]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/cxgbe/cxgbe_main.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / cxgbe / cxgbe_main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2014-2018 Chelsio Communications.
3 * All rights reserved.
4 */
5
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "mps_tcam.h"
43
44 /**
45 * Allocate a chunk of memory. The allocated memory is cleared.
46 */
47 void *t4_alloc_mem(size_t size)
48 {
49 return rte_zmalloc(NULL, size, 0);
50 }
51
52 /**
53 * Free memory allocated through t4_alloc_mem().
54 */
55 void t4_free_mem(void *addr)
56 {
57 rte_free(addr);
58 }
59
60 /*
61 * Response queue handler for the FW event queue.
62 */
63 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
64 __rte_unused const struct pkt_gl *gl)
65 {
66 u8 opcode = ((const struct rss_header *)rsp)->opcode;
67
68 rsp++; /* skip RSS header */
69
70 /*
71 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
72 */
73 if (unlikely(opcode == CPL_FW4_MSG &&
74 ((const struct cpl_fw4_msg *)rsp)->type ==
75 FW_TYPE_RSSCPL)) {
76 rsp++;
77 opcode = ((const struct rss_header *)rsp)->opcode;
78 rsp++;
79 if (opcode != CPL_SGE_EGR_UPDATE) {
80 dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
81 opcode);
82 goto out;
83 }
84 }
85
86 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
87 /* do nothing */
88 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
89 const struct cpl_fw6_msg *msg = (const void *)rsp;
90
91 t4_handle_fw_rpl(q->adapter, msg->data);
92 } else if (opcode == CPL_ABORT_RPL_RSS) {
93 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
94
95 hash_del_filter_rpl(q->adapter, p);
96 } else if (opcode == CPL_SET_TCB_RPL) {
97 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
98
99 filter_rpl(q->adapter, p);
100 } else if (opcode == CPL_ACT_OPEN_RPL) {
101 const struct cpl_act_open_rpl *p = (const void *)rsp;
102
103 hash_filter_rpl(q->adapter, p);
104 } else if (opcode == CPL_L2T_WRITE_RPL) {
105 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
106
107 do_l2t_write_rpl(q->adapter, p);
108 } else {
109 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
110 opcode);
111 }
112 out:
113 return 0;
114 }
115
116 /**
117 * Setup sge control queues to pass control information.
118 */
119 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
120 {
121 struct sge *s = &adapter->sge;
122 int err = 0, i = 0;
123
124 for_each_port(adapter, i) {
125 struct port_info *pi = adap2pinfo(adapter, i);
126 char name[RTE_ETH_NAME_MAX_LEN];
127 struct sge_ctrl_txq *q = &s->ctrlq[i];
128
129 q->q.size = 1024;
130 err = t4_sge_alloc_ctrl_txq(adapter, q,
131 adapter->eth_dev, i,
132 s->fw_evtq.cntxt_id,
133 rte_socket_id());
134 if (err) {
135 dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
136 err);
137 goto out;
138 }
139 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
140 pi->eth_dev->device->driver->name,
141 pi->eth_dev->data->port_id);
142 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
143 RTE_CACHE_LINE_SIZE,
144 RTE_MBUF_PRIV_ALIGN,
145 RTE_MBUF_DEFAULT_BUF_SIZE,
146 SOCKET_ID_ANY);
147 if (!q->mb_pool) {
148 err = -rte_errno;
149 dev_err(adapter,
150 "Can't create ctrl pool for port %d. Err: %d\n",
151 pi->eth_dev->data->port_id, err);
152 goto out;
153 }
154 }
155 return 0;
156 out:
157 t4_free_sge_resources(adapter);
158 return err;
159 }
160
161 /**
162 * cxgbe_poll_for_completion: Poll rxq for completion
163 * @q: rxq to poll
164 * @ms: milliseconds to delay
165 * @cnt: number of times to poll
166 * @c: completion to check for 'done' status
167 *
168 * Polls the rxq for reples until completion is done or the count
169 * expires.
170 */
171 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
172 unsigned int cnt, struct t4_completion *c)
173 {
174 unsigned int i;
175 unsigned int work_done, budget = 32;
176
177 if (!c)
178 return -EINVAL;
179
180 for (i = 0; i < cnt; i++) {
181 cxgbe_poll(q, NULL, budget, &work_done);
182 t4_os_lock(&c->lock);
183 if (c->done) {
184 t4_os_unlock(&c->lock);
185 return 0;
186 }
187 t4_os_unlock(&c->lock);
188 rte_delay_ms(ms);
189 }
190 return -ETIMEDOUT;
191 }
192
193 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
194 {
195 struct sge *s = &adapter->sge;
196 int err = 0;
197 int msi_idx = 0;
198
199 err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
200 msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
201 rte_socket_id());
202 return err;
203 }
204
205 static int closest_timer(const struct sge *s, int time)
206 {
207 unsigned int i, match = 0;
208 int delta, min_delta = INT_MAX;
209
210 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
211 delta = time - s->timer_val[i];
212 if (delta < 0)
213 delta = -delta;
214 if (delta < min_delta) {
215 min_delta = delta;
216 match = i;
217 }
218 }
219 return match;
220 }
221
222 static int closest_thres(const struct sge *s, int thres)
223 {
224 unsigned int i, match = 0;
225 int delta, min_delta = INT_MAX;
226
227 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
228 delta = thres - s->counter_val[i];
229 if (delta < 0)
230 delta = -delta;
231 if (delta < min_delta) {
232 min_delta = delta;
233 match = i;
234 }
235 }
236 return match;
237 }
238
239 /**
240 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
241 * @q: the Rx queue
242 * @us: the hold-off time in us, or 0 to disable timer
243 * @cnt: the hold-off packet count, or 0 to disable counter
244 *
245 * Sets an Rx queue's interrupt hold-off time and packet count. At least
246 * one of the two needs to be enabled for the queue to generate interrupts.
247 */
248 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
249 unsigned int cnt)
250 {
251 struct adapter *adap = q->adapter;
252 unsigned int timer_val;
253
254 if (cnt) {
255 int err;
256 u32 v, new_idx;
257
258 new_idx = closest_thres(&adap->sge, cnt);
259 if (q->desc && q->pktcnt_idx != new_idx) {
260 /* the queue has already been created, update it */
261 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
262 V_FW_PARAMS_PARAM_X(
263 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
264 V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
265 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
266 &v, &new_idx);
267 if (err)
268 return err;
269 }
270 q->pktcnt_idx = new_idx;
271 }
272
273 timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
274 closest_timer(&adap->sge, us);
275
276 if ((us | cnt) == 0)
277 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
278 else
279 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
280 V_QINTR_CNT_EN(cnt > 0);
281 return 0;
282 }
283
284 /**
285 * Allocate an active-open TID and set it to the supplied value.
286 */
287 int cxgbe_alloc_atid(struct tid_info *t, void *data)
288 {
289 int atid = -1;
290
291 t4_os_lock(&t->atid_lock);
292 if (t->afree) {
293 union aopen_entry *p = t->afree;
294
295 atid = p - t->atid_tab;
296 t->afree = p->next;
297 p->data = data;
298 t->atids_in_use++;
299 }
300 t4_os_unlock(&t->atid_lock);
301 return atid;
302 }
303
304 /**
305 * Release an active-open TID.
306 */
307 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
308 {
309 union aopen_entry *p = &t->atid_tab[atid];
310
311 t4_os_lock(&t->atid_lock);
312 p->next = t->afree;
313 t->afree = p;
314 t->atids_in_use--;
315 t4_os_unlock(&t->atid_lock);
316 }
317
318 /**
319 * Populate a TID_RELEASE WR. Caller must properly size the skb.
320 */
321 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
322 {
323 struct cpl_tid_release *req;
324
325 req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
326 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
327 }
328
329 /**
330 * Release a TID and inform HW. If we are unable to allocate the release
331 * message we defer to a work queue.
332 */
333 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
334 unsigned short family)
335 {
336 struct rte_mbuf *mbuf;
337 struct adapter *adap = container_of(t, struct adapter, tids);
338
339 WARN_ON(tid >= t->ntids);
340
341 if (t->tid_tab[tid]) {
342 t->tid_tab[tid] = NULL;
343 rte_atomic32_dec(&t->conns_in_use);
344 if (t->hash_base && tid >= t->hash_base) {
345 if (family == FILTER_TYPE_IPV4)
346 rte_atomic32_dec(&t->hash_tids_in_use);
347 } else {
348 if (family == FILTER_TYPE_IPV4)
349 rte_atomic32_dec(&t->tids_in_use);
350 }
351 }
352
353 mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
354 if (mbuf) {
355 mbuf->data_len = sizeof(struct cpl_tid_release);
356 mbuf->pkt_len = mbuf->data_len;
357 mk_tid_release(mbuf, tid);
358 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
359 }
360 }
361
362 /**
363 * Insert a TID.
364 */
365 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
366 unsigned short family)
367 {
368 t->tid_tab[tid] = data;
369 if (t->hash_base && tid >= t->hash_base) {
370 if (family == FILTER_TYPE_IPV4)
371 rte_atomic32_inc(&t->hash_tids_in_use);
372 } else {
373 if (family == FILTER_TYPE_IPV4)
374 rte_atomic32_inc(&t->tids_in_use);
375 }
376
377 rte_atomic32_inc(&t->conns_in_use);
378 }
379
380 /**
381 * Free TID tables.
382 */
383 static void tid_free(struct tid_info *t)
384 {
385 if (t->tid_tab) {
386 if (t->ftid_bmap)
387 rte_bitmap_free(t->ftid_bmap);
388
389 if (t->ftid_bmap_array)
390 t4_os_free(t->ftid_bmap_array);
391
392 t4_os_free(t->tid_tab);
393 }
394
395 memset(t, 0, sizeof(struct tid_info));
396 }
397
398 /**
399 * Allocate and initialize the TID tables. Returns 0 on success.
400 */
401 static int tid_init(struct tid_info *t)
402 {
403 size_t size;
404 unsigned int ftid_bmap_size;
405 unsigned int natids = t->natids;
406 unsigned int max_ftids = t->nftids;
407
408 ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
409 size = t->ntids * sizeof(*t->tid_tab) +
410 max_ftids * sizeof(*t->ftid_tab) +
411 natids * sizeof(*t->atid_tab);
412
413 t->tid_tab = t4_os_alloc(size);
414 if (!t->tid_tab)
415 return -ENOMEM;
416
417 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
418 t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
419 t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
420 if (!t->ftid_bmap_array) {
421 tid_free(t);
422 return -ENOMEM;
423 }
424
425 t4_os_lock_init(&t->atid_lock);
426 t4_os_lock_init(&t->ftid_lock);
427
428 t->afree = NULL;
429 t->atids_in_use = 0;
430 rte_atomic32_init(&t->tids_in_use);
431 rte_atomic32_set(&t->tids_in_use, 0);
432 rte_atomic32_init(&t->conns_in_use);
433 rte_atomic32_set(&t->conns_in_use, 0);
434
435 /* Setup the free list for atid_tab and clear the stid bitmap. */
436 if (natids) {
437 while (--natids)
438 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
439 t->afree = t->atid_tab;
440 }
441
442 t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
443 ftid_bmap_size);
444 if (!t->ftid_bmap) {
445 tid_free(t);
446 return -ENOMEM;
447 }
448
449 return 0;
450 }
451
452 static inline bool is_x_1g_port(const struct link_config *lc)
453 {
454 return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
455 }
456
457 static inline bool is_x_10g_port(const struct link_config *lc)
458 {
459 unsigned int speeds, high_speeds;
460
461 speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
462 high_speeds = speeds &
463 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
464
465 return high_speeds != 0;
466 }
467
468 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
469 unsigned int us, unsigned int cnt,
470 unsigned int size, unsigned int iqe_size)
471 {
472 q->adapter = adap;
473 cxgb4_set_rspq_intr_params(q, us, cnt);
474 q->iqe_len = iqe_size;
475 q->size = size;
476 }
477
478 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
479 {
480 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
481 struct adapter *adap = pi->adapter;
482 struct sge *s = &adap->sge;
483 unsigned int max_queues = s->max_ethqsets / adap->params.nports;
484
485 if ((eth_dev->data->nb_rx_queues < 1) ||
486 (eth_dev->data->nb_tx_queues < 1))
487 return -EINVAL;
488
489 if ((eth_dev->data->nb_rx_queues > max_queues) ||
490 (eth_dev->data->nb_tx_queues > max_queues))
491 return -EINVAL;
492
493 if (eth_dev->data->nb_rx_queues > pi->rss_size)
494 return -EINVAL;
495
496 /* We must configure RSS, since config has changed*/
497 pi->flags &= ~PORT_RSS_DONE;
498
499 pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
500 pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
501
502 return 0;
503 }
504
505 void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
506 {
507 struct rte_config *config = rte_eal_get_configuration();
508 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
509 struct adapter *adap = pi->adapter;
510 struct sge *s = &adap->sge;
511 unsigned int i, nb_ports = 0, qidx = 0;
512 unsigned int q_per_port = 0;
513
514 if (!(adap->flags & CFG_QUEUES)) {
515 for_each_port(adap, i) {
516 struct port_info *tpi = adap2pinfo(adap, i);
517
518 nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
519 is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
520 }
521
522 /*
523 * We default up to # of cores queues per 1G/10G port.
524 */
525 if (nb_ports)
526 q_per_port = (s->max_ethqsets -
527 (adap->params.nports - nb_ports)) /
528 nb_ports;
529
530 if (q_per_port > config->lcore_count)
531 q_per_port = config->lcore_count;
532
533 for_each_port(adap, i) {
534 struct port_info *pi = adap2pinfo(adap, i);
535
536 pi->first_qset = qidx;
537
538 /* Initially n_rx_qsets == n_tx_qsets */
539 pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
540 is_x_1g_port(&pi->link_cfg)) ?
541 q_per_port : 1;
542 pi->n_tx_qsets = pi->n_rx_qsets;
543
544 if (pi->n_rx_qsets > pi->rss_size)
545 pi->n_rx_qsets = pi->rss_size;
546
547 qidx += pi->n_rx_qsets;
548 }
549
550 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
551 struct sge_eth_rxq *r = &s->ethrxq[i];
552
553 init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
554 r->usembufs = 1;
555 r->fl.size = (r->usembufs ? 1024 : 72);
556 }
557
558 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
559 s->ethtxq[i].q.size = 1024;
560
561 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
562 adap->flags |= CFG_QUEUES;
563 }
564 }
565
566 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
567 {
568 t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
569 &pi->stats_base);
570 }
571
572 void cxgbe_stats_reset(struct port_info *pi)
573 {
574 t4_clr_port_stats(pi->adapter, pi->tx_chan);
575 }
576
577 static void setup_memwin(struct adapter *adap)
578 {
579 u32 mem_win0_base;
580
581 /* For T5, only relative offset inside the PCIe BAR is passed */
582 mem_win0_base = MEMWIN0_BASE;
583
584 /*
585 * Set up memory window for accessing adapter memory ranges. (Read
586 * back MA register to ensure that changes propagate before we attempt
587 * to use the new values.)
588 */
589 t4_write_reg(adap,
590 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
591 MEMWIN_NIC),
592 mem_win0_base | V_BIR(0) |
593 V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
594 t4_read_reg(adap,
595 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
596 MEMWIN_NIC));
597 }
598
599 int cxgbe_init_rss(struct adapter *adap)
600 {
601 unsigned int i;
602
603 if (is_pf4(adap)) {
604 int err;
605
606 err = t4_init_rss_mode(adap, adap->mbox);
607 if (err)
608 return err;
609 }
610
611 for_each_port(adap, i) {
612 struct port_info *pi = adap2pinfo(adap, i);
613
614 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
615 if (!pi->rss)
616 return -ENOMEM;
617
618 pi->rss_hf = CXGBE_RSS_HF_ALL;
619 }
620 return 0;
621 }
622
623 /**
624 * Dump basic information about the adapter.
625 */
626 void cxgbe_print_adapter_info(struct adapter *adap)
627 {
628 /**
629 * Hardware/Firmware/etc. Version/Revision IDs.
630 */
631 t4_dump_version_info(adap);
632 }
633
634 void cxgbe_print_port_info(struct adapter *adap)
635 {
636 int i;
637 char buf[80];
638 struct rte_pci_addr *loc = &adap->pdev->addr;
639
640 for_each_port(adap, i) {
641 const struct port_info *pi = adap2pinfo(adap, i);
642 char *bufp = buf;
643
644 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
645 bufp += sprintf(bufp, "100M/");
646 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
647 bufp += sprintf(bufp, "1G/");
648 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
649 bufp += sprintf(bufp, "10G/");
650 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
651 bufp += sprintf(bufp, "25G/");
652 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
653 bufp += sprintf(bufp, "40G/");
654 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
655 bufp += sprintf(bufp, "50G/");
656 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
657 bufp += sprintf(bufp, "100G/");
658 if (bufp != buf)
659 --bufp;
660 sprintf(bufp, "BASE-%s",
661 t4_get_port_type_description(
662 (enum fw_port_type)pi->port_type));
663
664 dev_info(adap,
665 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
666 loc->domain, loc->bus, loc->devid, loc->function,
667 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
668 (adap->flags & USING_MSIX) ? " MSI-X" :
669 (adap->flags & USING_MSI) ? " MSI" : "");
670 }
671 }
672
673 static int
674 check_devargs_handler(__rte_unused const char *key, const char *value,
675 __rte_unused void *opaque)
676 {
677 if (strcmp(value, "1"))
678 return -1;
679
680 return 0;
681 }
682
683 int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key)
684 {
685 struct rte_kvargs *kvlist;
686
687 if (!devargs)
688 return 0;
689
690 kvlist = rte_kvargs_parse(devargs->args, NULL);
691 if (!kvlist)
692 return 0;
693
694 if (!rte_kvargs_count(kvlist, key)) {
695 rte_kvargs_free(kvlist);
696 return 0;
697 }
698
699 if (rte_kvargs_process(kvlist, key,
700 check_devargs_handler, NULL) < 0) {
701 rte_kvargs_free(kvlist);
702 return 0;
703 }
704 rte_kvargs_free(kvlist);
705
706 return 1;
707 }
708
709 static void configure_vlan_types(struct adapter *adapter)
710 {
711 struct rte_pci_device *pdev = adapter->pdev;
712 int i;
713
714 for_each_port(adapter, i) {
715 /* OVLAN Type 0x88a8 */
716 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
717 V_OVLAN_MASK(M_OVLAN_MASK) |
718 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
719 V_OVLAN_MASK(M_OVLAN_MASK) |
720 V_OVLAN_ETYPE(0x88a8));
721 /* OVLAN Type 0x9100 */
722 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
723 V_OVLAN_MASK(M_OVLAN_MASK) |
724 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
725 V_OVLAN_MASK(M_OVLAN_MASK) |
726 V_OVLAN_ETYPE(0x9100));
727 /* OVLAN Type 0x8100 */
728 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
729 V_OVLAN_MASK(M_OVLAN_MASK) |
730 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
731 V_OVLAN_MASK(M_OVLAN_MASK) |
732 V_OVLAN_ETYPE(0x8100));
733
734 /* IVLAN 0X8100 */
735 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
736 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
737 V_IVLAN_ETYPE(0x8100));
738
739 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
740 F_OVLAN_EN0 | F_OVLAN_EN1 |
741 F_OVLAN_EN2 | F_IVLAN_EN,
742 F_OVLAN_EN0 | F_OVLAN_EN1 |
743 F_OVLAN_EN2 | F_IVLAN_EN);
744 }
745
746 if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN))
747 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
748 V_RM_OVLAN(1), V_RM_OVLAN(0));
749 }
750
751 static void configure_pcie_ext_tag(struct adapter *adapter)
752 {
753 u16 v;
754 int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
755
756 if (!pos)
757 return;
758
759 if (pos > 0) {
760 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
761 v |= PCI_EXP_DEVCTL_EXT_TAG;
762 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
763 if (is_t6(adapter->params.chip)) {
764 t4_set_reg_field(adapter, A_PCIE_CFG2,
765 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
766 V_T6_TOTMAXTAG(7));
767 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
768 V_T6_MINTAG(M_T6_MINTAG),
769 V_T6_MINTAG(8));
770 } else {
771 t4_set_reg_field(adapter, A_PCIE_CFG2,
772 V_TOTMAXTAG(M_TOTMAXTAG),
773 V_TOTMAXTAG(3));
774 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
775 V_MINTAG(M_MINTAG),
776 V_MINTAG(8));
777 }
778 }
779 }
780
781 /* Figure out how many Queue Sets we can support */
782 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
783 {
784 unsigned int ethqsets;
785
786 /*
787 * We need to reserve an Ingress Queue for the Asynchronous Firmware
788 * Event Queue.
789 *
790 * For each Queue Set, we'll need the ability to allocate two Egress
791 * Contexts -- one for the Ingress Queue Free List and one for the TX
792 * Ethernet Queue.
793 */
794 if (is_pf4(adapter)) {
795 struct pf_resources *pfres = &adapter->params.pfres;
796
797 ethqsets = pfres->niqflint - 1;
798 if (pfres->neq < ethqsets * 2)
799 ethqsets = pfres->neq / 2;
800 } else {
801 struct vf_resources *vfres = &adapter->params.vfres;
802
803 ethqsets = vfres->niqflint - 1;
804 if (vfres->nethctrl != ethqsets)
805 ethqsets = min(vfres->nethctrl, ethqsets);
806 if (vfres->neq < ethqsets * 2)
807 ethqsets = vfres->neq / 2;
808 }
809
810 if (ethqsets > MAX_ETH_QSETS)
811 ethqsets = MAX_ETH_QSETS;
812 adapter->sge.max_ethqsets = ethqsets;
813 }
814
815 /*
816 * Tweak configuration based on system architecture, etc. Most of these have
817 * defaults assigned to them by Firmware Configuration Files (if we're using
818 * them) but need to be explicitly set if we're using hard-coded
819 * initialization. So these are essentially common tweaks/settings for
820 * Configuration Files and hard-coded initialization ...
821 */
822 static int adap_init0_tweaks(struct adapter *adapter)
823 {
824 u8 rx_dma_offset;
825
826 /*
827 * Fix up various Host-Dependent Parameters like Page Size, Cache
828 * Line Size, etc. The firmware default is for a 4KB Page Size and
829 * 64B Cache Line Size ...
830 */
831 t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
832 T5_LAST_REV);
833
834 /*
835 * Keep the chip default offset to deliver Ingress packets into our
836 * DMA buffers to zero
837 */
838 rx_dma_offset = 0;
839 t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
840 V_PKTSHIFT(rx_dma_offset));
841
842 t4_set_reg_field(adapter, A_SGE_FLM_CFG,
843 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
844 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
845
846 t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
847 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
848
849 t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
850 V_IDMAARBROUNDROBIN(1U));
851
852 /*
853 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
854 * adds the pseudo header itself.
855 */
856 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
857 F_CSUM_HAS_PSEUDO_HDR, 0);
858
859 return 0;
860 }
861
862 /*
863 * Attempt to initialize the adapter via a Firmware Configuration File.
864 */
865 static int adap_init0_config(struct adapter *adapter, int reset)
866 {
867 struct fw_caps_config_cmd caps_cmd;
868 unsigned long mtype = 0, maddr = 0;
869 u32 finiver, finicsum, cfcsum;
870 int ret;
871 int config_issued = 0;
872 int cfg_addr;
873 char config_name[20];
874
875 /*
876 * Reset device if necessary.
877 */
878 if (reset) {
879 ret = t4_fw_reset(adapter, adapter->mbox,
880 F_PIORSTMODE | F_PIORST);
881 if (ret < 0) {
882 dev_warn(adapter, "Firmware reset failed, error %d\n",
883 -ret);
884 goto bye;
885 }
886 }
887
888 cfg_addr = t4_flash_cfg_addr(adapter);
889 if (cfg_addr < 0) {
890 ret = cfg_addr;
891 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
892 -ret);
893 goto bye;
894 }
895
896 strcpy(config_name, "On Flash");
897 mtype = FW_MEMTYPE_CF_FLASH;
898 maddr = cfg_addr;
899
900 /*
901 * Issue a Capability Configuration command to the firmware to get it
902 * to parse the Configuration File. We don't use t4_fw_config_file()
903 * because we want the ability to modify various features after we've
904 * processed the configuration file ...
905 */
906 memset(&caps_cmd, 0, sizeof(caps_cmd));
907 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
908 F_FW_CMD_REQUEST | F_FW_CMD_READ);
909 caps_cmd.cfvalid_to_len16 =
910 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
911 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
912 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
913 FW_LEN16(caps_cmd));
914 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
915 &caps_cmd);
916 /*
917 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
918 * Configuration File in FLASH), our last gasp effort is to use the
919 * Firmware Configuration File which is embedded in the firmware. A
920 * very few early versions of the firmware didn't have one embedded
921 * but we can ignore those.
922 */
923 if (ret == -ENOENT) {
924 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
925 __func__);
926
927 memset(&caps_cmd, 0, sizeof(caps_cmd));
928 caps_cmd.op_to_write =
929 cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
930 F_FW_CMD_REQUEST | F_FW_CMD_READ);
931 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
932 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
933 sizeof(caps_cmd), &caps_cmd);
934 strcpy(config_name, "Firmware Default");
935 }
936
937 config_issued = 1;
938 if (ret < 0)
939 goto bye;
940
941 finiver = be32_to_cpu(caps_cmd.finiver);
942 finicsum = be32_to_cpu(caps_cmd.finicsum);
943 cfcsum = be32_to_cpu(caps_cmd.cfcsum);
944 if (finicsum != cfcsum)
945 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
946 finicsum, cfcsum);
947
948 /*
949 * If we're a pure NIC driver then disable all offloading facilities.
950 * This will allow the firmware to optimize aspects of the hardware
951 * configuration which will result in improved performance.
952 */
953 caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
954 caps_cmd.toecaps = 0;
955 caps_cmd.iscsicaps = 0;
956 caps_cmd.rdmacaps = 0;
957 caps_cmd.fcoecaps = 0;
958
959 /*
960 * And now tell the firmware to use the configuration we just loaded.
961 */
962 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
963 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
964 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
965 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
966 NULL);
967 if (ret < 0) {
968 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
969 -ret);
970 goto bye;
971 }
972
973 /*
974 * Tweak configuration based on system architecture, etc.
975 */
976 ret = adap_init0_tweaks(adapter);
977 if (ret < 0) {
978 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
979 goto bye;
980 }
981
982 /*
983 * And finally tell the firmware to initialize itself using the
984 * parameters from the Configuration File.
985 */
986 ret = t4_fw_initialize(adapter, adapter->mbox);
987 if (ret < 0) {
988 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
989 -ret);
990 goto bye;
991 }
992
993 /*
994 * Return successfully and note that we're operating with parameters
995 * not supplied by the driver, rather than from hard-wired
996 * initialization constants buried in the driver.
997 */
998 dev_info(adapter,
999 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1000 config_name, finiver, cfcsum);
1001
1002 return 0;
1003
1004 /*
1005 * Something bad happened. Return the error ... (If the "error"
1006 * is that there's no Configuration File on the adapter we don't
1007 * want to issue a warning since this is fairly common.)
1008 */
1009 bye:
1010 if (config_issued && ret != -ENOENT)
1011 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1012 config_name, -ret);
1013
1014 dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1015 return ret;
1016 }
1017
1018 static int adap_init0(struct adapter *adap)
1019 {
1020 struct fw_caps_config_cmd caps_cmd;
1021 int ret = 0;
1022 u32 v, port_vec;
1023 enum dev_state state;
1024 u32 params[7], val[7];
1025 int reset = 1;
1026 int mbox = adap->mbox;
1027
1028 /*
1029 * Contact FW, advertising Master capability.
1030 */
1031 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1032 if (ret < 0) {
1033 dev_err(adap, "%s: could not connect to FW, error %d\n",
1034 __func__, -ret);
1035 goto bye;
1036 }
1037
1038 CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1039 adap->mbox, ret);
1040
1041 if (ret == mbox)
1042 adap->flags |= MASTER_PF;
1043
1044 if (state == DEV_STATE_INIT) {
1045 /*
1046 * Force halt and reset FW because a previous instance may have
1047 * exited abnormally without properly shutting down
1048 */
1049 ret = t4_fw_halt(adap, adap->mbox, reset);
1050 if (ret < 0) {
1051 dev_err(adap, "Failed to halt. Exit.\n");
1052 goto bye;
1053 }
1054
1055 ret = t4_fw_restart(adap, adap->mbox, reset);
1056 if (ret < 0) {
1057 dev_err(adap, "Failed to restart. Exit.\n");
1058 goto bye;
1059 }
1060 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1061 }
1062
1063 t4_get_version_info(adap);
1064
1065 ret = t4_get_core_clock(adap, &adap->params.vpd);
1066 if (ret < 0) {
1067 dev_err(adap, "%s: could not get core clock, error %d\n",
1068 __func__, -ret);
1069 goto bye;
1070 }
1071
1072 /*
1073 * If the firmware is initialized already (and we're not forcing a
1074 * master initialization), note that we're living with existing
1075 * adapter parameters. Otherwise, it's time to try initializing the
1076 * adapter ...
1077 */
1078 if (state == DEV_STATE_INIT) {
1079 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1080 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1081 } else {
1082 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1083
1084 ret = adap_init0_config(adap, reset);
1085 if (ret == -ENOENT) {
1086 dev_err(adap,
1087 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1088 goto bye;
1089 }
1090 }
1091 if (ret < 0) {
1092 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1093 goto bye;
1094 }
1095
1096 /* Now that we've successfully configured and initialized the adapter
1097 * (or found it already initialized), we can ask the Firmware what
1098 * resources it has provisioned for us.
1099 */
1100 ret = t4_get_pfres(adap);
1101 if (ret) {
1102 dev_err(adap->pdev_dev,
1103 "Unable to retrieve resource provisioning info\n");
1104 goto bye;
1105 }
1106
1107 /* Find out what ports are available to us. */
1108 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1109 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1110 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1111 if (ret < 0) {
1112 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1113 __func__, ret);
1114 goto bye;
1115 }
1116
1117 adap->params.nports = hweight32(port_vec);
1118 adap->params.portvec = port_vec;
1119
1120 dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1121 adap->params.nports);
1122
1123 /*
1124 * Give the SGE code a chance to pull in anything that it needs ...
1125 * Note that this must be called after we retrieve our VPD parameters
1126 * in order to know how to convert core ticks to seconds, etc.
1127 */
1128 ret = t4_sge_init(adap);
1129 if (ret < 0) {
1130 dev_err(adap, "t4_sge_init failed with error %d\n",
1131 -ret);
1132 goto bye;
1133 }
1134
1135 /*
1136 * Grab some of our basic fundamental operating parameters.
1137 */
1138 #define FW_PARAM_DEV(param) \
1139 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
1140 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
1141
1142 #define FW_PARAM_PFVF(param) \
1143 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
1144 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
1145 V_FW_PARAMS_PARAM_Y(0) | \
1146 V_FW_PARAMS_PARAM_Z(0))
1147
1148 params[0] = FW_PARAM_PFVF(L2T_START);
1149 params[1] = FW_PARAM_PFVF(L2T_END);
1150 params[2] = FW_PARAM_PFVF(FILTER_START);
1151 params[3] = FW_PARAM_PFVF(FILTER_END);
1152 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1153 if (ret < 0)
1154 goto bye;
1155 adap->l2t_start = val[0];
1156 adap->l2t_end = val[1];
1157 adap->tids.ftid_base = val[2];
1158 adap->tids.nftids = val[3] - val[2] + 1;
1159
1160 params[0] = FW_PARAM_PFVF(CLIP_START);
1161 params[1] = FW_PARAM_PFVF(CLIP_END);
1162 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1163 if (ret < 0)
1164 goto bye;
1165 adap->clipt_start = val[0];
1166 adap->clipt_end = val[1];
1167
1168 /*
1169 * Get device capabilities so we can determine what resources we need
1170 * to manage.
1171 */
1172 memset(&caps_cmd, 0, sizeof(caps_cmd));
1173 caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1174 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1175 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1176 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1177 &caps_cmd);
1178 if (ret < 0)
1179 goto bye;
1180
1181 if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1182 is_t6(adap->params.chip)) {
1183 if (init_hash_filter(adap) < 0)
1184 goto bye;
1185 }
1186
1187 /* See if FW supports FW_FILTER2 work request */
1188 if (is_t4(adap->params.chip)) {
1189 adap->params.filter2_wr_support = 0;
1190 } else {
1191 params[0] = FW_PARAM_DEV(FILTER2_WR);
1192 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1193 1, params, val);
1194 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1195 }
1196
1197 /* query tid-related parameters */
1198 params[0] = FW_PARAM_DEV(NTID);
1199 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1200 params, val);
1201 if (ret < 0)
1202 goto bye;
1203 adap->tids.ntids = val[0];
1204 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1205
1206 /* If we're running on newer firmware, let it know that we're
1207 * prepared to deal with encapsulated CPL messages. Older
1208 * firmware won't understand this and we'll just get
1209 * unencapsulated messages ...
1210 */
1211 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1212 val[0] = 1;
1213 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1214
1215 /*
1216 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1217 * capability. Earlier versions of the firmware didn't have the
1218 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1219 * permission to use ULPTX MEMWRITE DSGL.
1220 */
1221 if (is_t4(adap->params.chip)) {
1222 adap->params.ulptx_memwrite_dsgl = false;
1223 } else {
1224 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1225 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1226 1, params, val);
1227 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1228 }
1229
1230 /*
1231 * The MTU/MSS Table is initialized by now, so load their values. If
1232 * we're initializing the adapter, then we'll make any modifications
1233 * we want to the MTU/MSS Table and also initialize the congestion
1234 * parameters.
1235 */
1236 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1237 if (state != DEV_STATE_INIT) {
1238 int i;
1239
1240 /*
1241 * The default MTU Table contains values 1492 and 1500.
1242 * However, for TCP, it's better to have two values which are
1243 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1244 * This allows us to have a TCP Data Payload which is a
1245 * multiple of 8 regardless of what combination of TCP Options
1246 * are in use (always a multiple of 4 bytes) which is
1247 * important for performance reasons. For instance, if no
1248 * options are in use, then we have a 20-byte IP header and a
1249 * 20-byte TCP header. In this case, a 1500-byte MSS would
1250 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1251 * which is not a multiple of 8. So using an MSS of 1488 in
1252 * this case results in a TCP Data Payload of 1448 bytes which
1253 * is a multiple of 8. On the other hand, if 12-byte TCP Time
1254 * Stamps have been negotiated, then an MTU of 1500 bytes
1255 * results in a TCP Data Payload of 1448 bytes which, as
1256 * above, is a multiple of 8 bytes ...
1257 */
1258 for (i = 0; i < NMTUS; i++)
1259 if (adap->params.mtus[i] == 1492) {
1260 adap->params.mtus[i] = 1488;
1261 break;
1262 }
1263
1264 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1265 adap->params.b_wnd);
1266 }
1267 t4_init_sge_params(adap);
1268 t4_init_tp_params(adap);
1269 configure_pcie_ext_tag(adap);
1270 configure_vlan_types(adap);
1271 cxgbe_configure_max_ethqsets(adap);
1272
1273 adap->params.drv_memwin = MEMWIN_NIC;
1274 adap->flags |= FW_OK;
1275 dev_debug(adap, "%s: returning zero..\n", __func__);
1276 return 0;
1277
1278 /*
1279 * Something bad happened. If a command timed out or failed with EIO
1280 * FW does not operate within its spec or something catastrophic
1281 * happened to HW/FW, stop issuing commands.
1282 */
1283 bye:
1284 if (ret != -ETIMEDOUT && ret != -EIO)
1285 t4_fw_bye(adap, adap->mbox);
1286 return ret;
1287 }
1288
1289 /**
1290 * t4_os_portmod_changed - handle port module changes
1291 * @adap: the adapter associated with the module change
1292 * @port_id: the port index whose module status has changed
1293 *
1294 * This is the OS-dependent handler for port module changes. It is
1295 * invoked when a port module is removed or inserted for any OS-specific
1296 * processing.
1297 */
1298 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1299 {
1300 static const char * const mod_str[] = {
1301 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1302 };
1303
1304 const struct port_info *pi = adap2pinfo(adap, port_id);
1305
1306 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1307 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1308 else if (pi->mod_type < ARRAY_SIZE(mod_str))
1309 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1310 mod_str[pi->mod_type]);
1311 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1312 dev_info(adap, "Port%d: unsupported port module inserted\n",
1313 pi->port_id);
1314 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1315 dev_info(adap, "Port%d: unknown port module inserted\n",
1316 pi->port_id);
1317 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1318 dev_info(adap, "Port%d: transceiver module error\n",
1319 pi->port_id);
1320 else
1321 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1322 pi->port_id, pi->mod_type);
1323 }
1324
1325 bool cxgbe_force_linkup(struct adapter *adap)
1326 {
1327 struct rte_pci_device *pdev = adap->pdev;
1328
1329 if (is_pf4(adap))
1330 return false; /* force_linkup not required for pf driver*/
1331 if (!cxgbe_get_devargs(pdev->device.devargs,
1332 CXGBE_DEVARG_FORCE_LINK_UP))
1333 return false;
1334 return true;
1335 }
1336
1337 /**
1338 * link_start - enable a port
1339 * @dev: the port to enable
1340 *
1341 * Performs the MAC and PHY actions needed to enable a port.
1342 */
1343 int cxgbe_link_start(struct port_info *pi)
1344 {
1345 struct adapter *adapter = pi->adapter;
1346 u64 conf_offloads;
1347 unsigned int mtu;
1348 int ret;
1349
1350 mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1351 (ETHER_HDR_LEN + ETHER_CRC_LEN);
1352
1353 conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1354
1355 /*
1356 * We do not set address filters and promiscuity here, the stack does
1357 * that step explicitly.
1358 */
1359 ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1360 !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1361 true);
1362 if (ret == 0) {
1363 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1364 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1365 if (ret >= 0) {
1366 pi->xact_addr_filt = ret;
1367 ret = 0;
1368 }
1369 }
1370 if (ret == 0 && is_pf4(adapter))
1371 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1372 &pi->link_cfg);
1373 if (ret == 0) {
1374 /*
1375 * Enabling a Virtual Interface can result in an interrupt
1376 * during the processing of the VI Enable command and, in some
1377 * paths, result in an attempt to issue another command in the
1378 * interrupt context. Thus, we disable interrupts during the
1379 * course of the VI Enable command ...
1380 */
1381 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1382 true, true, false);
1383 }
1384
1385 if (ret == 0 && cxgbe_force_linkup(adapter))
1386 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1387 return ret;
1388 }
1389
1390 /**
1391 * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1392 * @pi: the port
1393 * @rss_hf: Hash configuration to apply
1394 */
1395 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1396 {
1397 struct adapter *adapter = pi->adapter;
1398 const struct sge_eth_rxq *rxq;
1399 u64 flags = 0;
1400 u16 rss;
1401 int err;
1402
1403 /* Should never be called before setting up sge eth rx queues */
1404 if (!(adapter->flags & FULL_INIT_DONE)) {
1405 dev_err(adap, "%s No RXQs available on port %d\n",
1406 __func__, pi->port_id);
1407 return -EINVAL;
1408 }
1409
1410 /* Don't allow unsupported hash functions */
1411 if (rss_hf & ~CXGBE_RSS_HF_ALL)
1412 return -EINVAL;
1413
1414 if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1415 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1416
1417 if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1418 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1419
1420 if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1421 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1422 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1423
1424 if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1425 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1426
1427 if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1428 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1429 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1430
1431 if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1432 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1433 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1434 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1435
1436 rxq = &adapter->sge.ethrxq[pi->first_qset];
1437 rss = rxq[0].rspq.abs_id;
1438
1439 /* If Tunnel All Lookup isn't specified in the global RSS
1440 * Configuration, then we need to specify a default Ingress
1441 * Queue for any ingress packets which aren't hashed. We'll
1442 * use our first ingress queue ...
1443 */
1444 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1445 flags, rss);
1446 return err;
1447 }
1448
1449 /**
1450 * cxgbe_write_rss - write the RSS table for a given port
1451 * @pi: the port
1452 * @queues: array of queue indices for RSS
1453 *
1454 * Sets up the portion of the HW RSS table for the port's VI to distribute
1455 * packets to the Rx queues in @queues.
1456 */
1457 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1458 {
1459 u16 *rss;
1460 int i, err;
1461 struct adapter *adapter = pi->adapter;
1462 const struct sge_eth_rxq *rxq;
1463
1464 /* Should never be called before setting up sge eth rx queues */
1465 BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1466
1467 rxq = &adapter->sge.ethrxq[pi->first_qset];
1468 rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1469 if (!rss)
1470 return -ENOMEM;
1471
1472 /* map the queue indices to queue ids */
1473 for (i = 0; i < pi->rss_size; i++, queues++)
1474 rss[i] = rxq[*queues].rspq.abs_id;
1475
1476 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1477 pi->rss_size, rss, pi->rss_size);
1478 rte_free(rss);
1479 return err;
1480 }
1481
1482 /**
1483 * setup_rss - configure RSS
1484 * @adapter: the adapter
1485 *
1486 * Sets up RSS to distribute packets to multiple receive queues. We
1487 * configure the RSS CPU lookup table to distribute to the number of HW
1488 * receive queues, and the response queue lookup table to narrow that
1489 * down to the response queues actually configured for each port.
1490 * We always configure the RSS mapping for all ports since the mapping
1491 * table has plenty of entries.
1492 */
1493 int cxgbe_setup_rss(struct port_info *pi)
1494 {
1495 int j, err;
1496 struct adapter *adapter = pi->adapter;
1497
1498 dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1499 __func__, pi->rss_size, pi->n_rx_qsets);
1500
1501 if (!(pi->flags & PORT_RSS_DONE)) {
1502 if (adapter->flags & FULL_INIT_DONE) {
1503 /* Fill default values with equal distribution */
1504 for (j = 0; j < pi->rss_size; j++)
1505 pi->rss[j] = j % pi->n_rx_qsets;
1506
1507 err = cxgbe_write_rss(pi, pi->rss);
1508 if (err)
1509 return err;
1510
1511 err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1512 if (err)
1513 return err;
1514 pi->flags |= PORT_RSS_DONE;
1515 }
1516 }
1517 return 0;
1518 }
1519
1520 /*
1521 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1522 */
1523 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1524 {
1525 /* 0-increment GTS to start the timer and enable interrupts */
1526 t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1527 T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1528 V_SEINTARM(q->intr_params) |
1529 V_INGRESSQID(q->cntxt_id));
1530 }
1531
1532 void cxgbe_enable_rx_queues(struct port_info *pi)
1533 {
1534 struct adapter *adap = pi->adapter;
1535 struct sge *s = &adap->sge;
1536 unsigned int i;
1537
1538 for (i = 0; i < pi->n_rx_qsets; i++)
1539 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1540 }
1541
1542 /**
1543 * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1544 * @port_type: Firmware Port Type
1545 * @fw_caps: Firmware Port Capabilities
1546 * @speed_caps: Device Info Speed Capabilities
1547 *
1548 * Translate a Firmware Port Capabilities specification to Device Info
1549 * Speed Capabilities.
1550 */
1551 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1552 unsigned int fw_caps,
1553 u32 *speed_caps)
1554 {
1555 #define SET_SPEED(__speed_name) \
1556 do { \
1557 *speed_caps |= ETH_LINK_ ## __speed_name; \
1558 } while (0)
1559
1560 #define FW_CAPS_TO_SPEED(__fw_name) \
1561 do { \
1562 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1563 SET_SPEED(__fw_name); \
1564 } while (0)
1565
1566 switch (port_type) {
1567 case FW_PORT_TYPE_BT_SGMII:
1568 case FW_PORT_TYPE_BT_XFI:
1569 case FW_PORT_TYPE_BT_XAUI:
1570 FW_CAPS_TO_SPEED(SPEED_100M);
1571 FW_CAPS_TO_SPEED(SPEED_1G);
1572 FW_CAPS_TO_SPEED(SPEED_10G);
1573 break;
1574
1575 case FW_PORT_TYPE_KX4:
1576 case FW_PORT_TYPE_KX:
1577 case FW_PORT_TYPE_FIBER_XFI:
1578 case FW_PORT_TYPE_FIBER_XAUI:
1579 case FW_PORT_TYPE_SFP:
1580 case FW_PORT_TYPE_QSFP_10G:
1581 case FW_PORT_TYPE_QSA:
1582 FW_CAPS_TO_SPEED(SPEED_1G);
1583 FW_CAPS_TO_SPEED(SPEED_10G);
1584 break;
1585
1586 case FW_PORT_TYPE_KR:
1587 SET_SPEED(SPEED_10G);
1588 break;
1589
1590 case FW_PORT_TYPE_BP_AP:
1591 case FW_PORT_TYPE_BP4_AP:
1592 SET_SPEED(SPEED_1G);
1593 SET_SPEED(SPEED_10G);
1594 break;
1595
1596 case FW_PORT_TYPE_BP40_BA:
1597 case FW_PORT_TYPE_QSFP:
1598 SET_SPEED(SPEED_40G);
1599 break;
1600
1601 case FW_PORT_TYPE_CR_QSFP:
1602 case FW_PORT_TYPE_SFP28:
1603 case FW_PORT_TYPE_KR_SFP28:
1604 FW_CAPS_TO_SPEED(SPEED_1G);
1605 FW_CAPS_TO_SPEED(SPEED_10G);
1606 FW_CAPS_TO_SPEED(SPEED_25G);
1607 break;
1608
1609 case FW_PORT_TYPE_CR2_QSFP:
1610 SET_SPEED(SPEED_50G);
1611 break;
1612
1613 case FW_PORT_TYPE_KR4_100G:
1614 case FW_PORT_TYPE_CR4_QSFP:
1615 FW_CAPS_TO_SPEED(SPEED_25G);
1616 FW_CAPS_TO_SPEED(SPEED_40G);
1617 FW_CAPS_TO_SPEED(SPEED_50G);
1618 FW_CAPS_TO_SPEED(SPEED_100G);
1619 break;
1620
1621 default:
1622 break;
1623 }
1624
1625 #undef FW_CAPS_TO_SPEED
1626 #undef SET_SPEED
1627 }
1628
1629 /**
1630 * cxgbe_get_speed_caps - Fetch supported speed capabilities
1631 * @pi: Underlying port's info
1632 * @speed_caps: Device Info speed capabilities
1633 *
1634 * Fetch supported speed capabilities of the underlying port.
1635 */
1636 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1637 {
1638 *speed_caps = 0;
1639
1640 fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1641 speed_caps);
1642
1643 if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1644 *speed_caps |= ETH_LINK_SPEED_FIXED;
1645 }
1646
1647 /**
1648 * cxgbe_set_link_status - Set device link up or down.
1649 * @pi: Underlying port's info
1650 * @status: 0 - down, 1 - up
1651 *
1652 * Set the device link up or down.
1653 */
1654 int cxgbe_set_link_status(struct port_info *pi, bool status)
1655 {
1656 struct adapter *adapter = pi->adapter;
1657 int err = 0;
1658
1659 err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1660 if (err) {
1661 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1662 return err;
1663 }
1664
1665 if (!status)
1666 t4_reset_link_config(adapter, pi->pidx);
1667
1668 return 0;
1669 }
1670
1671 /**
1672 * cxgb_up - enable the adapter
1673 * @adap: adapter being enabled
1674 *
1675 * Called when the first port is enabled, this function performs the
1676 * actions necessary to make an adapter operational, such as completing
1677 * the initialization of HW modules, and enabling interrupts.
1678 */
1679 int cxgbe_up(struct adapter *adap)
1680 {
1681 enable_rx(adap, &adap->sge.fw_evtq);
1682 t4_sge_tx_monitor_start(adap);
1683 if (is_pf4(adap))
1684 t4_intr_enable(adap);
1685 adap->flags |= FULL_INIT_DONE;
1686
1687 /* TODO: deadman watchdog ?? */
1688 return 0;
1689 }
1690
1691 /*
1692 * Close the port
1693 */
1694 int cxgbe_down(struct port_info *pi)
1695 {
1696 return cxgbe_set_link_status(pi, false);
1697 }
1698
1699 /*
1700 * Release resources when all the ports have been stopped.
1701 */
1702 void cxgbe_close(struct adapter *adapter)
1703 {
1704 struct port_info *pi;
1705 int i;
1706
1707 if (adapter->flags & FULL_INIT_DONE) {
1708 tid_free(&adapter->tids);
1709 t4_cleanup_mpstcam(adapter);
1710 t4_cleanup_clip_tbl(adapter);
1711 t4_cleanup_l2t(adapter);
1712 if (is_pf4(adapter))
1713 t4_intr_disable(adapter);
1714 t4_sge_tx_monitor_stop(adapter);
1715 t4_free_sge_resources(adapter);
1716 for_each_port(adapter, i) {
1717 pi = adap2pinfo(adapter, i);
1718 if (pi->viid != 0)
1719 t4_free_vi(adapter, adapter->mbox,
1720 adapter->pf, 0, pi->viid);
1721 rte_eth_dev_release_port(pi->eth_dev);
1722 }
1723 adapter->flags &= ~FULL_INIT_DONE;
1724 }
1725
1726 if (is_pf4(adapter) && (adapter->flags & FW_OK))
1727 t4_fw_bye(adapter, adapter->mbox);
1728 }
1729
1730 int cxgbe_probe(struct adapter *adapter)
1731 {
1732 struct port_info *pi;
1733 int chip;
1734 int func, i;
1735 int err = 0;
1736 u32 whoami;
1737
1738 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1739 chip = t4_get_chip_type(adapter,
1740 CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1741 if (chip < 0)
1742 return chip;
1743
1744 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1745 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1746
1747 adapter->mbox = func;
1748 adapter->pf = func;
1749
1750 t4_os_lock_init(&adapter->mbox_lock);
1751 TAILQ_INIT(&adapter->mbox_list);
1752 t4_os_lock_init(&adapter->win0_lock);
1753
1754 err = t4_prep_adapter(adapter);
1755 if (err)
1756 return err;
1757
1758 setup_memwin(adapter);
1759 err = adap_init0(adapter);
1760 if (err) {
1761 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1762 __func__, err);
1763 goto out_free;
1764 }
1765
1766 if (!is_t4(adapter->params.chip)) {
1767 /*
1768 * The userspace doorbell BAR is split evenly into doorbell
1769 * regions, each associated with an egress queue. If this
1770 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1771 * then it can be used to submit a tx work request with an
1772 * implied doorbell. Enable write combining on the BAR if
1773 * there is room for such work requests.
1774 */
1775 int s_qpp, qpp, num_seg;
1776
1777 s_qpp = (S_QUEUESPERPAGEPF0 +
1778 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1779 adapter->pf);
1780 qpp = 1 << ((t4_read_reg(adapter,
1781 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1782 & M_QUEUESPERPAGEPF0);
1783 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1784 if (qpp > num_seg)
1785 dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1786
1787 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1788 if (!adapter->bar2) {
1789 dev_err(adapter, "cannot map device bar2 region\n");
1790 err = -ENOMEM;
1791 goto out_free;
1792 }
1793 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1794 V_STATMODE(0));
1795 }
1796
1797 for_each_port(adapter, i) {
1798 const unsigned int numa_node = rte_socket_id();
1799 char name[RTE_ETH_NAME_MAX_LEN];
1800 struct rte_eth_dev *eth_dev;
1801
1802 snprintf(name, sizeof(name), "%s_%d",
1803 adapter->pdev->device.name, i);
1804
1805 if (i == 0) {
1806 /* First port is already allocated by DPDK */
1807 eth_dev = adapter->eth_dev;
1808 goto allocate_mac;
1809 }
1810
1811 /*
1812 * now do all data allocation - for eth_dev structure,
1813 * and internal (private) data for the remaining ports
1814 */
1815
1816 /* reserve an ethdev entry */
1817 eth_dev = rte_eth_dev_allocate(name);
1818 if (!eth_dev)
1819 goto out_free;
1820
1821 eth_dev->data->dev_private =
1822 rte_zmalloc_socket(name, sizeof(struct port_info),
1823 RTE_CACHE_LINE_SIZE, numa_node);
1824 if (!eth_dev->data->dev_private)
1825 goto out_free;
1826
1827 allocate_mac:
1828 pi = (struct port_info *)eth_dev->data->dev_private;
1829 adapter->port[i] = pi;
1830 pi->eth_dev = eth_dev;
1831 pi->adapter = adapter;
1832 pi->xact_addr_filt = -1;
1833 pi->port_id = i;
1834 pi->pidx = i;
1835
1836 pi->eth_dev->device = &adapter->pdev->device;
1837 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1838 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1839 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1840
1841 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1842
1843 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1844 ETHER_ADDR_LEN, 0);
1845 if (!pi->eth_dev->data->mac_addrs) {
1846 dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1847 __func__);
1848 err = -1;
1849 goto out_free;
1850 }
1851
1852 if (i > 0) {
1853 /* First port will be notified by upper layer */
1854 rte_eth_dev_probing_finish(eth_dev);
1855 }
1856 }
1857
1858 if (adapter->flags & FW_OK) {
1859 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1860 if (err) {
1861 dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1862 __func__, err);
1863 goto out_free;
1864 }
1865 }
1866
1867 cxgbe_cfg_queues(adapter->eth_dev);
1868
1869 cxgbe_print_adapter_info(adapter);
1870 cxgbe_print_port_info(adapter);
1871
1872 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1873 adapter->clipt_end);
1874 if (!adapter->clipt) {
1875 /* We tolerate a lack of clip_table, giving up some
1876 * functionality
1877 */
1878 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1879 }
1880
1881 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1882 if (!adapter->l2t) {
1883 /* We tolerate a lack of L2T, giving up some functionality */
1884 dev_warn(adapter, "could not allocate L2T. Continuing\n");
1885 }
1886
1887 if (tid_init(&adapter->tids) < 0) {
1888 /* Disable filtering support */
1889 dev_warn(adapter, "could not allocate TID table, "
1890 "filter support disabled. Continuing\n");
1891 }
1892
1893 adapter->mpstcam = t4_init_mpstcam(adapter);
1894 if (!adapter->mpstcam)
1895 dev_warn(adapter, "could not allocate mps tcam table."
1896 " Continuing\n");
1897
1898 if (is_hashfilter(adapter)) {
1899 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1900 u32 hash_base, hash_reg;
1901
1902 hash_reg = A_LE_DB_TID_HASHBASE;
1903 hash_base = t4_read_reg(adapter, hash_reg);
1904 adapter->tids.hash_base = hash_base / 4;
1905 }
1906 } else {
1907 /* Disable hash filtering support */
1908 dev_warn(adapter,
1909 "Maskless filter support disabled. Continuing\n");
1910 }
1911
1912 err = cxgbe_init_rss(adapter);
1913 if (err)
1914 goto out_free;
1915
1916 return 0;
1917
1918 out_free:
1919 for_each_port(adapter, i) {
1920 pi = adap2pinfo(adapter, i);
1921 if (pi->viid != 0)
1922 t4_free_vi(adapter, adapter->mbox, adapter->pf,
1923 0, pi->viid);
1924 rte_eth_dev_release_port(pi->eth_dev);
1925 }
1926
1927 if (adapter->flags & FW_OK)
1928 t4_fw_bye(adapter, adapter->mbox);
1929 return -err;
1930 }