]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/i40e/i40e_rxtx_vec_altivec.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / i40e / i40e_rxtx_vec_altivec.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5 * Copyright(c) 2017 IBM Corporation.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <stdint.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_malloc.h>
38
39 #include "base/i40e_prototype.h"
40 #include "base/i40e_type.h"
41 #include "i40e_ethdev.h"
42 #include "i40e_rxtx.h"
43 #include "i40e_rxtx_vec_common.h"
44
45 #include <altivec.h>
46
47 #pragma GCC diagnostic ignored "-Wcast-qual"
48
49 static inline void
50 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
51 {
52 int i;
53 uint16_t rx_id;
54 volatile union i40e_rx_desc *rxdp;
55
56 struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
57 struct rte_mbuf *mb0, *mb1;
58
59 vector unsigned long hdr_room = (vector unsigned long){
60 RTE_PKTMBUF_HEADROOM,
61 RTE_PKTMBUF_HEADROOM};
62 vector unsigned long dma_addr0, dma_addr1;
63
64 rxdp = rxq->rx_ring + rxq->rxrearm_start;
65
66 /* Pull 'n' more MBUFs into the software ring */
67 if (rte_mempool_get_bulk(rxq->mp,
68 (void *)rxep,
69 RTE_I40E_RXQ_REARM_THRESH) < 0) {
70 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
71 rxq->nb_rx_desc) {
72 dma_addr0 = (vector unsigned long){};
73 for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
74 rxep[i].mbuf = &rxq->fake_mbuf;
75 vec_st(dma_addr0, 0,
76 (vector unsigned long *)&rxdp[i].read);
77 }
78 }
79 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
80 RTE_I40E_RXQ_REARM_THRESH;
81 return;
82 }
83
84 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
85 for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
86 vector unsigned long vaddr0, vaddr1;
87 uintptr_t p0, p1;
88
89 mb0 = rxep[0].mbuf;
90 mb1 = rxep[1].mbuf;
91
92 /* Flush mbuf with pkt template.
93 * Data to be rearmed is 6 bytes long.
94 * Though, RX will overwrite ol_flags that are coming next
95 * anyway. So overwrite whole 8 bytes with one load:
96 * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
97 */
98 p0 = (uintptr_t)&mb0->rearm_data;
99 *(uint64_t *)p0 = rxq->mbuf_initializer;
100 p1 = (uintptr_t)&mb1->rearm_data;
101 *(uint64_t *)p1 = rxq->mbuf_initializer;
102
103 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
104 vaddr0 = vec_ld(0, (vector unsigned long *)&mb0->buf_addr);
105 vaddr1 = vec_ld(0, (vector unsigned long *)&mb1->buf_addr);
106
107 /* convert pa to dma_addr hdr/data */
108 dma_addr0 = vec_mergel(vaddr0, vaddr0);
109 dma_addr1 = vec_mergel(vaddr1, vaddr1);
110
111 /* add headroom to pa values */
112 dma_addr0 = vec_add(dma_addr0, hdr_room);
113 dma_addr1 = vec_add(dma_addr1, hdr_room);
114
115 /* flush desc with pa dma_addr */
116 vec_st(dma_addr0, 0, (vector unsigned long *)&rxdp++->read);
117 vec_st(dma_addr1, 0, (vector unsigned long *)&rxdp++->read);
118 }
119
120 rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
121 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
122 rxq->rxrearm_start = 0;
123
124 rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
125
126 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
127 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
128
129 /* Update the tail pointer on the NIC */
130 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
131 }
132
133 static inline void
134 desc_to_olflags_v(vector unsigned long descs[4], struct rte_mbuf **rx_pkts)
135 {
136 vector unsigned int vlan0, vlan1, rss, l3_l4e;
137
138 /* mask everything except RSS, flow director and VLAN flags
139 * bit2 is for VLAN tag, bit11 for flow director indication
140 * bit13:12 for RSS indication.
141 */
142 const vector unsigned int rss_vlan_msk = (vector unsigned int){
143 (int32_t)0x1c03804, (int32_t)0x1c03804,
144 (int32_t)0x1c03804, (int32_t)0x1c03804};
145
146 /* map rss and vlan type to rss hash and vlan flag */
147 const vector unsigned char vlan_flags = (vector unsigned char){
148 0, 0, 0, 0,
149 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, 0, 0,
150 0, 0, 0, 0,
151 0, 0, 0, 0};
152
153 const vector unsigned char rss_flags = (vector unsigned char){
154 0, PKT_RX_FDIR, 0, 0,
155 0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH | PKT_RX_FDIR,
156 0, 0, 0, 0,
157 0, 0, 0, 0};
158
159 const vector unsigned char l3_l4e_flags = (vector unsigned char){
160 0,
161 PKT_RX_IP_CKSUM_BAD,
162 PKT_RX_L4_CKSUM_BAD,
163 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD,
164 PKT_RX_EIP_CKSUM_BAD,
165 PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD,
166 PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
167 PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
168 | PKT_RX_IP_CKSUM_BAD,
169 0, 0, 0, 0, 0, 0, 0, 0};
170
171 vlan0 = (vector unsigned int)vec_mergel(descs[0], descs[1]);
172 vlan1 = (vector unsigned int)vec_mergel(descs[2], descs[3]);
173 vlan0 = (vector unsigned int)vec_mergeh(vlan0, vlan1);
174
175 vlan1 = vec_and(vlan0, rss_vlan_msk);
176 vlan0 = (vector unsigned int)vec_perm(vlan_flags,
177 (vector unsigned char){},
178 *(vector unsigned char *)&vlan1);
179
180 rss = vec_sr(vlan1, (vector unsigned int){11, 11, 11, 11});
181 rss = (vector unsigned int)vec_perm(rss_flags, (vector unsigned char){},
182 *(vector unsigned char *)&rss);
183
184 l3_l4e = vec_sr(vlan1, (vector unsigned int){22, 22, 22, 22});
185 l3_l4e = (vector unsigned int)vec_perm(l3_l4e_flags,
186 (vector unsigned char){},
187 *(vector unsigned char *)&l3_l4e);
188
189 vlan0 = vec_or(vlan0, rss);
190 vlan0 = vec_or(vlan0, l3_l4e);
191
192 rx_pkts[0]->ol_flags = (uint64_t)vlan0[2];
193 rx_pkts[1]->ol_flags = (uint64_t)vlan0[3];
194 rx_pkts[2]->ol_flags = (uint64_t)vlan0[0];
195 rx_pkts[3]->ol_flags = (uint64_t)vlan0[1];
196 }
197
198 #define PKTLEN_SHIFT 10
199
200 static inline void
201 desc_to_ptype_v(vector unsigned long descs[4], struct rte_mbuf **rx_pkts,
202 uint32_t *ptype_tbl)
203 {
204 vector unsigned long ptype0 = vec_mergel(descs[0], descs[1]);
205 vector unsigned long ptype1 = vec_mergel(descs[2], descs[3]);
206
207 ptype0 = vec_sr(ptype0, (vector unsigned long){30, 30});
208 ptype1 = vec_sr(ptype1, (vector unsigned long){30, 30});
209
210 rx_pkts[0]->packet_type =
211 ptype_tbl[(*(vector unsigned char *)&ptype0)[0]];
212 rx_pkts[1]->packet_type =
213 ptype_tbl[(*(vector unsigned char *)&ptype0)[8]];
214 rx_pkts[2]->packet_type =
215 ptype_tbl[(*(vector unsigned char *)&ptype1)[0]];
216 rx_pkts[3]->packet_type =
217 ptype_tbl[(*(vector unsigned char *)&ptype1)[8]];
218 }
219
220 /* Notice:
221 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
222 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
223 * numbers of DD bits
224 */
225 static inline uint16_t
226 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
227 uint16_t nb_pkts, uint8_t *split_packet)
228 {
229 volatile union i40e_rx_desc *rxdp;
230 struct i40e_rx_entry *sw_ring;
231 uint16_t nb_pkts_recd;
232 int pos;
233 uint64_t var;
234 vector unsigned char shuf_msk;
235 uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
236
237 vector unsigned short crc_adjust = (vector unsigned short){
238 0, 0, /* ignore pkt_type field */
239 rxq->crc_len, /* sub crc on pkt_len */
240 0, /* ignore high-16bits of pkt_len */
241 rxq->crc_len, /* sub crc on data_len */
242 0, 0, 0 /* ignore non-length fields */
243 };
244 vector unsigned long dd_check, eop_check;
245
246 /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
247 nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
248
249 /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
250 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
251
252 /* Just the act of getting into the function from the application is
253 * going to cost about 7 cycles
254 */
255 rxdp = rxq->rx_ring + rxq->rx_tail;
256
257 rte_prefetch0(rxdp);
258
259 /* See if we need to rearm the RX queue - gives the prefetch a bit
260 * of time to act
261 */
262 if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
263 i40e_rxq_rearm(rxq);
264
265 /* Before we start moving massive data around, check to see if
266 * there is actually a packet available
267 */
268 if (!(rxdp->wb.qword1.status_error_len &
269 rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
270 return 0;
271
272 /* 4 packets DD mask */
273 dd_check = (vector unsigned long){0x0000000100000001ULL,
274 0x0000000100000001ULL};
275
276 /* 4 packets EOP mask */
277 eop_check = (vector unsigned long){0x0000000200000002ULL,
278 0x0000000200000002ULL};
279
280 /* mask to shuffle from desc. to mbuf */
281 shuf_msk = (vector unsigned char){
282 0xFF, 0xFF, /* pkt_type set as unknown */
283 0xFF, 0xFF, /* pkt_type set as unknown */
284 14, 15, /* octet 15~14, low 16 bits pkt_len */
285 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
286 14, 15, /* octet 15~14, 16 bits data_len */
287 2, 3, /* octet 2~3, low 16 bits vlan_macip */
288 4, 5, 6, 7 /* octet 4~7, 32bits rss */
289 };
290
291 /* Cache is empty -> need to scan the buffer rings, but first move
292 * the next 'n' mbufs into the cache
293 */
294 sw_ring = &rxq->sw_ring[rxq->rx_tail];
295
296 /* A. load 4 packet in one loop
297 * [A*. mask out 4 unused dirty field in desc]
298 * B. copy 4 mbuf point from swring to rx_pkts
299 * C. calc the number of DD bits among the 4 packets
300 * [C*. extract the end-of-packet bit, if requested]
301 * D. fill info. from desc to mbuf
302 */
303
304 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
305 pos += RTE_I40E_DESCS_PER_LOOP,
306 rxdp += RTE_I40E_DESCS_PER_LOOP) {
307 vector unsigned long descs[RTE_I40E_DESCS_PER_LOOP];
308 vector unsigned char pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
309 vector unsigned short staterr, sterr_tmp1, sterr_tmp2;
310 vector unsigned long mbp1, mbp2; /* two mbuf pointer
311 * in one XMM reg.
312 */
313
314 /* B.1 load 1 mbuf point */
315 mbp1 = *(vector unsigned long *)&sw_ring[pos];
316 /* Read desc statuses backwards to avoid race condition */
317 /* A.1 load 4 pkts desc */
318 descs[3] = *(vector unsigned long *)(rxdp + 3);
319 rte_compiler_barrier();
320
321 /* B.2 copy 2 mbuf point into rx_pkts */
322 *(vector unsigned long *)&rx_pkts[pos] = mbp1;
323
324 /* B.1 load 1 mbuf point */
325 mbp2 = *(vector unsigned long *)&sw_ring[pos + 2];
326
327 descs[2] = *(vector unsigned long *)(rxdp + 2);
328 rte_compiler_barrier();
329 /* B.1 load 2 mbuf point */
330 descs[1] = *(vector unsigned long *)(rxdp + 1);
331 rte_compiler_barrier();
332 descs[0] = *(vector unsigned long *)(rxdp);
333
334 /* B.2 copy 2 mbuf point into rx_pkts */
335 *(vector unsigned long *)&rx_pkts[pos + 2] = mbp2;
336
337 if (split_packet) {
338 rte_mbuf_prefetch_part2(rx_pkts[pos]);
339 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
340 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
341 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
342 }
343
344 /* avoid compiler reorder optimization */
345 rte_compiler_barrier();
346
347 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
348 const vector unsigned int len3 = vec_sl(
349 vec_ld(0, (vector unsigned int *)&descs[3]),
350 (vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
351
352 const vector unsigned int len2 = vec_sl(
353 vec_ld(0, (vector unsigned int *)&descs[2]),
354 (vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
355
356 /* merge the now-aligned packet length fields back in */
357 descs[3] = (vector unsigned long)len3;
358 descs[2] = (vector unsigned long)len2;
359
360 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
361 pkt_mb4 = vec_perm((vector unsigned char)descs[3],
362 (vector unsigned char){}, shuf_msk);
363 pkt_mb3 = vec_perm((vector unsigned char)descs[2],
364 (vector unsigned char){}, shuf_msk);
365
366 /* C.1 4=>2 filter staterr info only */
367 sterr_tmp2 = vec_mergel((vector unsigned short)descs[3],
368 (vector unsigned short)descs[2]);
369 /* C.1 4=>2 filter staterr info only */
370 sterr_tmp1 = vec_mergel((vector unsigned short)descs[1],
371 (vector unsigned short)descs[0]);
372 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
373 pkt_mb4 = (vector unsigned char)vec_sub(
374 (vector unsigned short)pkt_mb4, crc_adjust);
375 pkt_mb3 = (vector unsigned char)vec_sub(
376 (vector unsigned short)pkt_mb3, crc_adjust);
377
378 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
379 const vector unsigned int len1 = vec_sl(
380 vec_ld(0, (vector unsigned int *)&descs[1]),
381 (vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
382 const vector unsigned int len0 = vec_sl(
383 vec_ld(0, (vector unsigned int *)&descs[0]),
384 (vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
385
386 /* merge the now-aligned packet length fields back in */
387 descs[1] = (vector unsigned long)len1;
388 descs[0] = (vector unsigned long)len0;
389
390 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
391 pkt_mb2 = vec_perm((vector unsigned char)descs[1],
392 (vector unsigned char){}, shuf_msk);
393 pkt_mb1 = vec_perm((vector unsigned char)descs[0],
394 (vector unsigned char){}, shuf_msk);
395
396 /* C.2 get 4 pkts staterr value */
397 staterr = (vector unsigned short)vec_mergeh(
398 sterr_tmp1, sterr_tmp2);
399
400 /* D.3 copy final 3,4 data to rx_pkts */
401 vec_st(pkt_mb4, 0,
402 (vector unsigned char *)&rx_pkts[pos + 3]
403 ->rx_descriptor_fields1
404 );
405 vec_st(pkt_mb3, 0,
406 (vector unsigned char *)&rx_pkts[pos + 2]
407 ->rx_descriptor_fields1
408 );
409
410 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
411 pkt_mb2 = (vector unsigned char)vec_sub(
412 (vector unsigned short)pkt_mb2, crc_adjust);
413 pkt_mb1 = (vector unsigned char)vec_sub(
414 (vector unsigned short)pkt_mb1, crc_adjust);
415
416 /* C* extract and record EOP bit */
417 if (split_packet) {
418 vector unsigned char eop_shuf_mask =
419 (vector unsigned char){
420 0xFF, 0xFF, 0xFF, 0xFF,
421 0xFF, 0xFF, 0xFF, 0xFF,
422 0xFF, 0xFF, 0xFF, 0xFF,
423 0x04, 0x0C, 0x00, 0x08
424 };
425
426 /* and with mask to extract bits, flipping 1-0 */
427 vector unsigned char eop_bits = vec_and(
428 (vector unsigned char)vec_nor(staterr, staterr),
429 (vector unsigned char)eop_check);
430 /* the staterr values are not in order, as the count
431 * count of dd bits doesn't care. However, for end of
432 * packet tracking, we do care, so shuffle. This also
433 * compresses the 32-bit values to 8-bit
434 */
435 eop_bits = vec_perm(eop_bits, (vector unsigned char){},
436 eop_shuf_mask);
437 /* store the resulting 32-bit value */
438 *split_packet = (vec_ld(0,
439 (vector unsigned int *)&eop_bits))[0];
440 split_packet += RTE_I40E_DESCS_PER_LOOP;
441
442 /* zero-out next pointers */
443 rx_pkts[pos]->next = NULL;
444 rx_pkts[pos + 1]->next = NULL;
445 rx_pkts[pos + 2]->next = NULL;
446 rx_pkts[pos + 3]->next = NULL;
447 }
448
449 /* C.3 calc available number of desc */
450 staterr = vec_and(staterr, (vector unsigned short)dd_check);
451
452 /* D.3 copy final 1,2 data to rx_pkts */
453 vec_st(pkt_mb2, 0,
454 (vector unsigned char *)&rx_pkts[pos + 1]
455 ->rx_descriptor_fields1
456 );
457 vec_st(pkt_mb1, 0,
458 (vector unsigned char *)&rx_pkts[pos]->rx_descriptor_fields1
459 );
460 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
461 desc_to_olflags_v(descs, &rx_pkts[pos]);
462
463 /* C.4 calc avaialbe number of desc */
464 var = __builtin_popcountll((vec_ld(0,
465 (vector unsigned long *)&staterr)[0]));
466 nb_pkts_recd += var;
467 if (likely(var != RTE_I40E_DESCS_PER_LOOP))
468 break;
469 }
470
471 /* Update our internal tail pointer */
472 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
473 rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
474 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
475
476 return nb_pkts_recd;
477 }
478
479 /* Notice:
480 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
481 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
482 * numbers of DD bits
483 */
484 uint16_t
485 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
486 uint16_t nb_pkts)
487 {
488 return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
489 }
490
491 /* vPMD receive routine that reassembles scattered packets
492 * Notice:
493 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
494 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
495 * numbers of DD bits
496 */
497 uint16_t
498 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
499 uint16_t nb_pkts)
500 {
501 struct i40e_rx_queue *rxq = rx_queue;
502 uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
503
504 /* get some new buffers */
505 uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
506 split_flags);
507 if (nb_bufs == 0)
508 return 0;
509
510 /* happy day case, full burst + no packets to be joined */
511 const uint64_t *split_fl64 = (uint64_t *)split_flags;
512
513 if (rxq->pkt_first_seg == NULL &&
514 split_fl64[0] == 0 && split_fl64[1] == 0 &&
515 split_fl64[2] == 0 && split_fl64[3] == 0)
516 return nb_bufs;
517
518 /* reassemble any packets that need reassembly*/
519 unsigned int i = 0;
520
521 if (!rxq->pkt_first_seg) {
522 /* find the first split flag, and only reassemble then*/
523 while (i < nb_bufs && !split_flags[i])
524 i++;
525 if (i == nb_bufs)
526 return nb_bufs;
527 }
528 return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
529 &split_flags[i]);
530 }
531
532 static inline void
533 vtx1(volatile struct i40e_tx_desc *txdp,
534 struct rte_mbuf *pkt, uint64_t flags)
535 {
536 uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
537 ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
538 ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
539
540 vector unsigned long descriptor = (vector unsigned long){
541 pkt->buf_iova + pkt->data_off, high_qw};
542 *(vector unsigned long *)txdp = descriptor;
543 }
544
545 static inline void
546 vtx(volatile struct i40e_tx_desc *txdp,
547 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
548 {
549 int i;
550
551 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
552 vtx1(txdp, *pkt, flags);
553 }
554
555 uint16_t
556 i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
557 uint16_t nb_pkts)
558 {
559 struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
560 volatile struct i40e_tx_desc *txdp;
561 struct i40e_tx_entry *txep;
562 uint16_t n, nb_commit, tx_id;
563 uint64_t flags = I40E_TD_CMD;
564 uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
565 int i;
566
567 /* cross rx_thresh boundary is not allowed */
568 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
569
570 if (txq->nb_tx_free < txq->tx_free_thresh)
571 i40e_tx_free_bufs(txq);
572
573 nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
574 nb_commit = nb_pkts;
575 if (unlikely(nb_pkts == 0))
576 return 0;
577
578 tx_id = txq->tx_tail;
579 txdp = &txq->tx_ring[tx_id];
580 txep = &txq->sw_ring[tx_id];
581
582 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
583
584 n = (uint16_t)(txq->nb_tx_desc - tx_id);
585 if (nb_commit >= n) {
586 tx_backlog_entry(txep, tx_pkts, n);
587
588 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
589 vtx1(txdp, *tx_pkts, flags);
590
591 vtx1(txdp, *tx_pkts++, rs);
592
593 nb_commit = (uint16_t)(nb_commit - n);
594
595 tx_id = 0;
596 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
597
598 /* avoid reach the end of ring */
599 txdp = &txq->tx_ring[tx_id];
600 txep = &txq->sw_ring[tx_id];
601 }
602
603 tx_backlog_entry(txep, tx_pkts, nb_commit);
604
605 vtx(txdp, tx_pkts, nb_commit, flags);
606
607 tx_id = (uint16_t)(tx_id + nb_commit);
608 if (tx_id > txq->tx_next_rs) {
609 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
610 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
611 I40E_TXD_QW1_CMD_SHIFT);
612 txq->tx_next_rs =
613 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
614 }
615
616 txq->tx_tail = tx_id;
617
618 I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
619
620 return nb_pkts;
621 }
622
623 void __attribute__((cold))
624 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
625 {
626 _i40e_rx_queue_release_mbufs_vec(rxq);
627 }
628
629 int __attribute__((cold))
630 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
631 {
632 return i40e_rxq_vec_setup_default(rxq);
633 }
634
635 int __attribute__((cold))
636 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused * txq)
637 {
638 return 0;
639 }
640
641 int __attribute__((cold))
642 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
643 {
644 return i40e_rx_vec_dev_conf_condition_check_default(dev);
645 }