]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/cxgbe/sge.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / cxgbe / sge.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2014-2015 Chelsio Communications.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of Chelsio Communications nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <string.h>
39 #include <unistd.h>
40 #include <stdarg.h>
41 #include <inttypes.h>
42 #include <netinet/in.h>
43
44 #include <rte_byteorder.h>
45 #include <rte_common.h>
46 #include <rte_cycles.h>
47 #include <rte_interrupts.h>
48 #include <rte_log.h>
49 #include <rte_debug.h>
50 #include <rte_pci.h>
51 #include <rte_atomic.h>
52 #include <rte_branch_prediction.h>
53 #include <rte_memory.h>
54 #include <rte_memzone.h>
55 #include <rte_tailq.h>
56 #include <rte_eal.h>
57 #include <rte_alarm.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_atomic.h>
61 #include <rte_malloc.h>
62 #include <rte_random.h>
63 #include <rte_dev.h>
64
65 #include "common.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "cxgbe.h"
69
70 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
71 struct sge_eth_txq *txq);
72
73 /*
74 * Max number of Rx buffers we replenish at a time.
75 */
76 #define MAX_RX_REFILL 64U
77
78 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
79
80 /*
81 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
82 * into a WR.
83 */
84 #define MAX_IMM_TX_PKT_LEN 256
85
86 /*
87 * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet
88 * per mbuf buffer). We currently only support two sizes for 1500- and
89 * 9000-byte MTUs. We could easily support more but there doesn't seem to be
90 * much need for that ...
91 */
92 #define FL_MTU_SMALL 1500
93 #define FL_MTU_LARGE 9000
94
95 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
96 unsigned int mtu)
97 {
98 struct sge *s = &adapter->sge;
99
100 return CXGBE_ALIGN(s->pktshift + ETHER_HDR_LEN + VLAN_HLEN + mtu,
101 s->fl_align);
102 }
103
104 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
105 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
106
107 /*
108 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
109 * these to specify the buffer size as an index into the SGE Free List Buffer
110 * Size register array. We also use bit 4, when the buffer has been unmapped
111 * for DMA, but this is of course never sent to the hardware and is only used
112 * to prevent double unmappings. All of the above requires that the Free List
113 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
114 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
115 * Free List Buffer alignment is 32 bytes, this works out for us ...
116 */
117 enum {
118 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
119 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
120 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
121
122 /*
123 * XXX We shouldn't depend on being able to use these indices.
124 * XXX Especially when some other Master PF has initialized the
125 * XXX adapter or we use the Firmware Configuration File. We
126 * XXX should really search through the Host Buffer Size register
127 * XXX array for the appropriately sized buffer indices.
128 */
129 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
130 RX_LARGE_PG_BUF = 0x1, /* buffer large page buffer */
131
132 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
133 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
134 };
135
136 /**
137 * txq_avail - return the number of available slots in a Tx queue
138 * @q: the Tx queue
139 *
140 * Returns the number of descriptors in a Tx queue available to write new
141 * packets.
142 */
143 static inline unsigned int txq_avail(const struct sge_txq *q)
144 {
145 return q->size - 1 - q->in_use;
146 }
147
148 static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr)
149 {
150 struct rte_mbuf *m = mbuf;
151
152 for (; m; m = m->next, addr++) {
153 *addr = m->buf_physaddr + rte_pktmbuf_headroom(m);
154 if (*addr == 0)
155 goto out_err;
156 }
157 return 0;
158
159 out_err:
160 return -ENOMEM;
161 }
162
163 /**
164 * free_tx_desc - reclaims Tx descriptors and their buffers
165 * @q: the Tx queue to reclaim descriptors from
166 * @n: the number of descriptors to reclaim
167 *
168 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
169 * Tx buffers. Called with the Tx queue lock held.
170 */
171 static void free_tx_desc(struct sge_txq *q, unsigned int n)
172 {
173 struct tx_sw_desc *d;
174 unsigned int cidx = 0;
175
176 d = &q->sdesc[cidx];
177 while (n--) {
178 if (d->mbuf) { /* an SGL is present */
179 rte_pktmbuf_free(d->mbuf);
180 d->mbuf = NULL;
181 }
182 if (d->coalesce.idx) {
183 int i;
184
185 for (i = 0; i < d->coalesce.idx; i++) {
186 rte_pktmbuf_free(d->coalesce.mbuf[i]);
187 d->coalesce.mbuf[i] = NULL;
188 }
189 d->coalesce.idx = 0;
190 }
191 ++d;
192 if (++cidx == q->size) {
193 cidx = 0;
194 d = q->sdesc;
195 }
196 RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool);
197 }
198 }
199
200 static void reclaim_tx_desc(struct sge_txq *q, unsigned int n)
201 {
202 struct tx_sw_desc *d;
203 unsigned int cidx = q->cidx;
204
205 d = &q->sdesc[cidx];
206 while (n--) {
207 if (d->mbuf) { /* an SGL is present */
208 rte_pktmbuf_free(d->mbuf);
209 d->mbuf = NULL;
210 }
211 ++d;
212 if (++cidx == q->size) {
213 cidx = 0;
214 d = q->sdesc;
215 }
216 }
217 q->cidx = cidx;
218 }
219
220 /**
221 * fl_cap - return the capacity of a free-buffer list
222 * @fl: the FL
223 *
224 * Returns the capacity of a free-buffer list. The capacity is less than
225 * the size because one descriptor needs to be left unpopulated, otherwise
226 * HW will think the FL is empty.
227 */
228 static inline unsigned int fl_cap(const struct sge_fl *fl)
229 {
230 return fl->size - 8; /* 1 descriptor = 8 buffers */
231 }
232
233 /**
234 * fl_starving - return whether a Free List is starving.
235 * @adapter: pointer to the adapter
236 * @fl: the Free List
237 *
238 * Tests specified Free List to see whether the number of buffers
239 * available to the hardware has falled below our "starvation"
240 * threshold.
241 */
242 static inline bool fl_starving(const struct adapter *adapter,
243 const struct sge_fl *fl)
244 {
245 const struct sge *s = &adapter->sge;
246
247 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
248 }
249
250 static inline unsigned int get_buf_size(struct adapter *adapter,
251 const struct rx_sw_desc *d)
252 {
253 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
254 unsigned int buf_size = 0;
255
256 switch (rx_buf_size_idx) {
257 case RX_SMALL_MTU_BUF:
258 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
259 break;
260
261 case RX_LARGE_MTU_BUF:
262 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
263 break;
264
265 default:
266 BUG_ON(1);
267 /* NOT REACHED */
268 }
269
270 return buf_size;
271 }
272
273 /**
274 * free_rx_bufs - free the Rx buffers on an SGE free list
275 * @q: the SGE free list to free buffers from
276 * @n: how many buffers to free
277 *
278 * Release the next @n buffers on an SGE free-buffer Rx queue. The
279 * buffers must be made inaccessible to HW before calling this function.
280 */
281 static void free_rx_bufs(struct sge_fl *q, int n)
282 {
283 unsigned int cidx = q->cidx;
284 struct rx_sw_desc *d;
285
286 d = &q->sdesc[cidx];
287 while (n--) {
288 if (d->buf) {
289 rte_pktmbuf_free(d->buf);
290 d->buf = NULL;
291 }
292 ++d;
293 if (++cidx == q->size) {
294 cidx = 0;
295 d = q->sdesc;
296 }
297 q->avail--;
298 }
299 q->cidx = cidx;
300 }
301
302 /**
303 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
304 * @q: the SGE free list
305 *
306 * Unmap the current buffer on an SGE free-buffer Rx queue. The
307 * buffer must be made inaccessible to HW before calling this function.
308 *
309 * This is similar to @free_rx_bufs above but does not free the buffer.
310 * Do note that the FL still loses any further access to the buffer.
311 */
312 static void unmap_rx_buf(struct sge_fl *q)
313 {
314 if (++q->cidx == q->size)
315 q->cidx = 0;
316 q->avail--;
317 }
318
319 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
320 {
321 if (q->pend_cred >= 64) {
322 u32 val = adap->params.arch.sge_fl_db;
323
324 if (is_t4(adap->params.chip))
325 val |= V_PIDX(q->pend_cred / 8);
326 else
327 val |= V_PIDX_T5(q->pend_cred / 8);
328
329 /*
330 * Make sure all memory writes to the Free List queue are
331 * committed before we tell the hardware about them.
332 */
333 wmb();
334
335 /*
336 * If we don't have access to the new User Doorbell (T5+), use
337 * the old doorbell mechanism; otherwise use the new BAR2
338 * mechanism.
339 */
340 if (unlikely(!q->bar2_addr)) {
341 t4_write_reg_relaxed(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
342 val | V_QID(q->cntxt_id));
343 } else {
344 writel_relaxed(val | V_QID(q->bar2_qid),
345 (void *)((uintptr_t)q->bar2_addr +
346 SGE_UDB_KDOORBELL));
347
348 /*
349 * This Write memory Barrier will force the write to
350 * the User Doorbell area to be flushed.
351 */
352 wmb();
353 }
354 q->pend_cred &= 7;
355 }
356 }
357
358 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf,
359 dma_addr_t mapping)
360 {
361 sd->buf = buf;
362 sd->dma_addr = mapping; /* includes size low bits */
363 }
364
365 /**
366 * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs
367 * @adap: the adapter
368 * @q: the ring to refill
369 * @n: the number of new buffers to allocate
370 *
371 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
372 * allocated with the supplied gfp flags. The caller must assure that
373 * @n does not exceed the queue's capacity. If afterwards the queue is
374 * found critically low mark it as starving in the bitmap of starving FLs.
375 *
376 * Returns the number of buffers allocated.
377 */
378 static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q,
379 int n)
380 {
381 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
382 unsigned int cred = q->avail;
383 __be64 *d = &q->desc[q->pidx];
384 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
385 unsigned int buf_size_idx = RX_SMALL_MTU_BUF;
386 struct rte_mbuf *buf_bulk[n];
387 int ret, i;
388 struct rte_pktmbuf_pool_private *mbp_priv;
389 u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.jumbo_frame;
390
391 /* Use jumbo mtu buffers iff mbuf data room size can fit jumbo data. */
392 mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool);
393 if (jumbo_en &&
394 ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000))
395 buf_size_idx = RX_LARGE_MTU_BUF;
396
397 ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n);
398 if (unlikely(ret != 0)) {
399 dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n",
400 __func__);
401 q->alloc_failed++;
402 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
403 goto out;
404 }
405
406 for (i = 0; i < n; i++) {
407 struct rte_mbuf *mbuf = buf_bulk[i];
408 dma_addr_t mapping;
409
410 if (!mbuf) {
411 dev_debug(adap, "%s: mbuf alloc failed\n", __func__);
412 q->alloc_failed++;
413 rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++;
414 goto out;
415 }
416
417 rte_mbuf_refcnt_set(mbuf, 1);
418 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
419 mbuf->next = NULL;
420 mbuf->nb_segs = 1;
421 mbuf->port = rxq->rspq.port_id;
422
423 mapping = (dma_addr_t)(mbuf->buf_physaddr + mbuf->data_off);
424 mapping |= buf_size_idx;
425 *d++ = cpu_to_be64(mapping);
426 set_rx_sw_desc(sd, mbuf, mapping);
427 sd++;
428
429 q->avail++;
430 if (++q->pidx == q->size) {
431 q->pidx = 0;
432 sd = q->sdesc;
433 d = q->desc;
434 }
435 }
436
437 out: cred = q->avail - cred;
438 q->pend_cred += cred;
439 ring_fl_db(adap, q);
440
441 if (unlikely(fl_starving(adap, q))) {
442 /*
443 * Make sure data has been written to free list
444 */
445 wmb();
446 q->low++;
447 }
448
449 return cred;
450 }
451
452 /**
453 * refill_fl - refill an SGE Rx buffer ring with mbufs
454 * @adap: the adapter
455 * @q: the ring to refill
456 * @n: the number of new buffers to allocate
457 *
458 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
459 * allocated with the supplied gfp flags. The caller must assure that
460 * @n does not exceed the queue's capacity. Returns the number of buffers
461 * allocated.
462 */
463 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n)
464 {
465 return refill_fl_usembufs(adap, q, n);
466 }
467
468 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
469 {
470 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail));
471 }
472
473 /*
474 * Return the number of reclaimable descriptors in a Tx queue.
475 */
476 static inline int reclaimable(const struct sge_txq *q)
477 {
478 int hw_cidx = ntohs(q->stat->cidx);
479
480 hw_cidx -= q->cidx;
481 if (hw_cidx < 0)
482 return hw_cidx + q->size;
483 return hw_cidx;
484 }
485
486 /**
487 * reclaim_completed_tx - reclaims completed Tx descriptors
488 * @q: the Tx queue to reclaim completed descriptors from
489 *
490 * Reclaims Tx descriptors that the SGE has indicated it has processed.
491 */
492 void reclaim_completed_tx(struct sge_txq *q)
493 {
494 unsigned int avail = reclaimable(q);
495
496 do {
497 /* reclaim as much as possible */
498 reclaim_tx_desc(q, avail);
499 q->in_use -= avail;
500 avail = reclaimable(q);
501 } while (avail);
502 }
503
504 /**
505 * sgl_len - calculates the size of an SGL of the given capacity
506 * @n: the number of SGL entries
507 *
508 * Calculates the number of flits needed for a scatter/gather list that
509 * can hold the given number of entries.
510 */
511 static inline unsigned int sgl_len(unsigned int n)
512 {
513 /*
514 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
515 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
516 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
517 * repeated sequences of { Length[i], Length[i+1], Address[i],
518 * Address[i+1] } (this ensures that all addresses are on 64-bit
519 * boundaries). If N is even, then Length[N+1] should be set to 0 and
520 * Address[N+1] is omitted.
521 *
522 * The following calculation incorporates all of the above. It's
523 * somewhat hard to follow but, briefly: the "+2" accounts for the
524 * first two flits which include the DSGL header, Length0 and
525 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
526 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
527 * finally the "+((n-1)&1)" adds the one remaining flit needed if
528 * (n-1) is odd ...
529 */
530 n--;
531 return (3 * n) / 2 + (n & 1) + 2;
532 }
533
534 /**
535 * flits_to_desc - returns the num of Tx descriptors for the given flits
536 * @n: the number of flits
537 *
538 * Returns the number of Tx descriptors needed for the supplied number
539 * of flits.
540 */
541 static inline unsigned int flits_to_desc(unsigned int n)
542 {
543 return DIV_ROUND_UP(n, 8);
544 }
545
546 /**
547 * is_eth_imm - can an Ethernet packet be sent as immediate data?
548 * @m: the packet
549 *
550 * Returns whether an Ethernet packet is small enough to fit as
551 * immediate data. Return value corresponds to the headroom required.
552 */
553 static inline int is_eth_imm(const struct rte_mbuf *m)
554 {
555 unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ?
556 sizeof(struct cpl_tx_pkt_lso_core) : 0;
557
558 hdrlen += sizeof(struct cpl_tx_pkt);
559 if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen)
560 return hdrlen;
561
562 return 0;
563 }
564
565 /**
566 * calc_tx_flits - calculate the number of flits for a packet Tx WR
567 * @m: the packet
568 *
569 * Returns the number of flits needed for a Tx WR for the given Ethernet
570 * packet, including the needed WR and CPL headers.
571 */
572 static inline unsigned int calc_tx_flits(const struct rte_mbuf *m)
573 {
574 unsigned int flits;
575 int hdrlen;
576
577 /*
578 * If the mbuf is small enough, we can pump it out as a work request
579 * with only immediate data. In that case we just have to have the
580 * TX Packet header plus the mbuf data in the Work Request.
581 */
582
583 hdrlen = is_eth_imm(m);
584 if (hdrlen)
585 return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64));
586
587 /*
588 * Otherwise, we're going to have to construct a Scatter gather list
589 * of the mbuf body and fragments. We also include the flits necessary
590 * for the TX Packet Work Request and CPL. We always have a firmware
591 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
592 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
593 * message or, if we're doing a Large Send Offload, an LSO CPL message
594 * with an embeded TX Packet Write CPL message.
595 */
596 flits = sgl_len(m->nb_segs);
597 if (m->tso_segsz)
598 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
599 sizeof(struct cpl_tx_pkt_lso_core) +
600 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
601 else
602 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
603 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
604 return flits;
605 }
606
607 /**
608 * write_sgl - populate a scatter/gather list for a packet
609 * @mbuf: the packet
610 * @q: the Tx queue we are writing into
611 * @sgl: starting location for writing the SGL
612 * @end: points right after the end of the SGL
613 * @start: start offset into mbuf main-body data to include in the SGL
614 * @addr: address of mapped region
615 *
616 * Generates a scatter/gather list for the buffers that make up a packet.
617 * The caller must provide adequate space for the SGL that will be written.
618 * The SGL includes all of the packet's page fragments and the data in its
619 * main body except for the first @start bytes. @sgl must be 16-byte
620 * aligned and within a Tx descriptor with available space. @end points
621 * write after the end of the SGL but does not account for any potential
622 * wrap around, i.e., @end > @sgl.
623 */
624 static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q,
625 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
626 const dma_addr_t *addr)
627 {
628 unsigned int i, len;
629 struct ulptx_sge_pair *to;
630 struct rte_mbuf *m = mbuf;
631 unsigned int nfrags = m->nb_segs;
632 struct ulptx_sge_pair buf[nfrags / 2];
633
634 len = m->data_len - start;
635 sgl->len0 = htonl(len);
636 sgl->addr0 = rte_cpu_to_be_64(addr[0]);
637
638 sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
639 V_ULPTX_NSGE(nfrags));
640 if (likely(--nfrags == 0))
641 return;
642 /*
643 * Most of the complexity below deals with the possibility we hit the
644 * end of the queue in the middle of writing the SGL. For this case
645 * only we create the SGL in a temporary buffer and then copy it.
646 */
647 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
648
649 for (i = 0; nfrags >= 2; nfrags -= 2, to++) {
650 m = m->next;
651 to->len[0] = rte_cpu_to_be_32(m->data_len);
652 to->addr[0] = rte_cpu_to_be_64(addr[++i]);
653 m = m->next;
654 to->len[1] = rte_cpu_to_be_32(m->data_len);
655 to->addr[1] = rte_cpu_to_be_64(addr[++i]);
656 }
657 if (nfrags) {
658 m = m->next;
659 to->len[0] = rte_cpu_to_be_32(m->data_len);
660 to->len[1] = rte_cpu_to_be_32(0);
661 to->addr[0] = rte_cpu_to_be_64(addr[i + 1]);
662 }
663 if (unlikely((u8 *)end > (u8 *)q->stat)) {
664 unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat,
665 (u8 *)sgl->sge);
666 unsigned int part1;
667
668 if (likely(part0))
669 memcpy(sgl->sge, buf, part0);
670 part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat);
671 rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1);
672 end = RTE_PTR_ADD((void *)q->desc, part1);
673 }
674 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
675 *(u64 *)end = 0;
676 }
677
678 #define IDXDIFF(head, tail, wrap) \
679 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
680
681 #define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size)
682 #define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size)
683
684 /**
685 * ring_tx_db - ring a Tx queue's doorbell
686 * @adap: the adapter
687 * @q: the Tx queue
688 * @n: number of new descriptors to give to HW
689 *
690 * Ring the doorbel for a Tx queue.
691 */
692 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q)
693 {
694 int n = Q_IDXDIFF(q, dbidx);
695
696 /*
697 * Make sure that all writes to the TX Descriptors are committed
698 * before we tell the hardware about them.
699 */
700 rte_wmb();
701
702 /*
703 * If we don't have access to the new User Doorbell (T5+), use the old
704 * doorbell mechanism; otherwise use the new BAR2 mechanism.
705 */
706 if (unlikely(!q->bar2_addr)) {
707 u32 val = V_PIDX(n);
708
709 /*
710 * For T4 we need to participate in the Doorbell Recovery
711 * mechanism.
712 */
713 if (!q->db_disabled)
714 t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL),
715 V_QID(q->cntxt_id) | val);
716 else
717 q->db_pidx_inc += n;
718 q->db_pidx = q->pidx;
719 } else {
720 u32 val = V_PIDX_T5(n);
721
722 /*
723 * T4 and later chips share the same PIDX field offset within
724 * the doorbell, but T5 and later shrank the field in order to
725 * gain a bit for Doorbell Priority. The field was absurdly
726 * large in the first place (14 bits) so we just use the T5
727 * and later limits and warn if a Queue ID is too large.
728 */
729 WARN_ON(val & F_DBPRIO);
730
731 writel(val | V_QID(q->bar2_qid),
732 (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL));
733
734 /*
735 * This Write Memory Barrier will force the write to the User
736 * Doorbell area to be flushed. This is needed to prevent
737 * writes on different CPUs for the same queue from hitting
738 * the adapter out of order. This is required when some Work
739 * Requests take the Write Combine Gather Buffer path (user
740 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
741 * take the traditional path where we simply increment the
742 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
743 * hardware DMA read the actual Work Request.
744 */
745 rte_wmb();
746 }
747 q->dbidx = q->pidx;
748 }
749
750 /*
751 * Figure out what HW csum a packet wants and return the appropriate control
752 * bits.
753 */
754 static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m)
755 {
756 int csum_type;
757
758 if (m->ol_flags & PKT_TX_IP_CKSUM) {
759 switch (m->ol_flags & PKT_TX_L4_MASK) {
760 case PKT_TX_TCP_CKSUM:
761 csum_type = TX_CSUM_TCPIP;
762 break;
763 case PKT_TX_UDP_CKSUM:
764 csum_type = TX_CSUM_UDPIP;
765 break;
766 default:
767 goto nocsum;
768 }
769 } else {
770 goto nocsum;
771 }
772
773 if (likely(csum_type >= TX_CSUM_TCPIP)) {
774 int hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len);
775 int eth_hdr_len = m->l2_len;
776
777 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
778 hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len);
779 else
780 hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len);
781 return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len;
782 }
783 nocsum:
784 /*
785 * unknown protocol, disable HW csum
786 * and hope a bad packet is detected
787 */
788 return F_TXPKT_L4CSUM_DIS;
789 }
790
791 static inline void txq_advance(struct sge_txq *q, unsigned int n)
792 {
793 q->in_use += n;
794 q->pidx += n;
795 if (q->pidx >= q->size)
796 q->pidx -= q->size;
797 }
798
799 #define MAX_COALESCE_LEN 64000
800
801 static inline int wraps_around(struct sge_txq *q, int ndesc)
802 {
803 return (q->pidx + ndesc) > q->size ? 1 : 0;
804 }
805
806 static void tx_timer_cb(void *data)
807 {
808 struct adapter *adap = (struct adapter *)data;
809 struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
810 int i;
811 unsigned int coal_idx;
812
813 /* monitor any pending tx */
814 for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) {
815 if (t4_os_trylock(&txq->txq_lock)) {
816 coal_idx = txq->q.coalesce.idx;
817 if (coal_idx) {
818 if (coal_idx == txq->q.last_coal_idx &&
819 txq->q.pidx == txq->q.last_pidx) {
820 ship_tx_pkt_coalesce_wr(adap, txq);
821 } else {
822 txq->q.last_coal_idx = coal_idx;
823 txq->q.last_pidx = txq->q.pidx;
824 }
825 }
826 t4_os_unlock(&txq->txq_lock);
827 }
828 }
829 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
830 }
831
832 /**
833 * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR
834 * @ adap: adapter structure
835 * @txq: tx queue
836 *
837 * writes the different fields of the pkts WR and sends it.
838 */
839 static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap,
840 struct sge_eth_txq *txq)
841 {
842 u32 wr_mid;
843 struct sge_txq *q = &txq->q;
844 struct fw_eth_tx_pkts_wr *wr;
845 unsigned int ndesc;
846
847 /* fill the pkts WR header */
848 wr = (void *)&q->desc[q->pidx];
849 wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
850
851 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2));
852 ndesc = flits_to_desc(q->coalesce.flits);
853 wr->equiq_to_len16 = htonl(wr_mid);
854 wr->plen = cpu_to_be16(q->coalesce.len);
855 wr->npkt = q->coalesce.idx;
856 wr->r3 = 0;
857 wr->type = q->coalesce.type;
858
859 /* zero out coalesce structure members */
860 q->coalesce.idx = 0;
861 q->coalesce.flits = 0;
862 q->coalesce.len = 0;
863
864 txq_advance(q, ndesc);
865 txq->stats.coal_wr++;
866 txq->stats.coal_pkts += wr->npkt;
867
868 if (Q_IDXDIFF(q, equeidx) >= q->size / 2) {
869 q->equeidx = q->pidx;
870 wr_mid |= F_FW_WR_EQUEQ;
871 wr->equiq_to_len16 = htonl(wr_mid);
872 }
873 ring_tx_db(adap, q);
874 }
875
876 /**
877 * should_tx_packet_coalesce - decides wether to coalesce an mbuf or not
878 * @txq: tx queue where the mbuf is sent
879 * @mbuf: mbuf to be sent
880 * @nflits: return value for number of flits needed
881 * @adap: adapter structure
882 *
883 * This function decides if a packet should be coalesced or not.
884 */
885 static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq,
886 struct rte_mbuf *mbuf,
887 unsigned int *nflits,
888 struct adapter *adap)
889 {
890 struct sge_txq *q = &txq->q;
891 unsigned int flits, ndesc;
892 unsigned char type = 0;
893 int credits;
894
895 /* use coal WR type 1 when no frags are present */
896 type = (mbuf->nb_segs == 1) ? 1 : 0;
897
898 if (unlikely(type != q->coalesce.type && q->coalesce.idx))
899 ship_tx_pkt_coalesce_wr(adap, txq);
900
901 /* calculate the number of flits required for coalescing this packet
902 * without the 2 flits of the WR header. These are added further down
903 * if we are just starting in new PKTS WR. sgl_len doesn't account for
904 * the possible 16 bytes alignment ULP TX commands so we do it here.
905 */
906 flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U;
907 if (type == 0)
908 flits += (sizeof(struct ulp_txpkt) +
909 sizeof(struct ulptx_idata)) / sizeof(__be64);
910 flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64);
911 *nflits = flits;
912
913 /* If coalescing is on, the mbuf is added to a pkts WR */
914 if (q->coalesce.idx) {
915 ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8);
916 credits = txq_avail(q) - ndesc;
917
918 /* If we are wrapping or this is last mbuf then, send the
919 * already coalesced mbufs and let the non-coalesce pass
920 * handle the mbuf.
921 */
922 if (unlikely(credits < 0 || wraps_around(q, ndesc))) {
923 ship_tx_pkt_coalesce_wr(adap, txq);
924 return 0;
925 }
926
927 /* If the max coalesce len or the max WR len is reached
928 * ship the WR and keep coalescing on.
929 */
930 if (unlikely((q->coalesce.len + mbuf->pkt_len >
931 MAX_COALESCE_LEN) ||
932 (q->coalesce.flits + flits >
933 q->coalesce.max))) {
934 ship_tx_pkt_coalesce_wr(adap, txq);
935 goto new;
936 }
937 return 1;
938 }
939
940 new:
941 /* start a new pkts WR, the WR header is not filled below */
942 flits += sizeof(struct fw_eth_tx_pkts_wr) / sizeof(__be64);
943 ndesc = flits_to_desc(q->coalesce.flits + flits);
944 credits = txq_avail(q) - ndesc;
945
946 if (unlikely(credits < 0 || wraps_around(q, ndesc)))
947 return 0;
948 q->coalesce.flits += 2;
949 q->coalesce.type = type;
950 q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] +
951 2 * sizeof(__be64);
952 return 1;
953 }
954
955 /**
956 * tx_do_packet_coalesce - add an mbuf to a coalesce WR
957 * @txq: sge_eth_txq used send the mbuf
958 * @mbuf: mbuf to be sent
959 * @flits: flits needed for this mbuf
960 * @adap: adapter structure
961 * @pi: port_info structure
962 * @addr: mapped address of the mbuf
963 *
964 * Adds an mbuf to be sent as part of a coalesce WR by filling a
965 * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and
966 * ulp_tx_sc_dsgl command.
967 */
968 static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq,
969 struct rte_mbuf *mbuf,
970 int flits, struct adapter *adap,
971 const struct port_info *pi,
972 dma_addr_t *addr)
973 {
974 u64 cntrl, *end;
975 struct sge_txq *q = &txq->q;
976 struct ulp_txpkt *mc;
977 struct ulptx_idata *sc_imm;
978 struct cpl_tx_pkt_core *cpl;
979 struct tx_sw_desc *sd;
980 unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len;
981
982 if (q->coalesce.type == 0) {
983 mc = (struct ulp_txpkt *)q->coalesce.ptr;
984 mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) |
985 V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) |
986 F_ULP_TXPKT_RO);
987 mc->len = htonl(DIV_ROUND_UP(flits, 2));
988 sc_imm = (struct ulptx_idata *)(mc + 1);
989 sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) |
990 F_ULP_TX_SC_MORE);
991 sc_imm->len = htonl(sizeof(*cpl));
992 end = (u64 *)mc + flits;
993 cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1);
994 } else {
995 end = (u64 *)q->coalesce.ptr + flits;
996 cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr;
997 }
998
999 /* update coalesce structure for this txq */
1000 q->coalesce.flits += flits;
1001 q->coalesce.ptr += flits * sizeof(__be64);
1002 q->coalesce.len += mbuf->pkt_len;
1003
1004 /* fill the cpl message, same as in t4_eth_xmit, this should be kept
1005 * similar to t4_eth_xmit
1006 */
1007 if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
1008 cntrl = hwcsum(adap->params.chip, mbuf) |
1009 F_TXPKT_IPCSUM_DIS;
1010 txq->stats.tx_cso++;
1011 } else {
1012 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1013 }
1014
1015 if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1016 txq->stats.vlan_ins++;
1017 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci);
1018 }
1019
1020 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
1021 V_TXPKT_INTF(pi->tx_chan) |
1022 V_TXPKT_PF(adap->pf));
1023 cpl->pack = htons(0);
1024 cpl->len = htons(len);
1025 cpl->ctrl1 = cpu_to_be64(cntrl);
1026 write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr);
1027 txq->stats.pkts++;
1028 txq->stats.tx_bytes += len;
1029
1030 sd = &q->sdesc[q->pidx + (idx >> 1)];
1031 if (!(idx & 1)) {
1032 if (sd->coalesce.idx) {
1033 int i;
1034
1035 for (i = 0; i < sd->coalesce.idx; i++) {
1036 rte_pktmbuf_free(sd->coalesce.mbuf[i]);
1037 sd->coalesce.mbuf[i] = NULL;
1038 }
1039 }
1040 }
1041
1042 /* store pointers to the mbuf and the sgl used in free_tx_desc.
1043 * each tx desc can hold two pointers corresponding to the value
1044 * of ETH_COALESCE_PKT_PER_DESC
1045 */
1046 sd->coalesce.mbuf[idx & 1] = mbuf;
1047 sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1);
1048 sd->coalesce.idx = (idx & 1) + 1;
1049
1050 /* send the coaelsced work request if max reached */
1051 if (++q->coalesce.idx == ETH_COALESCE_PKT_NUM)
1052 ship_tx_pkt_coalesce_wr(adap, txq);
1053 return 0;
1054 }
1055
1056 /**
1057 * t4_eth_xmit - add a packet to an Ethernet Tx queue
1058 * @txq: the egress queue
1059 * @mbuf: the packet
1060 *
1061 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1062 */
1063 int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf)
1064 {
1065 const struct port_info *pi;
1066 struct cpl_tx_pkt_lso_core *lso;
1067 struct adapter *adap;
1068 struct rte_mbuf *m = mbuf;
1069 struct fw_eth_tx_pkt_wr *wr;
1070 struct cpl_tx_pkt_core *cpl;
1071 struct tx_sw_desc *d;
1072 dma_addr_t addr[m->nb_segs];
1073 unsigned int flits, ndesc, cflits;
1074 int l3hdr_len, l4hdr_len, eth_xtra_len;
1075 int len, last_desc;
1076 int credits;
1077 u32 wr_mid;
1078 u64 cntrl, *end;
1079 bool v6;
1080 u32 max_pkt_len = txq->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1081
1082 /* Reject xmit if queue is stopped */
1083 if (unlikely(txq->flags & EQ_STOPPED))
1084 return -(EBUSY);
1085
1086 /*
1087 * The chip min packet length is 10 octets but play safe and reject
1088 * anything shorter than an Ethernet header.
1089 */
1090 if (unlikely(m->pkt_len < ETHER_HDR_LEN)) {
1091 out_free:
1092 rte_pktmbuf_free(m);
1093 return 0;
1094 }
1095
1096 if ((!(m->ol_flags & PKT_TX_TCP_SEG)) &&
1097 (unlikely(m->pkt_len > max_pkt_len)))
1098 goto out_free;
1099
1100 pi = (struct port_info *)txq->eth_dev->data->dev_private;
1101 adap = pi->adapter;
1102
1103 cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
1104 /* align the end of coalesce WR to a 512 byte boundary */
1105 txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8;
1106
1107 if (!((m->ol_flags & PKT_TX_TCP_SEG) || (m->pkt_len > ETHER_MAX_LEN))) {
1108 if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) {
1109 if (unlikely(map_mbuf(mbuf, addr) < 0)) {
1110 dev_warn(adap, "%s: mapping err for coalesce\n",
1111 __func__);
1112 txq->stats.mapping_err++;
1113 goto out_free;
1114 }
1115 rte_prefetch0((volatile void *)addr);
1116 return tx_do_packet_coalesce(txq, mbuf, cflits, adap,
1117 pi, addr);
1118 } else {
1119 return -EBUSY;
1120 }
1121 }
1122
1123 if (txq->q.coalesce.idx)
1124 ship_tx_pkt_coalesce_wr(adap, txq);
1125
1126 flits = calc_tx_flits(m);
1127 ndesc = flits_to_desc(flits);
1128 credits = txq_avail(&txq->q) - ndesc;
1129
1130 if (unlikely(credits < 0)) {
1131 dev_debug(adap, "%s: Tx ring %u full; credits = %d\n",
1132 __func__, txq->q.cntxt_id, credits);
1133 return -EBUSY;
1134 }
1135
1136 if (unlikely(map_mbuf(m, addr) < 0)) {
1137 txq->stats.mapping_err++;
1138 goto out_free;
1139 }
1140
1141 wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1142 if (Q_IDXDIFF(&txq->q, equeidx) >= 64) {
1143 txq->q.equeidx = txq->q.pidx;
1144 wr_mid |= F_FW_WR_EQUEQ;
1145 }
1146
1147 wr = (void *)&txq->q.desc[txq->q.pidx];
1148 wr->equiq_to_len16 = htonl(wr_mid);
1149 wr->r3 = rte_cpu_to_be_64(0);
1150 end = (u64 *)wr + flits;
1151
1152 len = 0;
1153 len += sizeof(*cpl);
1154
1155 /* Coalescing skipped and we send through normal path */
1156 if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
1157 wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1158 V_FW_WR_IMMDLEN(len));
1159 cpl = (void *)(wr + 1);
1160 if (m->ol_flags & PKT_TX_IP_CKSUM) {
1161 cntrl = hwcsum(adap->params.chip, m) |
1162 F_TXPKT_IPCSUM_DIS;
1163 txq->stats.tx_cso++;
1164 }
1165 } else {
1166 lso = (void *)(wr + 1);
1167 v6 = (m->ol_flags & PKT_TX_IPV6) != 0;
1168 l3hdr_len = m->l3_len;
1169 l4hdr_len = m->l4_len;
1170 eth_xtra_len = m->l2_len - ETHER_HDR_LEN;
1171 len += sizeof(*lso);
1172 wr->op_immdlen = htonl(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1173 V_FW_WR_IMMDLEN(len));
1174 lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) |
1175 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
1176 V_LSO_IPV6(v6) |
1177 V_LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1178 V_LSO_IPHDR_LEN(l3hdr_len / 4) |
1179 V_LSO_TCPHDR_LEN(l4hdr_len / 4));
1180 lso->ipid_ofst = htons(0);
1181 lso->mss = htons(m->tso_segsz);
1182 lso->seqno_offset = htonl(0);
1183 if (is_t4(adap->params.chip))
1184 lso->len = htonl(m->pkt_len);
1185 else
1186 lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len));
1187 cpl = (void *)(lso + 1);
1188 cntrl = V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1189 V_TXPKT_IPHDR_LEN(l3hdr_len) |
1190 V_TXPKT_ETHHDR_LEN(eth_xtra_len);
1191 txq->stats.tso++;
1192 txq->stats.tx_cso += m->tso_segsz;
1193 }
1194
1195 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1196 txq->stats.vlan_ins++;
1197 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci);
1198 }
1199
1200 cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
1201 V_TXPKT_INTF(pi->tx_chan) |
1202 V_TXPKT_PF(adap->pf));
1203 cpl->pack = htons(0);
1204 cpl->len = htons(m->pkt_len);
1205 cpl->ctrl1 = cpu_to_be64(cntrl);
1206
1207 txq->stats.pkts++;
1208 txq->stats.tx_bytes += m->pkt_len;
1209 last_desc = txq->q.pidx + ndesc - 1;
1210 if (last_desc >= (int)txq->q.size)
1211 last_desc -= txq->q.size;
1212
1213 d = &txq->q.sdesc[last_desc];
1214 if (d->coalesce.idx) {
1215 int i;
1216
1217 for (i = 0; i < d->coalesce.idx; i++) {
1218 rte_pktmbuf_free(d->coalesce.mbuf[i]);
1219 d->coalesce.mbuf[i] = NULL;
1220 }
1221 d->coalesce.idx = 0;
1222 }
1223 write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1224 addr);
1225 txq->q.sdesc[last_desc].mbuf = m;
1226 txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1227 txq_advance(&txq->q, ndesc);
1228 ring_tx_db(adap, &txq->q);
1229 return 0;
1230 }
1231
1232 /**
1233 * alloc_ring - allocate resources for an SGE descriptor ring
1234 * @dev: the PCI device's core device
1235 * @nelem: the number of descriptors
1236 * @elem_size: the size of each descriptor
1237 * @sw_size: the size of the SW state associated with each ring element
1238 * @phys: the physical address of the allocated ring
1239 * @metadata: address of the array holding the SW state for the ring
1240 * @stat_size: extra space in HW ring for status information
1241 * @node: preferred node for memory allocations
1242 *
1243 * Allocates resources for an SGE descriptor ring, such as Tx queues,
1244 * free buffer lists, or response queues. Each SGE ring requires
1245 * space for its HW descriptors plus, optionally, space for the SW state
1246 * associated with each HW entry (the metadata). The function returns
1247 * three values: the virtual address for the HW ring (the return value
1248 * of the function), the bus address of the HW ring, and the address
1249 * of the SW ring.
1250 */
1251 static void *alloc_ring(size_t nelem, size_t elem_size,
1252 size_t sw_size, dma_addr_t *phys, void *metadata,
1253 size_t stat_size, __rte_unused uint16_t queue_id,
1254 int socket_id, const char *z_name,
1255 const char *z_name_sw)
1256 {
1257 size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size;
1258 const struct rte_memzone *tz;
1259 void *s = NULL;
1260
1261 dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; "
1262 "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;"
1263 " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size,
1264 stat_size, queue_id, socket_id, z_name, z_name_sw);
1265
1266 tz = rte_memzone_lookup(z_name);
1267 if (tz) {
1268 dev_debug(adapter, "%s: tz exists...returning existing..\n",
1269 __func__);
1270 goto alloc_sw_ring;
1271 }
1272
1273 /*
1274 * Allocate TX/RX ring hardware descriptors. A memzone large enough to
1275 * handle the maximum ring size is allocated in order to allow for
1276 * resizing in later calls to the queue setup function.
1277 */
1278 tz = rte_memzone_reserve_aligned(z_name, len, socket_id, 0, 4096);
1279 if (!tz)
1280 return NULL;
1281
1282 alloc_sw_ring:
1283 memset(tz->addr, 0, len);
1284 if (sw_size) {
1285 s = rte_zmalloc_socket(z_name_sw, nelem * sw_size,
1286 RTE_CACHE_LINE_SIZE, socket_id);
1287
1288 if (!s) {
1289 dev_err(adapter, "%s: failed to get sw_ring memory\n",
1290 __func__);
1291 return NULL;
1292 }
1293 }
1294 if (metadata)
1295 *(void **)metadata = s;
1296
1297 *phys = (uint64_t)tz->phys_addr;
1298 return tz->addr;
1299 }
1300
1301 /**
1302 * t4_pktgl_to_mbuf_usembufs - build an mbuf from a packet gather list
1303 * @gl: the gather list
1304 *
1305 * Builds an mbuf from the given packet gather list. Returns the mbuf or
1306 * %NULL if mbuf allocation failed.
1307 */
1308 static struct rte_mbuf *t4_pktgl_to_mbuf_usembufs(const struct pkt_gl *gl)
1309 {
1310 /*
1311 * If there's only one mbuf fragment, just return that.
1312 */
1313 if (likely(gl->nfrags == 1))
1314 return gl->mbufs[0];
1315
1316 return NULL;
1317 }
1318
1319 /**
1320 * t4_pktgl_to_mbuf - build an mbuf from a packet gather list
1321 * @gl: the gather list
1322 *
1323 * Builds an mbuf from the given packet gather list. Returns the mbuf or
1324 * %NULL if mbuf allocation failed.
1325 */
1326 static struct rte_mbuf *t4_pktgl_to_mbuf(const struct pkt_gl *gl)
1327 {
1328 return t4_pktgl_to_mbuf_usembufs(gl);
1329 }
1330
1331 /**
1332 * t4_ethrx_handler - process an ingress ethernet packet
1333 * @q: the response queue that received the packet
1334 * @rsp: the response queue descriptor holding the RX_PKT message
1335 * @si: the gather list of packet fragments
1336 *
1337 * Process an ingress ethernet packet and deliver it to the stack.
1338 */
1339 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1340 const struct pkt_gl *si)
1341 {
1342 struct rte_mbuf *mbuf;
1343 const struct cpl_rx_pkt *pkt;
1344 const struct rss_header *rss_hdr;
1345 bool csum_ok;
1346 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1347
1348 rss_hdr = (const void *)rsp;
1349 pkt = (const void *)&rsp[1];
1350 csum_ok = pkt->csum_calc && !pkt->err_vec;
1351
1352 mbuf = t4_pktgl_to_mbuf(si);
1353 if (unlikely(!mbuf)) {
1354 rxq->stats.rx_drops++;
1355 return 0;
1356 }
1357
1358 mbuf->port = pkt->iff;
1359 if (pkt->l2info & htonl(F_RXF_IP)) {
1360 mbuf->packet_type = RTE_PTYPE_L3_IPV4;
1361 if (unlikely(!csum_ok))
1362 mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
1363
1364 if ((pkt->l2info & htonl(F_RXF_UDP | F_RXF_TCP)) && !csum_ok)
1365 mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
1366 } else if (pkt->l2info & htonl(F_RXF_IP6)) {
1367 mbuf->packet_type = RTE_PTYPE_L3_IPV6;
1368 }
1369
1370 mbuf->port = pkt->iff;
1371
1372 if (!rss_hdr->filter_tid && rss_hdr->hash_type) {
1373 mbuf->ol_flags |= PKT_RX_RSS_HASH;
1374 mbuf->hash.rss = ntohl(rss_hdr->hash_val);
1375 }
1376
1377 if (pkt->vlan_ex) {
1378 mbuf->ol_flags |= PKT_RX_VLAN_PKT;
1379 mbuf->vlan_tci = ntohs(pkt->vlan);
1380 }
1381 rxq->stats.pkts++;
1382 rxq->stats.rx_bytes += mbuf->pkt_len;
1383
1384 return 0;
1385 }
1386
1387 /**
1388 * is_new_response - check if a response is newly written
1389 * @r: the response descriptor
1390 * @q: the response queue
1391 *
1392 * Returns true if a response descriptor contains a yet unprocessed
1393 * response.
1394 */
1395 static inline bool is_new_response(const struct rsp_ctrl *r,
1396 const struct sge_rspq *q)
1397 {
1398 return (r->u.type_gen >> S_RSPD_GEN) == q->gen;
1399 }
1400
1401 #define CXGB4_MSG_AN ((void *)1)
1402
1403 /**
1404 * rspq_next - advance to the next entry in a response queue
1405 * @q: the queue
1406 *
1407 * Updates the state of a response queue to advance it to the next entry.
1408 */
1409 static inline void rspq_next(struct sge_rspq *q)
1410 {
1411 q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len);
1412 if (unlikely(++q->cidx == q->size)) {
1413 q->cidx = 0;
1414 q->gen ^= 1;
1415 q->cur_desc = q->desc;
1416 }
1417 }
1418
1419 /**
1420 * process_responses - process responses from an SGE response queue
1421 * @q: the ingress queue to process
1422 * @budget: how many responses can be processed in this round
1423 * @rx_pkts: mbuf to put the pkts
1424 *
1425 * Process responses from an SGE response queue up to the supplied budget.
1426 * Responses include received packets as well as control messages from FW
1427 * or HW.
1428 *
1429 * Additionally choose the interrupt holdoff time for the next interrupt
1430 * on this queue. If the system is under memory shortage use a fairly
1431 * long delay to help recovery.
1432 */
1433 static int process_responses(struct sge_rspq *q, int budget,
1434 struct rte_mbuf **rx_pkts)
1435 {
1436 int ret = 0, rsp_type;
1437 int budget_left = budget;
1438 const struct rsp_ctrl *rc;
1439 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1440
1441 while (likely(budget_left)) {
1442 rc = (const struct rsp_ctrl *)
1443 ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc)));
1444
1445 if (!is_new_response(rc, q))
1446 break;
1447
1448 /*
1449 * Ensure response has been read
1450 */
1451 rmb();
1452 rsp_type = G_RSPD_TYPE(rc->u.type_gen);
1453
1454 if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) {
1455 const struct rx_sw_desc *rsd =
1456 &rxq->fl.sdesc[rxq->fl.cidx];
1457 const struct rss_header *rss_hdr =
1458 (const void *)q->cur_desc;
1459 const struct cpl_rx_pkt *cpl =
1460 (const void *)&q->cur_desc[1];
1461 bool csum_ok = cpl->csum_calc && !cpl->err_vec;
1462 struct rte_mbuf *pkt, *npkt;
1463 u32 len, bufsz;
1464
1465 len = ntohl(rc->pldbuflen_qid);
1466 BUG_ON(!(len & F_RSPD_NEWBUF));
1467 pkt = rsd->buf;
1468 npkt = pkt;
1469 len = G_RSPD_LEN(len);
1470 pkt->pkt_len = len;
1471
1472 /* Chain mbufs into len if necessary */
1473 while (len) {
1474 struct rte_mbuf *new_pkt = rsd->buf;
1475
1476 bufsz = min(get_buf_size(q->adapter, rsd), len);
1477 new_pkt->data_len = bufsz;
1478 unmap_rx_buf(&rxq->fl);
1479 len -= bufsz;
1480 npkt->next = new_pkt;
1481 npkt = new_pkt;
1482 pkt->nb_segs++;
1483 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1484 }
1485 npkt->next = NULL;
1486 pkt->nb_segs--;
1487
1488 if (cpl->l2info & htonl(F_RXF_IP)) {
1489 pkt->packet_type = RTE_PTYPE_L3_IPV4;
1490 if (unlikely(!csum_ok))
1491 pkt->ol_flags |= PKT_RX_IP_CKSUM_BAD;
1492
1493 if ((cpl->l2info &
1494 htonl(F_RXF_UDP | F_RXF_TCP)) && !csum_ok)
1495 pkt->ol_flags |= PKT_RX_L4_CKSUM_BAD;
1496 } else if (cpl->l2info & htonl(F_RXF_IP6)) {
1497 pkt->packet_type = RTE_PTYPE_L3_IPV6;
1498 }
1499
1500 if (!rss_hdr->filter_tid && rss_hdr->hash_type) {
1501 pkt->ol_flags |= PKT_RX_RSS_HASH;
1502 pkt->hash.rss = ntohl(rss_hdr->hash_val);
1503 }
1504
1505 if (cpl->vlan_ex) {
1506 pkt->ol_flags |= PKT_RX_VLAN_PKT;
1507 pkt->vlan_tci = ntohs(cpl->vlan);
1508 }
1509 rxq->stats.pkts++;
1510 rxq->stats.rx_bytes += pkt->pkt_len;
1511 rx_pkts[budget - budget_left] = pkt;
1512 } else if (likely(rsp_type == X_RSPD_TYPE_CPL)) {
1513 ret = q->handler(q, q->cur_desc, NULL);
1514 } else {
1515 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1516 }
1517
1518 if (unlikely(ret)) {
1519 /* couldn't process descriptor, back off for recovery */
1520 q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1521 break;
1522 }
1523
1524 rspq_next(q);
1525 budget_left--;
1526
1527 if (R_IDXDIFF(q, gts_idx) >= 64) {
1528 unsigned int cidx_inc = R_IDXDIFF(q, gts_idx);
1529 unsigned int params;
1530 u32 val;
1531
1532 if (fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1533 __refill_fl(q->adapter, &rxq->fl);
1534 params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
1535 q->next_intr_params = params;
1536 val = V_CIDXINC(cidx_inc) | V_SEINTARM(params);
1537
1538 if (unlikely(!q->bar2_addr))
1539 t4_write_reg(q->adapter, MYPF_REG(A_SGE_PF_GTS),
1540 val |
1541 V_INGRESSQID((u32)q->cntxt_id));
1542 else {
1543 writel(val | V_INGRESSQID(q->bar2_qid),
1544 (void *)((uintptr_t)q->bar2_addr +
1545 SGE_UDB_GTS));
1546 /*
1547 * This Write memory Barrier will force the
1548 * write to the User Doorbell area to be
1549 * flushed.
1550 */
1551 wmb();
1552 }
1553 q->gts_idx = q->cidx;
1554 }
1555 }
1556
1557 /*
1558 * If this is a Response Queue with an associated Free List and
1559 * there's room for another chunk of new Free List buffer pointers,
1560 * refill the Free List.
1561 */
1562
1563 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64)
1564 __refill_fl(q->adapter, &rxq->fl);
1565
1566 return budget - budget_left;
1567 }
1568
1569 int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts,
1570 unsigned int budget, unsigned int *work_done)
1571 {
1572 int err = 0;
1573
1574 *work_done = process_responses(q, budget, rx_pkts);
1575 return err;
1576 }
1577
1578 /**
1579 * bar2_address - return the BAR2 address for an SGE Queue's Registers
1580 * @adapter: the adapter
1581 * @qid: the SGE Queue ID
1582 * @qtype: the SGE Queue Type (Egress or Ingress)
1583 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
1584 *
1585 * Returns the BAR2 address for the SGE Queue Registers associated with
1586 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
1587 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
1588 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
1589 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
1590 */
1591 static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid,
1592 enum t4_bar2_qtype qtype,
1593 unsigned int *pbar2_qid)
1594 {
1595 u64 bar2_qoffset;
1596 int ret;
1597
1598 ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid);
1599 if (ret)
1600 return NULL;
1601
1602 return adapter->bar2 + bar2_qoffset;
1603 }
1604
1605 int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_rspq *rq)
1606 {
1607 struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1608 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1609
1610 return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0,
1611 rq->cntxt_id, fl_id, 0xffff);
1612 }
1613
1614 int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_rspq *rq)
1615 {
1616 struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq);
1617 unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff;
1618
1619 return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0,
1620 rq->cntxt_id, fl_id, 0xffff);
1621 }
1622
1623 /*
1624 * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
1625 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
1626 */
1627 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1628 struct rte_eth_dev *eth_dev, int intr_idx,
1629 struct sge_fl *fl, rspq_handler_t hnd, int cong,
1630 struct rte_mempool *mp, int queue_id, int socket_id)
1631 {
1632 int ret, flsz = 0;
1633 struct fw_iq_cmd c;
1634 struct sge *s = &adap->sge;
1635 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
1636 char z_name[RTE_MEMZONE_NAMESIZE];
1637 char z_name_sw[RTE_MEMZONE_NAMESIZE];
1638 unsigned int nb_refill;
1639
1640 /* Size needs to be multiple of 16, including status entry. */
1641 iq->size = cxgbe_roundup(iq->size, 16);
1642
1643 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1644 eth_dev->data->drv_name,
1645 fwevtq ? "fwq_ring" : "rx_ring",
1646 eth_dev->data->port_id, queue_id);
1647 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1648
1649 iq->desc = alloc_ring(iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0,
1650 queue_id, socket_id, z_name, z_name_sw);
1651 if (!iq->desc)
1652 return -ENOMEM;
1653
1654 memset(&c, 0, sizeof(c));
1655 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1656 F_FW_CMD_WRITE | F_FW_CMD_EXEC |
1657 V_FW_IQ_CMD_PFN(adap->pf) | V_FW_IQ_CMD_VFN(0));
1658 c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1659 (sizeof(c) / 16));
1660 c.type_to_iqandstindex =
1661 htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1662 V_FW_IQ_CMD_IQASYNCH(fwevtq) |
1663 V_FW_IQ_CMD_VIID(pi->viid) |
1664 V_FW_IQ_CMD_IQANDST(intr_idx < 0) |
1665 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT) |
1666 V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
1667 -intr_idx - 1));
1668 c.iqdroprss_to_iqesize =
1669 htons(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1670 F_FW_IQ_CMD_IQGTSMODE |
1671 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
1672 V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
1673 c.iqsize = htons(iq->size);
1674 c.iqaddr = cpu_to_be64(iq->phys_addr);
1675 if (cong >= 0)
1676 c.iqns_to_fl0congen = htonl(F_FW_IQ_CMD_IQFLINTCONGEN);
1677
1678 if (fl) {
1679 struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq,
1680 fl);
1681 enum chip_type chip = (enum chip_type)CHELSIO_CHIP_VERSION(
1682 adap->params.chip);
1683
1684 /*
1685 * Allocate the ring for the hardware free list (with space
1686 * for its status page) along with the associated software
1687 * descriptor ring. The free list size needs to be a multiple
1688 * of the Egress Queue Unit and at least 2 Egress Units larger
1689 * than the SGE's Egress Congrestion Threshold
1690 * (fl_starve_thres - 1).
1691 */
1692 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
1693 fl->size = s->fl_starve_thres - 1 + 2 * 8;
1694 fl->size = cxgbe_roundup(fl->size, 8);
1695
1696 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1697 eth_dev->data->drv_name,
1698 fwevtq ? "fwq_ring" : "fl_ring",
1699 eth_dev->data->port_id, queue_id);
1700 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1701
1702 fl->desc = alloc_ring(fl->size, sizeof(__be64),
1703 sizeof(struct rx_sw_desc),
1704 &fl->addr, &fl->sdesc, s->stat_len,
1705 queue_id, socket_id, z_name, z_name_sw);
1706
1707 if (!fl->desc)
1708 goto fl_nomem;
1709
1710 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
1711 c.iqns_to_fl0congen |=
1712 htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1713 (unlikely(rxq->usembufs) ?
1714 0 : F_FW_IQ_CMD_FL0PACKEN) |
1715 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1716 F_FW_IQ_CMD_FL0PADEN);
1717 if (cong >= 0)
1718 c.iqns_to_fl0congen |=
1719 htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1720 F_FW_IQ_CMD_FL0CONGCIF |
1721 F_FW_IQ_CMD_FL0CONGEN);
1722
1723 /* In T6, for egress queue type FL there is internal overhead
1724 * of 16B for header going into FLM module.
1725 * Hence maximum allowed burst size will be 448 bytes.
1726 */
1727 c.fl0dcaen_to_fl0cidxfthresh =
1728 htons(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) |
1729 V_FW_IQ_CMD_FL0FBMAX((chip <= CHELSIO_T5) ?
1730 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
1731 c.fl0size = htons(flsz);
1732 c.fl0addr = cpu_to_be64(fl->addr);
1733 }
1734
1735 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1736 if (ret)
1737 goto err;
1738
1739 iq->cur_desc = iq->desc;
1740 iq->cidx = 0;
1741 iq->gts_idx = 0;
1742 iq->gen = 1;
1743 iq->next_intr_params = iq->intr_params;
1744 iq->cntxt_id = ntohs(c.iqid);
1745 iq->abs_id = ntohs(c.physiqid);
1746 iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS,
1747 &iq->bar2_qid);
1748 iq->size--; /* subtract status entry */
1749 iq->eth_dev = eth_dev;
1750 iq->handler = hnd;
1751 iq->port_id = pi->port_id;
1752 iq->mb_pool = mp;
1753
1754 /* set offset to -1 to distinguish ingress queues without FL */
1755 iq->offset = fl ? 0 : -1;
1756
1757 if (fl) {
1758 fl->cntxt_id = ntohs(c.fl0id);
1759 fl->avail = 0;
1760 fl->pend_cred = 0;
1761 fl->pidx = 0;
1762 fl->cidx = 0;
1763 fl->alloc_failed = 0;
1764
1765 /*
1766 * Note, we must initialize the BAR2 Free List User Doorbell
1767 * information before refilling the Free List!
1768 */
1769 fl->bar2_addr = bar2_address(adap, fl->cntxt_id,
1770 T4_BAR2_QTYPE_EGRESS,
1771 &fl->bar2_qid);
1772
1773 nb_refill = refill_fl(adap, fl, fl_cap(fl));
1774 if (nb_refill != fl_cap(fl)) {
1775 ret = -ENOMEM;
1776 dev_err(adap, "%s: mbuf alloc failed with error: %d\n",
1777 __func__, ret);
1778 goto refill_fl_err;
1779 }
1780 }
1781
1782 /*
1783 * For T5 and later we attempt to set up the Congestion Manager values
1784 * of the new RX Ethernet Queue. This should really be handled by
1785 * firmware because it's more complex than any host driver wants to
1786 * get involved with and it's different per chip and this is almost
1787 * certainly wrong. Formware would be wrong as well, but it would be
1788 * a lot easier to fix in one place ... For now we do something very
1789 * simple (and hopefully less wrong).
1790 */
1791 if (!is_t4(adap->params.chip) && cong >= 0) {
1792 u32 param, val;
1793 int i;
1794
1795 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1796 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1797 V_FW_PARAMS_PARAM_YZ(iq->cntxt_id));
1798 if (cong == 0) {
1799 val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE);
1800 } else {
1801 val = V_CONMCTXT_CNGTPMODE(
1802 X_CONMCTXT_CNGTPMODE_CHANNEL);
1803 for (i = 0; i < 4; i++) {
1804 if (cong & (1 << i))
1805 val |= V_CONMCTXT_CNGCHMAP(1 <<
1806 (i << 2));
1807 }
1808 }
1809 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1810 &param, &val);
1811 if (ret)
1812 dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n",
1813 iq->cntxt_id, -ret);
1814 }
1815
1816 return 0;
1817
1818 refill_fl_err:
1819 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
1820 iq->cntxt_id, fl->cntxt_id, 0xffff);
1821 fl_nomem:
1822 ret = -ENOMEM;
1823 err:
1824 iq->cntxt_id = 0;
1825 iq->abs_id = 0;
1826 if (iq->desc)
1827 iq->desc = NULL;
1828
1829 if (fl && fl->desc) {
1830 rte_free(fl->sdesc);
1831 fl->cntxt_id = 0;
1832 fl->sdesc = NULL;
1833 fl->desc = NULL;
1834 }
1835 return ret;
1836 }
1837
1838 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
1839 {
1840 q->cntxt_id = id;
1841 q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS,
1842 &q->bar2_qid);
1843 q->cidx = 0;
1844 q->pidx = 0;
1845 q->dbidx = 0;
1846 q->in_use = 0;
1847 q->equeidx = 0;
1848 q->coalesce.idx = 0;
1849 q->coalesce.len = 0;
1850 q->coalesce.flits = 0;
1851 q->last_coal_idx = 0;
1852 q->last_pidx = 0;
1853 q->stat = (void *)&q->desc[q->size];
1854 }
1855
1856 int t4_sge_eth_txq_start(struct sge_eth_txq *txq)
1857 {
1858 /*
1859 * TODO: For flow-control, queue may be stopped waiting to reclaim
1860 * credits.
1861 * Ensure queue is in EQ_STOPPED state before starting it.
1862 */
1863 if (!(txq->flags & EQ_STOPPED))
1864 return -(EBUSY);
1865
1866 txq->flags &= ~EQ_STOPPED;
1867
1868 return 0;
1869 }
1870
1871 int t4_sge_eth_txq_stop(struct sge_eth_txq *txq)
1872 {
1873 txq->flags |= EQ_STOPPED;
1874
1875 return 0;
1876 }
1877
1878 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
1879 struct rte_eth_dev *eth_dev, uint16_t queue_id,
1880 unsigned int iqid, int socket_id)
1881 {
1882 int ret, nentries;
1883 struct fw_eq_eth_cmd c;
1884 struct sge *s = &adap->sge;
1885 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
1886 char z_name[RTE_MEMZONE_NAMESIZE];
1887 char z_name_sw[RTE_MEMZONE_NAMESIZE];
1888
1889 /* Add status entries */
1890 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
1891
1892 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1893 eth_dev->data->drv_name, "tx_ring",
1894 eth_dev->data->port_id, queue_id);
1895 snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name);
1896
1897 txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc),
1898 sizeof(struct tx_sw_desc), &txq->q.phys_addr,
1899 &txq->q.sdesc, s->stat_len, queue_id,
1900 socket_id, z_name, z_name_sw);
1901 if (!txq->q.desc)
1902 return -ENOMEM;
1903
1904 memset(&c, 0, sizeof(c));
1905 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1906 F_FW_CMD_WRITE | F_FW_CMD_EXEC |
1907 V_FW_EQ_ETH_CMD_PFN(adap->pf) |
1908 V_FW_EQ_ETH_CMD_VFN(0));
1909 c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC |
1910 F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16));
1911 c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE |
1912 V_FW_EQ_ETH_CMD_VIID(pi->viid));
1913 c.fetchszm_to_iqid =
1914 htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
1915 V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
1916 F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid));
1917 c.dcaen_to_eqsize =
1918 htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1919 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1920 V_FW_EQ_ETH_CMD_EQSIZE(nentries));
1921 c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr);
1922
1923 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
1924 if (ret) {
1925 rte_free(txq->q.sdesc);
1926 txq->q.sdesc = NULL;
1927 txq->q.desc = NULL;
1928 return ret;
1929 }
1930
1931 init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)));
1932 txq->stats.tso = 0;
1933 txq->stats.pkts = 0;
1934 txq->stats.tx_cso = 0;
1935 txq->stats.coal_wr = 0;
1936 txq->stats.vlan_ins = 0;
1937 txq->stats.tx_bytes = 0;
1938 txq->stats.coal_pkts = 0;
1939 txq->stats.mapping_err = 0;
1940 txq->flags |= EQ_STOPPED;
1941 txq->eth_dev = eth_dev;
1942 t4_os_lock_init(&txq->txq_lock);
1943 return 0;
1944 }
1945
1946 static void free_txq(struct sge_txq *q)
1947 {
1948 q->cntxt_id = 0;
1949 q->sdesc = NULL;
1950 q->desc = NULL;
1951 }
1952
1953 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
1954 struct sge_fl *fl)
1955 {
1956 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
1957
1958 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
1959 rq->cntxt_id, fl_id, 0xffff);
1960 rq->cntxt_id = 0;
1961 rq->abs_id = 0;
1962 rq->desc = NULL;
1963
1964 if (fl) {
1965 free_rx_bufs(fl, fl->avail);
1966 rte_free(fl->sdesc);
1967 fl->sdesc = NULL;
1968 fl->cntxt_id = 0;
1969 fl->desc = NULL;
1970 }
1971 }
1972
1973 /*
1974 * Clear all queues of the port
1975 *
1976 * Note: This function must only be called after rx and tx path
1977 * of the port have been disabled.
1978 */
1979 void t4_sge_eth_clear_queues(struct port_info *pi)
1980 {
1981 int i;
1982 struct adapter *adap = pi->adapter;
1983 struct sge_eth_rxq *rxq = &adap->sge.ethrxq[pi->first_qset];
1984 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
1985
1986 for (i = 0; i < pi->n_rx_qsets; i++, rxq++) {
1987 if (rxq->rspq.desc)
1988 t4_sge_eth_rxq_stop(adap, &rxq->rspq);
1989 }
1990 for (i = 0; i < pi->n_tx_qsets; i++, txq++) {
1991 if (txq->q.desc) {
1992 struct sge_txq *q = &txq->q;
1993
1994 t4_sge_eth_txq_stop(txq);
1995 reclaim_completed_tx(q);
1996 free_tx_desc(q, q->size);
1997 q->equeidx = q->pidx;
1998 }
1999 }
2000 }
2001
2002 void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq)
2003 {
2004 if (rxq->rspq.desc) {
2005 t4_sge_eth_rxq_stop(adap, &rxq->rspq);
2006 free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL);
2007 }
2008 }
2009
2010 void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq)
2011 {
2012 if (txq->q.desc) {
2013 t4_sge_eth_txq_stop(txq);
2014 reclaim_completed_tx(&txq->q);
2015 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id);
2016 free_tx_desc(&txq->q, txq->q.size);
2017 rte_free(txq->q.sdesc);
2018 free_txq(&txq->q);
2019 }
2020 }
2021
2022 void t4_sge_tx_monitor_start(struct adapter *adap)
2023 {
2024 rte_eal_alarm_set(50, tx_timer_cb, (void *)adap);
2025 }
2026
2027 void t4_sge_tx_monitor_stop(struct adapter *adap)
2028 {
2029 rte_eal_alarm_cancel(tx_timer_cb, (void *)adap);
2030 }
2031
2032 /**
2033 * t4_free_sge_resources - free SGE resources
2034 * @adap: the adapter
2035 *
2036 * Frees resources used by the SGE queue sets.
2037 */
2038 void t4_free_sge_resources(struct adapter *adap)
2039 {
2040 int i;
2041 struct sge_eth_rxq *rxq = &adap->sge.ethrxq[0];
2042 struct sge_eth_txq *txq = &adap->sge.ethtxq[0];
2043
2044 /* clean up Ethernet Tx/Rx queues */
2045 for (i = 0; i < adap->sge.max_ethqsets; i++, rxq++, txq++) {
2046 /* Free only the queues allocated */
2047 if (rxq->rspq.desc) {
2048 t4_sge_eth_rxq_release(adap, rxq);
2049 rxq->rspq.eth_dev = NULL;
2050 }
2051 if (txq->q.desc) {
2052 t4_sge_eth_txq_release(adap, txq);
2053 txq->eth_dev = NULL;
2054 }
2055 }
2056
2057 if (adap->sge.fw_evtq.desc)
2058 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2059 }
2060
2061 /**
2062 * t4_sge_init - initialize SGE
2063 * @adap: the adapter
2064 *
2065 * Performs SGE initialization needed every time after a chip reset.
2066 * We do not initialize any of the queues here, instead the driver
2067 * top-level must request those individually.
2068 *
2069 * Called in two different modes:
2070 *
2071 * 1. Perform actual hardware initialization and record hard-coded
2072 * parameters which were used. This gets used when we're the
2073 * Master PF and the Firmware Configuration File support didn't
2074 * work for some reason.
2075 *
2076 * 2. We're not the Master PF or initialization was performed with
2077 * a Firmware Configuration File. In this case we need to grab
2078 * any of the SGE operating parameters that we need to have in
2079 * order to do our job and make sure we can live with them ...
2080 */
2081 static int t4_sge_init_soft(struct adapter *adap)
2082 {
2083 struct sge *s = &adap->sge;
2084 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2085 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2086 u32 ingress_rx_threshold;
2087
2088 /*
2089 * Verify that CPL messages are going to the Ingress Queue for
2090 * process_responses() and that only packet data is going to the
2091 * Free Lists.
2092 */
2093 if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) !=
2094 V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2095 dev_err(adap, "bad SGE CPL MODE\n");
2096 return -EINVAL;
2097 }
2098
2099 /*
2100 * Validate the Host Buffer Register Array indices that we want to
2101 * use ...
2102 *
2103 * XXX Note that we should really read through the Host Buffer Size
2104 * XXX register array and find the indices of the Buffer Sizes which
2105 * XXX meet our needs!
2106 */
2107 #define READ_FL_BUF(x) \
2108 t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32))
2109
2110 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2111 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2112 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2113 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2114
2115 /*
2116 * We only bother using the Large Page logic if the Large Page Buffer
2117 * is larger than our Page Size Buffer.
2118 */
2119 if (fl_large_pg <= fl_small_pg)
2120 fl_large_pg = 0;
2121
2122 #undef READ_FL_BUF
2123
2124 /*
2125 * The Page Size Buffer must be exactly equal to our Page Size and the
2126 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2127 */
2128 if (fl_small_pg != CXGBE_PAGE_SIZE ||
2129 (fl_large_pg & (fl_large_pg - 1)) != 0) {
2130 dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n",
2131 fl_small_pg, fl_large_pg);
2132 return -EINVAL;
2133 }
2134 if (fl_large_pg)
2135 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2136
2137 if (adap->use_unpacked_mode) {
2138 int err = 0;
2139
2140 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) {
2141 dev_err(adap, "bad SGE FL small MTU %d\n",
2142 fl_small_mtu);
2143 err = -EINVAL;
2144 }
2145 if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2146 dev_err(adap, "bad SGE FL large MTU %d\n",
2147 fl_large_mtu);
2148 err = -EINVAL;
2149 }
2150 if (err)
2151 return err;
2152 }
2153
2154 /*
2155 * Retrieve our RX interrupt holdoff timer values and counter
2156 * threshold values from the SGE parameters.
2157 */
2158 timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1);
2159 timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3);
2160 timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5);
2161 s->timer_val[0] = core_ticks_to_us(adap,
2162 G_TIMERVALUE0(timer_value_0_and_1));
2163 s->timer_val[1] = core_ticks_to_us(adap,
2164 G_TIMERVALUE1(timer_value_0_and_1));
2165 s->timer_val[2] = core_ticks_to_us(adap,
2166 G_TIMERVALUE2(timer_value_2_and_3));
2167 s->timer_val[3] = core_ticks_to_us(adap,
2168 G_TIMERVALUE3(timer_value_2_and_3));
2169 s->timer_val[4] = core_ticks_to_us(adap,
2170 G_TIMERVALUE4(timer_value_4_and_5));
2171 s->timer_val[5] = core_ticks_to_us(adap,
2172 G_TIMERVALUE5(timer_value_4_and_5));
2173
2174 ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD);
2175 s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold);
2176 s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold);
2177 s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold);
2178 s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold);
2179
2180 return 0;
2181 }
2182
2183 int t4_sge_init(struct adapter *adap)
2184 {
2185 struct sge *s = &adap->sge;
2186 u32 sge_control, sge_control2, sge_conm_ctrl;
2187 unsigned int ingpadboundary, ingpackboundary;
2188 int ret, egress_threshold;
2189
2190 /*
2191 * Ingress Padding Boundary and Egress Status Page Size are set up by
2192 * t4_fixup_host_params().
2193 */
2194 sge_control = t4_read_reg(adap, A_SGE_CONTROL);
2195 s->pktshift = G_PKTSHIFT(sge_control);
2196 s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
2197
2198 /*
2199 * T4 uses a single control field to specify both the PCIe Padding and
2200 * Packing Boundary. T5 introduced the ability to specify these
2201 * separately. The actual Ingress Packet Data alignment boundary
2202 * within Packed Buffer Mode is the maximum of these two
2203 * specifications.
2204 */
2205 ingpadboundary = 1 << (G_INGPADBOUNDARY(sge_control) +
2206 X_INGPADBOUNDARY_SHIFT);
2207 s->fl_align = ingpadboundary;
2208
2209 if (!is_t4(adap->params.chip) && !adap->use_unpacked_mode) {
2210 /*
2211 * T5 has a weird interpretation of one of the PCIe Packing
2212 * Boundary values. No idea why ...
2213 */
2214 sge_control2 = t4_read_reg(adap, A_SGE_CONTROL2);
2215 ingpackboundary = G_INGPACKBOUNDARY(sge_control2);
2216 if (ingpackboundary == X_INGPACKBOUNDARY_16B)
2217 ingpackboundary = 16;
2218 else
2219 ingpackboundary = 1 << (ingpackboundary +
2220 X_INGPACKBOUNDARY_SHIFT);
2221
2222 s->fl_align = max(ingpadboundary, ingpackboundary);
2223 }
2224
2225 ret = t4_sge_init_soft(adap);
2226 if (ret < 0) {
2227 dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n",
2228 __func__, -ret);
2229 return ret;
2230 }
2231
2232 /*
2233 * A FL with <= fl_starve_thres buffers is starving and a periodic
2234 * timer will attempt to refill it. This needs to be larger than the
2235 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2236 * stuck waiting for new packets while the SGE is waiting for us to
2237 * give it more Free List entries. (Note that the SGE's Egress
2238 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2239 * there was only a single field to control this. For T5 there's the
2240 * original field which now only applies to Unpacked Mode Free List
2241 * buffers and a new field which only applies to Packed Mode Free List
2242 * buffers.
2243 */
2244 sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL);
2245 if (is_t4(adap->params.chip) || adap->use_unpacked_mode)
2246 egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
2247 else
2248 egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
2249 s->fl_starve_thres = 2 * egress_threshold + 1;
2250
2251 return 0;
2252 }