]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/iavf/iavf_rxtx.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "iavf_log.h"
28 #include "base/iavf_prototype.h"
29 #include "base/iavf_type.h"
30 #include "iavf.h"
31 #include "iavf_rxtx.h"
32
33 static inline int
34 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
35 {
36 /* The following constraints must be satisfied:
37 * thresh < rxq->nb_rx_desc
38 */
39 if (thresh >= nb_desc) {
40 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
41 thresh, nb_desc);
42 return -EINVAL;
43 }
44 return 0;
45 }
46
47 static inline int
48 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
49 uint16_t tx_free_thresh)
50 {
51 /* TX descriptors will have their RS bit set after tx_rs_thresh
52 * descriptors have been used. The TX descriptor ring will be cleaned
53 * after tx_free_thresh descriptors are used or if the number of
54 * descriptors required to transmit a packet is greater than the
55 * number of free TX descriptors.
56 *
57 * The following constraints must be satisfied:
58 * - tx_rs_thresh must be less than the size of the ring minus 2.
59 * - tx_free_thresh must be less than the size of the ring minus 3.
60 * - tx_rs_thresh must be less than or equal to tx_free_thresh.
61 * - tx_rs_thresh must be a divisor of the ring size.
62 *
63 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
64 * race condition, hence the maximum threshold constraints. When set
65 * to zero use default values.
66 */
67 if (tx_rs_thresh >= (nb_desc - 2)) {
68 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
69 "number of TX descriptors (%u) minus 2",
70 tx_rs_thresh, nb_desc);
71 return -EINVAL;
72 }
73 if (tx_free_thresh >= (nb_desc - 3)) {
74 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
75 "number of TX descriptors (%u) minus 3.",
76 tx_free_thresh, nb_desc);
77 return -EINVAL;
78 }
79 if (tx_rs_thresh > tx_free_thresh) {
80 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
81 "equal to tx_free_thresh (%u).",
82 tx_rs_thresh, tx_free_thresh);
83 return -EINVAL;
84 }
85 if ((nb_desc % tx_rs_thresh) != 0) {
86 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
87 "number of TX descriptors (%u).",
88 tx_rs_thresh, nb_desc);
89 return -EINVAL;
90 }
91
92 return 0;
93 }
94
95 #ifdef RTE_LIBRTE_IAVF_INC_VECTOR
96 static inline bool
97 check_rx_vec_allow(struct iavf_rx_queue *rxq)
98 {
99 if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
100 rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
101 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
102 return TRUE;
103 }
104
105 PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
106 return FALSE;
107 }
108
109 static inline bool
110 check_tx_vec_allow(struct iavf_tx_queue *txq)
111 {
112 if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
113 txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
114 txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
115 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
116 return TRUE;
117 }
118 PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
119 return FALSE;
120 }
121 #endif
122
123 static inline bool
124 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
125 {
126 int ret = TRUE;
127
128 if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
129 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
130 "rxq->rx_free_thresh=%d, "
131 "IAVF_RX_MAX_BURST=%d",
132 rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
133 ret = FALSE;
134 } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
135 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
136 "rxq->nb_rx_desc=%d, "
137 "rxq->rx_free_thresh=%d",
138 rxq->nb_rx_desc, rxq->rx_free_thresh);
139 ret = FALSE;
140 }
141 return ret;
142 }
143
144 static inline void
145 reset_rx_queue(struct iavf_rx_queue *rxq)
146 {
147 uint16_t len, i;
148
149 if (!rxq)
150 return;
151
152 len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
153
154 for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
155 ((volatile char *)rxq->rx_ring)[i] = 0;
156
157 memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
158
159 for (i = 0; i < IAVF_RX_MAX_BURST; i++)
160 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
161
162 /* for rx bulk */
163 rxq->rx_nb_avail = 0;
164 rxq->rx_next_avail = 0;
165 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
166
167 rxq->rx_tail = 0;
168 rxq->nb_rx_hold = 0;
169 rxq->pkt_first_seg = NULL;
170 rxq->pkt_last_seg = NULL;
171 }
172
173 static inline void
174 reset_tx_queue(struct iavf_tx_queue *txq)
175 {
176 struct iavf_tx_entry *txe;
177 uint16_t i, prev, size;
178
179 if (!txq) {
180 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
181 return;
182 }
183
184 txe = txq->sw_ring;
185 size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
186 for (i = 0; i < size; i++)
187 ((volatile char *)txq->tx_ring)[i] = 0;
188
189 prev = (uint16_t)(txq->nb_tx_desc - 1);
190 for (i = 0; i < txq->nb_tx_desc; i++) {
191 txq->tx_ring[i].cmd_type_offset_bsz =
192 rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
193 txe[i].mbuf = NULL;
194 txe[i].last_id = i;
195 txe[prev].next_id = i;
196 prev = i;
197 }
198
199 txq->tx_tail = 0;
200 txq->nb_used = 0;
201
202 txq->last_desc_cleaned = txq->nb_tx_desc - 1;
203 txq->nb_free = txq->nb_tx_desc - 1;
204
205 txq->next_dd = txq->rs_thresh - 1;
206 txq->next_rs = txq->rs_thresh - 1;
207 }
208
209 static int
210 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
211 {
212 volatile union iavf_rx_desc *rxd;
213 struct rte_mbuf *mbuf = NULL;
214 uint64_t dma_addr;
215 uint16_t i;
216
217 for (i = 0; i < rxq->nb_rx_desc; i++) {
218 mbuf = rte_mbuf_raw_alloc(rxq->mp);
219 if (unlikely(!mbuf)) {
220 PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
221 return -ENOMEM;
222 }
223
224 rte_mbuf_refcnt_set(mbuf, 1);
225 mbuf->next = NULL;
226 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
227 mbuf->nb_segs = 1;
228 mbuf->port = rxq->port_id;
229
230 dma_addr =
231 rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
232
233 rxd = &rxq->rx_ring[i];
234 rxd->read.pkt_addr = dma_addr;
235 rxd->read.hdr_addr = 0;
236 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
237 rxd->read.rsvd1 = 0;
238 rxd->read.rsvd2 = 0;
239 #endif
240
241 rxq->sw_ring[i] = mbuf;
242 }
243
244 return 0;
245 }
246
247 static inline void
248 release_rxq_mbufs(struct iavf_rx_queue *rxq)
249 {
250 uint16_t i;
251
252 if (!rxq->sw_ring)
253 return;
254
255 for (i = 0; i < rxq->nb_rx_desc; i++) {
256 if (rxq->sw_ring[i]) {
257 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
258 rxq->sw_ring[i] = NULL;
259 }
260 }
261
262 /* for rx bulk */
263 if (rxq->rx_nb_avail == 0)
264 return;
265 for (i = 0; i < rxq->rx_nb_avail; i++) {
266 struct rte_mbuf *mbuf;
267
268 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
269 rte_pktmbuf_free_seg(mbuf);
270 }
271 rxq->rx_nb_avail = 0;
272 }
273
274 static inline void
275 release_txq_mbufs(struct iavf_tx_queue *txq)
276 {
277 uint16_t i;
278
279 if (!txq || !txq->sw_ring) {
280 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
281 return;
282 }
283
284 for (i = 0; i < txq->nb_tx_desc; i++) {
285 if (txq->sw_ring[i].mbuf) {
286 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
287 txq->sw_ring[i].mbuf = NULL;
288 }
289 }
290 }
291
292 static const struct iavf_rxq_ops def_rxq_ops = {
293 .release_mbufs = release_rxq_mbufs,
294 };
295
296 static const struct iavf_txq_ops def_txq_ops = {
297 .release_mbufs = release_txq_mbufs,
298 };
299
300 int
301 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
302 uint16_t nb_desc, unsigned int socket_id,
303 const struct rte_eth_rxconf *rx_conf,
304 struct rte_mempool *mp)
305 {
306 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
307 struct iavf_adapter *ad =
308 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
309 struct iavf_rx_queue *rxq;
310 const struct rte_memzone *mz;
311 uint32_t ring_size;
312 uint16_t len;
313 uint16_t rx_free_thresh;
314
315 PMD_INIT_FUNC_TRACE();
316
317 if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
318 nb_desc > IAVF_MAX_RING_DESC ||
319 nb_desc < IAVF_MIN_RING_DESC) {
320 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
321 "invalid", nb_desc);
322 return -EINVAL;
323 }
324
325 /* Check free threshold */
326 rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
327 IAVF_DEFAULT_RX_FREE_THRESH :
328 rx_conf->rx_free_thresh;
329 if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
330 return -EINVAL;
331
332 /* Free memory if needed */
333 if (dev->data->rx_queues[queue_idx]) {
334 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
335 dev->data->rx_queues[queue_idx] = NULL;
336 }
337
338 /* Allocate the rx queue data structure */
339 rxq = rte_zmalloc_socket("iavf rxq",
340 sizeof(struct iavf_rx_queue),
341 RTE_CACHE_LINE_SIZE,
342 socket_id);
343 if (!rxq) {
344 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
345 "rx queue data structure");
346 return -ENOMEM;
347 }
348
349 rxq->mp = mp;
350 rxq->nb_rx_desc = nb_desc;
351 rxq->rx_free_thresh = rx_free_thresh;
352 rxq->queue_id = queue_idx;
353 rxq->port_id = dev->data->port_id;
354 rxq->crc_len = 0; /* crc stripping by default */
355 rxq->rx_deferred_start = rx_conf->rx_deferred_start;
356 rxq->rx_hdr_len = 0;
357
358 len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
359 rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
360
361 /* Allocate the software ring. */
362 len = nb_desc + IAVF_RX_MAX_BURST;
363 rxq->sw_ring =
364 rte_zmalloc_socket("iavf rx sw ring",
365 sizeof(struct rte_mbuf *) * len,
366 RTE_CACHE_LINE_SIZE,
367 socket_id);
368 if (!rxq->sw_ring) {
369 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
370 rte_free(rxq);
371 return -ENOMEM;
372 }
373
374 /* Allocate the maximun number of RX ring hardware descriptor with
375 * a liitle more to support bulk allocate.
376 */
377 len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
378 ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
379 IAVF_DMA_MEM_ALIGN);
380 mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
381 ring_size, IAVF_RING_BASE_ALIGN,
382 socket_id);
383 if (!mz) {
384 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
385 rte_free(rxq->sw_ring);
386 rte_free(rxq);
387 return -ENOMEM;
388 }
389 /* Zero all the descriptors in the ring. */
390 memset(mz->addr, 0, ring_size);
391 rxq->rx_ring_phys_addr = mz->iova;
392 rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
393
394 rxq->mz = mz;
395 reset_rx_queue(rxq);
396 rxq->q_set = TRUE;
397 dev->data->rx_queues[queue_idx] = rxq;
398 rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
399 rxq->ops = &def_rxq_ops;
400
401 if (check_rx_bulk_allow(rxq) == TRUE) {
402 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
403 "satisfied. Rx Burst Bulk Alloc function will be "
404 "used on port=%d, queue=%d.",
405 rxq->port_id, rxq->queue_id);
406 } else {
407 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
408 "not satisfied, Scattered Rx is requested "
409 "on port=%d, queue=%d.",
410 rxq->port_id, rxq->queue_id);
411 ad->rx_bulk_alloc_allowed = false;
412 }
413
414 #ifdef RTE_LIBRTE_IAVF_INC_VECTOR
415 if (check_rx_vec_allow(rxq) == FALSE)
416 ad->rx_vec_allowed = false;
417 #endif
418 return 0;
419 }
420
421 int
422 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
423 uint16_t queue_idx,
424 uint16_t nb_desc,
425 unsigned int socket_id,
426 const struct rte_eth_txconf *tx_conf)
427 {
428 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
429 struct iavf_tx_queue *txq;
430 const struct rte_memzone *mz;
431 uint32_t ring_size;
432 uint16_t tx_rs_thresh, tx_free_thresh;
433 uint64_t offloads;
434
435 PMD_INIT_FUNC_TRACE();
436
437 offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
438
439 if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
440 nb_desc > IAVF_MAX_RING_DESC ||
441 nb_desc < IAVF_MIN_RING_DESC) {
442 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
443 "invalid", nb_desc);
444 return -EINVAL;
445 }
446
447 tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
448 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
449 tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
450 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
451 check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
452
453 /* Free memory if needed. */
454 if (dev->data->tx_queues[queue_idx]) {
455 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
456 dev->data->tx_queues[queue_idx] = NULL;
457 }
458
459 /* Allocate the TX queue data structure. */
460 txq = rte_zmalloc_socket("iavf txq",
461 sizeof(struct iavf_tx_queue),
462 RTE_CACHE_LINE_SIZE,
463 socket_id);
464 if (!txq) {
465 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
466 "tx queue structure");
467 return -ENOMEM;
468 }
469
470 txq->nb_tx_desc = nb_desc;
471 txq->rs_thresh = tx_rs_thresh;
472 txq->free_thresh = tx_free_thresh;
473 txq->queue_id = queue_idx;
474 txq->port_id = dev->data->port_id;
475 txq->offloads = offloads;
476 txq->tx_deferred_start = tx_conf->tx_deferred_start;
477
478 /* Allocate software ring */
479 txq->sw_ring =
480 rte_zmalloc_socket("iavf tx sw ring",
481 sizeof(struct iavf_tx_entry) * nb_desc,
482 RTE_CACHE_LINE_SIZE,
483 socket_id);
484 if (!txq->sw_ring) {
485 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
486 rte_free(txq);
487 return -ENOMEM;
488 }
489
490 /* Allocate TX hardware ring descriptors. */
491 ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
492 ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
493 mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
494 ring_size, IAVF_RING_BASE_ALIGN,
495 socket_id);
496 if (!mz) {
497 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
498 rte_free(txq->sw_ring);
499 rte_free(txq);
500 return -ENOMEM;
501 }
502 txq->tx_ring_phys_addr = mz->iova;
503 txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
504
505 txq->mz = mz;
506 reset_tx_queue(txq);
507 txq->q_set = TRUE;
508 dev->data->tx_queues[queue_idx] = txq;
509 txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
510 txq->ops = &def_txq_ops;
511
512 #ifdef RTE_LIBRTE_IAVF_INC_VECTOR
513 if (check_tx_vec_allow(txq) == FALSE) {
514 struct iavf_adapter *ad =
515 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
516 ad->tx_vec_allowed = false;
517 }
518 #endif
519
520 return 0;
521 }
522
523 int
524 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
525 {
526 struct iavf_adapter *adapter =
527 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
528 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
529 struct iavf_rx_queue *rxq;
530 int err = 0;
531
532 PMD_DRV_FUNC_TRACE();
533
534 if (rx_queue_id >= dev->data->nb_rx_queues)
535 return -EINVAL;
536
537 rxq = dev->data->rx_queues[rx_queue_id];
538
539 err = alloc_rxq_mbufs(rxq);
540 if (err) {
541 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
542 return err;
543 }
544
545 rte_wmb();
546
547 /* Init the RX tail register. */
548 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
549 IAVF_WRITE_FLUSH(hw);
550
551 /* Ready to switch the queue on */
552 err = iavf_switch_queue(adapter, rx_queue_id, TRUE, TRUE);
553 if (err)
554 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
555 rx_queue_id);
556 else
557 dev->data->rx_queue_state[rx_queue_id] =
558 RTE_ETH_QUEUE_STATE_STARTED;
559
560 return err;
561 }
562
563 int
564 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
565 {
566 struct iavf_adapter *adapter =
567 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
568 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
569 struct iavf_tx_queue *txq;
570 int err = 0;
571
572 PMD_DRV_FUNC_TRACE();
573
574 if (tx_queue_id >= dev->data->nb_tx_queues)
575 return -EINVAL;
576
577 txq = dev->data->tx_queues[tx_queue_id];
578
579 /* Init the RX tail register. */
580 IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
581 IAVF_WRITE_FLUSH(hw);
582
583 /* Ready to switch the queue on */
584 err = iavf_switch_queue(adapter, tx_queue_id, FALSE, TRUE);
585
586 if (err)
587 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
588 tx_queue_id);
589 else
590 dev->data->tx_queue_state[tx_queue_id] =
591 RTE_ETH_QUEUE_STATE_STARTED;
592
593 return err;
594 }
595
596 int
597 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
598 {
599 struct iavf_adapter *adapter =
600 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
601 struct iavf_rx_queue *rxq;
602 int err;
603
604 PMD_DRV_FUNC_TRACE();
605
606 if (rx_queue_id >= dev->data->nb_rx_queues)
607 return -EINVAL;
608
609 err = iavf_switch_queue(adapter, rx_queue_id, TRUE, FALSE);
610 if (err) {
611 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
612 rx_queue_id);
613 return err;
614 }
615
616 rxq = dev->data->rx_queues[rx_queue_id];
617 rxq->ops->release_mbufs(rxq);
618 reset_rx_queue(rxq);
619 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
620
621 return 0;
622 }
623
624 int
625 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
626 {
627 struct iavf_adapter *adapter =
628 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
629 struct iavf_tx_queue *txq;
630 int err;
631
632 PMD_DRV_FUNC_TRACE();
633
634 if (tx_queue_id >= dev->data->nb_tx_queues)
635 return -EINVAL;
636
637 err = iavf_switch_queue(adapter, tx_queue_id, FALSE, FALSE);
638 if (err) {
639 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
640 tx_queue_id);
641 return err;
642 }
643
644 txq = dev->data->tx_queues[tx_queue_id];
645 txq->ops->release_mbufs(txq);
646 reset_tx_queue(txq);
647 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
648
649 return 0;
650 }
651
652 void
653 iavf_dev_rx_queue_release(void *rxq)
654 {
655 struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
656
657 if (!q)
658 return;
659
660 q->ops->release_mbufs(q);
661 rte_free(q->sw_ring);
662 rte_memzone_free(q->mz);
663 rte_free(q);
664 }
665
666 void
667 iavf_dev_tx_queue_release(void *txq)
668 {
669 struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
670
671 if (!q)
672 return;
673
674 q->ops->release_mbufs(q);
675 rte_free(q->sw_ring);
676 rte_memzone_free(q->mz);
677 rte_free(q);
678 }
679
680 void
681 iavf_stop_queues(struct rte_eth_dev *dev)
682 {
683 struct iavf_adapter *adapter =
684 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
685 struct iavf_rx_queue *rxq;
686 struct iavf_tx_queue *txq;
687 int ret, i;
688
689 /* Stop All queues */
690 ret = iavf_disable_queues(adapter);
691 if (ret)
692 PMD_DRV_LOG(WARNING, "Fail to stop queues");
693
694 for (i = 0; i < dev->data->nb_tx_queues; i++) {
695 txq = dev->data->tx_queues[i];
696 if (!txq)
697 continue;
698 txq->ops->release_mbufs(txq);
699 reset_tx_queue(txq);
700 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
701 }
702 for (i = 0; i < dev->data->nb_rx_queues; i++) {
703 rxq = dev->data->rx_queues[i];
704 if (!rxq)
705 continue;
706 rxq->ops->release_mbufs(rxq);
707 reset_rx_queue(rxq);
708 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
709 }
710 }
711
712 static inline void
713 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
714 {
715 if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
716 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
717 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
718 mb->vlan_tci =
719 rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
720 } else {
721 mb->vlan_tci = 0;
722 }
723 }
724
725 /* Translate the rx descriptor status and error fields to pkt flags */
726 static inline uint64_t
727 iavf_rxd_to_pkt_flags(uint64_t qword)
728 {
729 uint64_t flags;
730 uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
731
732 #define IAVF_RX_ERR_BITS 0x3f
733
734 /* Check if RSS_HASH */
735 flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
736 IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
737 IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
738
739 if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
740 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
741 return flags;
742 }
743
744 if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
745 flags |= PKT_RX_IP_CKSUM_BAD;
746 else
747 flags |= PKT_RX_IP_CKSUM_GOOD;
748
749 if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
750 flags |= PKT_RX_L4_CKSUM_BAD;
751 else
752 flags |= PKT_RX_L4_CKSUM_GOOD;
753
754 /* TODO: Oversize error bit is not processed here */
755
756 return flags;
757 }
758
759 /* implement recv_pkts */
760 uint16_t
761 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
762 {
763 volatile union iavf_rx_desc *rx_ring;
764 volatile union iavf_rx_desc *rxdp;
765 struct iavf_rx_queue *rxq;
766 union iavf_rx_desc rxd;
767 struct rte_mbuf *rxe;
768 struct rte_eth_dev *dev;
769 struct rte_mbuf *rxm;
770 struct rte_mbuf *nmb;
771 uint16_t nb_rx;
772 uint32_t rx_status;
773 uint64_t qword1;
774 uint16_t rx_packet_len;
775 uint16_t rx_id, nb_hold;
776 uint64_t dma_addr;
777 uint64_t pkt_flags;
778 static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
779 /* [0] reserved */
780 [1] = RTE_PTYPE_L2_ETHER,
781 /* [2] - [21] reserved */
782 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
783 RTE_PTYPE_L4_FRAG,
784 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
785 RTE_PTYPE_L4_NONFRAG,
786 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
787 RTE_PTYPE_L4_UDP,
788 /* [25] reserved */
789 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
790 RTE_PTYPE_L4_TCP,
791 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
792 RTE_PTYPE_L4_SCTP,
793 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
794 RTE_PTYPE_L4_ICMP,
795 /* All others reserved */
796 };
797
798 nb_rx = 0;
799 nb_hold = 0;
800 rxq = rx_queue;
801 rx_id = rxq->rx_tail;
802 rx_ring = rxq->rx_ring;
803
804 while (nb_rx < nb_pkts) {
805 rxdp = &rx_ring[rx_id];
806 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
807 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
808 IAVF_RXD_QW1_STATUS_SHIFT;
809
810 /* Check the DD bit first */
811 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
812 break;
813 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
814
815 nmb = rte_mbuf_raw_alloc(rxq->mp);
816 if (unlikely(!nmb)) {
817 dev = &rte_eth_devices[rxq->port_id];
818 dev->data->rx_mbuf_alloc_failed++;
819 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
820 "queue_id=%u", rxq->port_id, rxq->queue_id);
821 break;
822 }
823
824 rxd = *rxdp;
825 nb_hold++;
826 rxe = rxq->sw_ring[rx_id];
827 rx_id++;
828 if (unlikely(rx_id == rxq->nb_rx_desc))
829 rx_id = 0;
830
831 /* Prefetch next mbuf */
832 rte_prefetch0(rxq->sw_ring[rx_id]);
833
834 /* When next RX descriptor is on a cache line boundary,
835 * prefetch the next 4 RX descriptors and next 8 pointers
836 * to mbufs.
837 */
838 if ((rx_id & 0x3) == 0) {
839 rte_prefetch0(&rx_ring[rx_id]);
840 rte_prefetch0(rxq->sw_ring[rx_id]);
841 }
842 rxm = rxe;
843 rxe = nmb;
844 dma_addr =
845 rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
846 rxdp->read.hdr_addr = 0;
847 rxdp->read.pkt_addr = dma_addr;
848
849 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
850 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
851
852 rxm->data_off = RTE_PKTMBUF_HEADROOM;
853 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
854 rxm->nb_segs = 1;
855 rxm->next = NULL;
856 rxm->pkt_len = rx_packet_len;
857 rxm->data_len = rx_packet_len;
858 rxm->port = rxq->port_id;
859 rxm->ol_flags = 0;
860 iavf_rxd_to_vlan_tci(rxm, &rxd);
861 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
862 rxm->packet_type =
863 ptype_tbl[(uint8_t)((qword1 &
864 IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
865
866 if (pkt_flags & PKT_RX_RSS_HASH)
867 rxm->hash.rss =
868 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
869
870 rxm->ol_flags |= pkt_flags;
871
872 rx_pkts[nb_rx++] = rxm;
873 }
874 rxq->rx_tail = rx_id;
875
876 /* If the number of free RX descriptors is greater than the RX free
877 * threshold of the queue, advance the receive tail register of queue.
878 * Update that register with the value of the last processed RX
879 * descriptor minus 1.
880 */
881 nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
882 if (nb_hold > rxq->rx_free_thresh) {
883 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
884 "nb_hold=%u nb_rx=%u",
885 rxq->port_id, rxq->queue_id,
886 rx_id, nb_hold, nb_rx);
887 rx_id = (uint16_t)((rx_id == 0) ?
888 (rxq->nb_rx_desc - 1) : (rx_id - 1));
889 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
890 nb_hold = 0;
891 }
892 rxq->nb_rx_hold = nb_hold;
893
894 return nb_rx;
895 }
896
897 /* implement recv_scattered_pkts */
898 uint16_t
899 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
900 uint16_t nb_pkts)
901 {
902 struct iavf_rx_queue *rxq = rx_queue;
903 union iavf_rx_desc rxd;
904 struct rte_mbuf *rxe;
905 struct rte_mbuf *first_seg = rxq->pkt_first_seg;
906 struct rte_mbuf *last_seg = rxq->pkt_last_seg;
907 struct rte_mbuf *nmb, *rxm;
908 uint16_t rx_id = rxq->rx_tail;
909 uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
910 struct rte_eth_dev *dev;
911 uint32_t rx_status;
912 uint64_t qword1;
913 uint64_t dma_addr;
914 uint64_t pkt_flags;
915
916 volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
917 volatile union iavf_rx_desc *rxdp;
918 static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
919 /* [0] reserved */
920 [1] = RTE_PTYPE_L2_ETHER,
921 /* [2] - [21] reserved */
922 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
923 RTE_PTYPE_L4_FRAG,
924 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
925 RTE_PTYPE_L4_NONFRAG,
926 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
927 RTE_PTYPE_L4_UDP,
928 /* [25] reserved */
929 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
930 RTE_PTYPE_L4_TCP,
931 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
932 RTE_PTYPE_L4_SCTP,
933 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
934 RTE_PTYPE_L4_ICMP,
935 /* All others reserved */
936 };
937
938 while (nb_rx < nb_pkts) {
939 rxdp = &rx_ring[rx_id];
940 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
941 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
942 IAVF_RXD_QW1_STATUS_SHIFT;
943
944 /* Check the DD bit */
945 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
946 break;
947 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
948
949 nmb = rte_mbuf_raw_alloc(rxq->mp);
950 if (unlikely(!nmb)) {
951 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
952 "queue_id=%u", rxq->port_id, rxq->queue_id);
953 dev = &rte_eth_devices[rxq->port_id];
954 dev->data->rx_mbuf_alloc_failed++;
955 break;
956 }
957
958 rxd = *rxdp;
959 nb_hold++;
960 rxe = rxq->sw_ring[rx_id];
961 rx_id++;
962 if (rx_id == rxq->nb_rx_desc)
963 rx_id = 0;
964
965 /* Prefetch next mbuf */
966 rte_prefetch0(rxq->sw_ring[rx_id]);
967
968 /* When next RX descriptor is on a cache line boundary,
969 * prefetch the next 4 RX descriptors and next 8 pointers
970 * to mbufs.
971 */
972 if ((rx_id & 0x3) == 0) {
973 rte_prefetch0(&rx_ring[rx_id]);
974 rte_prefetch0(rxq->sw_ring[rx_id]);
975 }
976
977 rxm = rxe;
978 rxe = nmb;
979 dma_addr =
980 rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
981
982 /* Set data buffer address and data length of the mbuf */
983 rxdp->read.hdr_addr = 0;
984 rxdp->read.pkt_addr = dma_addr;
985 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
986 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
987 rxm->data_len = rx_packet_len;
988 rxm->data_off = RTE_PKTMBUF_HEADROOM;
989
990 /* If this is the first buffer of the received packet, set the
991 * pointer to the first mbuf of the packet and initialize its
992 * context. Otherwise, update the total length and the number
993 * of segments of the current scattered packet, and update the
994 * pointer to the last mbuf of the current packet.
995 */
996 if (!first_seg) {
997 first_seg = rxm;
998 first_seg->nb_segs = 1;
999 first_seg->pkt_len = rx_packet_len;
1000 } else {
1001 first_seg->pkt_len =
1002 (uint16_t)(first_seg->pkt_len +
1003 rx_packet_len);
1004 first_seg->nb_segs++;
1005 last_seg->next = rxm;
1006 }
1007
1008 /* If this is not the last buffer of the received packet,
1009 * update the pointer to the last mbuf of the current scattered
1010 * packet and continue to parse the RX ring.
1011 */
1012 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1013 last_seg = rxm;
1014 continue;
1015 }
1016
1017 /* This is the last buffer of the received packet. If the CRC
1018 * is not stripped by the hardware:
1019 * - Subtract the CRC length from the total packet length.
1020 * - If the last buffer only contains the whole CRC or a part
1021 * of it, free the mbuf associated to the last buffer. If part
1022 * of the CRC is also contained in the previous mbuf, subtract
1023 * the length of that CRC part from the data length of the
1024 * previous mbuf.
1025 */
1026 rxm->next = NULL;
1027 if (unlikely(rxq->crc_len > 0)) {
1028 first_seg->pkt_len -= ETHER_CRC_LEN;
1029 if (rx_packet_len <= ETHER_CRC_LEN) {
1030 rte_pktmbuf_free_seg(rxm);
1031 first_seg->nb_segs--;
1032 last_seg->data_len =
1033 (uint16_t)(last_seg->data_len -
1034 (ETHER_CRC_LEN - rx_packet_len));
1035 last_seg->next = NULL;
1036 } else
1037 rxm->data_len = (uint16_t)(rx_packet_len -
1038 ETHER_CRC_LEN);
1039 }
1040
1041 first_seg->port = rxq->port_id;
1042 first_seg->ol_flags = 0;
1043 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1044 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1045 first_seg->packet_type =
1046 ptype_tbl[(uint8_t)((qword1 &
1047 IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1048
1049 if (pkt_flags & PKT_RX_RSS_HASH)
1050 first_seg->hash.rss =
1051 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1052
1053 first_seg->ol_flags |= pkt_flags;
1054
1055 /* Prefetch data of first segment, if configured to do so. */
1056 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1057 first_seg->data_off));
1058 rx_pkts[nb_rx++] = first_seg;
1059 first_seg = NULL;
1060 }
1061
1062 /* Record index of the next RX descriptor to probe. */
1063 rxq->rx_tail = rx_id;
1064 rxq->pkt_first_seg = first_seg;
1065 rxq->pkt_last_seg = last_seg;
1066
1067 /* If the number of free RX descriptors is greater than the RX free
1068 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1069 * register. Update the RDT with the value of the last processed RX
1070 * descriptor minus 1, to guarantee that the RDT register is never
1071 * equal to the RDH register, which creates a "full" ring situtation
1072 * from the hardware point of view.
1073 */
1074 nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1075 if (nb_hold > rxq->rx_free_thresh) {
1076 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1077 "nb_hold=%u nb_rx=%u",
1078 rxq->port_id, rxq->queue_id,
1079 rx_id, nb_hold, nb_rx);
1080 rx_id = (uint16_t)(rx_id == 0 ?
1081 (rxq->nb_rx_desc - 1) : (rx_id - 1));
1082 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1083 nb_hold = 0;
1084 }
1085 rxq->nb_rx_hold = nb_hold;
1086
1087 return nb_rx;
1088 }
1089
1090 #define IAVF_LOOK_AHEAD 8
1091 static inline int
1092 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1093 {
1094 volatile union iavf_rx_desc *rxdp;
1095 struct rte_mbuf **rxep;
1096 struct rte_mbuf *mb;
1097 uint16_t pkt_len;
1098 uint64_t qword1;
1099 uint32_t rx_status;
1100 int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1101 int32_t i, j, nb_rx = 0;
1102 uint64_t pkt_flags;
1103 static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
1104 /* [0] reserved */
1105 [1] = RTE_PTYPE_L2_ETHER,
1106 /* [2] - [21] reserved */
1107 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1108 RTE_PTYPE_L4_FRAG,
1109 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1110 RTE_PTYPE_L4_NONFRAG,
1111 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1112 RTE_PTYPE_L4_UDP,
1113 /* [25] reserved */
1114 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1115 RTE_PTYPE_L4_TCP,
1116 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1117 RTE_PTYPE_L4_SCTP,
1118 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1119 RTE_PTYPE_L4_ICMP,
1120 /* All others reserved */
1121 };
1122
1123 rxdp = &rxq->rx_ring[rxq->rx_tail];
1124 rxep = &rxq->sw_ring[rxq->rx_tail];
1125
1126 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1127 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1128 IAVF_RXD_QW1_STATUS_SHIFT;
1129
1130 /* Make sure there is at least 1 packet to receive */
1131 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1132 return 0;
1133
1134 /* Scan LOOK_AHEAD descriptors at a time to determine which
1135 * descriptors reference packets that are ready to be received.
1136 */
1137 for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1138 rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1139 /* Read desc statuses backwards to avoid race condition */
1140 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1141 qword1 = rte_le_to_cpu_64(
1142 rxdp[j].wb.qword1.status_error_len);
1143 s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1144 IAVF_RXD_QW1_STATUS_SHIFT;
1145 }
1146
1147 rte_smp_rmb();
1148
1149 /* Compute how many status bits were set */
1150 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1151 nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1152
1153 nb_rx += nb_dd;
1154
1155 /* Translate descriptor info to mbuf parameters */
1156 for (j = 0; j < nb_dd; j++) {
1157 IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1158 rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1159
1160 mb = rxep[j];
1161 qword1 = rte_le_to_cpu_64
1162 (rxdp[j].wb.qword1.status_error_len);
1163 pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1164 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1165 mb->data_len = pkt_len;
1166 mb->pkt_len = pkt_len;
1167 mb->ol_flags = 0;
1168 iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1169 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1170 mb->packet_type =
1171 ptype_tbl[(uint8_t)((qword1 &
1172 IAVF_RXD_QW1_PTYPE_MASK) >>
1173 IAVF_RXD_QW1_PTYPE_SHIFT)];
1174
1175 if (pkt_flags & PKT_RX_RSS_HASH)
1176 mb->hash.rss = rte_le_to_cpu_32(
1177 rxdp[j].wb.qword0.hi_dword.rss);
1178
1179 mb->ol_flags |= pkt_flags;
1180 }
1181
1182 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1183 rxq->rx_stage[i + j] = rxep[j];
1184
1185 if (nb_dd != IAVF_LOOK_AHEAD)
1186 break;
1187 }
1188
1189 /* Clear software ring entries */
1190 for (i = 0; i < nb_rx; i++)
1191 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1192
1193 return nb_rx;
1194 }
1195
1196 static inline uint16_t
1197 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1198 struct rte_mbuf **rx_pkts,
1199 uint16_t nb_pkts)
1200 {
1201 uint16_t i;
1202 struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1203
1204 nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1205
1206 for (i = 0; i < nb_pkts; i++)
1207 rx_pkts[i] = stage[i];
1208
1209 rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1210 rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1211
1212 return nb_pkts;
1213 }
1214
1215 static inline int
1216 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1217 {
1218 volatile union iavf_rx_desc *rxdp;
1219 struct rte_mbuf **rxep;
1220 struct rte_mbuf *mb;
1221 uint16_t alloc_idx, i;
1222 uint64_t dma_addr;
1223 int diag;
1224
1225 /* Allocate buffers in bulk */
1226 alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1227 (rxq->rx_free_thresh - 1));
1228 rxep = &rxq->sw_ring[alloc_idx];
1229 diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1230 rxq->rx_free_thresh);
1231 if (unlikely(diag != 0)) {
1232 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1233 return -ENOMEM;
1234 }
1235
1236 rxdp = &rxq->rx_ring[alloc_idx];
1237 for (i = 0; i < rxq->rx_free_thresh; i++) {
1238 if (likely(i < (rxq->rx_free_thresh - 1)))
1239 /* Prefetch next mbuf */
1240 rte_prefetch0(rxep[i + 1]);
1241
1242 mb = rxep[i];
1243 rte_mbuf_refcnt_set(mb, 1);
1244 mb->next = NULL;
1245 mb->data_off = RTE_PKTMBUF_HEADROOM;
1246 mb->nb_segs = 1;
1247 mb->port = rxq->port_id;
1248 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1249 rxdp[i].read.hdr_addr = 0;
1250 rxdp[i].read.pkt_addr = dma_addr;
1251 }
1252
1253 /* Update rx tail register */
1254 rte_wmb();
1255 IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1256
1257 rxq->rx_free_trigger =
1258 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1259 if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1260 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1261
1262 return 0;
1263 }
1264
1265 static inline uint16_t
1266 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1267 {
1268 struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1269 uint16_t nb_rx = 0;
1270
1271 if (!nb_pkts)
1272 return 0;
1273
1274 if (rxq->rx_nb_avail)
1275 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1276
1277 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1278 rxq->rx_next_avail = 0;
1279 rxq->rx_nb_avail = nb_rx;
1280 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1281
1282 if (rxq->rx_tail > rxq->rx_free_trigger) {
1283 if (iavf_rx_alloc_bufs(rxq) != 0) {
1284 uint16_t i, j;
1285
1286 /* TODO: count rx_mbuf_alloc_failed here */
1287
1288 rxq->rx_nb_avail = 0;
1289 rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1290 for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1291 rxq->sw_ring[j] = rxq->rx_stage[i];
1292
1293 return 0;
1294 }
1295 }
1296
1297 if (rxq->rx_tail >= rxq->nb_rx_desc)
1298 rxq->rx_tail = 0;
1299
1300 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1301 rxq->port_id, rxq->queue_id,
1302 rxq->rx_tail, nb_rx);
1303
1304 if (rxq->rx_nb_avail)
1305 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1306
1307 return 0;
1308 }
1309
1310 static uint16_t
1311 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1312 struct rte_mbuf **rx_pkts,
1313 uint16_t nb_pkts)
1314 {
1315 uint16_t nb_rx = 0, n, count;
1316
1317 if (unlikely(nb_pkts == 0))
1318 return 0;
1319
1320 if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1321 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1322
1323 while (nb_pkts) {
1324 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1325 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1326 nb_rx = (uint16_t)(nb_rx + count);
1327 nb_pkts = (uint16_t)(nb_pkts - count);
1328 if (count < n)
1329 break;
1330 }
1331
1332 return nb_rx;
1333 }
1334
1335 static inline int
1336 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1337 {
1338 struct iavf_tx_entry *sw_ring = txq->sw_ring;
1339 uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1340 uint16_t nb_tx_desc = txq->nb_tx_desc;
1341 uint16_t desc_to_clean_to;
1342 uint16_t nb_tx_to_clean;
1343
1344 volatile struct iavf_tx_desc *txd = txq->tx_ring;
1345
1346 desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
1347 if (desc_to_clean_to >= nb_tx_desc)
1348 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1349
1350 desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1351 if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1352 rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
1353 rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
1354 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1355 "(port=%d queue=%d)", desc_to_clean_to,
1356 txq->port_id, txq->queue_id);
1357 return -1;
1358 }
1359
1360 if (last_desc_cleaned > desc_to_clean_to)
1361 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1362 desc_to_clean_to);
1363 else
1364 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1365 last_desc_cleaned);
1366
1367 txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1368
1369 txq->last_desc_cleaned = desc_to_clean_to;
1370 txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
1371
1372 return 0;
1373 }
1374
1375 /* Check if the context descriptor is needed for TX offloading */
1376 static inline uint16_t
1377 iavf_calc_context_desc(uint64_t flags)
1378 {
1379 static uint64_t mask = PKT_TX_TCP_SEG;
1380
1381 return (flags & mask) ? 1 : 0;
1382 }
1383
1384 static inline void
1385 iavf_txd_enable_checksum(uint64_t ol_flags,
1386 uint32_t *td_cmd,
1387 uint32_t *td_offset,
1388 union iavf_tx_offload tx_offload)
1389 {
1390 /* Set MACLEN */
1391 *td_offset |= (tx_offload.l2_len >> 1) <<
1392 IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1393
1394 /* Enable L3 checksum offloads */
1395 if (ol_flags & PKT_TX_IP_CKSUM) {
1396 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
1397 *td_offset |= (tx_offload.l3_len >> 2) <<
1398 IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1399 } else if (ol_flags & PKT_TX_IPV4) {
1400 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
1401 *td_offset |= (tx_offload.l3_len >> 2) <<
1402 IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1403 } else if (ol_flags & PKT_TX_IPV6) {
1404 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1405 *td_offset |= (tx_offload.l3_len >> 2) <<
1406 IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1407 }
1408
1409 if (ol_flags & PKT_TX_TCP_SEG) {
1410 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1411 *td_offset |= (tx_offload.l4_len >> 2) <<
1412 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1413 return;
1414 }
1415
1416 /* Enable L4 checksum offloads */
1417 switch (ol_flags & PKT_TX_L4_MASK) {
1418 case PKT_TX_TCP_CKSUM:
1419 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1420 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
1421 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1422 break;
1423 case PKT_TX_SCTP_CKSUM:
1424 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1425 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
1426 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1427 break;
1428 case PKT_TX_UDP_CKSUM:
1429 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1430 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
1431 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1432 break;
1433 default:
1434 break;
1435 }
1436 }
1437
1438 /* set TSO context descriptor
1439 * support IP -> L4 and IP -> IP -> L4
1440 */
1441 static inline uint64_t
1442 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
1443 {
1444 uint64_t ctx_desc = 0;
1445 uint32_t cd_cmd, hdr_len, cd_tso_len;
1446
1447 if (!tx_offload.l4_len) {
1448 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1449 return ctx_desc;
1450 }
1451
1452 /* in case of non tunneling packet, the outer_l2_len and
1453 * outer_l3_len must be 0.
1454 */
1455 hdr_len = tx_offload.l2_len +
1456 tx_offload.l3_len +
1457 tx_offload.l4_len;
1458
1459 cd_cmd = IAVF_TX_CTX_DESC_TSO;
1460 cd_tso_len = mbuf->pkt_len - hdr_len;
1461 ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1462 ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1463 ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1464
1465 return ctx_desc;
1466 }
1467
1468 /* Construct the tx flags */
1469 static inline uint64_t
1470 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
1471 uint32_t td_tag)
1472 {
1473 return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
1474 ((uint64_t)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) |
1475 ((uint64_t)td_offset <<
1476 IAVF_TXD_QW1_OFFSET_SHIFT) |
1477 ((uint64_t)size <<
1478 IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
1479 ((uint64_t)td_tag <<
1480 IAVF_TXD_QW1_L2TAG1_SHIFT));
1481 }
1482
1483 /* TX function */
1484 uint16_t
1485 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1486 {
1487 volatile struct iavf_tx_desc *txd;
1488 volatile struct iavf_tx_desc *txr;
1489 struct iavf_tx_queue *txq;
1490 struct iavf_tx_entry *sw_ring;
1491 struct iavf_tx_entry *txe, *txn;
1492 struct rte_mbuf *tx_pkt;
1493 struct rte_mbuf *m_seg;
1494 uint16_t tx_id;
1495 uint16_t nb_tx;
1496 uint32_t td_cmd;
1497 uint32_t td_offset;
1498 uint32_t td_tag;
1499 uint64_t ol_flags;
1500 uint16_t nb_used;
1501 uint16_t nb_ctx;
1502 uint16_t tx_last;
1503 uint16_t slen;
1504 uint64_t buf_dma_addr;
1505 union iavf_tx_offload tx_offload = {0};
1506
1507 txq = tx_queue;
1508 sw_ring = txq->sw_ring;
1509 txr = txq->tx_ring;
1510 tx_id = txq->tx_tail;
1511 txe = &sw_ring[tx_id];
1512
1513 /* Check if the descriptor ring needs to be cleaned. */
1514 if (txq->nb_free < txq->free_thresh)
1515 iavf_xmit_cleanup(txq);
1516
1517 for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1518 td_cmd = 0;
1519 td_tag = 0;
1520 td_offset = 0;
1521
1522 tx_pkt = *tx_pkts++;
1523 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1524
1525 ol_flags = tx_pkt->ol_flags;
1526 tx_offload.l2_len = tx_pkt->l2_len;
1527 tx_offload.l3_len = tx_pkt->l3_len;
1528 tx_offload.l4_len = tx_pkt->l4_len;
1529 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1530
1531 /* Calculate the number of context descriptors needed. */
1532 nb_ctx = iavf_calc_context_desc(ol_flags);
1533
1534 /* The number of descriptors that must be allocated for
1535 * a packet equals to the number of the segments of that
1536 * packet plus 1 context descriptor if needed.
1537 */
1538 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1539 tx_last = (uint16_t)(tx_id + nb_used - 1);
1540
1541 /* Circular ring */
1542 if (tx_last >= txq->nb_tx_desc)
1543 tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1544
1545 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
1546 " tx_first=%u tx_last=%u",
1547 txq->port_id, txq->queue_id, tx_id, tx_last);
1548
1549 if (nb_used > txq->nb_free) {
1550 if (iavf_xmit_cleanup(txq)) {
1551 if (nb_tx == 0)
1552 return 0;
1553 goto end_of_tx;
1554 }
1555 if (unlikely(nb_used > txq->rs_thresh)) {
1556 while (nb_used > txq->nb_free) {
1557 if (iavf_xmit_cleanup(txq)) {
1558 if (nb_tx == 0)
1559 return 0;
1560 goto end_of_tx;
1561 }
1562 }
1563 }
1564 }
1565
1566 /* Descriptor based VLAN insertion */
1567 if (ol_flags & PKT_TX_VLAN_PKT) {
1568 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1569 td_tag = tx_pkt->vlan_tci;
1570 }
1571
1572 /* According to datasheet, the bit2 is reserved and must be
1573 * set to 1.
1574 */
1575 td_cmd |= 0x04;
1576
1577 /* Enable checksum offloading */
1578 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
1579 iavf_txd_enable_checksum(ol_flags, &td_cmd,
1580 &td_offset, tx_offload);
1581
1582 if (nb_ctx) {
1583 /* Setup TX context descriptor if required */
1584 uint64_t cd_type_cmd_tso_mss =
1585 IAVF_TX_DESC_DTYPE_CONTEXT;
1586
1587 txn = &sw_ring[txe->next_id];
1588 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1589 if (txe->mbuf) {
1590 rte_pktmbuf_free_seg(txe->mbuf);
1591 txe->mbuf = NULL;
1592 }
1593
1594 /* TSO enabled */
1595 if (ol_flags & PKT_TX_TCP_SEG)
1596 cd_type_cmd_tso_mss |=
1597 iavf_set_tso_ctx(tx_pkt, tx_offload);
1598
1599 IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
1600 txe->last_id = tx_last;
1601 tx_id = txe->next_id;
1602 txe = txn;
1603 }
1604
1605 m_seg = tx_pkt;
1606 do {
1607 txd = &txr[tx_id];
1608 txn = &sw_ring[txe->next_id];
1609
1610 if (txe->mbuf)
1611 rte_pktmbuf_free_seg(txe->mbuf);
1612 txe->mbuf = m_seg;
1613
1614 /* Setup TX Descriptor */
1615 slen = m_seg->data_len;
1616 buf_dma_addr = rte_mbuf_data_iova(m_seg);
1617 txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1618 txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
1619 td_offset,
1620 slen,
1621 td_tag);
1622
1623 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
1624 txe->last_id = tx_last;
1625 tx_id = txe->next_id;
1626 txe = txn;
1627 m_seg = m_seg->next;
1628 } while (m_seg);
1629
1630 /* The last packet data descriptor needs End Of Packet (EOP) */
1631 td_cmd |= IAVF_TX_DESC_CMD_EOP;
1632 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
1633 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
1634
1635 if (txq->nb_used >= txq->rs_thresh) {
1636 PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
1637 "%4u (port=%d queue=%d)",
1638 tx_last, txq->port_id, txq->queue_id);
1639
1640 td_cmd |= IAVF_TX_DESC_CMD_RS;
1641
1642 /* Update txq RS bit counters */
1643 txq->nb_used = 0;
1644 }
1645
1646 txd->cmd_type_offset_bsz |=
1647 rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1648 IAVF_TXD_QW1_CMD_SHIFT);
1649 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
1650 }
1651
1652 end_of_tx:
1653 rte_wmb();
1654
1655 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1656 txq->port_id, txq->queue_id, tx_id, nb_tx);
1657
1658 IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
1659 txq->tx_tail = tx_id;
1660
1661 return nb_tx;
1662 }
1663
1664 static uint16_t
1665 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1666 uint16_t nb_pkts)
1667 {
1668 uint16_t nb_tx = 0;
1669 struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1670
1671 while (nb_pkts) {
1672 uint16_t ret, num;
1673
1674 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1675 ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1676 nb_tx += ret;
1677 nb_pkts -= ret;
1678 if (ret < num)
1679 break;
1680 }
1681
1682 return nb_tx;
1683 }
1684
1685 /* TX prep functions */
1686 uint16_t
1687 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1688 uint16_t nb_pkts)
1689 {
1690 int i, ret;
1691 uint64_t ol_flags;
1692 struct rte_mbuf *m;
1693
1694 for (i = 0; i < nb_pkts; i++) {
1695 m = tx_pkts[i];
1696 ol_flags = m->ol_flags;
1697
1698 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
1699 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1700 if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
1701 rte_errno = -EINVAL;
1702 return i;
1703 }
1704 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
1705 (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
1706 /* MSS outside the range are considered malicious */
1707 rte_errno = -EINVAL;
1708 return i;
1709 }
1710
1711 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
1712 rte_errno = -ENOTSUP;
1713 return i;
1714 }
1715
1716 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1717 ret = rte_validate_tx_offload(m);
1718 if (ret != 0) {
1719 rte_errno = ret;
1720 return i;
1721 }
1722 #endif
1723 ret = rte_net_intel_cksum_prepare(m);
1724 if (ret != 0) {
1725 rte_errno = ret;
1726 return i;
1727 }
1728 }
1729
1730 return i;
1731 }
1732
1733 /* choose rx function*/
1734 void
1735 iavf_set_rx_function(struct rte_eth_dev *dev)
1736 {
1737 struct iavf_adapter *adapter =
1738 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1739 struct iavf_rx_queue *rxq;
1740 int i;
1741
1742 if (adapter->rx_vec_allowed) {
1743 if (dev->data->scattered_rx) {
1744 PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback"
1745 " (port=%d).", dev->data->port_id);
1746 dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec;
1747 } else {
1748 PMD_DRV_LOG(DEBUG, "Using Vector Rx callback"
1749 " (port=%d).", dev->data->port_id);
1750 dev->rx_pkt_burst = iavf_recv_pkts_vec;
1751 }
1752 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1753 rxq = dev->data->rx_queues[i];
1754 if (!rxq)
1755 continue;
1756 iavf_rxq_vec_setup(rxq);
1757 }
1758 } else if (dev->data->scattered_rx) {
1759 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
1760 dev->data->port_id);
1761 dev->rx_pkt_burst = iavf_recv_scattered_pkts;
1762 } else if (adapter->rx_bulk_alloc_allowed) {
1763 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
1764 dev->data->port_id);
1765 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
1766 } else {
1767 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
1768 dev->data->port_id);
1769 dev->rx_pkt_burst = iavf_recv_pkts;
1770 }
1771 }
1772
1773 /* choose tx function*/
1774 void
1775 iavf_set_tx_function(struct rte_eth_dev *dev)
1776 {
1777 struct iavf_adapter *adapter =
1778 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1779 struct iavf_tx_queue *txq;
1780 int i;
1781
1782 if (adapter->tx_vec_allowed) {
1783 PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).",
1784 dev->data->port_id);
1785 dev->tx_pkt_burst = iavf_xmit_pkts_vec;
1786 dev->tx_pkt_prepare = NULL;
1787 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1788 txq = dev->data->tx_queues[i];
1789 if (!txq)
1790 continue;
1791 iavf_txq_vec_setup(txq);
1792 }
1793 } else {
1794 PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
1795 dev->data->port_id);
1796 dev->tx_pkt_burst = iavf_xmit_pkts;
1797 dev->tx_pkt_prepare = iavf_prep_pkts;
1798 }
1799 }
1800
1801 void
1802 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1803 struct rte_eth_rxq_info *qinfo)
1804 {
1805 struct iavf_rx_queue *rxq;
1806
1807 rxq = dev->data->rx_queues[queue_id];
1808
1809 qinfo->mp = rxq->mp;
1810 qinfo->scattered_rx = dev->data->scattered_rx;
1811 qinfo->nb_desc = rxq->nb_rx_desc;
1812
1813 qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1814 qinfo->conf.rx_drop_en = TRUE;
1815 qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1816 }
1817
1818 void
1819 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1820 struct rte_eth_txq_info *qinfo)
1821 {
1822 struct iavf_tx_queue *txq;
1823
1824 txq = dev->data->tx_queues[queue_id];
1825
1826 qinfo->nb_desc = txq->nb_tx_desc;
1827
1828 qinfo->conf.tx_free_thresh = txq->free_thresh;
1829 qinfo->conf.tx_rs_thresh = txq->rs_thresh;
1830 qinfo->conf.offloads = txq->offloads;
1831 qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1832 }
1833
1834 /* Get the number of used descriptors of a rx queue */
1835 uint32_t
1836 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
1837 {
1838 #define IAVF_RXQ_SCAN_INTERVAL 4
1839 volatile union iavf_rx_desc *rxdp;
1840 struct iavf_rx_queue *rxq;
1841 uint16_t desc = 0;
1842
1843 rxq = dev->data->rx_queues[queue_id];
1844 rxdp = &rxq->rx_ring[rxq->rx_tail];
1845 while ((desc < rxq->nb_rx_desc) &&
1846 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1847 IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
1848 (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
1849 /* Check the DD bit of a rx descriptor of each 4 in a group,
1850 * to avoid checking too frequently and downgrading performance
1851 * too much.
1852 */
1853 desc += IAVF_RXQ_SCAN_INTERVAL;
1854 rxdp += IAVF_RXQ_SCAN_INTERVAL;
1855 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1856 rxdp = &(rxq->rx_ring[rxq->rx_tail +
1857 desc - rxq->nb_rx_desc]);
1858 }
1859
1860 return desc;
1861 }
1862
1863 int
1864 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
1865 {
1866 struct iavf_rx_queue *rxq = rx_queue;
1867 volatile uint64_t *status;
1868 uint64_t mask;
1869 uint32_t desc;
1870
1871 if (unlikely(offset >= rxq->nb_rx_desc))
1872 return -EINVAL;
1873
1874 if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1875 return RTE_ETH_RX_DESC_UNAVAIL;
1876
1877 desc = rxq->rx_tail + offset;
1878 if (desc >= rxq->nb_rx_desc)
1879 desc -= rxq->nb_rx_desc;
1880
1881 status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
1882 mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
1883 << IAVF_RXD_QW1_STATUS_SHIFT);
1884 if (*status & mask)
1885 return RTE_ETH_RX_DESC_DONE;
1886
1887 return RTE_ETH_RX_DESC_AVAIL;
1888 }
1889
1890 int
1891 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
1892 {
1893 struct iavf_tx_queue *txq = tx_queue;
1894 volatile uint64_t *status;
1895 uint64_t mask, expect;
1896 uint32_t desc;
1897
1898 if (unlikely(offset >= txq->nb_tx_desc))
1899 return -EINVAL;
1900
1901 desc = txq->tx_tail + offset;
1902 /* go to next desc that has the RS bit */
1903 desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
1904 txq->rs_thresh;
1905 if (desc >= txq->nb_tx_desc) {
1906 desc -= txq->nb_tx_desc;
1907 if (desc >= txq->nb_tx_desc)
1908 desc -= txq->nb_tx_desc;
1909 }
1910
1911 status = &txq->tx_ring[desc].cmd_type_offset_bsz;
1912 mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
1913 expect = rte_cpu_to_le_64(
1914 IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
1915 if ((*status & mask) == expect)
1916 return RTE_ETH_TX_DESC_DONE;
1917
1918 return RTE_ETH_TX_DESC_FULL;
1919 }
1920
1921 __rte_weak uint16_t
1922 iavf_recv_pkts_vec(__rte_unused void *rx_queue,
1923 __rte_unused struct rte_mbuf **rx_pkts,
1924 __rte_unused uint16_t nb_pkts)
1925 {
1926 return 0;
1927 }
1928
1929 __rte_weak uint16_t
1930 iavf_recv_scattered_pkts_vec(__rte_unused void *rx_queue,
1931 __rte_unused struct rte_mbuf **rx_pkts,
1932 __rte_unused uint16_t nb_pkts)
1933 {
1934 return 0;
1935 }
1936
1937 __rte_weak uint16_t
1938 iavf_xmit_fixed_burst_vec(__rte_unused void *tx_queue,
1939 __rte_unused struct rte_mbuf **tx_pkts,
1940 __rte_unused uint16_t nb_pkts)
1941 {
1942 return 0;
1943 }
1944
1945 __rte_weak int
1946 iavf_rxq_vec_setup(__rte_unused struct iavf_rx_queue *rxq)
1947 {
1948 return -1;
1949 }
1950
1951 __rte_weak int
1952 iavf_txq_vec_setup(__rte_unused struct iavf_tx_queue *txq)
1953 {
1954 return -1;
1955 }