]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/enic/enic_rxtx.c
update sources to ceph Nautilus 14.2.1
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / enic / enic_rxtx.c
1 /* Copyright 2008-2016 Cisco Systems, Inc. All rights reserved.
2 * Copyright 2007 Nuova Systems, Inc. All rights reserved.
3 *
4 * Copyright (c) 2014, Cisco Systems, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
22 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
23 * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
29 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <rte_mbuf.h>
34 #include <rte_ethdev.h>
35 #include <rte_prefetch.h>
36
37 #include "enic_compat.h"
38 #include "rq_enet_desc.h"
39 #include "enic.h"
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_tcp.h>
43
44 #define RTE_PMD_USE_PREFETCH
45
46 #ifdef RTE_PMD_USE_PREFETCH
47 /*Prefetch a cache line into all cache levels. */
48 #define rte_enic_prefetch(p) rte_prefetch0(p)
49 #else
50 #define rte_enic_prefetch(p) do {} while (0)
51 #endif
52
53 #ifdef RTE_PMD_PACKET_PREFETCH
54 #define rte_packet_prefetch(p) rte_prefetch1(p)
55 #else
56 #define rte_packet_prefetch(p) do {} while (0)
57 #endif
58
59 static inline uint16_t
60 enic_cq_rx_desc_ciflags(struct cq_enet_rq_desc *crd)
61 {
62 return le16_to_cpu(crd->completed_index_flags) & ~CQ_DESC_COMP_NDX_MASK;
63 }
64
65 static inline uint16_t
66 enic_cq_rx_desc_bwflags(struct cq_enet_rq_desc *crd)
67 {
68 return le16_to_cpu(crd->bytes_written_flags) &
69 ~CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
70 }
71
72 static inline uint8_t
73 enic_cq_rx_desc_packet_error(uint16_t bwflags)
74 {
75 return (bwflags & CQ_ENET_RQ_DESC_FLAGS_TRUNCATED) ==
76 CQ_ENET_RQ_DESC_FLAGS_TRUNCATED;
77 }
78
79 static inline uint8_t
80 enic_cq_rx_desc_eop(uint16_t ciflags)
81 {
82 return (ciflags & CQ_ENET_RQ_DESC_FLAGS_EOP)
83 == CQ_ENET_RQ_DESC_FLAGS_EOP;
84 }
85
86 static inline uint8_t
87 enic_cq_rx_desc_csum_not_calc(struct cq_enet_rq_desc *cqrd)
88 {
89 return (le16_to_cpu(cqrd->q_number_rss_type_flags) &
90 CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC) ==
91 CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC;
92 }
93
94 static inline uint8_t
95 enic_cq_rx_desc_ipv4_csum_ok(struct cq_enet_rq_desc *cqrd)
96 {
97 return (cqrd->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK) ==
98 CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK;
99 }
100
101 static inline uint8_t
102 enic_cq_rx_desc_tcp_udp_csum_ok(struct cq_enet_rq_desc *cqrd)
103 {
104 return (cqrd->flags & CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK) ==
105 CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK;
106 }
107
108 static inline uint8_t
109 enic_cq_rx_desc_rss_type(struct cq_enet_rq_desc *cqrd)
110 {
111 return (uint8_t)((le16_to_cpu(cqrd->q_number_rss_type_flags) >>
112 CQ_DESC_Q_NUM_BITS) & CQ_ENET_RQ_DESC_RSS_TYPE_MASK);
113 }
114
115 static inline uint32_t
116 enic_cq_rx_desc_rss_hash(struct cq_enet_rq_desc *cqrd)
117 {
118 return le32_to_cpu(cqrd->rss_hash);
119 }
120
121 static inline uint16_t
122 enic_cq_rx_desc_vlan(struct cq_enet_rq_desc *cqrd)
123 {
124 return le16_to_cpu(cqrd->vlan);
125 }
126
127 static inline uint16_t
128 enic_cq_rx_desc_n_bytes(struct cq_desc *cqd)
129 {
130 struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
131 return le16_to_cpu(cqrd->bytes_written_flags) &
132 CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
133 }
134
135 /* Find the offset to L5. This is needed by enic TSO implementation.
136 * Return 0 if not a TCP packet or can't figure out the length.
137 */
138 static inline uint8_t tso_header_len(struct rte_mbuf *mbuf)
139 {
140 struct ether_hdr *eh;
141 struct vlan_hdr *vh;
142 struct ipv4_hdr *ip4;
143 struct ipv6_hdr *ip6;
144 struct tcp_hdr *th;
145 uint8_t hdr_len;
146 uint16_t ether_type;
147
148 /* offset past Ethernet header */
149 eh = rte_pktmbuf_mtod(mbuf, struct ether_hdr *);
150 ether_type = eh->ether_type;
151 hdr_len = sizeof(struct ether_hdr);
152 if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_VLAN)) {
153 vh = rte_pktmbuf_mtod_offset(mbuf, struct vlan_hdr *, hdr_len);
154 ether_type = vh->eth_proto;
155 hdr_len += sizeof(struct vlan_hdr);
156 }
157
158 /* offset past IP header */
159 switch (rte_be_to_cpu_16(ether_type)) {
160 case ETHER_TYPE_IPv4:
161 ip4 = rte_pktmbuf_mtod_offset(mbuf, struct ipv4_hdr *, hdr_len);
162 if (ip4->next_proto_id != IPPROTO_TCP)
163 return 0;
164 hdr_len += (ip4->version_ihl & 0xf) * 4;
165 break;
166 case ETHER_TYPE_IPv6:
167 ip6 = rte_pktmbuf_mtod_offset(mbuf, struct ipv6_hdr *, hdr_len);
168 if (ip6->proto != IPPROTO_TCP)
169 return 0;
170 hdr_len += sizeof(struct ipv6_hdr);
171 break;
172 default:
173 return 0;
174 }
175
176 if ((hdr_len + sizeof(struct tcp_hdr)) > mbuf->pkt_len)
177 return 0;
178
179 /* offset past TCP header */
180 th = rte_pktmbuf_mtod_offset(mbuf, struct tcp_hdr *, hdr_len);
181 hdr_len += (th->data_off >> 4) * 4;
182
183 if (hdr_len > mbuf->pkt_len)
184 return 0;
185
186 return hdr_len;
187 }
188
189 static inline uint8_t
190 enic_cq_rx_check_err(struct cq_desc *cqd)
191 {
192 struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
193 uint16_t bwflags;
194
195 bwflags = enic_cq_rx_desc_bwflags(cqrd);
196 if (unlikely(enic_cq_rx_desc_packet_error(bwflags)))
197 return 1;
198 return 0;
199 }
200
201 /* Lookup table to translate RX CQ flags to mbuf flags. */
202 static inline uint32_t
203 enic_cq_rx_flags_to_pkt_type(struct cq_desc *cqd)
204 {
205 struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
206 uint8_t cqrd_flags = cqrd->flags;
207 static const uint32_t cq_type_table[128] __rte_cache_aligned = {
208 [0x00] = RTE_PTYPE_UNKNOWN,
209 [0x20] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG,
210 [0x22] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
211 [0x24] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
212 [0x60] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
213 [0x62] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
214 [0x64] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
215 [0x10] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG,
216 [0x12] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
217 [0x14] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
218 [0x50] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
219 [0x52] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
220 [0x54] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
221 /* All others reserved */
222 };
223 cqrd_flags &= CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT
224 | CQ_ENET_RQ_DESC_FLAGS_IPV4 | CQ_ENET_RQ_DESC_FLAGS_IPV6
225 | CQ_ENET_RQ_DESC_FLAGS_TCP | CQ_ENET_RQ_DESC_FLAGS_UDP;
226 return cq_type_table[cqrd_flags];
227 }
228
229 static inline void
230 enic_cq_rx_to_pkt_flags(struct cq_desc *cqd, struct rte_mbuf *mbuf)
231 {
232 struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
233 uint16_t ciflags, bwflags, pkt_flags = 0, vlan_tci;
234 ciflags = enic_cq_rx_desc_ciflags(cqrd);
235 bwflags = enic_cq_rx_desc_bwflags(cqrd);
236 vlan_tci = enic_cq_rx_desc_vlan(cqrd);
237
238 mbuf->ol_flags = 0;
239
240 /* flags are meaningless if !EOP */
241 if (unlikely(!enic_cq_rx_desc_eop(ciflags)))
242 goto mbuf_flags_done;
243
244 /* VLAN STRIPPED flag. The L2 packet type updated here also */
245 if (bwflags & CQ_ENET_RQ_DESC_FLAGS_VLAN_STRIPPED) {
246 pkt_flags |= PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED;
247 mbuf->packet_type |= RTE_PTYPE_L2_ETHER;
248 } else {
249 if (vlan_tci != 0)
250 mbuf->packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
251 else
252 mbuf->packet_type |= RTE_PTYPE_L2_ETHER;
253 }
254 mbuf->vlan_tci = vlan_tci;
255
256 /* RSS flag */
257 if (enic_cq_rx_desc_rss_type(cqrd)) {
258 pkt_flags |= PKT_RX_RSS_HASH;
259 mbuf->hash.rss = enic_cq_rx_desc_rss_hash(cqrd);
260 }
261
262 /* checksum flags */
263 if (mbuf->packet_type & RTE_PTYPE_L3_IPV4) {
264 if (enic_cq_rx_desc_csum_not_calc(cqrd))
265 pkt_flags |= (PKT_RX_IP_CKSUM_UNKNOWN &
266 PKT_RX_L4_CKSUM_UNKNOWN);
267 else {
268 uint32_t l4_flags;
269 l4_flags = mbuf->packet_type & RTE_PTYPE_L4_MASK;
270
271 if (enic_cq_rx_desc_ipv4_csum_ok(cqrd))
272 pkt_flags |= PKT_RX_IP_CKSUM_GOOD;
273 else
274 pkt_flags |= PKT_RX_IP_CKSUM_BAD;
275
276 if (l4_flags & (RTE_PTYPE_L4_UDP | RTE_PTYPE_L4_TCP)) {
277 if (enic_cq_rx_desc_tcp_udp_csum_ok(cqrd))
278 pkt_flags |= PKT_RX_L4_CKSUM_GOOD;
279 else
280 pkt_flags |= PKT_RX_L4_CKSUM_BAD;
281 }
282 }
283 }
284
285 mbuf_flags_done:
286 mbuf->ol_flags = pkt_flags;
287 }
288
289 /* dummy receive function to replace actual function in
290 * order to do safe reconfiguration operations.
291 */
292 uint16_t
293 enic_dummy_recv_pkts(__rte_unused void *rx_queue,
294 __rte_unused struct rte_mbuf **rx_pkts,
295 __rte_unused uint16_t nb_pkts)
296 {
297 return 0;
298 }
299
300 uint16_t
301 enic_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
302 uint16_t nb_pkts)
303 {
304 struct vnic_rq *sop_rq = rx_queue;
305 struct vnic_rq *data_rq;
306 struct vnic_rq *rq;
307 struct enic *enic = vnic_dev_priv(sop_rq->vdev);
308 uint16_t cq_idx;
309 uint16_t rq_idx;
310 uint16_t rq_num;
311 struct rte_mbuf *nmb, *rxmb;
312 uint16_t nb_rx = 0;
313 struct vnic_cq *cq;
314 volatile struct cq_desc *cqd_ptr;
315 uint8_t color;
316 uint16_t seg_length;
317 struct rte_mbuf *first_seg = sop_rq->pkt_first_seg;
318 struct rte_mbuf *last_seg = sop_rq->pkt_last_seg;
319
320 cq = &enic->cq[enic_cq_rq(enic, sop_rq->index)];
321 cq_idx = cq->to_clean; /* index of cqd, rqd, mbuf_table */
322 cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
323
324 data_rq = &enic->rq[sop_rq->data_queue_idx];
325
326 while (nb_rx < nb_pkts) {
327 volatile struct rq_enet_desc *rqd_ptr;
328 dma_addr_t dma_addr;
329 struct cq_desc cqd;
330 uint8_t packet_error;
331 uint16_t ciflags;
332
333 /* Check for pkts available */
334 color = (cqd_ptr->type_color >> CQ_DESC_COLOR_SHIFT)
335 & CQ_DESC_COLOR_MASK;
336 if (color == cq->last_color)
337 break;
338
339 /* Get the cq descriptor and extract rq info from it */
340 cqd = *cqd_ptr;
341 rq_num = cqd.q_number & CQ_DESC_Q_NUM_MASK;
342 rq_idx = cqd.completed_index & CQ_DESC_COMP_NDX_MASK;
343
344 rq = &enic->rq[rq_num];
345 rqd_ptr = ((struct rq_enet_desc *)rq->ring.descs) + rq_idx;
346
347 /* allocate a new mbuf */
348 nmb = rte_mbuf_raw_alloc(rq->mp);
349 if (nmb == NULL) {
350 rte_atomic64_inc(&enic->soft_stats.rx_nombuf);
351 break;
352 }
353
354 /* A packet error means descriptor and data are untrusted */
355 packet_error = enic_cq_rx_check_err(&cqd);
356
357 /* Get the mbuf to return and replace with one just allocated */
358 rxmb = rq->mbuf_ring[rq_idx];
359 rq->mbuf_ring[rq_idx] = nmb;
360
361 /* Increment cqd, rqd, mbuf_table index */
362 cq_idx++;
363 if (unlikely(cq_idx == cq->ring.desc_count)) {
364 cq_idx = 0;
365 cq->last_color = cq->last_color ? 0 : 1;
366 }
367
368 /* Prefetch next mbuf & desc while processing current one */
369 cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
370 rte_enic_prefetch(cqd_ptr);
371
372 ciflags = enic_cq_rx_desc_ciflags(
373 (struct cq_enet_rq_desc *)&cqd);
374
375 /* Push descriptor for newly allocated mbuf */
376 nmb->data_off = RTE_PKTMBUF_HEADROOM;
377 dma_addr = (dma_addr_t)(nmb->buf_physaddr +
378 RTE_PKTMBUF_HEADROOM);
379 rq_enet_desc_enc(rqd_ptr, dma_addr,
380 (rq->is_sop ? RQ_ENET_TYPE_ONLY_SOP
381 : RQ_ENET_TYPE_NOT_SOP),
382 nmb->buf_len - RTE_PKTMBUF_HEADROOM);
383
384 /* Fill in the rest of the mbuf */
385 seg_length = enic_cq_rx_desc_n_bytes(&cqd);
386
387 if (rq->is_sop) {
388 first_seg = rxmb;
389 first_seg->pkt_len = seg_length;
390 } else {
391 first_seg->pkt_len = (uint16_t)(first_seg->pkt_len
392 + seg_length);
393 first_seg->nb_segs++;
394 last_seg->next = rxmb;
395 }
396
397 rxmb->port = enic->port_id;
398 rxmb->data_len = seg_length;
399
400 rq->rx_nb_hold++;
401
402 if (!(enic_cq_rx_desc_eop(ciflags))) {
403 last_seg = rxmb;
404 continue;
405 }
406
407 /* cq rx flags are only valid if eop bit is set */
408 first_seg->packet_type = enic_cq_rx_flags_to_pkt_type(&cqd);
409 enic_cq_rx_to_pkt_flags(&cqd, first_seg);
410
411 if (unlikely(packet_error)) {
412 rte_pktmbuf_free(first_seg);
413 rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
414 continue;
415 }
416
417
418 /* prefetch mbuf data for caller */
419 rte_packet_prefetch(RTE_PTR_ADD(first_seg->buf_addr,
420 RTE_PKTMBUF_HEADROOM));
421
422 /* store the mbuf address into the next entry of the array */
423 rx_pkts[nb_rx++] = first_seg;
424 }
425
426 sop_rq->pkt_first_seg = first_seg;
427 sop_rq->pkt_last_seg = last_seg;
428
429 cq->to_clean = cq_idx;
430
431 if ((sop_rq->rx_nb_hold + data_rq->rx_nb_hold) >
432 sop_rq->rx_free_thresh) {
433 if (data_rq->in_use) {
434 data_rq->posted_index =
435 enic_ring_add(data_rq->ring.desc_count,
436 data_rq->posted_index,
437 data_rq->rx_nb_hold);
438 data_rq->rx_nb_hold = 0;
439 }
440 sop_rq->posted_index = enic_ring_add(sop_rq->ring.desc_count,
441 sop_rq->posted_index,
442 sop_rq->rx_nb_hold);
443 sop_rq->rx_nb_hold = 0;
444
445 rte_mb();
446 if (data_rq->in_use)
447 iowrite32_relaxed(data_rq->posted_index,
448 &data_rq->ctrl->posted_index);
449 rte_compiler_barrier();
450 iowrite32_relaxed(sop_rq->posted_index,
451 &sop_rq->ctrl->posted_index);
452 }
453
454
455 return nb_rx;
456 }
457
458 static inline void enic_free_wq_bufs(struct vnic_wq *wq, u16 completed_index)
459 {
460 struct vnic_wq_buf *buf;
461 struct rte_mbuf *m, *free[ENIC_MAX_WQ_DESCS];
462 unsigned int nb_to_free, nb_free = 0, i;
463 struct rte_mempool *pool;
464 unsigned int tail_idx;
465 unsigned int desc_count = wq->ring.desc_count;
466
467 nb_to_free = enic_ring_sub(desc_count, wq->tail_idx, completed_index)
468 + 1;
469 tail_idx = wq->tail_idx;
470 buf = &wq->bufs[tail_idx];
471 pool = ((struct rte_mbuf *)buf->mb)->pool;
472 for (i = 0; i < nb_to_free; i++) {
473 buf = &wq->bufs[tail_idx];
474 m = rte_pktmbuf_prefree_seg((struct rte_mbuf *)(buf->mb));
475 buf->mb = NULL;
476
477 if (unlikely(m == NULL)) {
478 tail_idx = enic_ring_incr(desc_count, tail_idx);
479 continue;
480 }
481
482 if (likely(m->pool == pool)) {
483 RTE_ASSERT(nb_free < ENIC_MAX_WQ_DESCS);
484 free[nb_free++] = m;
485 } else {
486 rte_mempool_put_bulk(pool, (void *)free, nb_free);
487 free[0] = m;
488 nb_free = 1;
489 pool = m->pool;
490 }
491 tail_idx = enic_ring_incr(desc_count, tail_idx);
492 }
493
494 rte_mempool_put_bulk(pool, (void **)free, nb_free);
495
496 wq->tail_idx = tail_idx;
497 wq->ring.desc_avail += nb_to_free;
498 }
499
500 unsigned int enic_cleanup_wq(__rte_unused struct enic *enic, struct vnic_wq *wq)
501 {
502 u16 completed_index;
503
504 completed_index = *((uint32_t *)wq->cqmsg_rz->addr) & 0xffff;
505
506 if (wq->last_completed_index != completed_index) {
507 enic_free_wq_bufs(wq, completed_index);
508 wq->last_completed_index = completed_index;
509 }
510 return 0;
511 }
512
513 uint16_t enic_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
514 uint16_t nb_pkts)
515 {
516 uint16_t index;
517 unsigned int pkt_len, data_len;
518 unsigned int nb_segs;
519 struct rte_mbuf *tx_pkt;
520 struct vnic_wq *wq = (struct vnic_wq *)tx_queue;
521 struct enic *enic = vnic_dev_priv(wq->vdev);
522 unsigned short vlan_id;
523 uint64_t ol_flags;
524 uint64_t ol_flags_mask;
525 unsigned int wq_desc_avail;
526 int head_idx;
527 struct vnic_wq_buf *buf;
528 unsigned int desc_count;
529 struct wq_enet_desc *descs, *desc_p, desc_tmp;
530 uint16_t mss;
531 uint8_t vlan_tag_insert;
532 uint8_t eop;
533 uint64_t bus_addr;
534 uint8_t offload_mode;
535 uint16_t header_len;
536
537 enic_cleanup_wq(enic, wq);
538 wq_desc_avail = vnic_wq_desc_avail(wq);
539 head_idx = wq->head_idx;
540 desc_count = wq->ring.desc_count;
541 ol_flags_mask = PKT_TX_VLAN_PKT | PKT_TX_IP_CKSUM | PKT_TX_L4_MASK;
542
543 nb_pkts = RTE_MIN(nb_pkts, ENIC_TX_XMIT_MAX);
544
545 for (index = 0; index < nb_pkts; index++) {
546 tx_pkt = *tx_pkts++;
547 pkt_len = tx_pkt->pkt_len;
548 data_len = tx_pkt->data_len;
549 ol_flags = tx_pkt->ol_flags;
550 nb_segs = tx_pkt->nb_segs;
551
552 if (pkt_len > ENIC_TX_MAX_PKT_SIZE) {
553 rte_pktmbuf_free(tx_pkt);
554 rte_atomic64_inc(&enic->soft_stats.tx_oversized);
555 continue;
556 }
557
558 if (nb_segs > wq_desc_avail) {
559 if (index > 0)
560 goto post;
561 goto done;
562 }
563
564 mss = 0;
565 vlan_id = 0;
566 vlan_tag_insert = 0;
567 bus_addr = (dma_addr_t)
568 (tx_pkt->buf_physaddr + tx_pkt->data_off);
569
570 descs = (struct wq_enet_desc *)wq->ring.descs;
571 desc_p = descs + head_idx;
572
573 eop = (data_len == pkt_len);
574 offload_mode = WQ_ENET_OFFLOAD_MODE_CSUM;
575 header_len = 0;
576
577 if (tx_pkt->tso_segsz) {
578 header_len = tso_header_len(tx_pkt);
579 if (header_len) {
580 offload_mode = WQ_ENET_OFFLOAD_MODE_TSO;
581 mss = tx_pkt->tso_segsz;
582 }
583 }
584 if ((ol_flags & ol_flags_mask) && (header_len == 0)) {
585 if (ol_flags & PKT_TX_IP_CKSUM)
586 mss |= ENIC_CALC_IP_CKSUM;
587
588 /* Nic uses just 1 bit for UDP and TCP */
589 switch (ol_flags & PKT_TX_L4_MASK) {
590 case PKT_TX_TCP_CKSUM:
591 case PKT_TX_UDP_CKSUM:
592 mss |= ENIC_CALC_TCP_UDP_CKSUM;
593 break;
594 }
595 }
596
597 if (ol_flags & PKT_TX_VLAN_PKT) {
598 vlan_tag_insert = 1;
599 vlan_id = tx_pkt->vlan_tci;
600 }
601
602 wq_enet_desc_enc(&desc_tmp, bus_addr, data_len, mss, header_len,
603 offload_mode, eop, eop, 0, vlan_tag_insert,
604 vlan_id, 0);
605
606 *desc_p = desc_tmp;
607 buf = &wq->bufs[head_idx];
608 buf->mb = (void *)tx_pkt;
609 head_idx = enic_ring_incr(desc_count, head_idx);
610 wq_desc_avail--;
611
612 if (!eop) {
613 for (tx_pkt = tx_pkt->next; tx_pkt; tx_pkt =
614 tx_pkt->next) {
615 data_len = tx_pkt->data_len;
616
617 if (tx_pkt->next == NULL)
618 eop = 1;
619 desc_p = descs + head_idx;
620 bus_addr = (dma_addr_t)(tx_pkt->buf_physaddr
621 + tx_pkt->data_off);
622 wq_enet_desc_enc((struct wq_enet_desc *)
623 &desc_tmp, bus_addr, data_len,
624 mss, 0, offload_mode, eop, eop,
625 0, vlan_tag_insert, vlan_id,
626 0);
627
628 *desc_p = desc_tmp;
629 buf = &wq->bufs[head_idx];
630 buf->mb = (void *)tx_pkt;
631 head_idx = enic_ring_incr(desc_count, head_idx);
632 wq_desc_avail--;
633 }
634 }
635 }
636 post:
637 rte_wmb();
638 iowrite32_relaxed(head_idx, &wq->ctrl->posted_index);
639 done:
640 wq->ring.desc_avail = wq_desc_avail;
641 wq->head_idx = head_idx;
642
643 return index;
644 }
645
646