]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/bnx2x/ecore_init.h
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / bnx2x / ecore_init.h
1 /*-
2 * Copyright (c) 2007-2013 QLogic Corporation. All rights reserved.
3 *
4 * Eric Davis <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano <zambrano@broadcom.com>
7 *
8 * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9 * Copyright (c) 2015 QLogic Corporation.
10 * All rights reserved.
11 * www.qlogic.com
12 *
13 * See LICENSE.bnx2x_pmd for copyright and licensing details.
14 */
15
16 #ifndef ECORE_INIT_H
17 #define ECORE_INIT_H
18
19 /* Init operation types and structures */
20 enum {
21 OP_RD = 0x1, /* read a single register */
22 OP_WR, /* write a single register */
23 OP_SW, /* copy a string to the device */
24 OP_ZR, /* clear memory */
25 OP_ZP, /* unzip then copy with DMAE */
26 OP_WR_64, /* write 64 bit pattern */
27 OP_WB, /* copy a string using DMAE */
28 OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
29 OP_IF_MODE_OR, /* Skip the following ops if all init modes don't match */
30 OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
31 OP_IF_PHASE,
32 OP_RT,
33 OP_DELAY,
34 OP_VERIFY,
35 OP_MAX
36 };
37
38 enum {
39 STAGE_START,
40 STAGE_END,
41 };
42
43 /* Returns the index of start or end of a specific block stage in ops array*/
44 #define BLOCK_OPS_IDX(block, stage, end) \
45 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
46
47
48 /* structs for the various opcodes */
49 struct raw_op {
50 uint32_t op:8;
51 uint32_t offset:24;
52 uint32_t raw_data;
53 };
54
55 struct op_read {
56 uint32_t op:8;
57 uint32_t offset:24;
58 uint32_t val;
59 };
60
61 struct op_write {
62 uint32_t op:8;
63 uint32_t offset:24;
64 uint32_t val;
65 };
66
67 struct op_arr_write {
68 uint32_t op:8;
69 uint32_t offset:24;
70 #ifdef __BIG_ENDIAN
71 uint16_t data_len;
72 uint16_t data_off;
73 #else /* __LITTLE_ENDIAN */
74 uint16_t data_off;
75 uint16_t data_len;
76 #endif
77 };
78
79 struct op_zero {
80 uint32_t op:8;
81 uint32_t offset:24;
82 uint32_t len;
83 };
84
85 struct op_if_mode {
86 uint32_t op:8;
87 uint32_t cmd_offset:24;
88 uint32_t mode_bit_map;
89 };
90
91 struct op_if_phase {
92 uint32_t op:8;
93 uint32_t cmd_offset:24;
94 uint32_t phase_bit_map;
95 };
96
97 struct op_delay {
98 uint32_t op:8;
99 uint32_t reserved:24;
100 uint32_t delay;
101 };
102
103 union init_op {
104 struct op_read read;
105 struct op_write write;
106 struct op_arr_write arr_wr;
107 struct op_zero zero;
108 struct raw_op raw;
109 struct op_if_mode if_mode;
110 struct op_if_phase if_phase;
111 struct op_delay delay;
112 };
113
114
115 /* Init Phases */
116 enum {
117 PHASE_COMMON,
118 PHASE_PORT0,
119 PHASE_PORT1,
120 PHASE_PF0,
121 PHASE_PF1,
122 PHASE_PF2,
123 PHASE_PF3,
124 PHASE_PF4,
125 PHASE_PF5,
126 PHASE_PF6,
127 PHASE_PF7,
128 NUM_OF_INIT_PHASES
129 };
130
131 /* Init Modes */
132 enum {
133 MODE_ASIC = 0x00000001,
134 MODE_FPGA = 0x00000002,
135 MODE_EMUL = 0x00000004,
136 MODE_E2 = 0x00000008,
137 MODE_E3 = 0x00000010,
138 MODE_PORT2 = 0x00000020,
139 MODE_PORT4 = 0x00000040,
140 MODE_SF = 0x00000080,
141 MODE_MF = 0x00000100,
142 MODE_MF_SD = 0x00000200,
143 MODE_MF_SI = 0x00000400,
144 MODE_MF_AFEX = 0x00000800,
145 MODE_E3_A0 = 0x00001000,
146 MODE_E3_B0 = 0x00002000,
147 MODE_COS3 = 0x00004000,
148 MODE_COS6 = 0x00008000,
149 MODE_LITTLE_ENDIAN = 0x00010000,
150 MODE_BIG_ENDIAN = 0x00020000,
151 };
152
153 /* Init Blocks */
154 enum {
155 BLOCK_ATC,
156 BLOCK_BRB1,
157 BLOCK_CCM,
158 BLOCK_CDU,
159 BLOCK_CFC,
160 BLOCK_CSDM,
161 BLOCK_CSEM,
162 BLOCK_DBG,
163 BLOCK_DMAE,
164 BLOCK_DORQ,
165 BLOCK_HC,
166 BLOCK_IGU,
167 BLOCK_MISC,
168 BLOCK_NIG,
169 BLOCK_PBF,
170 BLOCK_PGLUE_B,
171 BLOCK_PRS,
172 BLOCK_PXP2,
173 BLOCK_PXP,
174 BLOCK_QM,
175 BLOCK_SRC,
176 BLOCK_TCM,
177 BLOCK_TM,
178 BLOCK_TSDM,
179 BLOCK_TSEM,
180 BLOCK_UCM,
181 BLOCK_UPB,
182 BLOCK_USDM,
183 BLOCK_USEM,
184 BLOCK_XCM,
185 BLOCK_XPB,
186 BLOCK_XSDM,
187 BLOCK_XSEM,
188 BLOCK_MISC_AEU,
189 NUM_OF_INIT_BLOCKS
190 };
191
192
193
194
195
196
197
198
199 /* Vnics per mode */
200 #define ECORE_PORT2_MODE_NUM_VNICS 4
201
202
203 /* QM queue numbers */
204 #define ECORE_ETH_Q 0
205 #define ECORE_TOE_Q 3
206 #define ECORE_TOE_ACK_Q 6
207 #define ECORE_ISCSI_Q 9
208 #define ECORE_ISCSI_ACK_Q 11
209 #define ECORE_FCOE_Q 10
210
211 /* Vnics per mode */
212 #define ECORE_PORT4_MODE_NUM_VNICS 2
213
214 /* COS offset for port1 in E3 B0 4port mode */
215 #define ECORE_E3B0_PORT1_COS_OFFSET 3
216
217 /* QM Register addresses */
218 #define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
219 (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
220 #define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
221 (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
222 #define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
223 (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
224
225 /* extracts the QM queue number for the specified port and vnic */
226 #define ECORE_PF_Q_NUM(q_num, port, vnic)\
227 ((((port) << 1) | (vnic)) * 16 + (q_num))
228
229
230 /* Maps the specified queue to the specified COS */
231 static inline void ecore_map_q_cos(struct bnx2x_softc *sc, uint32_t q_num, uint32_t new_cos)
232 {
233 /* find current COS mapping */
234 uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
235
236 /* check if queue->COS mapping has changed */
237 if (curr_cos != new_cos) {
238 uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
239 uint32_t reg_addr, reg_bit_map, vnic;
240
241 /* update parameters for 4port mode */
242 if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
243 num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
244 if (PORT_ID(sc)) {
245 curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
246 new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
247 }
248 }
249
250 /* change queue mapping for each VNIC */
251 for (vnic = 0; vnic < num_vnics; vnic++) {
252 uint32_t pf_q_num =
253 ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
254 uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
255
256 /* overwrite queue->VOQ mapping */
257 REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
258
259 /* clear queue bit from current COS bit map */
260 reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
261 reg_bit_map = REG_RD(sc, reg_addr);
262 REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
263
264 /* set queue bit in new COS bit map */
265 reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
266 reg_bit_map = REG_RD(sc, reg_addr);
267 REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
268
269 /* set/clear queue bit in command-queue bit map
270 (E2/E3A0 only, valid COS values are 0/1) */
271 if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
272 reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
273 reg_bit_map = REG_RD(sc, reg_addr);
274 q_bit_map = 1 << (2 * (pf_q_num & 0xf));
275 reg_bit_map = new_cos ?
276 (reg_bit_map | q_bit_map) :
277 (reg_bit_map & (~q_bit_map));
278 REG_WR(sc, reg_addr, reg_bit_map);
279 }
280 }
281 }
282 }
283
284 /* Configures the QM according to the specified per-traffic-type COSes */
285 static inline void ecore_dcb_config_qm(struct bnx2x_softc *sc, enum cos_mode mode,
286 struct priority_cos *traffic_cos)
287 {
288 ecore_map_q_cos(sc, ECORE_FCOE_Q,
289 traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
290 ecore_map_q_cos(sc, ECORE_ISCSI_Q,
291 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
292 ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
293 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
294 if (mode != STATIC_COS) {
295 /* required only in OVERRIDE_COS mode */
296 ecore_map_q_cos(sc, ECORE_ETH_Q,
297 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
298 ecore_map_q_cos(sc, ECORE_TOE_Q,
299 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
300 ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
301 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
302 }
303 }
304
305
306 /*
307 * congestion managment port init api description
308 * the api works as follows:
309 * the driver should pass the cmng_init_input struct, the port_init function
310 * will prepare the required internal ram structure which will be passed back
311 * to the driver (cmng_init) that will write it into the internal ram.
312 *
313 * IMPORTANT REMARKS:
314 * 1. the cmng_init struct does not represent the contiguous internal ram
315 * structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
316 * offset in order to write the port sub struct and the
317 * PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
318 * words - don't use memcpy!).
319 * 2. although the cmng_init struct is filled for the maximal vnic number
320 * possible, the driver should only write the valid vnics into the internal
321 * ram according to the appropriate port mode.
322 */
323 #define BITS_TO_BYTES(x) ((x)/8)
324
325 /* CMNG constants, as derived from system spec calculations */
326
327 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
328 #define DEF_MIN_RATE 100
329
330 /* resolution of the rate shaping timer - 400 usec */
331 #define RS_PERIODIC_TIMEOUT_USEC 400
332
333 /*
334 * number of bytes in single QM arbitration cycle -
335 * coefficient for calculating the fairness timer
336 */
337 #define QM_ARB_BYTES 160000
338
339 /* resolution of Min algorithm 1:100 */
340 #define MIN_RES 100
341
342 /*
343 * how many bytes above threshold for
344 * the minimal credit of Min algorithm
345 */
346 #define MIN_ABOVE_THRESH 32768
347
348 /*
349 * Fairness algorithm integration time coefficient -
350 * for calculating the actual Tfair
351 */
352 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
353
354 /* Memory of fairness algorithm - 2 cycles */
355 #define FAIR_MEM 2
356 #define SAFC_TIMEOUT_USEC 52
357
358 #define SDM_TICKS 4
359
360
361 static inline void ecore_init_max(const struct cmng_init_input *input_data,
362 uint32_t r_param, struct cmng_init *ram_data)
363 {
364 uint32_t vnic;
365 struct cmng_vnic *vdata = &ram_data->vnic;
366 struct cmng_struct_per_port *pdata = &ram_data->port;
367 /*
368 * rate shaping per-port variables
369 * 100 micro seconds in SDM ticks = 25
370 * since each tick is 4 microSeconds
371 */
372
373 pdata->rs_vars.rs_periodic_timeout =
374 RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
375
376 /* this is the threshold below which no timer arming will occur.
377 * 1.25 coefficient is for the threshold to be a little bigger
378 * then the real time to compensate for timer in-accuracy
379 */
380 pdata->rs_vars.rs_threshold =
381 (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
382
383 /* rate shaping per-vnic variables */
384 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
385 /* global vnic counter */
386 vdata->vnic_max_rate[vnic].vn_counter.rate =
387 input_data->vnic_max_rate[vnic];
388 /*
389 * maximal Mbps for this vnic
390 * the quota in each timer period - number of bytes
391 * transmitted in this period
392 */
393 vdata->vnic_max_rate[vnic].vn_counter.quota =
394 RS_PERIODIC_TIMEOUT_USEC *
395 (uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
396 }
397
398 }
399
400 static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
401 struct rate_shaping_vars_per_vn *ram_data)
402 {
403 /* global vnic counter */
404 ram_data->vn_counter.rate = vnic_max_rate;
405
406 /*
407 * maximal Mbps for this vnic
408 * the quota in each timer period - number of bytes
409 * transmitted in this period
410 */
411 ram_data->vn_counter.quota =
412 RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
413 }
414
415 static inline void ecore_init_min(const struct cmng_init_input *input_data,
416 uint32_t r_param, struct cmng_init *ram_data)
417 {
418 uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
419 struct cmng_vnic *vdata = &ram_data->vnic;
420 struct cmng_struct_per_port *pdata = &ram_data->port;
421
422 /* this is the resolution of the fairness timer */
423 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
424
425 /*
426 * fairness per-port variables
427 * for 10G it is 1000usec. for 1G it is 10000usec.
428 */
429 tFair = T_FAIR_COEF / input_data->port_rate;
430
431 /* this is the threshold below which we won't arm the timer anymore */
432 pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
433
434 /*
435 * we multiply by 1e3/8 to get bytes/msec. We don't want the credits
436 * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
437 */
438 pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
439
440 /* since each tick is 4 microSeconds */
441 pdata->fair_vars.fairness_timeout =
442 fair_periodic_timeout_usec / SDM_TICKS;
443
444 /* calculate sum of weights */
445 vnicWeightSum = 0;
446
447 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
448 vnicWeightSum += input_data->vnic_min_rate[vnic];
449
450 /* global vnic counter */
451 if (vnicWeightSum > 0) {
452 /* fairness per-vnic variables */
453 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
454 /*
455 * this is the credit for each period of the fairness
456 * algorithm - number of bytes in T_FAIR (this vnic
457 * share of the port rate)
458 */
459 vdata->vnic_min_rate[vnic].vn_credit_delta =
460 ((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
461 (T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
462 if (vdata->vnic_min_rate[vnic].vn_credit_delta <
463 pdata->fair_vars.fair_threshold +
464 MIN_ABOVE_THRESH) {
465 vdata->vnic_min_rate[vnic].vn_credit_delta =
466 pdata->fair_vars.fair_threshold +
467 MIN_ABOVE_THRESH;
468 }
469 }
470 }
471 }
472
473 static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
474 struct cmng_init *ram_data)
475 {
476 uint32_t vnic, cos;
477 uint32_t cosWeightSum = 0;
478 struct cmng_vnic *vdata = &ram_data->vnic;
479 struct cmng_struct_per_port *pdata = &ram_data->port;
480
481 for (cos = 0; cos < MAX_COS_NUMBER; cos++)
482 cosWeightSum += input_data->cos_min_rate[cos];
483
484 if (cosWeightSum > 0) {
485
486 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
487 /*
488 * Since cos and vnic shouldn't work together the rate
489 * to divide between the coses is the port rate.
490 */
491 uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
492 for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
493 /*
494 * this is the credit for each period of
495 * the fairness algorithm - number of bytes
496 * in T_FAIR (this cos share of the vnic rate)
497 */
498 ccd[cos] =
499 ((uint32_t)input_data->cos_min_rate[cos] * 100 *
500 (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
501 if (ccd[cos] < pdata->fair_vars.fair_threshold
502 + MIN_ABOVE_THRESH) {
503 ccd[cos] =
504 pdata->fair_vars.fair_threshold +
505 MIN_ABOVE_THRESH;
506 }
507 }
508 }
509 }
510 }
511
512 static inline void ecore_init_safc(struct cmng_init *ram_data)
513 {
514 /* in microSeconds */
515 ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
516 }
517
518 /* Congestion management port init */
519 static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
520 struct cmng_init *ram_data)
521 {
522 uint32_t r_param;
523 ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
524
525 ram_data->port.flags = input_data->flags;
526
527 /*
528 * number of bytes transmitted in a rate of 10Gbps
529 * in one usec = 1.25KB.
530 */
531 r_param = BITS_TO_BYTES(input_data->port_rate);
532 ecore_init_max(input_data, r_param, ram_data);
533 ecore_init_min(input_data, r_param, ram_data);
534 ecore_init_fw_wrr(input_data, ram_data);
535 ecore_init_safc(ram_data);
536 }
537
538
539
540
541 /* Returns the index of start or end of a specific block stage in ops array*/
542 #define BLOCK_OPS_IDX(block, stage, end) \
543 (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
544
545
546 #define INITOP_SET 0 /* set the HW directly */
547 #define INITOP_CLEAR 1 /* clear the HW directly */
548 #define INITOP_INIT 2 /* set the init-value array */
549
550 /****************************************************************************
551 * ILT management
552 ****************************************************************************/
553 struct ilt_line {
554 ecore_dma_addr_t page_mapping;
555 void *page;
556 uint32_t size;
557 };
558
559 struct ilt_client_info {
560 uint32_t page_size;
561 uint16_t start;
562 uint16_t end;
563 uint16_t client_num;
564 uint16_t flags;
565 #define ILT_CLIENT_SKIP_INIT 0x1
566 #define ILT_CLIENT_SKIP_MEM 0x2
567 };
568
569 struct ecore_ilt {
570 uint32_t start_line;
571 struct ilt_line *lines;
572 struct ilt_client_info clients[4];
573 #define ILT_CLIENT_CDU 0
574 #define ILT_CLIENT_QM 1
575 #define ILT_CLIENT_SRC 2
576 #define ILT_CLIENT_TM 3
577 };
578
579 /****************************************************************************
580 * SRC configuration
581 ****************************************************************************/
582 struct src_ent {
583 uint8_t opaque[56];
584 uint64_t next;
585 };
586
587 /****************************************************************************
588 * Parity configuration
589 ****************************************************************************/
590 #define BLOCK_PRTY_INFO(block, en_mask, m1h, m2, m3) \
591 { \
592 block##_REG_##block##_PRTY_MASK, \
593 block##_REG_##block##_PRTY_STS_CLR, \
594 en_mask, {m1h, m2, m3}, #block \
595 }
596
597 #define BLOCK_PRTY_INFO_0(block, en_mask, m1h, m2, m3) \
598 { \
599 block##_REG_##block##_PRTY_MASK_0, \
600 block##_REG_##block##_PRTY_STS_CLR_0, \
601 en_mask, {m1h, m2, m3}, #block"_0" \
602 }
603
604 #define BLOCK_PRTY_INFO_1(block, en_mask, m1h, m2, m3) \
605 { \
606 block##_REG_##block##_PRTY_MASK_1, \
607 block##_REG_##block##_PRTY_STS_CLR_1, \
608 en_mask, {m1h, m2, m3}, #block"_1" \
609 }
610
611 static const struct {
612 uint32_t mask_addr;
613 uint32_t sts_clr_addr;
614 uint32_t en_mask; /* Mask to enable parity attentions */
615 struct {
616 uint32_t e1h; /* 57711 */
617 uint32_t e2; /* 57712 */
618 uint32_t e3; /* 578xx */
619 } reg_mask; /* Register mask (all valid bits) */
620 char name[8]; /* Block's longest name is 7 characters long
621 * (name + suffix)
622 */
623 } ecore_blocks_parity_data[] = {
624 /* bit 19 masked */
625 /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
626 /* bit 5,18,20-31 */
627 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
628 /* bit 5 */
629 /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
630 /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
631 /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
632
633 /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
634 * want to handle "system kill" flow at the moment.
635 */
636 BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x7ffffff,
637 0x7ffffff),
638 BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff,
639 0xffffffff),
640 BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7ff, 0x1ffffff),
641 BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0, 0),
642 BLOCK_PRTY_INFO(NIG, 0xffffffff, 0xffffffff, 0, 0),
643 BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0xffffffff, 0xffffffff),
644 BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0xff, 0xffff),
645 BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0x7ff, 0x7ff),
646 BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1),
647 BLOCK_PRTY_INFO(QM, 0, 0xfff, 0xfff, 0xfff),
648 BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0x1f, 0x1f),
649 BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0x3, 0x3),
650 BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3),
651 {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
652 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
653 {0xf, 0xf, 0xf}, "UPB"},
654 {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
655 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
656 {0xf, 0xf, 0xf}, "XPB"},
657 BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7),
658 BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f),
659 BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0x3f),
660 BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1),
661 BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf),
662 BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf),
663 BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff),
664 BLOCK_PRTY_INFO(PBF, 0, 0x3ffff, 0xfffff, 0xfffffff),
665 BLOCK_PRTY_INFO(TM, 0, 0x7f, 0x7f, 0x7f),
666 BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff),
667 BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff),
668 BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff),
669 BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff),
670 BLOCK_PRTY_INFO(TCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
671 BLOCK_PRTY_INFO(CCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
672 BLOCK_PRTY_INFO(UCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
673 BLOCK_PRTY_INFO(XCM, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
674 BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
675 BLOCK_PRTY_INFO_1(TSEM, 0, 0x1f, 0x3f, 0x3f),
676 BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
677 BLOCK_PRTY_INFO_1(USEM, 0, 0x1f, 0x1f, 0x1f),
678 BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
679 BLOCK_PRTY_INFO_1(CSEM, 0, 0x1f, 0x1f, 0x1f),
680 BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
681 BLOCK_PRTY_INFO_1(XSEM, 0, 0x1f, 0x3f, 0x3f),
682 };
683
684
685 /* [28] MCP Latched rom_parity
686 * [29] MCP Latched ump_rx_parity
687 * [30] MCP Latched ump_tx_parity
688 * [31] MCP Latched scpad_parity
689 */
690 #define MISC_AEU_ENABLE_MCP_PRTY_BITS \
691 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
692 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
693 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
694 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
695
696 /* Below registers control the MCP parity attention output. When
697 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
698 * enabled, when cleared - disabled.
699 */
700 static const uint32_t mcp_attn_ctl_regs[] = {
701 MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
702 MISC_REG_AEU_ENABLE4_NIG_0,
703 MISC_REG_AEU_ENABLE4_PXP_0,
704 MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
705 MISC_REG_AEU_ENABLE4_NIG_1,
706 MISC_REG_AEU_ENABLE4_PXP_1
707 };
708
709 static inline void ecore_set_mcp_parity(struct bnx2x_softc *sc, uint8_t enable)
710 {
711 uint32_t i;
712 uint32_t reg_val;
713
714 for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
715 reg_val = REG_RD(sc, mcp_attn_ctl_regs[i]);
716
717 if (enable)
718 reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS;
719 else
720 reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS;
721
722 REG_WR(sc, mcp_attn_ctl_regs[i], reg_val);
723 }
724 }
725
726 static inline uint32_t ecore_parity_reg_mask(struct bnx2x_softc *sc, int idx)
727 {
728 if (CHIP_IS_E1H(sc))
729 return ecore_blocks_parity_data[idx].reg_mask.e1h;
730 else if (CHIP_IS_E2(sc))
731 return ecore_blocks_parity_data[idx].reg_mask.e2;
732 else /* CHIP_IS_E3 */
733 return ecore_blocks_parity_data[idx].reg_mask.e3;
734 }
735
736 static inline void ecore_disable_blocks_parity(struct bnx2x_softc *sc)
737 {
738 uint32_t i;
739
740 for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
741 uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
742
743 if (dis_mask) {
744 REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
745 dis_mask);
746 ECORE_MSG("Setting parity mask "
747 "for %s to\t\t0x%x",
748 ecore_blocks_parity_data[i].name, dis_mask);
749 }
750 }
751
752 /* Disable MCP parity attentions */
753 ecore_set_mcp_parity(sc, FALSE);
754 }
755
756 /**
757 * Clear the parity error status registers.
758 */
759 static inline void ecore_clear_blocks_parity(struct bnx2x_softc *sc)
760 {
761 uint32_t i;
762 uint32_t reg_val, mcp_aeu_bits =
763 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
764 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
765 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
766 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
767
768 /* Clear SEM_FAST parities */
769 REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
770 REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
771 REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
772 REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
773
774 for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
775 uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
776
777 if (reg_mask) {
778 reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
779 sts_clr_addr);
780 if (reg_val & reg_mask)
781 ECORE_MSG("Parity errors in %s: 0x%x",
782 ecore_blocks_parity_data[i].name,
783 reg_val & reg_mask);
784 }
785 }
786
787 /* Check if there were parity attentions in MCP */
788 reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
789 if (reg_val & mcp_aeu_bits)
790 ECORE_MSG("Parity error in MCP: 0x%x",
791 reg_val & mcp_aeu_bits);
792
793 /* Clear parity attentions in MCP:
794 * [7] clears Latched rom_parity
795 * [8] clears Latched ump_rx_parity
796 * [9] clears Latched ump_tx_parity
797 * [10] clears Latched scpad_parity (both ports)
798 */
799 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
800 }
801
802 static inline void ecore_enable_blocks_parity(struct bnx2x_softc *sc)
803 {
804 uint32_t i;
805
806 for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
807 uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
808
809 if (reg_mask)
810 REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
811 ecore_blocks_parity_data[i].en_mask & reg_mask);
812 }
813
814 /* Enable MCP parity attentions */
815 ecore_set_mcp_parity(sc, TRUE);
816 }
817
818
819 #endif /* ECORE_INIT_H */