]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/e1000/em_rxtx.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / e1000 / em_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
3 */
4
5 #include <sys/queue.h>
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_ip.h>
37 #include <rte_udp.h>
38 #include <rte_tcp.h>
39 #include <rte_sctp.h>
40 #include <rte_net.h>
41 #include <rte_string_fns.h>
42
43 #include "e1000_logs.h"
44 #include "base/e1000_api.h"
45 #include "e1000_ethdev.h"
46 #include "base/e1000_osdep.h"
47
48 #define E1000_TXD_VLAN_SHIFT 16
49
50 #define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
51
52 #define E1000_TX_OFFLOAD_MASK ( \
53 PKT_TX_IPV6 | \
54 PKT_TX_IPV4 | \
55 PKT_TX_IP_CKSUM | \
56 PKT_TX_L4_MASK | \
57 PKT_TX_VLAN_PKT)
58
59 #define E1000_TX_OFFLOAD_NOTSUP_MASK \
60 (PKT_TX_OFFLOAD_MASK ^ E1000_TX_OFFLOAD_MASK)
61
62 /**
63 * Structure associated with each descriptor of the RX ring of a RX queue.
64 */
65 struct em_rx_entry {
66 struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
67 };
68
69 /**
70 * Structure associated with each descriptor of the TX ring of a TX queue.
71 */
72 struct em_tx_entry {
73 struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
74 uint16_t next_id; /**< Index of next descriptor in ring. */
75 uint16_t last_id; /**< Index of last scattered descriptor. */
76 };
77
78 /**
79 * Structure associated with each RX queue.
80 */
81 struct em_rx_queue {
82 struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
83 volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
84 uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
85 volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
86 volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
87 struct em_rx_entry *sw_ring; /**< address of RX software ring. */
88 struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
89 struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
90 uint64_t offloads; /**< Offloads of DEV_RX_OFFLOAD_* */
91 uint16_t nb_rx_desc; /**< number of RX descriptors. */
92 uint16_t rx_tail; /**< current value of RDT register. */
93 uint16_t nb_rx_hold; /**< number of held free RX desc. */
94 uint16_t rx_free_thresh; /**< max free RX desc to hold. */
95 uint16_t queue_id; /**< RX queue index. */
96 uint16_t port_id; /**< Device port identifier. */
97 uint8_t pthresh; /**< Prefetch threshold register. */
98 uint8_t hthresh; /**< Host threshold register. */
99 uint8_t wthresh; /**< Write-back threshold register. */
100 uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
101 };
102
103 /**
104 * Hardware context number
105 */
106 enum {
107 EM_CTX_0 = 0, /**< CTX0 */
108 EM_CTX_NUM = 1, /**< CTX NUM */
109 };
110
111 /** Offload features */
112 union em_vlan_macip {
113 uint32_t data;
114 struct {
115 uint16_t l3_len:9; /**< L3 (IP) Header Length. */
116 uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
117 uint16_t vlan_tci;
118 /**< VLAN Tag Control Identifier (CPU order). */
119 } f;
120 };
121
122 /*
123 * Compare mask for vlan_macip_len.data,
124 * should be in sync with em_vlan_macip.f layout.
125 * */
126 #define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
127 #define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
128 #define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
129 /** MAC+IP length. */
130 #define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
131
132 /**
133 * Structure to check if new context need be built
134 */
135 struct em_ctx_info {
136 uint64_t flags; /**< ol_flags related to context build. */
137 uint32_t cmp_mask; /**< compare mask */
138 union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */
139 };
140
141 /**
142 * Structure associated with each TX queue.
143 */
144 struct em_tx_queue {
145 volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
146 uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
147 struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */
148 volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
149 uint16_t nb_tx_desc; /**< number of TX descriptors. */
150 uint16_t tx_tail; /**< Current value of TDT register. */
151 /**< Start freeing TX buffers if there are less free descriptors than
152 this value. */
153 uint16_t tx_free_thresh;
154 /**< Number of TX descriptors to use before RS bit is set. */
155 uint16_t tx_rs_thresh;
156 /** Number of TX descriptors used since RS bit was set. */
157 uint16_t nb_tx_used;
158 /** Index to last TX descriptor to have been cleaned. */
159 uint16_t last_desc_cleaned;
160 /** Total number of TX descriptors ready to be allocated. */
161 uint16_t nb_tx_free;
162 uint16_t queue_id; /**< TX queue index. */
163 uint16_t port_id; /**< Device port identifier. */
164 uint8_t pthresh; /**< Prefetch threshold register. */
165 uint8_t hthresh; /**< Host threshold register. */
166 uint8_t wthresh; /**< Write-back threshold register. */
167 struct em_ctx_info ctx_cache;
168 /**< Hardware context history.*/
169 uint64_t offloads; /**< offloads of DEV_TX_OFFLOAD_* */
170 };
171
172 #if 1
173 #define RTE_PMD_USE_PREFETCH
174 #endif
175
176 #ifdef RTE_PMD_USE_PREFETCH
177 #define rte_em_prefetch(p) rte_prefetch0(p)
178 #else
179 #define rte_em_prefetch(p) do {} while(0)
180 #endif
181
182 #ifdef RTE_PMD_PACKET_PREFETCH
183 #define rte_packet_prefetch(p) rte_prefetch1(p)
184 #else
185 #define rte_packet_prefetch(p) do {} while(0)
186 #endif
187
188 #ifndef DEFAULT_TX_FREE_THRESH
189 #define DEFAULT_TX_FREE_THRESH 32
190 #endif /* DEFAULT_TX_FREE_THRESH */
191
192 #ifndef DEFAULT_TX_RS_THRESH
193 #define DEFAULT_TX_RS_THRESH 32
194 #endif /* DEFAULT_TX_RS_THRESH */
195
196
197 /*********************************************************************
198 *
199 * TX function
200 *
201 **********************************************************************/
202
203 /*
204 * Populates TX context descriptor.
205 */
206 static inline void
207 em_set_xmit_ctx(struct em_tx_queue* txq,
208 volatile struct e1000_context_desc *ctx_txd,
209 uint64_t flags,
210 union em_vlan_macip hdrlen)
211 {
212 uint32_t cmp_mask, cmd_len;
213 uint16_t ipcse, l2len;
214 struct e1000_context_desc ctx;
215
216 cmp_mask = 0;
217 cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
218
219 l2len = hdrlen.f.l2_len;
220 ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
221
222 /* setup IPCS* fields */
223 ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
224 ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
225 offsetof(struct ipv4_hdr, hdr_checksum));
226
227 /*
228 * When doing checksum or TCP segmentation with IPv6 headers,
229 * IPCSE field should be set t0 0.
230 */
231 if (flags & PKT_TX_IP_CKSUM) {
232 ctx.lower_setup.ip_fields.ipcse =
233 (uint16_t)rte_cpu_to_le_16(ipcse - 1);
234 cmd_len |= E1000_TXD_CMD_IP;
235 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
236 } else {
237 ctx.lower_setup.ip_fields.ipcse = 0;
238 }
239
240 /* setup TUCS* fields */
241 ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
242 ctx.upper_setup.tcp_fields.tucse = 0;
243
244 switch (flags & PKT_TX_L4_MASK) {
245 case PKT_TX_UDP_CKSUM:
246 ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
247 offsetof(struct udp_hdr, dgram_cksum));
248 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
249 break;
250 case PKT_TX_TCP_CKSUM:
251 ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
252 offsetof(struct tcp_hdr, cksum));
253 cmd_len |= E1000_TXD_CMD_TCP;
254 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
255 break;
256 default:
257 ctx.upper_setup.tcp_fields.tucso = 0;
258 }
259
260 ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
261 ctx.tcp_seg_setup.data = 0;
262
263 *ctx_txd = ctx;
264
265 txq->ctx_cache.flags = flags;
266 txq->ctx_cache.cmp_mask = cmp_mask;
267 txq->ctx_cache.hdrlen = hdrlen;
268 }
269
270 /*
271 * Check which hardware context can be used. Use the existing match
272 * or create a new context descriptor.
273 */
274 static inline uint32_t
275 what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
276 union em_vlan_macip hdrlen)
277 {
278 /* If match with the current context */
279 if (likely (txq->ctx_cache.flags == flags &&
280 ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
281 txq->ctx_cache.cmp_mask) == 0))
282 return EM_CTX_0;
283
284 /* Mismatch */
285 return EM_CTX_NUM;
286 }
287
288 /* Reset transmit descriptors after they have been used */
289 static inline int
290 em_xmit_cleanup(struct em_tx_queue *txq)
291 {
292 struct em_tx_entry *sw_ring = txq->sw_ring;
293 volatile struct e1000_data_desc *txr = txq->tx_ring;
294 uint16_t last_desc_cleaned = txq->last_desc_cleaned;
295 uint16_t nb_tx_desc = txq->nb_tx_desc;
296 uint16_t desc_to_clean_to;
297 uint16_t nb_tx_to_clean;
298
299 /* Determine the last descriptor needing to be cleaned */
300 desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
301 if (desc_to_clean_to >= nb_tx_desc)
302 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
303
304 /* Check to make sure the last descriptor to clean is done */
305 desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
306 if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
307 {
308 PMD_TX_FREE_LOG(DEBUG,
309 "TX descriptor %4u is not done"
310 "(port=%d queue=%d)", desc_to_clean_to,
311 txq->port_id, txq->queue_id);
312 /* Failed to clean any descriptors, better luck next time */
313 return -(1);
314 }
315
316 /* Figure out how many descriptors will be cleaned */
317 if (last_desc_cleaned > desc_to_clean_to)
318 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
319 desc_to_clean_to);
320 else
321 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
322 last_desc_cleaned);
323
324 PMD_TX_FREE_LOG(DEBUG,
325 "Cleaning %4u TX descriptors: %4u to %4u "
326 "(port=%d queue=%d)", nb_tx_to_clean,
327 last_desc_cleaned, desc_to_clean_to, txq->port_id,
328 txq->queue_id);
329
330 /*
331 * The last descriptor to clean is done, so that means all the
332 * descriptors from the last descriptor that was cleaned
333 * up to the last descriptor with the RS bit set
334 * are done. Only reset the threshold descriptor.
335 */
336 txr[desc_to_clean_to].upper.fields.status = 0;
337
338 /* Update the txq to reflect the last descriptor that was cleaned */
339 txq->last_desc_cleaned = desc_to_clean_to;
340 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
341
342 /* No Error */
343 return 0;
344 }
345
346 static inline uint32_t
347 tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
348 {
349 static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
350 static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
351 uint32_t tmp;
352
353 tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
354 tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
355 return tmp;
356 }
357
358 uint16_t
359 eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
360 uint16_t nb_pkts)
361 {
362 struct em_tx_queue *txq;
363 struct em_tx_entry *sw_ring;
364 struct em_tx_entry *txe, *txn;
365 volatile struct e1000_data_desc *txr;
366 volatile struct e1000_data_desc *txd;
367 struct rte_mbuf *tx_pkt;
368 struct rte_mbuf *m_seg;
369 uint64_t buf_dma_addr;
370 uint32_t popts_spec;
371 uint32_t cmd_type_len;
372 uint16_t slen;
373 uint64_t ol_flags;
374 uint16_t tx_id;
375 uint16_t tx_last;
376 uint16_t nb_tx;
377 uint16_t nb_used;
378 uint64_t tx_ol_req;
379 uint32_t ctx;
380 uint32_t new_ctx;
381 union em_vlan_macip hdrlen;
382
383 txq = tx_queue;
384 sw_ring = txq->sw_ring;
385 txr = txq->tx_ring;
386 tx_id = txq->tx_tail;
387 txe = &sw_ring[tx_id];
388
389 /* Determine if the descriptor ring needs to be cleaned. */
390 if (txq->nb_tx_free < txq->tx_free_thresh)
391 em_xmit_cleanup(txq);
392
393 /* TX loop */
394 for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
395 new_ctx = 0;
396 tx_pkt = *tx_pkts++;
397
398 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
399
400 /*
401 * Determine how many (if any) context descriptors
402 * are needed for offload functionality.
403 */
404 ol_flags = tx_pkt->ol_flags;
405
406 /* If hardware offload required */
407 tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
408 if (tx_ol_req) {
409 hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
410 hdrlen.f.l2_len = tx_pkt->l2_len;
411 hdrlen.f.l3_len = tx_pkt->l3_len;
412 /* If new context to be built or reuse the exist ctx. */
413 ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
414
415 /* Only allocate context descriptor if required*/
416 new_ctx = (ctx == EM_CTX_NUM);
417 }
418
419 /*
420 * Keep track of how many descriptors are used this loop
421 * This will always be the number of segments + the number of
422 * Context descriptors required to transmit the packet
423 */
424 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
425
426 /*
427 * The number of descriptors that must be allocated for a
428 * packet is the number of segments of that packet, plus 1
429 * Context Descriptor for the hardware offload, if any.
430 * Determine the last TX descriptor to allocate in the TX ring
431 * for the packet, starting from the current position (tx_id)
432 * in the ring.
433 */
434 tx_last = (uint16_t) (tx_id + nb_used - 1);
435
436 /* Circular ring */
437 if (tx_last >= txq->nb_tx_desc)
438 tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
439
440 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
441 " tx_first=%u tx_last=%u",
442 (unsigned) txq->port_id,
443 (unsigned) txq->queue_id,
444 (unsigned) tx_pkt->pkt_len,
445 (unsigned) tx_id,
446 (unsigned) tx_last);
447
448 /*
449 * Make sure there are enough TX descriptors available to
450 * transmit the entire packet.
451 * nb_used better be less than or equal to txq->tx_rs_thresh
452 */
453 while (unlikely (nb_used > txq->nb_tx_free)) {
454 PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
455 "nb_used=%4u nb_free=%4u "
456 "(port=%d queue=%d)",
457 nb_used, txq->nb_tx_free,
458 txq->port_id, txq->queue_id);
459
460 if (em_xmit_cleanup(txq) != 0) {
461 /* Could not clean any descriptors */
462 if (nb_tx == 0)
463 return 0;
464 goto end_of_tx;
465 }
466 }
467
468 /*
469 * By now there are enough free TX descriptors to transmit
470 * the packet.
471 */
472
473 /*
474 * Set common flags of all TX Data Descriptors.
475 *
476 * The following bits must be set in all Data Descriptors:
477 * - E1000_TXD_DTYP_DATA
478 * - E1000_TXD_DTYP_DEXT
479 *
480 * The following bits must be set in the first Data Descriptor
481 * and are ignored in the other ones:
482 * - E1000_TXD_POPTS_IXSM
483 * - E1000_TXD_POPTS_TXSM
484 *
485 * The following bits must be set in the last Data Descriptor
486 * and are ignored in the other ones:
487 * - E1000_TXD_CMD_VLE
488 * - E1000_TXD_CMD_IFCS
489 *
490 * The following bits must only be set in the last Data
491 * Descriptor:
492 * - E1000_TXD_CMD_EOP
493 *
494 * The following bits can be set in any Data Descriptor, but
495 * are only set in the last Data Descriptor:
496 * - E1000_TXD_CMD_RS
497 */
498 cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
499 E1000_TXD_CMD_IFCS;
500 popts_spec = 0;
501
502 /* Set VLAN Tag offload fields. */
503 if (ol_flags & PKT_TX_VLAN_PKT) {
504 cmd_type_len |= E1000_TXD_CMD_VLE;
505 popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
506 }
507
508 if (tx_ol_req) {
509 /*
510 * Setup the TX Context Descriptor if required
511 */
512 if (new_ctx) {
513 volatile struct e1000_context_desc *ctx_txd;
514
515 ctx_txd = (volatile struct e1000_context_desc *)
516 &txr[tx_id];
517
518 txn = &sw_ring[txe->next_id];
519 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
520
521 if (txe->mbuf != NULL) {
522 rte_pktmbuf_free_seg(txe->mbuf);
523 txe->mbuf = NULL;
524 }
525
526 em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
527 hdrlen);
528
529 txe->last_id = tx_last;
530 tx_id = txe->next_id;
531 txe = txn;
532 }
533
534 /*
535 * Setup the TX Data Descriptor,
536 * This path will go through
537 * whatever new/reuse the context descriptor
538 */
539 popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
540 }
541
542 m_seg = tx_pkt;
543 do {
544 txd = &txr[tx_id];
545 txn = &sw_ring[txe->next_id];
546
547 if (txe->mbuf != NULL)
548 rte_pktmbuf_free_seg(txe->mbuf);
549 txe->mbuf = m_seg;
550
551 /*
552 * Set up Transmit Data Descriptor.
553 */
554 slen = m_seg->data_len;
555 buf_dma_addr = rte_mbuf_data_iova(m_seg);
556
557 txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
558 txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
559 txd->upper.data = rte_cpu_to_le_32(popts_spec);
560
561 txe->last_id = tx_last;
562 tx_id = txe->next_id;
563 txe = txn;
564 m_seg = m_seg->next;
565 } while (m_seg != NULL);
566
567 /*
568 * The last packet data descriptor needs End Of Packet (EOP)
569 */
570 cmd_type_len |= E1000_TXD_CMD_EOP;
571 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
572 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
573
574 /* Set RS bit only on threshold packets' last descriptor */
575 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
576 PMD_TX_FREE_LOG(DEBUG,
577 "Setting RS bit on TXD id=%4u "
578 "(port=%d queue=%d)",
579 tx_last, txq->port_id, txq->queue_id);
580
581 cmd_type_len |= E1000_TXD_CMD_RS;
582
583 /* Update txq RS bit counters */
584 txq->nb_tx_used = 0;
585 }
586 txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
587 }
588 end_of_tx:
589 rte_wmb();
590
591 /*
592 * Set the Transmit Descriptor Tail (TDT)
593 */
594 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
595 (unsigned) txq->port_id, (unsigned) txq->queue_id,
596 (unsigned) tx_id, (unsigned) nb_tx);
597 E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
598 txq->tx_tail = tx_id;
599
600 return nb_tx;
601 }
602
603 /*********************************************************************
604 *
605 * TX prep functions
606 *
607 **********************************************************************/
608 uint16_t
609 eth_em_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
610 uint16_t nb_pkts)
611 {
612 int i, ret;
613 struct rte_mbuf *m;
614
615 for (i = 0; i < nb_pkts; i++) {
616 m = tx_pkts[i];
617
618 if (m->ol_flags & E1000_TX_OFFLOAD_NOTSUP_MASK) {
619 rte_errno = -ENOTSUP;
620 return i;
621 }
622
623 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
624 ret = rte_validate_tx_offload(m);
625 if (ret != 0) {
626 rte_errno = ret;
627 return i;
628 }
629 #endif
630 ret = rte_net_intel_cksum_prepare(m);
631 if (ret != 0) {
632 rte_errno = ret;
633 return i;
634 }
635 }
636
637 return i;
638 }
639
640 /*********************************************************************
641 *
642 * RX functions
643 *
644 **********************************************************************/
645
646 static inline uint64_t
647 rx_desc_status_to_pkt_flags(uint32_t rx_status)
648 {
649 uint64_t pkt_flags;
650
651 /* Check if VLAN present */
652 pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
653 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
654
655 return pkt_flags;
656 }
657
658 static inline uint64_t
659 rx_desc_error_to_pkt_flags(uint32_t rx_error)
660 {
661 uint64_t pkt_flags = 0;
662
663 if (rx_error & E1000_RXD_ERR_IPE)
664 pkt_flags |= PKT_RX_IP_CKSUM_BAD;
665 if (rx_error & E1000_RXD_ERR_TCPE)
666 pkt_flags |= PKT_RX_L4_CKSUM_BAD;
667 return pkt_flags;
668 }
669
670 uint16_t
671 eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
672 uint16_t nb_pkts)
673 {
674 volatile struct e1000_rx_desc *rx_ring;
675 volatile struct e1000_rx_desc *rxdp;
676 struct em_rx_queue *rxq;
677 struct em_rx_entry *sw_ring;
678 struct em_rx_entry *rxe;
679 struct rte_mbuf *rxm;
680 struct rte_mbuf *nmb;
681 struct e1000_rx_desc rxd;
682 uint64_t dma_addr;
683 uint16_t pkt_len;
684 uint16_t rx_id;
685 uint16_t nb_rx;
686 uint16_t nb_hold;
687 uint8_t status;
688
689 rxq = rx_queue;
690
691 nb_rx = 0;
692 nb_hold = 0;
693 rx_id = rxq->rx_tail;
694 rx_ring = rxq->rx_ring;
695 sw_ring = rxq->sw_ring;
696 while (nb_rx < nb_pkts) {
697 /*
698 * The order of operations here is important as the DD status
699 * bit must not be read after any other descriptor fields.
700 * rx_ring and rxdp are pointing to volatile data so the order
701 * of accesses cannot be reordered by the compiler. If they were
702 * not volatile, they could be reordered which could lead to
703 * using invalid descriptor fields when read from rxd.
704 */
705 rxdp = &rx_ring[rx_id];
706 status = rxdp->status;
707 if (! (status & E1000_RXD_STAT_DD))
708 break;
709 rxd = *rxdp;
710
711 /*
712 * End of packet.
713 *
714 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
715 * likely to be invalid and to be dropped by the various
716 * validation checks performed by the network stack.
717 *
718 * Allocate a new mbuf to replenish the RX ring descriptor.
719 * If the allocation fails:
720 * - arrange for that RX descriptor to be the first one
721 * being parsed the next time the receive function is
722 * invoked [on the same queue].
723 *
724 * - Stop parsing the RX ring and return immediately.
725 *
726 * This policy do not drop the packet received in the RX
727 * descriptor for which the allocation of a new mbuf failed.
728 * Thus, it allows that packet to be later retrieved if
729 * mbuf have been freed in the mean time.
730 * As a side effect, holding RX descriptors instead of
731 * systematically giving them back to the NIC may lead to
732 * RX ring exhaustion situations.
733 * However, the NIC can gracefully prevent such situations
734 * to happen by sending specific "back-pressure" flow control
735 * frames to its peer(s).
736 */
737 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
738 "status=0x%x pkt_len=%u",
739 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
740 (unsigned) rx_id, (unsigned) status,
741 (unsigned) rte_le_to_cpu_16(rxd.length));
742
743 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
744 if (nmb == NULL) {
745 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
746 "queue_id=%u",
747 (unsigned) rxq->port_id,
748 (unsigned) rxq->queue_id);
749 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
750 break;
751 }
752
753 nb_hold++;
754 rxe = &sw_ring[rx_id];
755 rx_id++;
756 if (rx_id == rxq->nb_rx_desc)
757 rx_id = 0;
758
759 /* Prefetch next mbuf while processing current one. */
760 rte_em_prefetch(sw_ring[rx_id].mbuf);
761
762 /*
763 * When next RX descriptor is on a cache-line boundary,
764 * prefetch the next 4 RX descriptors and the next 8 pointers
765 * to mbufs.
766 */
767 if ((rx_id & 0x3) == 0) {
768 rte_em_prefetch(&rx_ring[rx_id]);
769 rte_em_prefetch(&sw_ring[rx_id]);
770 }
771
772 /* Rearm RXD: attach new mbuf and reset status to zero. */
773
774 rxm = rxe->mbuf;
775 rxe->mbuf = nmb;
776 dma_addr =
777 rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
778 rxdp->buffer_addr = dma_addr;
779 rxdp->status = 0;
780
781 /*
782 * Initialize the returned mbuf.
783 * 1) setup generic mbuf fields:
784 * - number of segments,
785 * - next segment,
786 * - packet length,
787 * - RX port identifier.
788 * 2) integrate hardware offload data, if any:
789 * - RSS flag & hash,
790 * - IP checksum flag,
791 * - VLAN TCI, if any,
792 * - error flags.
793 */
794 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
795 rxq->crc_len);
796 rxm->data_off = RTE_PKTMBUF_HEADROOM;
797 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
798 rxm->nb_segs = 1;
799 rxm->next = NULL;
800 rxm->pkt_len = pkt_len;
801 rxm->data_len = pkt_len;
802 rxm->port = rxq->port_id;
803
804 rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
805 rxm->ol_flags = rxm->ol_flags |
806 rx_desc_error_to_pkt_flags(rxd.errors);
807
808 /* Only valid if PKT_RX_VLAN set in pkt_flags */
809 rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
810
811 /*
812 * Store the mbuf address into the next entry of the array
813 * of returned packets.
814 */
815 rx_pkts[nb_rx++] = rxm;
816 }
817 rxq->rx_tail = rx_id;
818
819 /*
820 * If the number of free RX descriptors is greater than the RX free
821 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
822 * register.
823 * Update the RDT with the value of the last processed RX descriptor
824 * minus 1, to guarantee that the RDT register is never equal to the
825 * RDH register, which creates a "full" ring situtation from the
826 * hardware point of view...
827 */
828 nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
829 if (nb_hold > rxq->rx_free_thresh) {
830 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
831 "nb_hold=%u nb_rx=%u",
832 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
833 (unsigned) rx_id, (unsigned) nb_hold,
834 (unsigned) nb_rx);
835 rx_id = (uint16_t) ((rx_id == 0) ?
836 (rxq->nb_rx_desc - 1) : (rx_id - 1));
837 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
838 nb_hold = 0;
839 }
840 rxq->nb_rx_hold = nb_hold;
841 return nb_rx;
842 }
843
844 uint16_t
845 eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
846 uint16_t nb_pkts)
847 {
848 struct em_rx_queue *rxq;
849 volatile struct e1000_rx_desc *rx_ring;
850 volatile struct e1000_rx_desc *rxdp;
851 struct em_rx_entry *sw_ring;
852 struct em_rx_entry *rxe;
853 struct rte_mbuf *first_seg;
854 struct rte_mbuf *last_seg;
855 struct rte_mbuf *rxm;
856 struct rte_mbuf *nmb;
857 struct e1000_rx_desc rxd;
858 uint64_t dma; /* Physical address of mbuf data buffer */
859 uint16_t rx_id;
860 uint16_t nb_rx;
861 uint16_t nb_hold;
862 uint16_t data_len;
863 uint8_t status;
864
865 rxq = rx_queue;
866
867 nb_rx = 0;
868 nb_hold = 0;
869 rx_id = rxq->rx_tail;
870 rx_ring = rxq->rx_ring;
871 sw_ring = rxq->sw_ring;
872
873 /*
874 * Retrieve RX context of current packet, if any.
875 */
876 first_seg = rxq->pkt_first_seg;
877 last_seg = rxq->pkt_last_seg;
878
879 while (nb_rx < nb_pkts) {
880 next_desc:
881 /*
882 * The order of operations here is important as the DD status
883 * bit must not be read after any other descriptor fields.
884 * rx_ring and rxdp are pointing to volatile data so the order
885 * of accesses cannot be reordered by the compiler. If they were
886 * not volatile, they could be reordered which could lead to
887 * using invalid descriptor fields when read from rxd.
888 */
889 rxdp = &rx_ring[rx_id];
890 status = rxdp->status;
891 if (! (status & E1000_RXD_STAT_DD))
892 break;
893 rxd = *rxdp;
894
895 /*
896 * Descriptor done.
897 *
898 * Allocate a new mbuf to replenish the RX ring descriptor.
899 * If the allocation fails:
900 * - arrange for that RX descriptor to be the first one
901 * being parsed the next time the receive function is
902 * invoked [on the same queue].
903 *
904 * - Stop parsing the RX ring and return immediately.
905 *
906 * This policy does not drop the packet received in the RX
907 * descriptor for which the allocation of a new mbuf failed.
908 * Thus, it allows that packet to be later retrieved if
909 * mbuf have been freed in the mean time.
910 * As a side effect, holding RX descriptors instead of
911 * systematically giving them back to the NIC may lead to
912 * RX ring exhaustion situations.
913 * However, the NIC can gracefully prevent such situations
914 * to happen by sending specific "back-pressure" flow control
915 * frames to its peer(s).
916 */
917 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
918 "status=0x%x data_len=%u",
919 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
920 (unsigned) rx_id, (unsigned) status,
921 (unsigned) rte_le_to_cpu_16(rxd.length));
922
923 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
924 if (nmb == NULL) {
925 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
926 "queue_id=%u", (unsigned) rxq->port_id,
927 (unsigned) rxq->queue_id);
928 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
929 break;
930 }
931
932 nb_hold++;
933 rxe = &sw_ring[rx_id];
934 rx_id++;
935 if (rx_id == rxq->nb_rx_desc)
936 rx_id = 0;
937
938 /* Prefetch next mbuf while processing current one. */
939 rte_em_prefetch(sw_ring[rx_id].mbuf);
940
941 /*
942 * When next RX descriptor is on a cache-line boundary,
943 * prefetch the next 4 RX descriptors and the next 8 pointers
944 * to mbufs.
945 */
946 if ((rx_id & 0x3) == 0) {
947 rte_em_prefetch(&rx_ring[rx_id]);
948 rte_em_prefetch(&sw_ring[rx_id]);
949 }
950
951 /*
952 * Update RX descriptor with the physical address of the new
953 * data buffer of the new allocated mbuf.
954 */
955 rxm = rxe->mbuf;
956 rxe->mbuf = nmb;
957 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
958 rxdp->buffer_addr = dma;
959 rxdp->status = 0;
960
961 /*
962 * Set data length & data buffer address of mbuf.
963 */
964 data_len = rte_le_to_cpu_16(rxd.length);
965 rxm->data_len = data_len;
966 rxm->data_off = RTE_PKTMBUF_HEADROOM;
967
968 /*
969 * If this is the first buffer of the received packet,
970 * set the pointer to the first mbuf of the packet and
971 * initialize its context.
972 * Otherwise, update the total length and the number of segments
973 * of the current scattered packet, and update the pointer to
974 * the last mbuf of the current packet.
975 */
976 if (first_seg == NULL) {
977 first_seg = rxm;
978 first_seg->pkt_len = data_len;
979 first_seg->nb_segs = 1;
980 } else {
981 first_seg->pkt_len += data_len;
982 first_seg->nb_segs++;
983 last_seg->next = rxm;
984 }
985
986 /*
987 * If this is not the last buffer of the received packet,
988 * update the pointer to the last mbuf of the current scattered
989 * packet and continue to parse the RX ring.
990 */
991 if (! (status & E1000_RXD_STAT_EOP)) {
992 last_seg = rxm;
993 goto next_desc;
994 }
995
996 /*
997 * This is the last buffer of the received packet.
998 * If the CRC is not stripped by the hardware:
999 * - Subtract the CRC length from the total packet length.
1000 * - If the last buffer only contains the whole CRC or a part
1001 * of it, free the mbuf associated to the last buffer.
1002 * If part of the CRC is also contained in the previous
1003 * mbuf, subtract the length of that CRC part from the
1004 * data length of the previous mbuf.
1005 */
1006 rxm->next = NULL;
1007 if (unlikely(rxq->crc_len > 0)) {
1008 first_seg->pkt_len -= ETHER_CRC_LEN;
1009 if (data_len <= ETHER_CRC_LEN) {
1010 rte_pktmbuf_free_seg(rxm);
1011 first_seg->nb_segs--;
1012 last_seg->data_len = (uint16_t)
1013 (last_seg->data_len -
1014 (ETHER_CRC_LEN - data_len));
1015 last_seg->next = NULL;
1016 } else
1017 rxm->data_len =
1018 (uint16_t) (data_len - ETHER_CRC_LEN);
1019 }
1020
1021 /*
1022 * Initialize the first mbuf of the returned packet:
1023 * - RX port identifier,
1024 * - hardware offload data, if any:
1025 * - IP checksum flag,
1026 * - error flags.
1027 */
1028 first_seg->port = rxq->port_id;
1029
1030 first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
1031 first_seg->ol_flags = first_seg->ol_flags |
1032 rx_desc_error_to_pkt_flags(rxd.errors);
1033
1034 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1035 rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
1036
1037 /* Prefetch data of first segment, if configured to do so. */
1038 rte_packet_prefetch((char *)first_seg->buf_addr +
1039 first_seg->data_off);
1040
1041 /*
1042 * Store the mbuf address into the next entry of the array
1043 * of returned packets.
1044 */
1045 rx_pkts[nb_rx++] = first_seg;
1046
1047 /*
1048 * Setup receipt context for a new packet.
1049 */
1050 first_seg = NULL;
1051 }
1052
1053 /*
1054 * Record index of the next RX descriptor to probe.
1055 */
1056 rxq->rx_tail = rx_id;
1057
1058 /*
1059 * Save receive context.
1060 */
1061 rxq->pkt_first_seg = first_seg;
1062 rxq->pkt_last_seg = last_seg;
1063
1064 /*
1065 * If the number of free RX descriptors is greater than the RX free
1066 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1067 * register.
1068 * Update the RDT with the value of the last processed RX descriptor
1069 * minus 1, to guarantee that the RDT register is never equal to the
1070 * RDH register, which creates a "full" ring situtation from the
1071 * hardware point of view...
1072 */
1073 nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1074 if (nb_hold > rxq->rx_free_thresh) {
1075 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1076 "nb_hold=%u nb_rx=%u",
1077 (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1078 (unsigned) rx_id, (unsigned) nb_hold,
1079 (unsigned) nb_rx);
1080 rx_id = (uint16_t) ((rx_id == 0) ?
1081 (rxq->nb_rx_desc - 1) : (rx_id - 1));
1082 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1083 nb_hold = 0;
1084 }
1085 rxq->nb_rx_hold = nb_hold;
1086 return nb_rx;
1087 }
1088
1089 #define EM_MAX_BUF_SIZE 16384
1090 #define EM_RCTL_FLXBUF_STEP 1024
1091
1092 static void
1093 em_tx_queue_release_mbufs(struct em_tx_queue *txq)
1094 {
1095 unsigned i;
1096
1097 if (txq->sw_ring != NULL) {
1098 for (i = 0; i != txq->nb_tx_desc; i++) {
1099 if (txq->sw_ring[i].mbuf != NULL) {
1100 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1101 txq->sw_ring[i].mbuf = NULL;
1102 }
1103 }
1104 }
1105 }
1106
1107 static void
1108 em_tx_queue_release(struct em_tx_queue *txq)
1109 {
1110 if (txq != NULL) {
1111 em_tx_queue_release_mbufs(txq);
1112 rte_free(txq->sw_ring);
1113 rte_free(txq);
1114 }
1115 }
1116
1117 void
1118 eth_em_tx_queue_release(void *txq)
1119 {
1120 em_tx_queue_release(txq);
1121 }
1122
1123 /* (Re)set dynamic em_tx_queue fields to defaults */
1124 static void
1125 em_reset_tx_queue(struct em_tx_queue *txq)
1126 {
1127 uint16_t i, nb_desc, prev;
1128 static const struct e1000_data_desc txd_init = {
1129 .upper.fields = {.status = E1000_TXD_STAT_DD},
1130 };
1131
1132 nb_desc = txq->nb_tx_desc;
1133
1134 /* Initialize ring entries */
1135
1136 prev = (uint16_t) (nb_desc - 1);
1137
1138 for (i = 0; i < nb_desc; i++) {
1139 txq->tx_ring[i] = txd_init;
1140 txq->sw_ring[i].mbuf = NULL;
1141 txq->sw_ring[i].last_id = i;
1142 txq->sw_ring[prev].next_id = i;
1143 prev = i;
1144 }
1145
1146 /*
1147 * Always allow 1 descriptor to be un-allocated to avoid
1148 * a H/W race condition
1149 */
1150 txq->nb_tx_free = (uint16_t)(nb_desc - 1);
1151 txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
1152 txq->nb_tx_used = 0;
1153 txq->tx_tail = 0;
1154
1155 memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
1156 }
1157
1158 uint64_t
1159 em_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1160 {
1161 uint64_t tx_offload_capa;
1162
1163 RTE_SET_USED(dev);
1164 tx_offload_capa =
1165 DEV_TX_OFFLOAD_MULTI_SEGS |
1166 DEV_TX_OFFLOAD_VLAN_INSERT |
1167 DEV_TX_OFFLOAD_IPV4_CKSUM |
1168 DEV_TX_OFFLOAD_UDP_CKSUM |
1169 DEV_TX_OFFLOAD_TCP_CKSUM;
1170
1171 return tx_offload_capa;
1172 }
1173
1174 uint64_t
1175 em_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1176 {
1177 uint64_t tx_queue_offload_capa;
1178
1179 /*
1180 * As only one Tx queue can be used, let per queue offloading
1181 * capability be same to per port queue offloading capability
1182 * for better convenience.
1183 */
1184 tx_queue_offload_capa = em_get_tx_port_offloads_capa(dev);
1185
1186 return tx_queue_offload_capa;
1187 }
1188
1189 int
1190 eth_em_tx_queue_setup(struct rte_eth_dev *dev,
1191 uint16_t queue_idx,
1192 uint16_t nb_desc,
1193 unsigned int socket_id,
1194 const struct rte_eth_txconf *tx_conf)
1195 {
1196 const struct rte_memzone *tz;
1197 struct em_tx_queue *txq;
1198 struct e1000_hw *hw;
1199 uint32_t tsize;
1200 uint16_t tx_rs_thresh, tx_free_thresh;
1201 uint64_t offloads;
1202
1203 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1204
1205 offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1206
1207 /*
1208 * Validate number of transmit descriptors.
1209 * It must not exceed hardware maximum, and must be multiple
1210 * of E1000_ALIGN.
1211 */
1212 if (nb_desc % EM_TXD_ALIGN != 0 ||
1213 (nb_desc > E1000_MAX_RING_DESC) ||
1214 (nb_desc < E1000_MIN_RING_DESC)) {
1215 return -(EINVAL);
1216 }
1217
1218 tx_free_thresh = tx_conf->tx_free_thresh;
1219 if (tx_free_thresh == 0)
1220 tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
1221 DEFAULT_TX_FREE_THRESH);
1222
1223 tx_rs_thresh = tx_conf->tx_rs_thresh;
1224 if (tx_rs_thresh == 0)
1225 tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
1226 DEFAULT_TX_RS_THRESH);
1227
1228 if (tx_free_thresh >= (nb_desc - 3)) {
1229 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
1230 "number of TX descriptors minus 3. "
1231 "(tx_free_thresh=%u port=%d queue=%d)",
1232 (unsigned int)tx_free_thresh,
1233 (int)dev->data->port_id, (int)queue_idx);
1234 return -(EINVAL);
1235 }
1236 if (tx_rs_thresh > tx_free_thresh) {
1237 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
1238 "tx_free_thresh. (tx_free_thresh=%u "
1239 "tx_rs_thresh=%u port=%d queue=%d)",
1240 (unsigned int)tx_free_thresh,
1241 (unsigned int)tx_rs_thresh,
1242 (int)dev->data->port_id,
1243 (int)queue_idx);
1244 return -(EINVAL);
1245 }
1246
1247 /*
1248 * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
1249 * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
1250 * by the NIC and all descriptors are written back after the NIC
1251 * accumulates WTHRESH descriptors.
1252 */
1253 if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
1254 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1255 "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
1256 "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
1257 (int)dev->data->port_id, (int)queue_idx);
1258 return -(EINVAL);
1259 }
1260
1261 /* Free memory prior to re-allocation if needed... */
1262 if (dev->data->tx_queues[queue_idx] != NULL) {
1263 em_tx_queue_release(dev->data->tx_queues[queue_idx]);
1264 dev->data->tx_queues[queue_idx] = NULL;
1265 }
1266
1267 /*
1268 * Allocate TX ring hardware descriptors. A memzone large enough to
1269 * handle the maximum ring size is allocated in order to allow for
1270 * resizing in later calls to the queue setup function.
1271 */
1272 tsize = sizeof(txq->tx_ring[0]) * E1000_MAX_RING_DESC;
1273 tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
1274 RTE_CACHE_LINE_SIZE, socket_id);
1275 if (tz == NULL)
1276 return -ENOMEM;
1277
1278 /* Allocate the tx queue data structure. */
1279 if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
1280 RTE_CACHE_LINE_SIZE)) == NULL)
1281 return -ENOMEM;
1282
1283 /* Allocate software ring */
1284 if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
1285 sizeof(txq->sw_ring[0]) * nb_desc,
1286 RTE_CACHE_LINE_SIZE)) == NULL) {
1287 em_tx_queue_release(txq);
1288 return -ENOMEM;
1289 }
1290
1291 txq->nb_tx_desc = nb_desc;
1292 txq->tx_free_thresh = tx_free_thresh;
1293 txq->tx_rs_thresh = tx_rs_thresh;
1294 txq->pthresh = tx_conf->tx_thresh.pthresh;
1295 txq->hthresh = tx_conf->tx_thresh.hthresh;
1296 txq->wthresh = tx_conf->tx_thresh.wthresh;
1297 txq->queue_id = queue_idx;
1298 txq->port_id = dev->data->port_id;
1299
1300 txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
1301 txq->tx_ring_phys_addr = tz->iova;
1302 txq->tx_ring = (struct e1000_data_desc *) tz->addr;
1303
1304 PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1305 txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1306
1307 em_reset_tx_queue(txq);
1308
1309 dev->data->tx_queues[queue_idx] = txq;
1310 txq->offloads = offloads;
1311 return 0;
1312 }
1313
1314 static void
1315 em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
1316 {
1317 unsigned i;
1318
1319 if (rxq->sw_ring != NULL) {
1320 for (i = 0; i != rxq->nb_rx_desc; i++) {
1321 if (rxq->sw_ring[i].mbuf != NULL) {
1322 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1323 rxq->sw_ring[i].mbuf = NULL;
1324 }
1325 }
1326 }
1327 }
1328
1329 static void
1330 em_rx_queue_release(struct em_rx_queue *rxq)
1331 {
1332 if (rxq != NULL) {
1333 em_rx_queue_release_mbufs(rxq);
1334 rte_free(rxq->sw_ring);
1335 rte_free(rxq);
1336 }
1337 }
1338
1339 void
1340 eth_em_rx_queue_release(void *rxq)
1341 {
1342 em_rx_queue_release(rxq);
1343 }
1344
1345 /* Reset dynamic em_rx_queue fields back to defaults */
1346 static void
1347 em_reset_rx_queue(struct em_rx_queue *rxq)
1348 {
1349 rxq->rx_tail = 0;
1350 rxq->nb_rx_hold = 0;
1351 rxq->pkt_first_seg = NULL;
1352 rxq->pkt_last_seg = NULL;
1353 }
1354
1355 uint64_t
1356 em_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1357 {
1358 uint64_t rx_offload_capa;
1359 uint32_t max_rx_pktlen;
1360
1361 max_rx_pktlen = em_get_max_pktlen(dev);
1362
1363 rx_offload_capa =
1364 DEV_RX_OFFLOAD_VLAN_STRIP |
1365 DEV_RX_OFFLOAD_VLAN_FILTER |
1366 DEV_RX_OFFLOAD_IPV4_CKSUM |
1367 DEV_RX_OFFLOAD_UDP_CKSUM |
1368 DEV_RX_OFFLOAD_TCP_CKSUM |
1369 DEV_RX_OFFLOAD_KEEP_CRC |
1370 DEV_RX_OFFLOAD_SCATTER;
1371 if (max_rx_pktlen > ETHER_MAX_LEN)
1372 rx_offload_capa |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1373
1374 return rx_offload_capa;
1375 }
1376
1377 uint64_t
1378 em_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1379 {
1380 uint64_t rx_queue_offload_capa;
1381
1382 /*
1383 * As only one Rx queue can be used, let per queue offloading
1384 * capability be same to per port queue offloading capability
1385 * for better convenience.
1386 */
1387 rx_queue_offload_capa = em_get_rx_port_offloads_capa(dev);
1388
1389 return rx_queue_offload_capa;
1390 }
1391
1392 int
1393 eth_em_rx_queue_setup(struct rte_eth_dev *dev,
1394 uint16_t queue_idx,
1395 uint16_t nb_desc,
1396 unsigned int socket_id,
1397 const struct rte_eth_rxconf *rx_conf,
1398 struct rte_mempool *mp)
1399 {
1400 const struct rte_memzone *rz;
1401 struct em_rx_queue *rxq;
1402 struct e1000_hw *hw;
1403 uint32_t rsize;
1404 uint64_t offloads;
1405
1406 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1407
1408 offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1409
1410 /*
1411 * Validate number of receive descriptors.
1412 * It must not exceed hardware maximum, and must be multiple
1413 * of E1000_ALIGN.
1414 */
1415 if (nb_desc % EM_RXD_ALIGN != 0 ||
1416 (nb_desc > E1000_MAX_RING_DESC) ||
1417 (nb_desc < E1000_MIN_RING_DESC)) {
1418 return -EINVAL;
1419 }
1420
1421 /*
1422 * EM devices don't support drop_en functionality.
1423 * It's an optimization that does nothing on single-queue devices,
1424 * so just log the issue and carry on.
1425 */
1426 if (rx_conf->rx_drop_en) {
1427 PMD_INIT_LOG(NOTICE, "drop_en functionality not supported by "
1428 "device");
1429 }
1430
1431 /* Free memory prior to re-allocation if needed. */
1432 if (dev->data->rx_queues[queue_idx] != NULL) {
1433 em_rx_queue_release(dev->data->rx_queues[queue_idx]);
1434 dev->data->rx_queues[queue_idx] = NULL;
1435 }
1436
1437 /* Allocate RX ring for max possible mumber of hardware descriptors. */
1438 rsize = sizeof(rxq->rx_ring[0]) * E1000_MAX_RING_DESC;
1439 rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
1440 RTE_CACHE_LINE_SIZE, socket_id);
1441 if (rz == NULL)
1442 return -ENOMEM;
1443
1444 /* Allocate the RX queue data structure. */
1445 if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
1446 RTE_CACHE_LINE_SIZE)) == NULL)
1447 return -ENOMEM;
1448
1449 /* Allocate software ring. */
1450 if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1451 sizeof (rxq->sw_ring[0]) * nb_desc,
1452 RTE_CACHE_LINE_SIZE)) == NULL) {
1453 em_rx_queue_release(rxq);
1454 return -ENOMEM;
1455 }
1456
1457 rxq->mb_pool = mp;
1458 rxq->nb_rx_desc = nb_desc;
1459 rxq->pthresh = rx_conf->rx_thresh.pthresh;
1460 rxq->hthresh = rx_conf->rx_thresh.hthresh;
1461 rxq->wthresh = rx_conf->rx_thresh.wthresh;
1462 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1463 rxq->queue_id = queue_idx;
1464 rxq->port_id = dev->data->port_id;
1465 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1466 rxq->crc_len = ETHER_CRC_LEN;
1467 else
1468 rxq->crc_len = 0;
1469
1470 rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
1471 rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
1472 rxq->rx_ring_phys_addr = rz->iova;
1473 rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
1474
1475 PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1476 rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1477
1478 dev->data->rx_queues[queue_idx] = rxq;
1479 em_reset_rx_queue(rxq);
1480 rxq->offloads = offloads;
1481
1482 return 0;
1483 }
1484
1485 uint32_t
1486 eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1487 {
1488 #define EM_RXQ_SCAN_INTERVAL 4
1489 volatile struct e1000_rx_desc *rxdp;
1490 struct em_rx_queue *rxq;
1491 uint32_t desc = 0;
1492
1493 rxq = dev->data->rx_queues[rx_queue_id];
1494 rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1495
1496 while ((desc < rxq->nb_rx_desc) &&
1497 (rxdp->status & E1000_RXD_STAT_DD)) {
1498 desc += EM_RXQ_SCAN_INTERVAL;
1499 rxdp += EM_RXQ_SCAN_INTERVAL;
1500 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1501 rxdp = &(rxq->rx_ring[rxq->rx_tail +
1502 desc - rxq->nb_rx_desc]);
1503 }
1504
1505 return desc;
1506 }
1507
1508 int
1509 eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
1510 {
1511 volatile struct e1000_rx_desc *rxdp;
1512 struct em_rx_queue *rxq = rx_queue;
1513 uint32_t desc;
1514
1515 if (unlikely(offset >= rxq->nb_rx_desc))
1516 return 0;
1517 desc = rxq->rx_tail + offset;
1518 if (desc >= rxq->nb_rx_desc)
1519 desc -= rxq->nb_rx_desc;
1520
1521 rxdp = &rxq->rx_ring[desc];
1522 return !!(rxdp->status & E1000_RXD_STAT_DD);
1523 }
1524
1525 int
1526 eth_em_rx_descriptor_status(void *rx_queue, uint16_t offset)
1527 {
1528 struct em_rx_queue *rxq = rx_queue;
1529 volatile uint8_t *status;
1530 uint32_t desc;
1531
1532 if (unlikely(offset >= rxq->nb_rx_desc))
1533 return -EINVAL;
1534
1535 if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1536 return RTE_ETH_RX_DESC_UNAVAIL;
1537
1538 desc = rxq->rx_tail + offset;
1539 if (desc >= rxq->nb_rx_desc)
1540 desc -= rxq->nb_rx_desc;
1541
1542 status = &rxq->rx_ring[desc].status;
1543 if (*status & E1000_RXD_STAT_DD)
1544 return RTE_ETH_RX_DESC_DONE;
1545
1546 return RTE_ETH_RX_DESC_AVAIL;
1547 }
1548
1549 int
1550 eth_em_tx_descriptor_status(void *tx_queue, uint16_t offset)
1551 {
1552 struct em_tx_queue *txq = tx_queue;
1553 volatile uint8_t *status;
1554 uint32_t desc;
1555
1556 if (unlikely(offset >= txq->nb_tx_desc))
1557 return -EINVAL;
1558
1559 desc = txq->tx_tail + offset;
1560 /* go to next desc that has the RS bit */
1561 desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
1562 txq->tx_rs_thresh;
1563 if (desc >= txq->nb_tx_desc) {
1564 desc -= txq->nb_tx_desc;
1565 if (desc >= txq->nb_tx_desc)
1566 desc -= txq->nb_tx_desc;
1567 }
1568
1569 status = &txq->tx_ring[desc].upper.fields.status;
1570 if (*status & E1000_TXD_STAT_DD)
1571 return RTE_ETH_TX_DESC_DONE;
1572
1573 return RTE_ETH_TX_DESC_FULL;
1574 }
1575
1576 void
1577 em_dev_clear_queues(struct rte_eth_dev *dev)
1578 {
1579 uint16_t i;
1580 struct em_tx_queue *txq;
1581 struct em_rx_queue *rxq;
1582
1583 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1584 txq = dev->data->tx_queues[i];
1585 if (txq != NULL) {
1586 em_tx_queue_release_mbufs(txq);
1587 em_reset_tx_queue(txq);
1588 }
1589 }
1590
1591 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1592 rxq = dev->data->rx_queues[i];
1593 if (rxq != NULL) {
1594 em_rx_queue_release_mbufs(rxq);
1595 em_reset_rx_queue(rxq);
1596 }
1597 }
1598 }
1599
1600 void
1601 em_dev_free_queues(struct rte_eth_dev *dev)
1602 {
1603 uint16_t i;
1604
1605 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1606 eth_em_rx_queue_release(dev->data->rx_queues[i]);
1607 dev->data->rx_queues[i] = NULL;
1608 }
1609 dev->data->nb_rx_queues = 0;
1610
1611 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1612 eth_em_tx_queue_release(dev->data->tx_queues[i]);
1613 dev->data->tx_queues[i] = NULL;
1614 }
1615 dev->data->nb_tx_queues = 0;
1616 }
1617
1618 /*
1619 * Takes as input/output parameter RX buffer size.
1620 * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
1621 */
1622 static uint32_t
1623 em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
1624 {
1625 /*
1626 * For BSIZE & BSEX all configurable sizes are:
1627 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
1628 * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
1629 * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
1630 * 2048: rctl |= E1000_RCTL_SZ_2048;
1631 * 1024: rctl |= E1000_RCTL_SZ_1024;
1632 * 512: rctl |= E1000_RCTL_SZ_512;
1633 * 256: rctl |= E1000_RCTL_SZ_256;
1634 */
1635 static const struct {
1636 uint32_t bufsz;
1637 uint32_t rctl;
1638 } bufsz_to_rctl[] = {
1639 {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
1640 {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)},
1641 {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)},
1642 {2048, E1000_RCTL_SZ_2048},
1643 {1024, E1000_RCTL_SZ_1024},
1644 {512, E1000_RCTL_SZ_512},
1645 {256, E1000_RCTL_SZ_256},
1646 };
1647
1648 int i;
1649 uint32_t rctl_bsize;
1650
1651 rctl_bsize = *bufsz;
1652
1653 /*
1654 * Starting from 82571 it is possible to specify RX buffer size
1655 * by RCTL.FLXBUF. When this field is different from zero, the
1656 * RX buffer size = RCTL.FLXBUF * 1K
1657 * (e.g. t is possible to specify RX buffer size 1,2,...,15KB).
1658 * It is working ok on real HW, but by some reason doesn't work
1659 * on VMware emulated 82574L.
1660 * So for now, always use BSIZE/BSEX to setup RX buffer size.
1661 * If you don't plan to use it on VMware emulated 82574L and
1662 * would like to specify RX buffer size in 1K granularity,
1663 * uncomment the following lines:
1664 * ***************************************************************
1665 * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
1666 * rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
1667 * rctl_bsize /= EM_RCTL_FLXBUF_STEP;
1668 * *bufsz = rctl_bsize;
1669 * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
1670 * E1000_RCTL_FLXBUF_MASK);
1671 * }
1672 * ***************************************************************
1673 */
1674
1675 for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
1676 i++) {
1677 if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
1678 *bufsz = bufsz_to_rctl[i].bufsz;
1679 return bufsz_to_rctl[i].rctl;
1680 }
1681 }
1682
1683 /* Should never happen. */
1684 return -EINVAL;
1685 }
1686
1687 static int
1688 em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
1689 {
1690 struct em_rx_entry *rxe = rxq->sw_ring;
1691 uint64_t dma_addr;
1692 unsigned i;
1693 static const struct e1000_rx_desc rxd_init = {
1694 .buffer_addr = 0,
1695 };
1696
1697 /* Initialize software ring entries */
1698 for (i = 0; i < rxq->nb_rx_desc; i++) {
1699 volatile struct e1000_rx_desc *rxd;
1700 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
1701
1702 if (mbuf == NULL) {
1703 PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
1704 "queue_id=%hu", rxq->queue_id);
1705 return -ENOMEM;
1706 }
1707
1708 dma_addr =
1709 rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
1710
1711 /* Clear HW ring memory */
1712 rxq->rx_ring[i] = rxd_init;
1713
1714 rxd = &rxq->rx_ring[i];
1715 rxd->buffer_addr = dma_addr;
1716 rxe[i].mbuf = mbuf;
1717 }
1718
1719 return 0;
1720 }
1721
1722 /*********************************************************************
1723 *
1724 * Enable receive unit.
1725 *
1726 **********************************************************************/
1727 int
1728 eth_em_rx_init(struct rte_eth_dev *dev)
1729 {
1730 struct e1000_hw *hw;
1731 struct em_rx_queue *rxq;
1732 struct rte_eth_rxmode *rxmode;
1733 uint32_t rctl;
1734 uint32_t rfctl;
1735 uint32_t rxcsum;
1736 uint32_t rctl_bsize;
1737 uint16_t i;
1738 int ret;
1739
1740 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1741 rxmode = &dev->data->dev_conf.rxmode;
1742
1743 /*
1744 * Make sure receives are disabled while setting
1745 * up the descriptor ring.
1746 */
1747 rctl = E1000_READ_REG(hw, E1000_RCTL);
1748 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
1749
1750 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
1751
1752 /* Disable extended descriptor type. */
1753 rfctl &= ~E1000_RFCTL_EXTEN;
1754 /* Disable accelerated acknowledge */
1755 if (hw->mac.type == e1000_82574)
1756 rfctl |= E1000_RFCTL_ACK_DIS;
1757
1758 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
1759
1760 /*
1761 * XXX TEMPORARY WORKAROUND: on some systems with 82573
1762 * long latencies are observed, like Lenovo X60. This
1763 * change eliminates the problem, but since having positive
1764 * values in RDTR is a known source of problems on other
1765 * platforms another solution is being sought.
1766 */
1767 if (hw->mac.type == e1000_82573)
1768 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
1769
1770 dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
1771
1772 /* Determine RX bufsize. */
1773 rctl_bsize = EM_MAX_BUF_SIZE;
1774 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1775 uint32_t buf_size;
1776
1777 rxq = dev->data->rx_queues[i];
1778 buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
1779 RTE_PKTMBUF_HEADROOM;
1780 rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
1781 }
1782
1783 rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
1784
1785 /* Configure and enable each RX queue. */
1786 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1787 uint64_t bus_addr;
1788 uint32_t rxdctl;
1789
1790 rxq = dev->data->rx_queues[i];
1791
1792 /* Allocate buffers for descriptor rings and setup queue */
1793 ret = em_alloc_rx_queue_mbufs(rxq);
1794 if (ret)
1795 return ret;
1796
1797 /*
1798 * Reset crc_len in case it was changed after queue setup by a
1799 * call to configure
1800 */
1801 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1802 rxq->crc_len = ETHER_CRC_LEN;
1803 else
1804 rxq->crc_len = 0;
1805
1806 bus_addr = rxq->rx_ring_phys_addr;
1807 E1000_WRITE_REG(hw, E1000_RDLEN(i),
1808 rxq->nb_rx_desc *
1809 sizeof(*rxq->rx_ring));
1810 E1000_WRITE_REG(hw, E1000_RDBAH(i),
1811 (uint32_t)(bus_addr >> 32));
1812 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
1813
1814 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
1815 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
1816
1817 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
1818 rxdctl &= 0xFE000000;
1819 rxdctl |= rxq->pthresh & 0x3F;
1820 rxdctl |= (rxq->hthresh & 0x3F) << 8;
1821 rxdctl |= (rxq->wthresh & 0x3F) << 16;
1822 rxdctl |= E1000_RXDCTL_GRAN;
1823 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
1824
1825 /*
1826 * Due to EM devices not having any sort of hardware
1827 * limit for packet length, jumbo frame of any size
1828 * can be accepted, thus we have to enable scattered
1829 * rx if jumbo frames are enabled (or if buffer size
1830 * is too small to accommodate non-jumbo packets)
1831 * to avoid splitting packets that don't fit into
1832 * one buffer.
1833 */
1834 if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME ||
1835 rctl_bsize < ETHER_MAX_LEN) {
1836 if (!dev->data->scattered_rx)
1837 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
1838 dev->rx_pkt_burst =
1839 (eth_rx_burst_t)eth_em_recv_scattered_pkts;
1840 dev->data->scattered_rx = 1;
1841 }
1842 }
1843
1844 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
1845 if (!dev->data->scattered_rx)
1846 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
1847 dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
1848 dev->data->scattered_rx = 1;
1849 }
1850
1851 /*
1852 * Setup the Checksum Register.
1853 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
1854 */
1855 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
1856
1857 if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
1858 rxcsum |= E1000_RXCSUM_IPOFL;
1859 else
1860 rxcsum &= ~E1000_RXCSUM_IPOFL;
1861 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
1862
1863 /* No MRQ or RSS support for now */
1864
1865 /* Set early receive threshold on appropriate hw */
1866 if ((hw->mac.type == e1000_ich9lan ||
1867 hw->mac.type == e1000_pch2lan ||
1868 hw->mac.type == e1000_ich10lan) &&
1869 rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1870 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
1871 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
1872 E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
1873 }
1874
1875 if (hw->mac.type == e1000_pch2lan) {
1876 if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
1877 e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
1878 else
1879 e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
1880 }
1881
1882 /* Setup the Receive Control Register. */
1883 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1884 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
1885 else
1886 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
1887
1888 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1889 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1890 E1000_RCTL_RDMTS_HALF |
1891 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1892
1893 /* Make sure VLAN Filters are off. */
1894 rctl &= ~E1000_RCTL_VFE;
1895 /* Don't store bad packets. */
1896 rctl &= ~E1000_RCTL_SBP;
1897 /* Legacy descriptor type. */
1898 rctl &= ~E1000_RCTL_DTYP_MASK;
1899
1900 /*
1901 * Configure support of jumbo frames, if any.
1902 */
1903 if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
1904 rctl |= E1000_RCTL_LPE;
1905 else
1906 rctl &= ~E1000_RCTL_LPE;
1907
1908 /* Enable Receives. */
1909 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1910
1911 return 0;
1912 }
1913
1914 /*********************************************************************
1915 *
1916 * Enable transmit unit.
1917 *
1918 **********************************************************************/
1919 void
1920 eth_em_tx_init(struct rte_eth_dev *dev)
1921 {
1922 struct e1000_hw *hw;
1923 struct em_tx_queue *txq;
1924 uint32_t tctl;
1925 uint32_t txdctl;
1926 uint16_t i;
1927
1928 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1929
1930 /* Setup the Base and Length of the Tx Descriptor Rings. */
1931 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1932 uint64_t bus_addr;
1933
1934 txq = dev->data->tx_queues[i];
1935 bus_addr = txq->tx_ring_phys_addr;
1936 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1937 txq->nb_tx_desc *
1938 sizeof(*txq->tx_ring));
1939 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1940 (uint32_t)(bus_addr >> 32));
1941 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
1942
1943 /* Setup the HW Tx Head and Tail descriptor pointers. */
1944 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1945 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1946
1947 /* Setup Transmit threshold registers. */
1948 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
1949 /*
1950 * bit 22 is reserved, on some models should always be 0,
1951 * on others - always 1.
1952 */
1953 txdctl &= E1000_TXDCTL_COUNT_DESC;
1954 txdctl |= txq->pthresh & 0x3F;
1955 txdctl |= (txq->hthresh & 0x3F) << 8;
1956 txdctl |= (txq->wthresh & 0x3F) << 16;
1957 txdctl |= E1000_TXDCTL_GRAN;
1958 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1959 }
1960
1961 /* Program the Transmit Control Register. */
1962 tctl = E1000_READ_REG(hw, E1000_TCTL);
1963 tctl &= ~E1000_TCTL_CT;
1964 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1965 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1966
1967 /* This write will effectively turn on the transmit unit. */
1968 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1969 }
1970
1971 void
1972 em_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1973 struct rte_eth_rxq_info *qinfo)
1974 {
1975 struct em_rx_queue *rxq;
1976
1977 rxq = dev->data->rx_queues[queue_id];
1978
1979 qinfo->mp = rxq->mb_pool;
1980 qinfo->scattered_rx = dev->data->scattered_rx;
1981 qinfo->nb_desc = rxq->nb_rx_desc;
1982 qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1983 qinfo->conf.offloads = rxq->offloads;
1984 }
1985
1986 void
1987 em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1988 struct rte_eth_txq_info *qinfo)
1989 {
1990 struct em_tx_queue *txq;
1991
1992 txq = dev->data->tx_queues[queue_id];
1993
1994 qinfo->nb_desc = txq->nb_tx_desc;
1995
1996 qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1997 qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1998 qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1999 qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2000 qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2001 qinfo->conf.offloads = txq->offloads;
2002 }