status & PCIM_STATUS_CAPPRESENT)) {
9585 #endif
9586 PMD_DRV_LOG(NOTICE, sc, "PCIe capability reading failed");
9587 return -1;
9588 }
9589
9590 #ifndef __FreeBSD__
9591 pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9592 #else
9593 pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9594 #endif
9595 while (pci_cap.next) {
9596 cap->addr = pci_cap.next & ~3;
9597 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9598 if (pci_cap.id == 0xff)
9599 break;
9600 cap->id = pci_cap.id;
9601 cap->type = BNX2X_PCI_CAP;
9602 cap->next = rte_zmalloc("pci_cap",
9603 sizeof(struct bnx2x_pci_cap),
9604 RTE_CACHE_LINE_SIZE);
9605 if (!cap->next) {
9606 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9607 return -ENOMEM;
9608 }
9609 cap = cap->next;
9610 }
9611
9612 return 0;
9613 }
9614
9615 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9616 {
9617 if (IS_VF(sc)) {
9618 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9619 sc->igu_sb_cnt);
9620 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9621 sc->igu_sb_cnt);
9622 } else {
9623 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9624 sc->max_tx_queues = sc->max_rx_queues;
9625 }
9626 }
9627
9628 #define FW_HEADER_LEN 104
9629 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9630 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9631
9632 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9633 {
9634 const char *fwname;
9635 int f;
9636 struct stat st;
9637
9638 fwname = sc->devinfo.device_id == CHIP_NUM_57711
9639 ? FW_NAME_57711 : FW_NAME_57810;
9640 f = open(fwname, O_RDONLY);
9641 if (f < 0) {
9642 PMD_DRV_LOG(NOTICE, sc, "Can't open firmware file");
9643 return;
9644 }
9645
9646 if (fstat(f, &st) < 0) {
9647 PMD_DRV_LOG(NOTICE, sc, "Can't stat firmware file");
9648 close(f);
9649 return;
9650 }
9651
9652 sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9653 if (!sc->firmware) {
9654 PMD_DRV_LOG(NOTICE, sc, "Can't allocate memory for firmware");
9655 close(f);
9656 return;
9657 }
9658
9659 if (read(f, sc->firmware, st.st_size) != st.st_size) {
9660 PMD_DRV_LOG(NOTICE, sc, "Can't read firmware data");
9661 close(f);
9662 return;
9663 }
9664 close(f);
9665
9666 sc->fw_len = st.st_size;
9667 if (sc->fw_len < FW_HEADER_LEN) {
9668 PMD_DRV_LOG(NOTICE, sc,
9669 "Invalid fw size: %" PRIu64, sc->fw_len);
9670 return;
9671 }
9672 PMD_DRV_LOG(DEBUG, sc, "fw_len = %" PRIu64, sc->fw_len);
9673 }
9674
9675 static void
9676 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9677 {
9678 uint32_t *src = (uint32_t *) data;
9679 uint32_t i, j, tmp;
9680
9681 for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9682 tmp = rte_be_to_cpu_32(src[j]);
9683 dst[i].op = (tmp >> 24) & 0xFF;
9684 dst[i].offset = tmp & 0xFFFFFF;
9685 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9686 }
9687 }
9688
9689 static void
9690 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9691 {
9692 uint16_t *src = (uint16_t *) data;
9693 uint32_t i;
9694
9695 for (i = 0; i < len / 2; ++i)
9696 dst[i] = rte_be_to_cpu_16(src[i]);
9697 }
9698
9699 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9700 {
9701 uint32_t *src = (uint32_t *) data;
9702 uint32_t i;
9703
9704 for (i = 0; i < len / 4; ++i)
9705 dst[i] = rte_be_to_cpu_32(src[i]);
9706 }
9707
9708 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9709 {
9710 uint32_t *src = (uint32_t *) data;
9711 uint32_t i, j, tmp;
9712
9713 for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9714 dst[i].base = rte_be_to_cpu_32(src[j++]);
9715 tmp = rte_be_to_cpu_32(src[j]);
9716 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9717 dst[i].m2 = tmp & 0xFFFF;
9718 ++j;
9719 tmp = rte_be_to_cpu_32(src[j]);
9720 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9721 dst[i].size = tmp & 0xFFFF;
9722 }
9723 }
9724
9725 /*
9726 * Device attach function.
9727 *
9728 * Allocates device resources, performs secondary chip identification, and
9729 * initializes driver instance variables. This function is called from driver
9730 * load after a successful probe.
9731 *
9732 * Returns:
9733 * 0 = Success, >0 = Failure
9734 */
9735 int bnx2x_attach(struct bnx2x_softc *sc)
9736 {
9737 int rc;
9738
9739 PMD_DRV_LOG(DEBUG, sc, "Starting attach...");
9740
9741 rc = bnx2x_pci_get_caps(sc);
9742 if (rc) {
9743 PMD_DRV_LOG(NOTICE, sc, "PCIe caps reading was failed");
9744 return rc;
9745 }
9746
9747 sc->state = BNX2X_STATE_CLOSED;
9748
9749 pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9750
9751 sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9752
9753 /* get PCI capabilites */
9754 bnx2x_probe_pci_caps(sc);
9755
9756 if (sc->devinfo.pcie_msix_cap_reg != 0) {
9757 uint32_t val;
9758 pci_read(sc,
9759 (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9760 2);
9761 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9762 } else {
9763 sc->igu_sb_cnt = 1;
9764 }
9765
9766 /* Init RTE stuff */
9767 bnx2x_init_rte(sc);
9768
9769 if (IS_PF(sc)) {
9770 /* Enable internal target-read (in case we are probed after PF
9771 * FLR). Must be done prior to any BAR read access. Only for
9772 * 57712 and up
9773 */
9774 if (!CHIP_IS_E1x(sc)) {
9775 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9776 1);
9777 DELAY(200000);
9778 }
9779
9780 /* get device info and set params */
9781 if (bnx2x_get_device_info(sc) != 0) {
9782 PMD_DRV_LOG(NOTICE, sc, "getting device info");
9783 return -ENXIO;
9784 }
9785
9786 /* get phy settings from shmem and 'and' against admin settings */
9787 bnx2x_get_phy_info(sc);
9788 } else {
9789 /* Left mac of VF unfilled, PF should set it for VF */
9790 memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN);
9791 }
9792
9793 sc->wol = 0;
9794
9795 /* set the default MTU (changed via ifconfig) */
9796 sc->mtu = ETHER_MTU;
9797
9798 bnx2x_set_modes_bitmap(sc);
9799
9800 /* need to reset chip if UNDI was active */
9801 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9802 /* init fw_seq */
9803 sc->fw_seq =
9804 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9805 DRV_MSG_SEQ_NUMBER_MASK);
9806 PMD_DRV_LOG(DEBUG, sc, "prev unload fw_seq 0x%04x",
9807 sc->fw_seq);
9808 bnx2x_prev_unload(sc);
9809 }
9810
9811 bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9812
9813 /* calculate qm_cid_count */
9814 sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9815
9816 sc->max_cos = 1;
9817 bnx2x_init_multi_cos(sc);
9818
9819 return 0;
9820 }
9821
9822 static void
9823 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9824 uint16_t index, uint8_t op, uint8_t update)
9825 {
9826 uint32_t igu_addr = sc->igu_base_addr;
9827 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9828 bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9829 }
9830
9831 static void
9832 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9833 uint16_t index, uint8_t op, uint8_t update)
9834 {
9835 if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9836 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9837 else {
9838 uint8_t segment;
9839 if (CHIP_INT_MODE_IS_BC(sc)) {
9840 segment = storm;
9841 } else if (igu_sb_id != sc->igu_dsb_id) {
9842 segment = IGU_SEG_ACCESS_DEF;
9843 } else if (storm == ATTENTION_ID) {
9844 segment = IGU_SEG_ACCESS_ATTN;
9845 } else {
9846 segment = IGU_SEG_ACCESS_DEF;
9847 }
9848 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9849 }
9850 }
9851
9852 static void
9853 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9854 uint8_t is_pf)
9855 {
9856 uint32_t data, ctl, cnt = 100;
9857 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9858 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9859 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9860 (idu_sb_id / 32) * 4;
9861 uint32_t sb_bit = 1 << (idu_sb_id % 32);
9862 uint32_t func_encode = func |
9863 (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9864 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9865
9866 /* Not supported in BC mode */
9867 if (CHIP_INT_MODE_IS_BC(sc)) {
9868 return;
9869 }
9870
9871 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9872 IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9873 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9874
9875 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9876 (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9877 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9878
9879 REG_WR(sc, igu_addr_data, data);
9880
9881 mb();
9882
9883 PMD_DRV_LOG(DEBUG, sc, "write 0x%08x to IGU(via GRC) addr 0x%x",
9884 ctl, igu_addr_ctl);
9885 REG_WR(sc, igu_addr_ctl, ctl);
9886
9887 mb();
9888
9889 /* wait for clean up to finish */
9890 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9891 DELAY(20000);
9892 }
9893
9894 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9895 PMD_DRV_LOG(DEBUG, sc,
9896 "Unable to finish IGU cleanup: "
9897 "idu_sb_id %d offset %d bit %d (cnt %d)",
9898 idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9899 }
9900 }
9901
9902 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9903 {
9904 bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9905 }
9906
9907 /*******************/
9908 /* ECORE CALLBACKS */
9909 /*******************/
9910
9911 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9912 {
9913 uint32_t val = 0x1400;
9914
9915 PMD_INIT_FUNC_TRACE(sc);
9916
9917 /* reset_common */
9918 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9919 0xd3ffff7f);
9920
9921 if (CHIP_IS_E3(sc)) {
9922 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9923 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9924 }
9925
9926 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9927 }
9928
9929 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9930 {
9931 uint32_t shmem_base[2];
9932 uint32_t shmem2_base[2];
9933
9934 /* Avoid common init in case MFW supports LFA */
9935 if (SHMEM2_RD(sc, size) >
9936 (uint32_t) offsetof(struct shmem2_region,
9937 lfa_host_addr[SC_PORT(sc)])) {
9938 return;
9939 }
9940
9941 shmem_base[0] = sc->devinfo.shmem_base;
9942 shmem2_base[0] = sc->devinfo.shmem2_base;
9943
9944 if (!CHIP_IS_E1x(sc)) {
9945 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9946 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9947 }
9948
9949 bnx2x_acquire_phy_lock(sc);
9950 elink_common_init_phy(sc, shmem_base, shmem2_base,
9951 sc->devinfo.chip_id, 0);
9952 bnx2x_release_phy_lock(sc);
9953 }
9954
9955 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9956 {
9957 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9958
9959 val &= ~IGU_PF_CONF_FUNC_EN;
9960
9961 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9962 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9963 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9964 }
9965
9966 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9967 {
9968 uint16_t devctl;
9969 int r_order, w_order;
9970
9971 devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9972
9973 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9974 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9975
9976 ecore_init_pxp_arb(sc, r_order, w_order);
9977 }
9978
9979 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9980 {
9981 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9982 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9983 return base + (SC_ABS_FUNC(sc)) * stride;
9984 }
9985
9986 /*
9987 * Called only on E1H or E2.
9988 * When pretending to be PF, the pretend value is the function number 0..7.
9989 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9990 * combination.
9991 */
9992 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9993 {
9994 uint32_t pretend_reg;
9995
9996 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
9997 return -1;
9998
9999 /* get my own pretend register */
10000 pretend_reg = bnx2x_get_pretend_reg(sc);
10001 REG_WR(sc, pretend_reg, pretend_func_val);
10002 REG_RD(sc, pretend_reg);
10003 return 0;
10004 }
10005
10006 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
10007 {
10008 int is_required;
10009 uint32_t val;
10010 int port;
10011
10012 is_required = 0;
10013 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
10014 SHARED_HW_CFG_FAN_FAILURE_MASK);
10015
10016 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
10017 is_required = 1;
10018 }
10019 /*
10020 * The fan failure mechanism is usually related to the PHY type since
10021 * the power consumption of the board is affected by the PHY. Currently,
10022 * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
10023 */
10024 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
10025 for (port = PORT_0; port < PORT_MAX; port++) {
10026 is_required |= elink_fan_failure_det_req(sc,
10027 sc->
10028 devinfo.shmem_base,
10029 sc->
10030 devinfo.shmem2_base,
10031 port);
10032 }
10033 }
10034
10035 if (is_required == 0) {
10036 return;
10037 }
10038
10039 /* Fan failure is indicated by SPIO 5 */
10040 bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
10041
10042 /* set to active low mode */
10043 val = REG_RD(sc, MISC_REG_SPIO_INT);
10044 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
10045 REG_WR(sc, MISC_REG_SPIO_INT, val);
10046
10047 /* enable interrupt to signal the IGU */
10048 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10049 val |= MISC_SPIO_SPIO5;
10050 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
10051 }
10052
10053 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
10054 {
10055 uint32_t val;
10056
10057 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
10058 if (!CHIP_IS_E1x(sc)) {
10059 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
10060 } else {
10061 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
10062 }
10063 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10064 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10065 /*
10066 * mask read length error interrupts in brb for parser
10067 * (parsing unit and 'checksum and crc' unit)
10068 * these errors are legal (PU reads fixed length and CAC can cause
10069 * read length error on truncated packets)
10070 */
10071 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10072 REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10073 REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10074 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10075 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10076 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10077 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10078 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10079 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10080 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10081 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10082 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10083 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10084 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10085 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10086 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10087 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10088 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10089 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10090
10091 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10092 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10093 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10094 if (!CHIP_IS_E1x(sc)) {
10095 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10096 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10097 }
10098 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10099
10100 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10101 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10102 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10103 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10104
10105 if (!CHIP_IS_E1x(sc)) {
10106 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10107 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10108 }
10109
10110 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10111 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10112 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10113 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10114 }
10115
10116 /**
10117 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10118 *
10119 * @sc: driver handle
10120 */
10121 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10122 {
10123 uint8_t abs_func_id;
10124 uint32_t val;
10125
10126 PMD_DRV_LOG(DEBUG, sc,
10127 "starting common init for func %d", SC_ABS_FUNC(sc));
10128
10129 /*
10130 * take the RESET lock to protect undi_unload flow from accessing
10131 * registers while we are resetting the chip
10132 */
10133 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10134
10135 bnx2x_reset_common(sc);
10136
10137 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10138
10139 val = 0xfffc;
10140 if (CHIP_IS_E3(sc)) {
10141 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10142 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10143 }
10144
10145 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10146
10147 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10148
10149 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10150
10151 if (!CHIP_IS_E1x(sc)) {
10152 /*
10153 * 4-port mode or 2-port mode we need to turn off master-enable for
10154 * everyone. After that we turn it back on for self. So, we disregard
10155 * multi-function, and always disable all functions on the given path,
10156 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10157 */
10158 for (abs_func_id = SC_PATH(sc);
10159 abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10160 if (abs_func_id == SC_ABS_FUNC(sc)) {
10161 REG_WR(sc,
10162 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10163 1);
10164 continue;
10165 }
10166
10167 bnx2x_pretend_func(sc, abs_func_id);
10168
10169 /* clear pf enable */
10170 bnx2x_pf_disable(sc);
10171
10172 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10173 }
10174 }
10175
10176 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10177
10178 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10179 bnx2x_init_pxp(sc);
10180
10181 #ifdef __BIG_ENDIAN
10182 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10183 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10184 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10185 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10186 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10187 /* make sure this value is 0 */
10188 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10189
10190 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10191 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10192 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10193 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10194 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10195 #endif
10196
10197 ecore_ilt_init_page_size(sc, INITOP_SET);
10198
10199 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10200 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10201 }
10202
10203 /* let the HW do it's magic... */
10204 DELAY(100000);
10205
10206 /* finish PXP init */
10207
10208 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10209 if (val != 1) {
10210 PMD_DRV_LOG(NOTICE, sc, "PXP2 CFG failed");
10211 return -1;
10212 }
10213 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10214 if (val != 1) {
10215 PMD_DRV_LOG(NOTICE, sc, "PXP2 RD_INIT failed");
10216 return -1;
10217 }
10218
10219 /*
10220 * Timer bug workaround for E2 only. We need to set the entire ILT to have
10221 * entries with value "0" and valid bit on. This needs to be done by the
10222 * first PF that is loaded in a path (i.e. common phase)
10223 */
10224 if (!CHIP_IS_E1x(sc)) {
10225 /*
10226 * In E2 there is a bug in the timers block that can cause function 6 / 7
10227 * (i.e. vnic3) to start even if it is marked as "scan-off".
10228 * This occurs when a different function (func2,3) is being marked
10229 * as "scan-off". Real-life scenario for example: if a driver is being
10230 * load-unloaded while func6,7 are down. This will cause the timer to access
10231 * the ilt, translate to a logical address and send a request to read/write.
10232 * Since the ilt for the function that is down is not valid, this will cause
10233 * a translation error which is unrecoverable.
10234 * The Workaround is intended to make sure that when this happens nothing
10235 * fatal will occur. The workaround:
10236 * 1. First PF driver which loads on a path will:
10237 * a. After taking the chip out of reset, by using pretend,
10238 * it will write "0" to the following registers of
10239 * the other vnics.
10240 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10241 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10242 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10243 * And for itself it will write '1' to
10244 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10245 * dmae-operations (writing to pram for example.)
10246 * note: can be done for only function 6,7 but cleaner this
10247 * way.
10248 * b. Write zero+valid to the entire ILT.
10249 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
10250 * VNIC3 (of that port). The range allocated will be the
10251 * entire ILT. This is needed to prevent ILT range error.
10252 * 2. Any PF driver load flow:
10253 * a. ILT update with the physical addresses of the allocated
10254 * logical pages.
10255 * b. Wait 20msec. - note that this timeout is needed to make
10256 * sure there are no requests in one of the PXP internal
10257 * queues with "old" ILT addresses.
10258 * c. PF enable in the PGLC.
10259 * d. Clear the was_error of the PF in the PGLC. (could have
10260 * occurred while driver was down)
10261 * e. PF enable in the CFC (WEAK + STRONG)
10262 * f. Timers scan enable
10263 * 3. PF driver unload flow:
10264 * a. Clear the Timers scan_en.
10265 * b. Polling for scan_on=0 for that PF.
10266 * c. Clear the PF enable bit in the PXP.
10267 * d. Clear the PF enable in the CFC (WEAK + STRONG)
10268 * e. Write zero+valid to all ILT entries (The valid bit must
10269 * stay set)
10270 * f. If this is VNIC 3 of a port then also init
10271 * first_timers_ilt_entry to zero and last_timers_ilt_entry
10272 * to the last enrty in the ILT.
10273 *
10274 * Notes:
10275 * Currently the PF error in the PGLC is non recoverable.
10276 * In the future the there will be a recovery routine for this error.
10277 * Currently attention is masked.
10278 * Having an MCP lock on the load/unload process does not guarantee that
10279 * there is no Timer disable during Func6/7 enable. This is because the
10280 * Timers scan is currently being cleared by the MCP on FLR.
10281 * Step 2.d can be done only for PF6/7 and the driver can also check if
10282 * there is error before clearing it. But the flow above is simpler and
10283 * more general.
10284 * All ILT entries are written by zero+valid and not just PF6/7
10285 * ILT entries since in the future the ILT entries allocation for
10286 * PF-s might be dynamic.
10287 */
10288 struct ilt_client_info ilt_cli;
10289 struct ecore_ilt ilt;
10290
10291 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10292 memset(&ilt, 0, sizeof(struct ecore_ilt));
10293
10294 /* initialize dummy TM client */
10295 ilt_cli.start = 0;
10296 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10297 ilt_cli.client_num = ILT_CLIENT_TM;
10298
10299 /*
10300 * Step 1: set zeroes to all ilt page entries with valid bit on
10301 * Step 2: set the timers first/last ilt entry to point
10302 * to the entire range to prevent ILT range error for 3rd/4th
10303 * vnic (this code assumes existence of the vnic)
10304 *
10305 * both steps performed by call to ecore_ilt_client_init_op()
10306 * with dummy TM client
10307 *
10308 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10309 * and his brother are split registers
10310 */
10311
10312 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10313 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10314 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10315
10316 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10317 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10318 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10319 }
10320
10321 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10322 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10323
10324 if (!CHIP_IS_E1x(sc)) {
10325 int factor = 0;
10326
10327 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10328 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10329
10330 /* let the HW do it's magic... */
10331 do {
10332 DELAY(200000);
10333 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10334 } while (factor-- && (val != 1));
10335
10336 if (val != 1) {
10337 PMD_DRV_LOG(NOTICE, sc, "ATC_INIT failed");
10338 return -1;
10339 }
10340 }
10341
10342 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10343
10344 /* clean the DMAE memory */
10345 sc->dmae_ready = 1;
10346 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10347
10348 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10349
10350 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10351
10352 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10353
10354 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10355
10356 bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10357 bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10358 bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10359 bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10360
10361 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10362
10363 /* QM queues pointers table */
10364 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10365
10366 /* soft reset pulse */
10367 REG_WR(sc, QM_REG_SOFT_RESET, 1);
10368 REG_WR(sc, QM_REG_SOFT_RESET, 0);
10369
10370 if (CNIC_SUPPORT(sc))
10371 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10372
10373 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10374 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10375
10376 if (!CHIP_REV_IS_SLOW(sc)) {
10377 /* enable hw interrupt from doorbell Q */
10378 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10379 }
10380
10381 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10382
10383 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10384 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10385 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10386
10387 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10388 if (IS_MF_AFEX(sc)) {
10389 /*
10390 * configure that AFEX and VLAN headers must be
10391 * received in AFEX mode
10392 */
10393 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10394 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10395 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10396 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10397 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10398 } else {
10399 /*
10400 * Bit-map indicating which L2 hdrs may appear
10401 * after the basic Ethernet header
10402 */
10403 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10404 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10405 }
10406 }
10407
10408 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10409 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10410 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10411 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10412
10413 if (!CHIP_IS_E1x(sc)) {
10414 /* reset VFC memories */
10415 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10416 VFC_MEMORIES_RST_REG_CAM_RST |
10417 VFC_MEMORIES_RST_REG_RAM_RST);
10418 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10419 VFC_MEMORIES_RST_REG_CAM_RST |
10420 VFC_MEMORIES_RST_REG_RAM_RST);
10421
10422 DELAY(20000);
10423 }
10424
10425 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10426 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10427 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10428 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10429
10430 /* sync semi rtc */
10431 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10432 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10433
10434 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10435 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10436 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10437
10438 if (!CHIP_IS_E1x(sc)) {
10439 if (IS_MF_AFEX(sc)) {
10440 /*
10441 * configure that AFEX and VLAN headers must be
10442 * sent in AFEX mode
10443 */
10444 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10445 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10446 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10447 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10448 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10449 } else {
10450 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10451 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10452 }
10453 }
10454
10455 REG_WR(sc, SRC_REG_SOFT_RST, 1);
10456
10457 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10458
10459 if (CNIC_SUPPORT(sc)) {
10460 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10461 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10462 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10463 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10464 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10465 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10466 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10467 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10468 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10469 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10470 }
10471 REG_WR(sc, SRC_REG_SOFT_RST, 0);
10472
10473 if (sizeof(union cdu_context) != 1024) {
10474 /* we currently assume that a context is 1024 bytes */
10475 PMD_DRV_LOG(NOTICE, sc,
10476 "please adjust the size of cdu_context(%ld)",
10477 (long)sizeof(union cdu_context));
10478 }
10479
10480 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10481 val = (4 << 24) + (0 << 12) + 1024;
10482 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10483
10484 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10485
10486 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10487 /* enable context validation interrupt from CFC */
10488 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10489
10490 /* set the thresholds to prevent CFC/CDU race */
10491 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10492 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10493
10494 if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10495 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10496 }
10497
10498 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10499 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10500
10501 /* Reset PCIE errors for debug */
10502 REG_WR(sc, 0x2814, 0xffffffff);
10503 REG_WR(sc, 0x3820, 0xffffffff);
10504
10505 if (!CHIP_IS_E1x(sc)) {
10506 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10507 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10508 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10509 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10510 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10511 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10512 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10513 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10514 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10515 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10516 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10517 }
10518
10519 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10520
10521 /* in E3 this done in per-port section */
10522 if (!CHIP_IS_E3(sc))
10523 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10524
10525 if (CHIP_IS_E1H(sc)) {
10526 /* not applicable for E2 (and above ...) */
10527 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10528 }
10529
10530 if (CHIP_REV_IS_SLOW(sc)) {
10531 DELAY(200000);
10532 }
10533
10534 /* finish CFC init */
10535 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10536 if (val != 1) {
10537 PMD_DRV_LOG(NOTICE, sc, "CFC LL_INIT failed");
10538 return -1;
10539 }
10540 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10541 if (val != 1) {
10542 PMD_DRV_LOG(NOTICE, sc, "CFC AC_INIT failed");
10543 return -1;
10544 }
10545 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10546 if (val != 1) {
10547 PMD_DRV_LOG(NOTICE, sc, "CFC CAM_INIT failed");
10548 return -1;
10549 }
10550 REG_WR(sc, CFC_REG_DEBUG0, 0);
10551
10552 bnx2x_setup_fan_failure_detection(sc);
10553
10554 /* clear PXP2 attentions */
10555 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10556
10557 bnx2x_enable_blocks_attention(sc);
10558
10559 if (!CHIP_REV_IS_SLOW(sc)) {
10560 ecore_enable_blocks_parity(sc);
10561 }
10562
10563 if (!BNX2X_NOMCP(sc)) {
10564 if (CHIP_IS_E1x(sc)) {
10565 bnx2x_common_init_phy(sc);
10566 }
10567 }
10568
10569 return 0;
10570 }
10571
10572 /**
10573 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10574 *
10575 * @sc: driver handle
10576 */
10577 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10578 {
10579 int rc = bnx2x_init_hw_common(sc);
10580
10581 if (rc) {
10582 return rc;
10583 }
10584
10585 /* In E2 2-PORT mode, same ext phy is used for the two paths */
10586 if (!BNX2X_NOMCP(sc)) {
10587 bnx2x_common_init_phy(sc);
10588 }
10589
10590 return 0;
10591 }
10592
10593 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10594 {
10595 int port = SC_PORT(sc);
10596 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10597 uint32_t low, high;
10598 uint32_t val;
10599
10600 PMD_DRV_LOG(DEBUG, sc, "starting port init for port %d", port);
10601
10602 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10603
10604 ecore_init_block(sc, BLOCK_MISC, init_phase);
10605 ecore_init_block(sc, BLOCK_PXP, init_phase);
10606 ecore_init_block(sc, BLOCK_PXP2, init_phase);
10607
10608 /*
10609 * Timers bug workaround: disables the pf_master bit in pglue at
10610 * common phase, we need to enable it here before any dmae access are
10611 * attempted. Therefore we manually added the enable-master to the
10612 * port phase (it also happens in the function phase)
10613 */
10614 if (!CHIP_IS_E1x(sc)) {
10615 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10616 }
10617
10618 ecore_init_block(sc, BLOCK_ATC, init_phase);
10619 ecore_init_block(sc, BLOCK_DMAE, init_phase);
10620 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10621 ecore_init_block(sc, BLOCK_QM, init_phase);
10622
10623 ecore_init_block(sc, BLOCK_TCM, init_phase);
10624 ecore_init_block(sc, BLOCK_UCM, init_phase);
10625 ecore_init_block(sc, BLOCK_CCM, init_phase);
10626 ecore_init_block(sc, BLOCK_XCM, init_phase);
10627
10628 /* QM cid (connection) count */
10629 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10630
10631 if (CNIC_SUPPORT(sc)) {
10632 ecore_init_block(sc, BLOCK_TM, init_phase);
10633 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10634 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10635 }
10636
10637 ecore_init_block(sc, BLOCK_DORQ, init_phase);
10638
10639 ecore_init_block(sc, BLOCK_BRB1, init_phase);
10640
10641 if (CHIP_IS_E1H(sc)) {
10642 if (IS_MF(sc)) {
10643 low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10644 } else if (sc->mtu > 4096) {
10645 if (BNX2X_ONE_PORT(sc)) {
10646 low = 160;
10647 } else {
10648 val = sc->mtu;
10649 /* (24*1024 + val*4)/256 */
10650 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10651 }
10652 } else {
10653 low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10654 }
10655 high = (low + 56); /* 14*1024/256 */
10656 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10657 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10658 }
10659
10660 if (CHIP_IS_MODE_4_PORT(sc)) {
10661 REG_WR(sc, SC_PORT(sc) ?
10662 BRB1_REG_MAC_GUARANTIED_1 :
10663 BRB1_REG_MAC_GUARANTIED_0, 40);
10664 }
10665
10666 ecore_init_block(sc, BLOCK_PRS, init_phase);
10667 if (CHIP_IS_E3B0(sc)) {
10668 if (IS_MF_AFEX(sc)) {
10669 /* configure headers for AFEX mode */
10670 if (SC_PORT(sc)) {
10671 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10672 0xE);
10673 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10674 0x6);
10675 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10676 } else {
10677 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10678 0xE);
10679 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10680 0x6);
10681 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10682 }
10683 } else {
10684 /* Ovlan exists only if we are in multi-function +
10685 * switch-dependent mode, in switch-independent there
10686 * is no ovlan headers
10687 */
10688 REG_WR(sc, SC_PORT(sc) ?
10689 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10690 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10691 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10692 }
10693 }
10694
10695 ecore_init_block(sc, BLOCK_TSDM, init_phase);
10696 ecore_init_block(sc, BLOCK_CSDM, init_phase);
10697 ecore_init_block(sc, BLOCK_USDM, init_phase);
10698 ecore_init_block(sc, BLOCK_XSDM, init_phase);
10699
10700 ecore_init_block(sc, BLOCK_TSEM, init_phase);
10701 ecore_init_block(sc, BLOCK_USEM, init_phase);
10702 ecore_init_block(sc, BLOCK_CSEM, init_phase);
10703 ecore_init_block(sc, BLOCK_XSEM, init_phase);
10704
10705 ecore_init_block(sc, BLOCK_UPB, init_phase);
10706 ecore_init_block(sc, BLOCK_XPB, init_phase);
10707
10708 ecore_init_block(sc, BLOCK_PBF, init_phase);
10709
10710 if (CHIP_IS_E1x(sc)) {
10711 /* configure PBF to work without PAUSE mtu 9000 */
10712 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10713
10714 /* update threshold */
10715 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10716 /* update init credit */
10717 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10718 (9040 / 16) + 553 - 22);
10719
10720 /* probe changes */
10721 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10722 DELAY(50);
10723 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10724 }
10725
10726 if (CNIC_SUPPORT(sc)) {
10727 ecore_init_block(sc, BLOCK_SRC, init_phase);
10728 }
10729
10730 ecore_init_block(sc, BLOCK_CDU, init_phase);
10731 ecore_init_block(sc, BLOCK_CFC, init_phase);
10732 ecore_init_block(sc, BLOCK_HC, init_phase);
10733 ecore_init_block(sc, BLOCK_IGU, init_phase);
10734 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10735 /* init aeu_mask_attn_func_0/1:
10736 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10737 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10738 * bits 4-7 are used for "per vn group attention" */
10739 val = IS_MF(sc) ? 0xF7 : 0x7;
10740 val |= 0x10;
10741 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10742
10743 ecore_init_block(sc, BLOCK_NIG, init_phase);
10744
10745 if (!CHIP_IS_E1x(sc)) {
10746 /* Bit-map indicating which L2 hdrs may appear after the
10747 * basic Ethernet header
10748 */
10749 if (IS_MF_AFEX(sc)) {
10750 REG_WR(sc, SC_PORT(sc) ?
10751 NIG_REG_P1_HDRS_AFTER_BASIC :
10752 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10753 } else {
10754 REG_WR(sc, SC_PORT(sc) ?
10755 NIG_REG_P1_HDRS_AFTER_BASIC :
10756 NIG_REG_P0_HDRS_AFTER_BASIC,
10757 IS_MF_SD(sc) ? 7 : 6);
10758 }
10759
10760 if (CHIP_IS_E3(sc)) {
10761 REG_WR(sc, SC_PORT(sc) ?
10762 NIG_REG_LLH1_MF_MODE :
10763 NIG_REG_LLH_MF_MODE, IS_MF(sc));
10764 }
10765 }
10766 if (!CHIP_IS_E3(sc)) {
10767 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10768 }
10769
10770 /* 0x2 disable mf_ov, 0x1 enable */
10771 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10772 (IS_MF_SD(sc) ? 0x1 : 0x2));
10773
10774 if (!CHIP_IS_E1x(sc)) {
10775 val = 0;
10776 switch (sc->devinfo.mf_info.mf_mode) {
10777 case MULTI_FUNCTION_SD:
10778 val = 1;
10779 break;
10780 case MULTI_FUNCTION_SI:
10781 case MULTI_FUNCTION_AFEX:
10782 val = 2;
10783 break;
10784 }
10785
10786 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10787 NIG_REG_LLH0_CLS_TYPE), val);
10788 }
10789 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10790 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10791 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10792
10793 /* If SPIO5 is set to generate interrupts, enable it for this port */
10794 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10795 if (val & MISC_SPIO_SPIO5) {
10796 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10797 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10798 val = REG_RD(sc, reg_addr);
10799 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10800 REG_WR(sc, reg_addr, val);
10801 }
10802
10803 return 0;
10804 }
10805
10806 static uint32_t
10807 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10808 uint32_t expected, uint32_t poll_count)
10809 {
10810 uint32_t cur_cnt = poll_count;
10811 uint32_t val;
10812
10813 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10814 DELAY(FLR_WAIT_INTERVAL);
10815 }
10816
10817 return val;
10818 }
10819
10820 static int
10821 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10822 __rte_unused const char *msg, uint32_t poll_cnt)
10823 {
10824 uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10825
10826 if (val != 0) {
10827 PMD_DRV_LOG(NOTICE, sc, "%s usage count=%d", msg, val);
10828 return -1;
10829 }
10830
10831 return 0;
10832 }
10833
10834 /* Common routines with VF FLR cleanup */
10835 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10836 {
10837 /* adjust polling timeout */
10838 if (CHIP_REV_IS_EMUL(sc)) {
10839 return FLR_POLL_CNT * 2000;
10840 }
10841
10842 if (CHIP_REV_IS_FPGA(sc)) {
10843 return FLR_POLL_CNT * 120;
10844 }
10845
10846 return FLR_POLL_CNT;
10847 }
10848
10849 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10850 {
10851 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10852 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10853 CFC_REG_NUM_LCIDS_INSIDE_PF,
10854 "CFC PF usage counter timed out",
10855 poll_cnt)) {
10856 return -1;
10857 }
10858
10859 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10860 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10861 DORQ_REG_PF_USAGE_CNT,
10862 "DQ PF usage counter timed out",
10863 poll_cnt)) {
10864 return -1;
10865 }
10866
10867 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10868 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10869 QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10870 "QM PF usage counter timed out",
10871 poll_cnt)) {
10872 return -1;
10873 }
10874
10875 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10876 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10877 TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10878 "Timers VNIC usage counter timed out",
10879 poll_cnt)) {
10880 return -1;
10881 }
10882
10883 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10884 TM_REG_LIN0_NUM_SCANS +
10885 4 * SC_PORT(sc),
10886 "Timers NUM_SCANS usage counter timed out",
10887 poll_cnt)) {
10888 return -1;
10889 }
10890
10891 /* Wait DMAE PF usage counter to zero */
10892 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10893 dmae_reg_go_c[INIT_DMAE_C(sc)],
10894 "DMAE dommand register timed out",
10895 poll_cnt)) {
10896 return -1;
10897 }
10898
10899 return 0;
10900 }
10901
10902 #define OP_GEN_PARAM(param) \
10903 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10904 #define OP_GEN_TYPE(type) \
10905 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10906 #define OP_GEN_AGG_VECT(index) \
10907 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10908
10909 static int
10910 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10911 uint32_t poll_cnt)
10912 {
10913 uint32_t op_gen_command = 0;
10914 uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10915 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10916 int ret = 0;
10917
10918 if (REG_RD(sc, comp_addr)) {
10919 PMD_DRV_LOG(NOTICE, sc,
10920 "Cleanup complete was not 0 before sending");
10921 return -1;
10922 }
10923
10924 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10925 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10926 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10927 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10928
10929 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10930
10931 if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10932 PMD_DRV_LOG(NOTICE, sc, "FW final cleanup did not succeed");
10933 PMD_DRV_LOG(DEBUG, sc, "At timeout completion address contained %x",
10934 (REG_RD(sc, comp_addr)));
10935 rte_panic("FLR cleanup failed");
10936 return -1;
10937 }
10938
10939 /* Zero completion for nxt FLR */
10940 REG_WR(sc, comp_addr, 0);
10941
10942 return ret;
10943 }
10944
10945 static void
10946 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10947 uint32_t poll_count)
10948 {
10949 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10950 uint32_t cur_cnt = poll_count;
10951
10952 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10953 crd = crd_start = REG_RD(sc, regs->crd);
10954 init_crd = REG_RD(sc, regs->init_crd);
10955
10956 while ((crd != init_crd) &&
10957 ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10958 (init_crd - crd_start))) {
10959 if (cur_cnt--) {
10960 DELAY(FLR_WAIT_INTERVAL);
10961 crd = REG_RD(sc, regs->crd);
10962 crd_freed = REG_RD(sc, regs->crd_freed);
10963 } else {
10964 break;
10965 }
10966 }
10967 }
10968
10969 static void
10970 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10971 uint32_t poll_count)
10972 {
10973 uint32_t occup, to_free, freed, freed_start;
10974 uint32_t cur_cnt = poll_count;
10975
10976 occup = to_free = REG_RD(sc, regs->lines_occup);
10977 freed = freed_start = REG_RD(sc, regs->lines_freed);
10978
10979 while (occup &&
10980 ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10981 to_free)) {
10982 if (cur_cnt--) {
10983 DELAY(FLR_WAIT_INTERVAL);
10984 occup = REG_RD(sc, regs->lines_occup);
10985 freed = REG_RD(sc, regs->lines_freed);
10986 } else {
10987 break;
10988 }
10989 }
10990 }
10991
10992 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10993 {
10994 struct pbf_pN_cmd_regs cmd_regs[] = {
10995 {0, (CHIP_IS_E3B0(sc)) ?
10996 PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
10997 (CHIP_IS_E3B0(sc)) ?
10998 PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
10999 {1, (CHIP_IS_E3B0(sc)) ?
11000 PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
11001 (CHIP_IS_E3B0(sc)) ?
11002 PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
11003 {4, (CHIP_IS_E3B0(sc)) ?
11004 PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
11005 (CHIP_IS_E3B0(sc)) ?
11006 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
11007 PBF_REG_P4_TQ_LINES_FREED_CNT}
11008 };
11009
11010 struct pbf_pN_buf_regs buf_regs[] = {
11011 {0, (CHIP_IS_E3B0(sc)) ?
11012 PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
11013 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
11014 (CHIP_IS_E3B0(sc)) ?
11015 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
11016 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
11017 {1, (CHIP_IS_E3B0(sc)) ?
11018 PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
11019 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
11020 (CHIP_IS_E3B0(sc)) ?
11021 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
11022 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
11023 {4, (CHIP_IS_E3B0(sc)) ?
11024 PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
11025 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
11026 (CHIP_IS_E3B0(sc)) ?
11027 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
11028 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
11029 };
11030
11031 uint32_t i;
11032
11033 /* Verify the command queues are flushed P0, P1, P4 */
11034 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
11035 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
11036 }
11037
11038 /* Verify the transmission buffers are flushed P0, P1, P4 */
11039 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
11040 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
11041 }
11042 }
11043
11044 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
11045 {
11046 __rte_unused uint32_t val;
11047
11048 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
11049 PMD_DRV_LOG(DEBUG, sc, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
11050
11051 val = REG_RD(sc, PBF_REG_DISABLE_PF);
11052 PMD_DRV_LOG(DEBUG, sc, "PBF_REG_DISABLE_PF is 0x%x", val);
11053
11054 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
11055 PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
11056
11057 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
11058 PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
11059
11060 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
11061 PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
11062
11063 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
11064 PMD_DRV_LOG(DEBUG, sc,
11065 "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
11066
11067 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
11068 PMD_DRV_LOG(DEBUG, sc,
11069 "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11070
11071 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11072 PMD_DRV_LOG(DEBUG, sc, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11073 val);
11074 }
11075
11076 /**
11077 * bnx2x_pf_flr_clnup
11078 * a. re-enable target read on the PF
11079 * b. poll cfc per function usgae counter
11080 * c. poll the qm perfunction usage counter
11081 * d. poll the tm per function usage counter
11082 * e. poll the tm per function scan-done indication
11083 * f. clear the dmae channel associated wit hthe PF
11084 * g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11085 * h. call the common flr cleanup code with -1 (pf indication)
11086 */
11087 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11088 {
11089 uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11090
11091 /* Re-enable PF target read access */
11092 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11093
11094 /* Poll HW usage counters */
11095 if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11096 return -1;
11097 }
11098
11099 /* Zero the igu 'trailing edge' and 'leading edge' */
11100
11101 /* Send the FW cleanup command */
11102 if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11103 return -1;
11104 }
11105
11106 /* ATC cleanup */
11107
11108 /* Verify TX hw is flushed */
11109 bnx2x_tx_hw_flushed(sc, poll_cnt);
11110
11111 /* Wait 100ms (not adjusted according to platform) */
11112 DELAY(100000);
11113
11114 /* Verify no pending pci transactions */
11115 if (bnx2x_is_pcie_pending(sc)) {
11116 PMD_DRV_LOG(NOTICE, sc, "PCIE Transactions still pending");
11117 }
11118
11119 /* Debug */
11120 bnx2x_hw_enable_status(sc);
11121
11122 /*
11123 * Master enable - Due to WB DMAE writes performed before this
11124 * register is re-initialized as part of the regular function init
11125 */
11126 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11127
11128 return 0;
11129 }
11130
11131 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11132 {
11133 int port = SC_PORT(sc);
11134 int func = SC_FUNC(sc);
11135 int init_phase = PHASE_PF0 + func;
11136 struct ecore_ilt *ilt = sc->ilt;
11137 uint16_t cdu_ilt_start;
11138 uint32_t addr, val;
11139 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11140 int main_mem_width, rc;
11141 uint32_t i;
11142
11143 PMD_DRV_LOG(DEBUG, sc, "starting func init for func %d", func);
11144
11145 /* FLR cleanup */
11146 if (!CHIP_IS_E1x(sc)) {
11147 rc = bnx2x_pf_flr_clnup(sc);
11148 if (rc) {
11149 PMD_DRV_LOG(NOTICE, sc, "FLR cleanup failed!");
11150 return rc;
11151 }
11152 }
11153
11154 /* set MSI reconfigure capability */
11155 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11156 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11157 val = REG_RD(sc, addr);
11158 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11159 REG_WR(sc, addr, val);
11160 }
11161
11162 ecore_init_block(sc, BLOCK_PXP, init_phase);
11163 ecore_init_block(sc, BLOCK_PXP2, init_phase);
11164
11165 ilt = sc->ilt;
11166 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11167
11168 for (i = 0; i < L2_ILT_LINES(sc); i++) {
11169 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11170 ilt->lines[cdu_ilt_start + i].page_mapping =
11171 (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11172 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11173 }
11174 ecore_ilt_init_op(sc, INITOP_SET);
11175
11176 REG_WR(sc, PRS_REG_NIC_MODE, 1);
11177
11178 if (!CHIP_IS_E1x(sc)) {
11179 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11180
11181 /* Turn on a single ISR mode in IGU if driver is going to use
11182 * INT#x or MSI
11183 */
11184 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11185 || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11186 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11187 }
11188
11189 /*
11190 * Timers workaround bug: function init part.
11191 * Need to wait 20msec after initializing ILT,
11192 * needed to make sure there are no requests in
11193 * one of the PXP internal queues with "old" ILT addresses
11194 */
11195 DELAY(20000);
11196
11197 /*
11198 * Master enable - Due to WB DMAE writes performed before this
11199 * register is re-initialized as part of the regular function
11200 * init
11201 */
11202 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11203 /* Enable the function in IGU */
11204 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11205 }
11206
11207 sc->dmae_ready = 1;
11208
11209 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11210
11211 if (!CHIP_IS_E1x(sc))
11212 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11213
11214 ecore_init_block(sc, BLOCK_ATC, init_phase);
11215 ecore_init_block(sc, BLOCK_DMAE, init_phase);
11216 ecore_init_block(sc, BLOCK_NIG, init_phase);
11217 ecore_init_block(sc, BLOCK_SRC, init_phase);
11218 ecore_init_block(sc, BLOCK_MISC, init_phase);
11219 ecore_init_block(sc, BLOCK_TCM, init_phase);
11220 ecore_init_block(sc, BLOCK_UCM, init_phase);
11221 ecore_init_block(sc, BLOCK_CCM, init_phase);
11222 ecore_init_block(sc, BLOCK_XCM, init_phase);
11223 ecore_init_block(sc, BLOCK_TSEM, init_phase);
11224 ecore_init_block(sc, BLOCK_USEM, init_phase);
11225 ecore_init_block(sc, BLOCK_CSEM, init_phase);
11226 ecore_init_block(sc, BLOCK_XSEM, init_phase);
11227
11228 if (!CHIP_IS_E1x(sc))
11229 REG_WR(sc, QM_REG_PF_EN, 1);
11230
11231 if (!CHIP_IS_E1x(sc)) {
11232 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11233 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11234 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11235 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11236 }
11237 ecore_init_block(sc, BLOCK_QM, init_phase);
11238
11239 ecore_init_block(sc, BLOCK_TM, init_phase);
11240 ecore_init_block(sc, BLOCK_DORQ, init_phase);
11241
11242 ecore_init_block(sc, BLOCK_BRB1, init_phase);
11243 ecore_init_block(sc, BLOCK_PRS, init_phase);
11244 ecore_init_block(sc, BLOCK_TSDM, init_phase);
11245 ecore_init_block(sc, BLOCK_CSDM, init_phase);
11246 ecore_init_block(sc, BLOCK_USDM, init_phase);
11247 ecore_init_block(sc, BLOCK_XSDM, init_phase);
11248 ecore_init_block(sc, BLOCK_UPB, init_phase);
11249 ecore_init_block(sc, BLOCK_XPB, init_phase);
11250 ecore_init_block(sc, BLOCK_PBF, init_phase);
11251 if (!CHIP_IS_E1x(sc))
11252 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11253
11254 ecore_init_block(sc, BLOCK_CDU, init_phase);
11255
11256 ecore_init_block(sc, BLOCK_CFC, init_phase);
11257
11258 if (!CHIP_IS_E1x(sc))
11259 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11260
11261 if (IS_MF(sc)) {
11262 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11263 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11264 }
11265
11266 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11267
11268 /* HC init per function */
11269 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11270 if (CHIP_IS_E1H(sc)) {
11271 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11272
11273 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11274 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11275 }
11276 ecore_init_block(sc, BLOCK_HC, init_phase);
11277
11278 } else {
11279 uint32_t num_segs, sb_idx, prod_offset;
11280
11281 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11282
11283 if (!CHIP_IS_E1x(sc)) {
11284 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11285 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11286 }
11287
11288 ecore_init_block(sc, BLOCK_IGU, init_phase);
11289
11290 if (!CHIP_IS_E1x(sc)) {
11291 int dsb_idx = 0;
11292 /**
11293 * Producer memory:
11294 * E2 mode: address 0-135 match to the mapping memory;
11295 * 136 - PF0 default prod; 137 - PF1 default prod;
11296 * 138 - PF2 default prod; 139 - PF3 default prod;
11297 * 140 - PF0 attn prod; 141 - PF1 attn prod;
11298 * 142 - PF2 attn prod; 143 - PF3 attn prod;
11299 * 144-147 reserved.
11300 *
11301 * E1.5 mode - In backward compatible mode;
11302 * for non default SB; each even line in the memory
11303 * holds the U producer and each odd line hold
11304 * the C producer. The first 128 producers are for
11305 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11306 * producers are for the DSB for each PF.
11307 * Each PF has five segments: (the order inside each
11308 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11309 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11310 * 144-147 attn prods;
11311 */
11312 /* non-default-status-blocks */
11313 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11314 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11315 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11316 prod_offset = (sc->igu_base_sb + sb_idx) *
11317 num_segs;
11318
11319 for (i = 0; i < num_segs; i++) {
11320 addr = IGU_REG_PROD_CONS_MEMORY +
11321 (prod_offset + i) * 4;
11322 REG_WR(sc, addr, 0);
11323 }
11324 /* send consumer update with value 0 */
11325 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11326 USTORM_ID, 0, IGU_INT_NOP, 1);
11327 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11328 }
11329
11330 /* default-status-blocks */
11331 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11332 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11333
11334 if (CHIP_IS_MODE_4_PORT(sc))
11335 dsb_idx = SC_FUNC(sc);
11336 else
11337 dsb_idx = SC_VN(sc);
11338
11339 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11340 IGU_BC_BASE_DSB_PROD + dsb_idx :
11341 IGU_NORM_BASE_DSB_PROD + dsb_idx);
11342
11343 /*
11344 * igu prods come in chunks of E1HVN_MAX (4) -
11345 * does not matters what is the current chip mode
11346 */
11347 for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11348 addr = IGU_REG_PROD_CONS_MEMORY +
11349 (prod_offset + i) * 4;
11350 REG_WR(sc, addr, 0);
11351 }
11352 /* send consumer update with 0 */
11353 if (CHIP_INT_MODE_IS_BC(sc)) {
11354 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11355 USTORM_ID, 0, IGU_INT_NOP, 1);
11356 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11357 CSTORM_ID, 0, IGU_INT_NOP, 1);
11358 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11359 XSTORM_ID, 0, IGU_INT_NOP, 1);
11360 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11361 TSTORM_ID, 0, IGU_INT_NOP, 1);
11362 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11363 ATTENTION_ID, 0, IGU_INT_NOP, 1);
11364 } else {
11365 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11366 USTORM_ID, 0, IGU_INT_NOP, 1);
11367 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11368 ATTENTION_ID, 0, IGU_INT_NOP, 1);
11369 }
11370 bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11371
11372 /* !!! these should become driver const once
11373 rf-tool supports split-68 const */
11374 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11375 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11376 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11377 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11378 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11379 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11380 }
11381 }
11382
11383 /* Reset PCIE errors for debug */
11384 REG_WR(sc, 0x2114, 0xffffffff);
11385 REG_WR(sc, 0x2120, 0xffffffff);
11386
11387 if (CHIP_IS_E1x(sc)) {
11388 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords */
11389 main_mem_base = HC_REG_MAIN_MEMORY +
11390 SC_PORT(sc) * (main_mem_size * 4);
11391 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11392 main_mem_width = 8;
11393
11394 val = REG_RD(sc, main_mem_prty_clr);
11395 if (val) {
11396 PMD_DRV_LOG(DEBUG, sc,
11397 "Parity errors in HC block during function init (0x%x)!",
11398 val);
11399 }
11400
11401 /* Clear "false" parity errors in MSI-X table */
11402 for (i = main_mem_base;
11403 i < main_mem_base + main_mem_size * 4;
11404 i += main_mem_width) {
11405 bnx2x_read_dmae(sc, i, main_mem_width / 4);
11406 bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11407 i, main_mem_width / 4);
11408 }
11409 /* Clear HC parity attention */
11410 REG_RD(sc, main_mem_prty_clr);
11411 }
11412
11413 /* Enable STORMs SP logging */
11414 REG_WR8(sc, BAR_USTRORM_INTMEM +
11415 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11416 REG_WR8(sc, BAR_TSTRORM_INTMEM +
11417 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11418 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11419 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11420 REG_WR8(sc, BAR_XSTRORM_INTMEM +
11421 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11422
11423 elink_phy_probe(&sc->link_params);
11424
11425 return 0;
11426 }
11427
11428 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11429 {
11430 if (!BNX2X_NOMCP(sc)) {
11431 bnx2x_acquire_phy_lock(sc);
11432 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11433 bnx2x_release_phy_lock(sc);
11434 } else {
11435 if (!CHIP_REV_IS_SLOW(sc)) {
11436 PMD_DRV_LOG(WARNING, sc,
11437 "Bootcode is missing - cannot reset link");
11438 }
11439 }
11440 }
11441
11442 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11443 {
11444 int port = SC_PORT(sc);
11445 uint32_t val;
11446
11447 /* reset physical Link */
11448 bnx2x_link_reset(sc);
11449
11450 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11451
11452 /* Do not rcv packets to BRB */
11453 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11454 /* Do not direct rcv packets that are not for MCP to the BRB */
11455 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11456 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11457
11458 /* Configure AEU */
11459 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11460
11461 DELAY(100000);
11462
11463 /* Check for BRB port occupancy */
11464 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11465 if (val) {
11466 PMD_DRV_LOG(DEBUG, sc,
11467 "BRB1 is not empty, %d blocks are occupied", val);
11468 }
11469 }
11470
11471 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11472 {
11473 int reg;
11474 uint32_t wb_write[2];
11475
11476 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11477
11478 wb_write[0] = ONCHIP_ADDR1(addr);
11479 wb_write[1] = ONCHIP_ADDR2(addr);
11480 REG_WR_DMAE(sc, reg, wb_write, 2);
11481 }
11482
11483 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11484 {
11485 uint32_t i, base = FUNC_ILT_BASE(func);
11486 for (i = base; i < base + ILT_PER_FUNC; i++) {
11487 bnx2x_ilt_wr(sc, i, 0);
11488 }
11489 }
11490
11491 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11492 {
11493 struct bnx2x_fastpath *fp;
11494 int port = SC_PORT(sc);
11495 int func = SC_FUNC(sc);
11496 int i;
11497
11498 /* Disable the function in the FW */
11499 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11500 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11501 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11502 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11503
11504 /* FP SBs */
11505 FOR_EACH_ETH_QUEUE(sc, i) {
11506 fp = &sc->fp[i];
11507 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11508 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11509 SB_DISABLED);
11510 }
11511
11512 /* SP SB */
11513 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11514 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11515
11516 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11517 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11518 0);
11519 }
11520
11521 /* Configure IGU */
11522 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11523 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11524 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11525 } else {
11526 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11527 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11528 }
11529
11530 if (CNIC_LOADED(sc)) {
11531 /* Disable Timer scan */
11532 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11533 /*
11534 * Wait for at least 10ms and up to 2 second for the timers
11535 * scan to complete
11536 */
11537 for (i = 0; i < 200; i++) {
11538 DELAY(10000);
11539 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11540 break;
11541 }
11542 }
11543
11544 /* Clear ILT */
11545 bnx2x_clear_func_ilt(sc, func);
11546
11547 /*
11548 * Timers workaround bug for E2: if this is vnic-3,
11549 * we need to set the entire ilt range for this timers.
11550 */
11551 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11552 struct ilt_client_info ilt_cli;
11553 /* use dummy TM client */
11554 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11555 ilt_cli.start = 0;
11556 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11557 ilt_cli.client_num = ILT_CLIENT_TM;
11558
11559 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11560 }
11561
11562 /* this assumes that reset_port() called before reset_func() */
11563 if (!CHIP_IS_E1x(sc)) {
11564 bnx2x_pf_disable(sc);
11565 }
11566
11567 sc->dmae_ready = 0;
11568 }
11569
11570 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11571 {
11572 rte_free(sc->init_ops);
11573 rte_free(sc->init_ops_offsets);
11574 rte_free(sc->init_data);
11575 rte_free(sc->iro_array);
11576 }
11577
11578 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11579 {
11580 uint32_t len, i;
11581 uint8_t *p = sc->firmware;
11582 uint32_t off[24];
11583
11584 for (i = 0; i < 24; ++i)
11585 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11586
11587 len = off[0];
11588 sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11589 if (!sc->init_ops)
11590 goto alloc_failed;
11591 bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11592
11593 len = off[2];
11594 sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11595 if (!sc->init_ops_offsets)
11596 goto alloc_failed;
11597 bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11598
11599 len = off[4];
11600 sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11601 if (!sc->init_data)
11602 goto alloc_failed;
11603 bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11604
11605 sc->tsem_int_table_data = p + off[7];
11606 sc->tsem_pram_data = p + off[9];
11607 sc->usem_int_table_data = p + off[11];
11608 sc->usem_pram_data = p + off[13];
11609 sc->csem_int_table_data = p + off[15];
11610 sc->csem_pram_data = p + off[17];
11611 sc->xsem_int_table_data = p + off[19];
11612 sc->xsem_pram_data = p + off[21];
11613
11614 len = off[22];
11615 sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11616 if (!sc->iro_array)
11617 goto alloc_failed;
11618 bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11619
11620 return 0;
11621
11622 alloc_failed:
11623 bnx2x_release_firmware(sc);
11624 return -1;
11625 }
11626
11627 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11628 {
11629 #define MIN_PREFIX_SIZE (10)
11630
11631 int n = MIN_PREFIX_SIZE;
11632 uint16_t xlen;
11633
11634 if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11635 len <= MIN_PREFIX_SIZE) {
11636 return -1;
11637 }
11638
11639 /* optional extra fields are present */
11640 if (zbuf[3] & 0x4) {
11641 xlen = zbuf[13];
11642 xlen <<= 8;
11643 xlen += zbuf[12];
11644
11645 n += xlen;
11646 }
11647 /* file name is present */
11648 if (zbuf[3] & 0x8) {
11649 while ((zbuf[n++] != 0) && (n < len)) ;
11650 }
11651
11652 return n;
11653 }
11654
11655 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11656 {
11657 int ret;
11658 int data_begin = cut_gzip_prefix(zbuf, len);
11659
11660 PMD_DRV_LOG(DEBUG, sc, "ecore_gunzip %d", len);
11661
11662 if (data_begin <= 0) {
11663 PMD_DRV_LOG(NOTICE, sc, "bad gzip prefix");
11664 return -1;
11665 }
11666
11667 memset(&zlib_stream, 0, sizeof(zlib_stream));
11668 zlib_stream.next_in = zbuf + data_begin;
11669 zlib_stream.avail_in = len - data_begin;
11670 zlib_stream.next_out = sc->gz_buf;
11671 zlib_stream.avail_out = FW_BUF_SIZE;
11672
11673 ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11674 if (ret != Z_OK) {
11675 PMD_DRV_LOG(NOTICE, sc, "zlib inflateInit2 error");
11676 return ret;
11677 }
11678
11679 ret = inflate(&zlib_stream, Z_FINISH);
11680 if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11681 PMD_DRV_LOG(NOTICE, sc, "zlib inflate error: %d %s", ret,
11682 zlib_stream.msg);
11683 }
11684
11685 sc->gz_outlen = zlib_stream.total_out;
11686 if (sc->gz_outlen & 0x3) {
11687 PMD_DRV_LOG(NOTICE, sc, "firmware is not aligned. gz_outlen == %d",
11688 sc->gz_outlen);
11689 }
11690 sc->gz_outlen >>= 2;
11691
11692 inflateEnd(&zlib_stream);
11693
11694 if (ret == Z_STREAM_END)
11695 return 0;
11696
11697 return ret;
11698 }
11699
11700 static void
11701 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11702 uint32_t addr, uint32_t len)
11703 {
11704 bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11705 }
11706
11707 void
11708 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11709 uint32_t * data)
11710 {
11711 uint8_t i;
11712 for (i = 0; i < size / 4; i++) {
11713 REG_WR(sc, addr + (i * 4), data[i]);
11714 }
11715 }
11716
11717 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11718 {
11719 uint32_t phy_type_idx = ext_phy_type >> 8;
11720 static const char *types[] =
11721 { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11722 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11723 "BNX2X-8727",
11724 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11725 };
11726
11727 if (phy_type_idx < 12)
11728 return types[phy_type_idx];
11729 else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11730 return types[12];
11731 else
11732 return types[13];
11733 }
11734
11735 static const char *get_state(uint32_t state)
11736 {
11737 uint32_t state_idx = state >> 12;
11738 static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11739 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11740 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11741 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11742 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11743 };
11744
11745 if (state_idx <= 0xF)
11746 return states[state_idx];
11747 else
11748 return states[0x10];
11749 }
11750
11751 static const char *get_recovery_state(uint32_t state)
11752 {
11753 static const char *states[] = { "NONE", "DONE", "INIT",
11754 "WAIT", "FAILED", "NIC_LOADING"
11755 };
11756 return states[state];
11757 }
11758
11759 static const char *get_rx_mode(uint32_t mode)
11760 {
11761 static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11762 "PROMISC", "MAX_MULTICAST", "ERROR"
11763 };
11764
11765 if (mode < 0x4)
11766 return modes[mode];
11767 else if (BNX2X_MAX_MULTICAST == mode)
11768 return modes[4];
11769 else
11770 return modes[5];
11771 }
11772
11773 #define BNX2X_INFO_STR_MAX 256
11774 static const char *get_bnx2x_flags(uint32_t flags)
11775 {
11776 int i;
11777 static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11778 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11779 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11780 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11781 };
11782 static char flag_str[BNX2X_INFO_STR_MAX];
11783 memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11784
11785 for (i = 0; i < 5; i++)
11786 if (flags & (1 << i)) {
11787 strlcat(flag_str, flag[i], sizeof(flag_str));
11788 flags ^= (1 << i);
11789 }
11790 if (flags) {
11791 static char unknown[BNX2X_INFO_STR_MAX];
11792 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11793 strlcat(flag_str, unknown, sizeof(flag_str));
11794 }
11795 return flag_str;
11796 }
11797
11798 /* Prints useful adapter info. */
11799 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11800 {
11801 int i = 0;
11802
11803 PMD_DRV_LOG(INFO, sc, "========================================");
11804 /* DPDK and Driver versions */
11805 PMD_DRV_LOG(INFO, sc, "%12s : %s", "DPDK",
11806 rte_version());
11807 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Driver",
11808 bnx2x_pmd_version());
11809 /* Firmware versions. */
11810 PMD_DRV_LOG(INFO, sc, "%12s : %d.%d.%d",
11811 "Firmware",
11812 BNX2X_5710_FW_MAJOR_VERSION,
11813 BNX2X_5710_FW_MINOR_VERSION,
11814 BNX2X_5710_FW_REVISION_VERSION);
11815 PMD_DRV_LOG(INFO, sc, "%12s : %s",
11816 "Bootcode", sc->devinfo.bc_ver_str);
11817 /* Hardware chip info. */
11818 PMD_DRV_LOG(INFO, sc, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11819 PMD_DRV_LOG(INFO, sc, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11820 (CHIP_METAL(sc) >> 4));
11821 /* Bus PCIe info. */
11822 PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Vendor Id",
11823 sc->devinfo.vendor_id);
11824 PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Device Id",
11825 sc->devinfo.device_id);
11826 PMD_DRV_LOG(INFO, sc, "%12s : width x%d, ", "Bus PCIe",
11827 sc->devinfo.pcie_link_width);
11828 switch (sc->devinfo.pcie_link_speed) {
11829 case 1:
11830 PMD_DRV_LOG(INFO, sc, "%23s", "2.5 Gbps");
11831 break;
11832 case 2:
11833 PMD_DRV_LOG(INFO, sc, "%21s", "5 Gbps");
11834 break;
11835 case 4:
11836 PMD_DRV_LOG(INFO, sc, "%21s", "8 Gbps");
11837 break;
11838 default:
11839 PMD_DRV_LOG(INFO, sc, "%33s", "Unknown link speed");
11840 }
11841 /* Device features. */
11842 PMD_DRV_LOG(INFO, sc, "%12s : ", "Flags");
11843 /* Miscellaneous flags. */
11844 if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11845 PMD_DRV_LOG(INFO, sc, "%18s", "MSI");
11846 i++;
11847 }
11848 if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11849 if (i > 0)
11850 PMD_DRV_LOG(INFO, sc, "|");
11851 PMD_DRV_LOG(INFO, sc, "%20s", "MSI-X");
11852 i++;
11853 }
11854 PMD_DRV_LOG(INFO, sc, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11855 PMD_DRV_LOG(INFO, sc, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11856 PMD_DRV_LOG(INFO, sc, "========================================");
11857 }
11858
11859 /* Prints useful device info. */
11860 void bnx2x_print_device_info(struct bnx2x_softc *sc)
11861 {
11862 __rte_unused uint32_t ext_phy_type;
11863 uint32_t offset, reg_val;
11864
11865 PMD_INIT_FUNC_TRACE(sc);
11866 offset = offsetof(struct shmem_region,
11867 dev_info.port_hw_config[0].external_phy_config);
11868 reg_val = REG_RD(sc, sc->devinfo.shmem_base + offset);
11869 if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11870 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(reg_val);
11871 else
11872 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(reg_val);
11873
11874 /* Device features. */
11875 PMD_DRV_LOG(INFO, sc, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11876 PMD_DRV_LOG(INFO, sc,
11877 "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11878 PMD_DRV_LOG(INFO, sc, "%12s : %s", "DMAE Is",
11879 (sc->dmae_ready ? "Ready" : "Not Ready"));
11880 PMD_DRV_LOG(INFO, sc, "%12s : %u", "MTU", sc->mtu);
11881 PMD_DRV_LOG(INFO, sc,
11882 "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11883 PMD_DRV_LOG(INFO, sc, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11884 sc->link_params.mac_addr[0],
11885 sc->link_params.mac_addr[1],
11886 sc->link_params.mac_addr[2],
11887 sc->link_params.mac_addr[3],
11888 sc->link_params.mac_addr[4],
11889 sc->link_params.mac_addr[5]);
11890 PMD_DRV_LOG(INFO, sc, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11891 PMD_DRV_LOG(INFO, sc, "%12s : %s", "State", get_state(sc->state));
11892 if (sc->recovery_state)
11893 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Recovery",
11894 get_recovery_state(sc->recovery_state));
11895 /* Queue info. */
11896 if (IS_PF(sc)) {
11897 switch (sc->sp->rss_rdata.rss_mode) {
11898 case ETH_RSS_MODE_DISABLED:
11899 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - None");
11900 break;
11901 case ETH_RSS_MODE_REGULAR:
11902 PMD_DRV_LOG(INFO, sc, "%12s : %s,", "Queues", "RSS mode - Regular");
11903 PMD_DRV_LOG(INFO, sc, "%16d", sc->num_queues);
11904 break;
11905 default:
11906 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - Unknown");
11907 break;
11908 }
11909 }
11910 PMD_DRV_LOG(INFO, sc, "%12s : CQ = %lx, EQ = %lx", "SPQ Left",
11911 sc->cq_spq_left, sc->eq_spq_left);
11912
11913 PMD_DRV_LOG(INFO, sc,
11914 "%12s : %x", "Switch", sc->link_params.switch_cfg);
11915 PMD_DRV_LOG(INFO, sc, "pcie_bus=%d, pcie_device=%d",
11916 sc->pcie_bus, sc->pcie_device);
11917 PMD_DRV_LOG(INFO, sc, "bar0.addr=%p, bar1.addr=%p",
11918 sc->bar[BAR0].base_addr, sc->bar[BAR1].base_addr);
11919 PMD_DRV_LOG(INFO, sc, "port=%d, path=%d, vnic=%d, func=%d",
11920 PORT_ID(sc), PATH_ID(sc), VNIC_ID(sc), FUNC_ID(sc));
11921 }