]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/ice/ice_rxtx.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018 Intel Corporation
3 */
4
5 #include <rte_ethdev_driver.h>
6 #include <rte_net.h>
7
8 #include "ice_rxtx.h"
9
10 #define ICE_TX_CKSUM_OFFLOAD_MASK ( \
11 PKT_TX_IP_CKSUM | \
12 PKT_TX_L4_MASK | \
13 PKT_TX_TCP_SEG | \
14 PKT_TX_OUTER_IP_CKSUM)
15
16 #define ICE_RX_ERR_BITS 0x3f
17
18 static enum ice_status
19 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
20 {
21 struct ice_vsi *vsi = rxq->vsi;
22 struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
23 struct rte_eth_dev *dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
24 struct ice_rlan_ctx rx_ctx;
25 enum ice_status err;
26 uint16_t buf_size, len;
27 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
28 uint32_t regval;
29
30 /**
31 * The kernel driver uses flex descriptor. It sets the register
32 * to flex descriptor mode.
33 * DPDK uses legacy descriptor. It should set the register back
34 * to the default value, then uses legacy descriptor mode.
35 */
36 regval = (0x01 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
37 QRXFLXP_CNTXT_RXDID_PRIO_M;
38 ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
39
40 /* Set buffer size as the head split is disabled. */
41 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
42 RTE_PKTMBUF_HEADROOM);
43 rxq->rx_hdr_len = 0;
44 rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
45 len = ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len;
46 rxq->max_pkt_len = RTE_MIN(len,
47 dev->data->dev_conf.rxmode.max_rx_pkt_len);
48
49 if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
50 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
51 rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
52 PMD_DRV_LOG(ERR, "maximum packet length must "
53 "be larger than %u and smaller than %u,"
54 "as jumbo frame is enabled",
55 (uint32_t)ETHER_MAX_LEN,
56 (uint32_t)ICE_FRAME_SIZE_MAX);
57 return -EINVAL;
58 }
59 } else {
60 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
61 rxq->max_pkt_len > ETHER_MAX_LEN) {
62 PMD_DRV_LOG(ERR, "maximum packet length must be "
63 "larger than %u and smaller than %u, "
64 "as jumbo frame is disabled",
65 (uint32_t)ETHER_MIN_LEN,
66 (uint32_t)ETHER_MAX_LEN);
67 return -EINVAL;
68 }
69 }
70
71 memset(&rx_ctx, 0, sizeof(rx_ctx));
72
73 rx_ctx.base = rxq->rx_ring_phys_addr / ICE_QUEUE_BASE_ADDR_UNIT;
74 rx_ctx.qlen = rxq->nb_rx_desc;
75 rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
76 rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
77 rx_ctx.dtype = 0; /* No Header Split mode */
78 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
79 rx_ctx.dsize = 1; /* 32B descriptors */
80 #endif
81 rx_ctx.rxmax = rxq->max_pkt_len;
82 /* TPH: Transaction Layer Packet (TLP) processing hints */
83 rx_ctx.tphrdesc_ena = 1;
84 rx_ctx.tphwdesc_ena = 1;
85 rx_ctx.tphdata_ena = 1;
86 rx_ctx.tphhead_ena = 1;
87 /* Low Receive Queue Threshold defined in 64 descriptors units.
88 * When the number of free descriptors goes below the lrxqthresh,
89 * an immediate interrupt is triggered.
90 */
91 rx_ctx.lrxqthresh = 2;
92 /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
93 rx_ctx.l2tsel = 1;
94 rx_ctx.showiv = 0;
95 rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
96
97 err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
98 if (err) {
99 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
100 rxq->queue_id);
101 return -EINVAL;
102 }
103 err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
104 if (err) {
105 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
106 rxq->queue_id);
107 return -EINVAL;
108 }
109
110 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
111 RTE_PKTMBUF_HEADROOM);
112
113 /* Check if scattered RX needs to be used. */
114 if (rxq->max_pkt_len > buf_size)
115 dev->data->scattered_rx = 1;
116
117 rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
118
119 /* Init the Rx tail register*/
120 ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
121
122 return 0;
123 }
124
125 /* Allocate mbufs for all descriptors in rx queue */
126 static int
127 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
128 {
129 struct ice_rx_entry *rxe = rxq->sw_ring;
130 uint64_t dma_addr;
131 uint16_t i;
132
133 for (i = 0; i < rxq->nb_rx_desc; i++) {
134 volatile union ice_rx_desc *rxd;
135 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
136
137 if (unlikely(!mbuf)) {
138 PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
139 return -ENOMEM;
140 }
141
142 rte_mbuf_refcnt_set(mbuf, 1);
143 mbuf->next = NULL;
144 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
145 mbuf->nb_segs = 1;
146 mbuf->port = rxq->port_id;
147
148 dma_addr =
149 rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
150
151 rxd = &rxq->rx_ring[i];
152 rxd->read.pkt_addr = dma_addr;
153 rxd->read.hdr_addr = 0;
154 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
155 rxd->read.rsvd1 = 0;
156 rxd->read.rsvd2 = 0;
157 #endif
158 rxe[i].mbuf = mbuf;
159 }
160
161 return 0;
162 }
163
164 /* Free all mbufs for descriptors in rx queue */
165 static void
166 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
167 {
168 uint16_t i;
169
170 if (!rxq || !rxq->sw_ring) {
171 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
172 return;
173 }
174
175 for (i = 0; i < rxq->nb_rx_desc; i++) {
176 if (rxq->sw_ring[i].mbuf) {
177 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
178 rxq->sw_ring[i].mbuf = NULL;
179 }
180 }
181 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
182 if (rxq->rx_nb_avail == 0)
183 return;
184 for (i = 0; i < rxq->rx_nb_avail; i++) {
185 struct rte_mbuf *mbuf;
186
187 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
188 rte_pktmbuf_free_seg(mbuf);
189 }
190 rxq->rx_nb_avail = 0;
191 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
192 }
193
194 static void
195 ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
196 {
197 rxq->rx_rel_mbufs(rxq);
198 }
199
200 /* turn on or off rx queue
201 * @q_idx: queue index in pf scope
202 * @on: turn on or off the queue
203 */
204 static int
205 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
206 {
207 uint32_t reg;
208 uint16_t j;
209
210 /* QRX_CTRL = QRX_ENA */
211 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
212
213 if (on) {
214 if (reg & QRX_CTRL_QENA_STAT_M)
215 return 0; /* Already on, skip */
216 reg |= QRX_CTRL_QENA_REQ_M;
217 } else {
218 if (!(reg & QRX_CTRL_QENA_STAT_M))
219 return 0; /* Already off, skip */
220 reg &= ~QRX_CTRL_QENA_REQ_M;
221 }
222
223 /* Write the register */
224 ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
225 /* Check the result. It is said that QENA_STAT
226 * follows the QENA_REQ not more than 10 use.
227 * TODO: need to change the wait counter later
228 */
229 for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
230 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
231 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
232 if (on) {
233 if ((reg & QRX_CTRL_QENA_REQ_M) &&
234 (reg & QRX_CTRL_QENA_STAT_M))
235 break;
236 } else {
237 if (!(reg & QRX_CTRL_QENA_REQ_M) &&
238 !(reg & QRX_CTRL_QENA_STAT_M))
239 break;
240 }
241 }
242
243 /* Check if it is timeout */
244 if (j >= ICE_CHK_Q_ENA_COUNT) {
245 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
246 (on ? "enable" : "disable"), q_idx);
247 return -ETIMEDOUT;
248 }
249
250 return 0;
251 }
252
253 static inline int
254 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
255 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
256 #else
257 ice_check_rx_burst_bulk_alloc_preconditions
258 (__rte_unused struct ice_rx_queue *rxq)
259 #endif
260 {
261 int ret = 0;
262
263 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
264 if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
265 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
266 "rxq->rx_free_thresh=%d, "
267 "ICE_RX_MAX_BURST=%d",
268 rxq->rx_free_thresh, ICE_RX_MAX_BURST);
269 ret = -EINVAL;
270 } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
271 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
272 "rxq->rx_free_thresh=%d, "
273 "rxq->nb_rx_desc=%d",
274 rxq->rx_free_thresh, rxq->nb_rx_desc);
275 ret = -EINVAL;
276 } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
277 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
278 "rxq->nb_rx_desc=%d, "
279 "rxq->rx_free_thresh=%d",
280 rxq->nb_rx_desc, rxq->rx_free_thresh);
281 ret = -EINVAL;
282 }
283 #else
284 ret = -EINVAL;
285 #endif
286
287 return ret;
288 }
289
290 /* reset fields in ice_rx_queue back to default */
291 static void
292 ice_reset_rx_queue(struct ice_rx_queue *rxq)
293 {
294 unsigned int i;
295 uint16_t len;
296
297 if (!rxq) {
298 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
299 return;
300 }
301
302 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
303 if (ice_check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
304 len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
305 else
306 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
307 len = rxq->nb_rx_desc;
308
309 for (i = 0; i < len * sizeof(union ice_rx_desc); i++)
310 ((volatile char *)rxq->rx_ring)[i] = 0;
311
312 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
313 memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
314 for (i = 0; i < ICE_RX_MAX_BURST; ++i)
315 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
316
317 rxq->rx_nb_avail = 0;
318 rxq->rx_next_avail = 0;
319 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
320 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
321
322 rxq->rx_tail = 0;
323 rxq->nb_rx_hold = 0;
324 rxq->pkt_first_seg = NULL;
325 rxq->pkt_last_seg = NULL;
326
327 rxq->rxrearm_start = 0;
328 rxq->rxrearm_nb = 0;
329 }
330
331 int
332 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
333 {
334 struct ice_rx_queue *rxq;
335 int err;
336 struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
337
338 PMD_INIT_FUNC_TRACE();
339
340 if (rx_queue_id >= dev->data->nb_rx_queues) {
341 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
342 rx_queue_id, dev->data->nb_rx_queues);
343 return -EINVAL;
344 }
345
346 rxq = dev->data->rx_queues[rx_queue_id];
347 if (!rxq || !rxq->q_set) {
348 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
349 rx_queue_id);
350 return -EINVAL;
351 }
352
353 err = ice_program_hw_rx_queue(rxq);
354 if (err) {
355 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
356 rx_queue_id);
357 return -EIO;
358 }
359
360 err = ice_alloc_rx_queue_mbufs(rxq);
361 if (err) {
362 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
363 return -ENOMEM;
364 }
365
366 rte_wmb();
367
368 /* Init the RX tail register. */
369 ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
370
371 err = ice_switch_rx_queue(hw, rxq->reg_idx, TRUE);
372 if (err) {
373 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
374 rx_queue_id);
375
376 ice_rx_queue_release_mbufs(rxq);
377 ice_reset_rx_queue(rxq);
378 return -EINVAL;
379 }
380
381 dev->data->rx_queue_state[rx_queue_id] =
382 RTE_ETH_QUEUE_STATE_STARTED;
383
384 return 0;
385 }
386
387 int
388 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
389 {
390 struct ice_rx_queue *rxq;
391 int err;
392 struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
393
394 if (rx_queue_id < dev->data->nb_rx_queues) {
395 rxq = dev->data->rx_queues[rx_queue_id];
396
397 err = ice_switch_rx_queue(hw, rxq->reg_idx, FALSE);
398 if (err) {
399 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
400 rx_queue_id);
401 return -EINVAL;
402 }
403 ice_rx_queue_release_mbufs(rxq);
404 ice_reset_rx_queue(rxq);
405 dev->data->rx_queue_state[rx_queue_id] =
406 RTE_ETH_QUEUE_STATE_STOPPED;
407 }
408
409 return 0;
410 }
411
412 int
413 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
414 {
415 struct ice_tx_queue *txq;
416 int err;
417 struct ice_vsi *vsi;
418 struct ice_hw *hw;
419 struct ice_aqc_add_tx_qgrp txq_elem;
420 struct ice_tlan_ctx tx_ctx;
421
422 PMD_INIT_FUNC_TRACE();
423
424 if (tx_queue_id >= dev->data->nb_tx_queues) {
425 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
426 tx_queue_id, dev->data->nb_tx_queues);
427 return -EINVAL;
428 }
429
430 txq = dev->data->tx_queues[tx_queue_id];
431 if (!txq || !txq->q_set) {
432 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
433 tx_queue_id);
434 return -EINVAL;
435 }
436
437 vsi = txq->vsi;
438 hw = ICE_VSI_TO_HW(vsi);
439
440 memset(&txq_elem, 0, sizeof(txq_elem));
441 memset(&tx_ctx, 0, sizeof(tx_ctx));
442 txq_elem.num_txqs = 1;
443 txq_elem.txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
444
445 tx_ctx.base = txq->tx_ring_phys_addr / ICE_QUEUE_BASE_ADDR_UNIT;
446 tx_ctx.qlen = txq->nb_tx_desc;
447 tx_ctx.pf_num = hw->pf_id;
448 tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
449 tx_ctx.src_vsi = vsi->vsi_id;
450 tx_ctx.port_num = hw->port_info->lport;
451 tx_ctx.tso_ena = 1; /* tso enable */
452 tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
453 tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
454
455 ice_set_ctx((uint8_t *)&tx_ctx, txq_elem.txqs[0].txq_ctx,
456 ice_tlan_ctx_info);
457
458 txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
459
460 /* Init the Tx tail register*/
461 ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
462
463 /* Fix me, we assume TC always 0 here */
464 err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
465 &txq_elem, sizeof(txq_elem), NULL);
466 if (err) {
467 PMD_DRV_LOG(ERR, "Failed to add lan txq");
468 return -EIO;
469 }
470 /* store the schedule node id */
471 txq->q_teid = txq_elem.txqs[0].q_teid;
472
473 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
474 return 0;
475 }
476
477 /* Free all mbufs for descriptors in tx queue */
478 static void
479 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
480 {
481 uint16_t i;
482
483 if (!txq || !txq->sw_ring) {
484 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
485 return;
486 }
487
488 for (i = 0; i < txq->nb_tx_desc; i++) {
489 if (txq->sw_ring[i].mbuf) {
490 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
491 txq->sw_ring[i].mbuf = NULL;
492 }
493 }
494 }
495 static void
496 ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
497 {
498 txq->tx_rel_mbufs(txq);
499 }
500
501 static void
502 ice_reset_tx_queue(struct ice_tx_queue *txq)
503 {
504 struct ice_tx_entry *txe;
505 uint16_t i, prev, size;
506
507 if (!txq) {
508 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
509 return;
510 }
511
512 txe = txq->sw_ring;
513 size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
514 for (i = 0; i < size; i++)
515 ((volatile char *)txq->tx_ring)[i] = 0;
516
517 prev = (uint16_t)(txq->nb_tx_desc - 1);
518 for (i = 0; i < txq->nb_tx_desc; i++) {
519 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
520
521 txd->cmd_type_offset_bsz =
522 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
523 txe[i].mbuf = NULL;
524 txe[i].last_id = i;
525 txe[prev].next_id = i;
526 prev = i;
527 }
528
529 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
530 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
531
532 txq->tx_tail = 0;
533 txq->nb_tx_used = 0;
534
535 txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
536 txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
537 }
538
539 int
540 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
541 {
542 struct ice_tx_queue *txq;
543 struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
544 struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
545 struct ice_vsi *vsi = pf->main_vsi;
546 enum ice_status status;
547 uint16_t q_ids[1];
548 uint32_t q_teids[1];
549 uint16_t q_handle = tx_queue_id;
550
551 if (tx_queue_id >= dev->data->nb_tx_queues) {
552 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
553 tx_queue_id, dev->data->nb_tx_queues);
554 return -EINVAL;
555 }
556
557 txq = dev->data->tx_queues[tx_queue_id];
558 if (!txq) {
559 PMD_DRV_LOG(ERR, "TX queue %u is not available",
560 tx_queue_id);
561 return -EINVAL;
562 }
563
564 q_ids[0] = txq->reg_idx;
565 q_teids[0] = txq->q_teid;
566
567 /* Fix me, we assume TC always 0 here */
568 status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
569 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
570 if (status != ICE_SUCCESS) {
571 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
572 return -EINVAL;
573 }
574
575 ice_tx_queue_release_mbufs(txq);
576 ice_reset_tx_queue(txq);
577 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
578
579 return 0;
580 }
581
582 int
583 ice_rx_queue_setup(struct rte_eth_dev *dev,
584 uint16_t queue_idx,
585 uint16_t nb_desc,
586 unsigned int socket_id,
587 const struct rte_eth_rxconf *rx_conf,
588 struct rte_mempool *mp)
589 {
590 struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
591 struct ice_adapter *ad =
592 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
593 struct ice_vsi *vsi = pf->main_vsi;
594 struct ice_rx_queue *rxq;
595 const struct rte_memzone *rz;
596 uint32_t ring_size;
597 uint16_t len;
598 int use_def_burst_func = 1;
599
600 if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
601 nb_desc > ICE_MAX_RING_DESC ||
602 nb_desc < ICE_MIN_RING_DESC) {
603 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
604 "invalid", nb_desc);
605 return -EINVAL;
606 }
607
608 /* Free memory if needed */
609 if (dev->data->rx_queues[queue_idx]) {
610 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
611 dev->data->rx_queues[queue_idx] = NULL;
612 }
613
614 /* Allocate the rx queue data structure */
615 rxq = rte_zmalloc_socket(NULL,
616 sizeof(struct ice_rx_queue),
617 RTE_CACHE_LINE_SIZE,
618 socket_id);
619 if (!rxq) {
620 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
621 "rx queue data structure");
622 return -ENOMEM;
623 }
624 rxq->mp = mp;
625 rxq->nb_rx_desc = nb_desc;
626 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
627 rxq->queue_id = queue_idx;
628
629 rxq->reg_idx = vsi->base_queue + queue_idx;
630 rxq->port_id = dev->data->port_id;
631 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
632 rxq->crc_len = ETHER_CRC_LEN;
633 else
634 rxq->crc_len = 0;
635
636 rxq->drop_en = rx_conf->rx_drop_en;
637 rxq->vsi = vsi;
638 rxq->rx_deferred_start = rx_conf->rx_deferred_start;
639
640 /* Allocate the maximun number of RX ring hardware descriptor. */
641 len = ICE_MAX_RING_DESC;
642
643 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
644 /**
645 * Allocating a little more memory because vectorized/bulk_alloc Rx
646 * functions doesn't check boundaries each time.
647 */
648 len += ICE_RX_MAX_BURST;
649 #endif
650
651 /* Allocate the maximum number of RX ring hardware descriptor. */
652 ring_size = sizeof(union ice_rx_desc) * len;
653 ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
654 rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
655 ring_size, ICE_RING_BASE_ALIGN,
656 socket_id);
657 if (!rz) {
658 ice_rx_queue_release(rxq);
659 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
660 return -ENOMEM;
661 }
662
663 /* Zero all the descriptors in the ring. */
664 memset(rz->addr, 0, ring_size);
665
666 rxq->rx_ring_phys_addr = rz->phys_addr;
667 rxq->rx_ring = (union ice_rx_desc *)rz->addr;
668
669 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
670 len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
671 #else
672 len = nb_desc;
673 #endif
674
675 /* Allocate the software ring. */
676 rxq->sw_ring = rte_zmalloc_socket(NULL,
677 sizeof(struct ice_rx_entry) * len,
678 RTE_CACHE_LINE_SIZE,
679 socket_id);
680 if (!rxq->sw_ring) {
681 ice_rx_queue_release(rxq);
682 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
683 return -ENOMEM;
684 }
685
686 ice_reset_rx_queue(rxq);
687 rxq->q_set = TRUE;
688 dev->data->rx_queues[queue_idx] = rxq;
689 rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
690
691 use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
692
693 if (!use_def_burst_func) {
694 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
695 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
696 "satisfied. Rx Burst Bulk Alloc function will be "
697 "used on port=%d, queue=%d.",
698 rxq->port_id, rxq->queue_id);
699 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
700 } else {
701 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
702 "not satisfied, Scattered Rx is requested, "
703 "or RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC is "
704 "not enabled on port=%d, queue=%d.",
705 rxq->port_id, rxq->queue_id);
706 ad->rx_bulk_alloc_allowed = false;
707 }
708
709 return 0;
710 }
711
712 void
713 ice_rx_queue_release(void *rxq)
714 {
715 struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
716
717 if (!q) {
718 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
719 return;
720 }
721
722 ice_rx_queue_release_mbufs(q);
723 rte_free(q->sw_ring);
724 rte_free(q);
725 }
726
727 int
728 ice_tx_queue_setup(struct rte_eth_dev *dev,
729 uint16_t queue_idx,
730 uint16_t nb_desc,
731 unsigned int socket_id,
732 const struct rte_eth_txconf *tx_conf)
733 {
734 struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
735 struct ice_vsi *vsi = pf->main_vsi;
736 struct ice_tx_queue *txq;
737 const struct rte_memzone *tz;
738 uint32_t ring_size;
739 uint16_t tx_rs_thresh, tx_free_thresh;
740 uint64_t offloads;
741
742 offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
743
744 if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
745 nb_desc > ICE_MAX_RING_DESC ||
746 nb_desc < ICE_MIN_RING_DESC) {
747 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
748 "invalid", nb_desc);
749 return -EINVAL;
750 }
751
752 /**
753 * The following two parameters control the setting of the RS bit on
754 * transmit descriptors. TX descriptors will have their RS bit set
755 * after txq->tx_rs_thresh descriptors have been used. The TX
756 * descriptor ring will be cleaned after txq->tx_free_thresh
757 * descriptors are used or if the number of descriptors required to
758 * transmit a packet is greater than the number of free TX descriptors.
759 *
760 * The following constraints must be satisfied:
761 * - tx_rs_thresh must be greater than 0.
762 * - tx_rs_thresh must be less than the size of the ring minus 2.
763 * - tx_rs_thresh must be less than or equal to tx_free_thresh.
764 * - tx_rs_thresh must be a divisor of the ring size.
765 * - tx_free_thresh must be greater than 0.
766 * - tx_free_thresh must be less than the size of the ring minus 3.
767 *
768 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
769 * race condition, hence the maximum threshold constraints. When set
770 * to zero use default values.
771 */
772 tx_rs_thresh = (uint16_t)(tx_conf->tx_rs_thresh ?
773 tx_conf->tx_rs_thresh :
774 ICE_DEFAULT_TX_RSBIT_THRESH);
775 tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
776 tx_conf->tx_free_thresh :
777 ICE_DEFAULT_TX_FREE_THRESH);
778 if (tx_rs_thresh >= (nb_desc - 2)) {
779 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
780 "number of TX descriptors minus 2. "
781 "(tx_rs_thresh=%u port=%d queue=%d)",
782 (unsigned int)tx_rs_thresh,
783 (int)dev->data->port_id,
784 (int)queue_idx);
785 return -EINVAL;
786 }
787 if (tx_free_thresh >= (nb_desc - 3)) {
788 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
789 "tx_free_thresh must be less than the "
790 "number of TX descriptors minus 3. "
791 "(tx_free_thresh=%u port=%d queue=%d)",
792 (unsigned int)tx_free_thresh,
793 (int)dev->data->port_id,
794 (int)queue_idx);
795 return -EINVAL;
796 }
797 if (tx_rs_thresh > tx_free_thresh) {
798 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
799 "equal to tx_free_thresh. (tx_free_thresh=%u"
800 " tx_rs_thresh=%u port=%d queue=%d)",
801 (unsigned int)tx_free_thresh,
802 (unsigned int)tx_rs_thresh,
803 (int)dev->data->port_id,
804 (int)queue_idx);
805 return -EINVAL;
806 }
807 if ((nb_desc % tx_rs_thresh) != 0) {
808 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
809 "number of TX descriptors. (tx_rs_thresh=%u"
810 " port=%d queue=%d)",
811 (unsigned int)tx_rs_thresh,
812 (int)dev->data->port_id,
813 (int)queue_idx);
814 return -EINVAL;
815 }
816 if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
817 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
818 "tx_rs_thresh is greater than 1. "
819 "(tx_rs_thresh=%u port=%d queue=%d)",
820 (unsigned int)tx_rs_thresh,
821 (int)dev->data->port_id,
822 (int)queue_idx);
823 return -EINVAL;
824 }
825
826 /* Free memory if needed. */
827 if (dev->data->tx_queues[queue_idx]) {
828 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
829 dev->data->tx_queues[queue_idx] = NULL;
830 }
831
832 /* Allocate the TX queue data structure. */
833 txq = rte_zmalloc_socket(NULL,
834 sizeof(struct ice_tx_queue),
835 RTE_CACHE_LINE_SIZE,
836 socket_id);
837 if (!txq) {
838 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
839 "tx queue structure");
840 return -ENOMEM;
841 }
842
843 /* Allocate TX hardware ring descriptors. */
844 ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
845 ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
846 tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
847 ring_size, ICE_RING_BASE_ALIGN,
848 socket_id);
849 if (!tz) {
850 ice_tx_queue_release(txq);
851 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
852 return -ENOMEM;
853 }
854
855 txq->nb_tx_desc = nb_desc;
856 txq->tx_rs_thresh = tx_rs_thresh;
857 txq->tx_free_thresh = tx_free_thresh;
858 txq->pthresh = tx_conf->tx_thresh.pthresh;
859 txq->hthresh = tx_conf->tx_thresh.hthresh;
860 txq->wthresh = tx_conf->tx_thresh.wthresh;
861 txq->queue_id = queue_idx;
862
863 txq->reg_idx = vsi->base_queue + queue_idx;
864 txq->port_id = dev->data->port_id;
865 txq->offloads = offloads;
866 txq->vsi = vsi;
867 txq->tx_deferred_start = tx_conf->tx_deferred_start;
868
869 txq->tx_ring_phys_addr = tz->phys_addr;
870 txq->tx_ring = (struct ice_tx_desc *)tz->addr;
871
872 /* Allocate software ring */
873 txq->sw_ring =
874 rte_zmalloc_socket(NULL,
875 sizeof(struct ice_tx_entry) * nb_desc,
876 RTE_CACHE_LINE_SIZE,
877 socket_id);
878 if (!txq->sw_ring) {
879 ice_tx_queue_release(txq);
880 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
881 return -ENOMEM;
882 }
883
884 ice_reset_tx_queue(txq);
885 txq->q_set = TRUE;
886 dev->data->tx_queues[queue_idx] = txq;
887 txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
888 ice_set_tx_function_flag(dev, txq);
889
890 return 0;
891 }
892
893 void
894 ice_tx_queue_release(void *txq)
895 {
896 struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
897
898 if (!q) {
899 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
900 return;
901 }
902
903 ice_tx_queue_release_mbufs(q);
904 rte_free(q->sw_ring);
905 rte_free(q);
906 }
907
908 void
909 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
910 struct rte_eth_rxq_info *qinfo)
911 {
912 struct ice_rx_queue *rxq;
913
914 rxq = dev->data->rx_queues[queue_id];
915
916 qinfo->mp = rxq->mp;
917 qinfo->scattered_rx = dev->data->scattered_rx;
918 qinfo->nb_desc = rxq->nb_rx_desc;
919
920 qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
921 qinfo->conf.rx_drop_en = rxq->drop_en;
922 qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
923 }
924
925 void
926 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
927 struct rte_eth_txq_info *qinfo)
928 {
929 struct ice_tx_queue *txq;
930
931 txq = dev->data->tx_queues[queue_id];
932
933 qinfo->nb_desc = txq->nb_tx_desc;
934
935 qinfo->conf.tx_thresh.pthresh = txq->pthresh;
936 qinfo->conf.tx_thresh.hthresh = txq->hthresh;
937 qinfo->conf.tx_thresh.wthresh = txq->wthresh;
938
939 qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
940 qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
941 qinfo->conf.offloads = txq->offloads;
942 qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
943 }
944
945 uint32_t
946 ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
947 {
948 #define ICE_RXQ_SCAN_INTERVAL 4
949 volatile union ice_rx_desc *rxdp;
950 struct ice_rx_queue *rxq;
951 uint16_t desc = 0;
952
953 rxq = dev->data->rx_queues[rx_queue_id];
954 rxdp = &rxq->rx_ring[rxq->rx_tail];
955 while ((desc < rxq->nb_rx_desc) &&
956 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
957 ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S) &
958 (1 << ICE_RX_DESC_STATUS_DD_S)) {
959 /**
960 * Check the DD bit of a rx descriptor of each 4 in a group,
961 * to avoid checking too frequently and downgrading performance
962 * too much.
963 */
964 desc += ICE_RXQ_SCAN_INTERVAL;
965 rxdp += ICE_RXQ_SCAN_INTERVAL;
966 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
967 rxdp = &(rxq->rx_ring[rxq->rx_tail +
968 desc - rxq->nb_rx_desc]);
969 }
970
971 return desc;
972 }
973
974 /* Translate the rx descriptor status to pkt flags */
975 static inline uint64_t
976 ice_rxd_status_to_pkt_flags(uint64_t qword)
977 {
978 uint64_t flags;
979
980 /* Check if RSS_HASH */
981 flags = (((qword >> ICE_RX_DESC_STATUS_FLTSTAT_S) &
982 ICE_RX_DESC_FLTSTAT_RSS_HASH) ==
983 ICE_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
984
985 return flags;
986 }
987
988 /* Rx L3/L4 checksum */
989 static inline uint64_t
990 ice_rxd_error_to_pkt_flags(uint64_t qword)
991 {
992 uint64_t flags = 0;
993 uint64_t error_bits = (qword >> ICE_RXD_QW1_ERROR_S);
994
995 if (likely((error_bits & ICE_RX_ERR_BITS) == 0)) {
996 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
997 return flags;
998 }
999
1000 if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_IPE_S)))
1001 flags |= PKT_RX_IP_CKSUM_BAD;
1002 else
1003 flags |= PKT_RX_IP_CKSUM_GOOD;
1004
1005 if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_L4E_S)))
1006 flags |= PKT_RX_L4_CKSUM_BAD;
1007 else
1008 flags |= PKT_RX_L4_CKSUM_GOOD;
1009
1010 if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_EIPE_S)))
1011 flags |= PKT_RX_EIP_CKSUM_BAD;
1012
1013 return flags;
1014 }
1015
1016 static inline void
1017 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_desc *rxdp)
1018 {
1019 if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1020 (1 << ICE_RX_DESC_STATUS_L2TAG1P_S)) {
1021 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1022 mb->vlan_tci =
1023 rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1024 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1025 rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
1026 } else {
1027 mb->vlan_tci = 0;
1028 }
1029
1030 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1031 if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
1032 (1 << ICE_RX_DESC_EXT_STATUS_L2TAG2P_S)) {
1033 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
1034 PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
1035 mb->vlan_tci_outer = mb->vlan_tci;
1036 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
1037 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1038 rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
1039 rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
1040 } else {
1041 mb->vlan_tci_outer = 0;
1042 }
1043 #endif
1044 PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1045 mb->vlan_tci, mb->vlan_tci_outer);
1046 }
1047
1048 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
1049 #define ICE_LOOK_AHEAD 8
1050 #if (ICE_LOOK_AHEAD != 8)
1051 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1052 #endif
1053 static inline int
1054 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1055 {
1056 volatile union ice_rx_desc *rxdp;
1057 struct ice_rx_entry *rxep;
1058 struct rte_mbuf *mb;
1059 uint16_t pkt_len;
1060 uint64_t qword1;
1061 uint32_t rx_status;
1062 int32_t s[ICE_LOOK_AHEAD], nb_dd;
1063 int32_t i, j, nb_rx = 0;
1064 uint64_t pkt_flags = 0;
1065 uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1066
1067 rxdp = &rxq->rx_ring[rxq->rx_tail];
1068 rxep = &rxq->sw_ring[rxq->rx_tail];
1069
1070 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1071 rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S;
1072
1073 /* Make sure there is at least 1 packet to receive */
1074 if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
1075 return 0;
1076
1077 /**
1078 * Scan LOOK_AHEAD descriptors at a time to determine which
1079 * descriptors reference packets that are ready to be received.
1080 */
1081 for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1082 rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1083 /* Read desc statuses backwards to avoid race condition */
1084 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--) {
1085 qword1 = rte_le_to_cpu_64(
1086 rxdp[j].wb.qword1.status_error_len);
1087 s[j] = (qword1 & ICE_RXD_QW1_STATUS_M) >>
1088 ICE_RXD_QW1_STATUS_S;
1089 }
1090
1091 rte_smp_rmb();
1092
1093 /* Compute how many status bits were set */
1094 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1095 nb_dd += s[j] & (1 << ICE_RX_DESC_STATUS_DD_S);
1096
1097 nb_rx += nb_dd;
1098
1099 /* Translate descriptor info to mbuf parameters */
1100 for (j = 0; j < nb_dd; j++) {
1101 mb = rxep[j].mbuf;
1102 qword1 = rte_le_to_cpu_64(
1103 rxdp[j].wb.qword1.status_error_len);
1104 pkt_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
1105 ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
1106 mb->data_len = pkt_len;
1107 mb->pkt_len = pkt_len;
1108 mb->ol_flags = 0;
1109 pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
1110 pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
1111 if (pkt_flags & PKT_RX_RSS_HASH)
1112 mb->hash.rss =
1113 rte_le_to_cpu_32(
1114 rxdp[j].wb.qword0.hi_dword.rss);
1115 mb->packet_type = ptype_tbl[(uint8_t)(
1116 (qword1 &
1117 ICE_RXD_QW1_PTYPE_M) >>
1118 ICE_RXD_QW1_PTYPE_S)];
1119 ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1120
1121 mb->ol_flags |= pkt_flags;
1122 }
1123
1124 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1125 rxq->rx_stage[i + j] = rxep[j].mbuf;
1126
1127 if (nb_dd != ICE_LOOK_AHEAD)
1128 break;
1129 }
1130
1131 /* Clear software ring entries */
1132 for (i = 0; i < nb_rx; i++)
1133 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1134
1135 PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1136 "port_id=%u, queue_id=%u, nb_rx=%d",
1137 rxq->port_id, rxq->queue_id, nb_rx);
1138
1139 return nb_rx;
1140 }
1141
1142 static inline uint16_t
1143 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1144 struct rte_mbuf **rx_pkts,
1145 uint16_t nb_pkts)
1146 {
1147 uint16_t i;
1148 struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1149
1150 nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1151
1152 for (i = 0; i < nb_pkts; i++)
1153 rx_pkts[i] = stage[i];
1154
1155 rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1156 rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1157
1158 return nb_pkts;
1159 }
1160
1161 static inline int
1162 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1163 {
1164 volatile union ice_rx_desc *rxdp;
1165 struct ice_rx_entry *rxep;
1166 struct rte_mbuf *mb;
1167 uint16_t alloc_idx, i;
1168 uint64_t dma_addr;
1169 int diag;
1170
1171 /* Allocate buffers in bulk */
1172 alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1173 (rxq->rx_free_thresh - 1));
1174 rxep = &rxq->sw_ring[alloc_idx];
1175 diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1176 rxq->rx_free_thresh);
1177 if (unlikely(diag != 0)) {
1178 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1179 return -ENOMEM;
1180 }
1181
1182 rxdp = &rxq->rx_ring[alloc_idx];
1183 for (i = 0; i < rxq->rx_free_thresh; i++) {
1184 if (likely(i < (rxq->rx_free_thresh - 1)))
1185 /* Prefetch next mbuf */
1186 rte_prefetch0(rxep[i + 1].mbuf);
1187
1188 mb = rxep[i].mbuf;
1189 rte_mbuf_refcnt_set(mb, 1);
1190 mb->next = NULL;
1191 mb->data_off = RTE_PKTMBUF_HEADROOM;
1192 mb->nb_segs = 1;
1193 mb->port = rxq->port_id;
1194 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1195 rxdp[i].read.hdr_addr = 0;
1196 rxdp[i].read.pkt_addr = dma_addr;
1197 }
1198
1199 /* Update rx tail regsiter */
1200 rte_wmb();
1201 ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1202
1203 rxq->rx_free_trigger =
1204 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1205 if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1206 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1207
1208 return 0;
1209 }
1210
1211 static inline uint16_t
1212 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1213 {
1214 struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1215 uint16_t nb_rx = 0;
1216 struct rte_eth_dev *dev;
1217
1218 if (!nb_pkts)
1219 return 0;
1220
1221 if (rxq->rx_nb_avail)
1222 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1223
1224 nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1225 rxq->rx_next_avail = 0;
1226 rxq->rx_nb_avail = nb_rx;
1227 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1228
1229 if (rxq->rx_tail > rxq->rx_free_trigger) {
1230 if (ice_rx_alloc_bufs(rxq) != 0) {
1231 uint16_t i, j;
1232
1233 dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1234 dev->data->rx_mbuf_alloc_failed +=
1235 rxq->rx_free_thresh;
1236 PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1237 "port_id=%u, queue_id=%u",
1238 rxq->port_id, rxq->queue_id);
1239 rxq->rx_nb_avail = 0;
1240 rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1241 for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1242 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1243
1244 return 0;
1245 }
1246 }
1247
1248 if (rxq->rx_tail >= rxq->nb_rx_desc)
1249 rxq->rx_tail = 0;
1250
1251 if (rxq->rx_nb_avail)
1252 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1253
1254 return 0;
1255 }
1256
1257 static uint16_t
1258 ice_recv_pkts_bulk_alloc(void *rx_queue,
1259 struct rte_mbuf **rx_pkts,
1260 uint16_t nb_pkts)
1261 {
1262 uint16_t nb_rx = 0;
1263 uint16_t n;
1264 uint16_t count;
1265
1266 if (unlikely(nb_pkts == 0))
1267 return nb_rx;
1268
1269 if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1270 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1271
1272 while (nb_pkts) {
1273 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1274 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1275 nb_rx = (uint16_t)(nb_rx + count);
1276 nb_pkts = (uint16_t)(nb_pkts - count);
1277 if (count < n)
1278 break;
1279 }
1280
1281 return nb_rx;
1282 }
1283 #else
1284 static uint16_t
1285 ice_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
1286 struct rte_mbuf __rte_unused **rx_pkts,
1287 uint16_t __rte_unused nb_pkts)
1288 {
1289 return 0;
1290 }
1291 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
1292
1293 static uint16_t
1294 ice_recv_scattered_pkts(void *rx_queue,
1295 struct rte_mbuf **rx_pkts,
1296 uint16_t nb_pkts)
1297 {
1298 struct ice_rx_queue *rxq = rx_queue;
1299 volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
1300 volatile union ice_rx_desc *rxdp;
1301 union ice_rx_desc rxd;
1302 struct ice_rx_entry *sw_ring = rxq->sw_ring;
1303 struct ice_rx_entry *rxe;
1304 struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1305 struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1306 struct rte_mbuf *nmb; /* new allocated mbuf */
1307 struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1308 uint16_t rx_id = rxq->rx_tail;
1309 uint16_t nb_rx = 0;
1310 uint16_t nb_hold = 0;
1311 uint16_t rx_packet_len;
1312 uint32_t rx_status;
1313 uint64_t qword1;
1314 uint64_t dma_addr;
1315 uint64_t pkt_flags = 0;
1316 uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1317 struct rte_eth_dev *dev;
1318
1319 while (nb_rx < nb_pkts) {
1320 rxdp = &rx_ring[rx_id];
1321 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1322 rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
1323 ICE_RXD_QW1_STATUS_S;
1324
1325 /* Check the DD bit first */
1326 if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
1327 break;
1328
1329 /* allocate mbuf */
1330 nmb = rte_mbuf_raw_alloc(rxq->mp);
1331 if (unlikely(!nmb)) {
1332 dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1333 dev->data->rx_mbuf_alloc_failed++;
1334 break;
1335 }
1336 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1337
1338 nb_hold++;
1339 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1340 rx_id++;
1341 if (unlikely(rx_id == rxq->nb_rx_desc))
1342 rx_id = 0;
1343
1344 /* Prefetch next mbuf */
1345 rte_prefetch0(sw_ring[rx_id].mbuf);
1346
1347 /**
1348 * When next RX descriptor is on a cache line boundary,
1349 * prefetch the next 4 RX descriptors and next 8 pointers
1350 * to mbufs.
1351 */
1352 if ((rx_id & 0x3) == 0) {
1353 rte_prefetch0(&rx_ring[rx_id]);
1354 rte_prefetch0(&sw_ring[rx_id]);
1355 }
1356
1357 rxm = rxe->mbuf;
1358 rxe->mbuf = nmb;
1359 dma_addr =
1360 rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1361
1362 /* Set data buffer address and data length of the mbuf */
1363 rxdp->read.hdr_addr = 0;
1364 rxdp->read.pkt_addr = dma_addr;
1365 rx_packet_len = (qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
1366 ICE_RXD_QW1_LEN_PBUF_S;
1367 rxm->data_len = rx_packet_len;
1368 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1369 ice_rxd_to_vlan_tci(rxm, rxdp);
1370 rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
1371 ICE_RXD_QW1_PTYPE_M) >>
1372 ICE_RXD_QW1_PTYPE_S)];
1373
1374 /**
1375 * If this is the first buffer of the received packet, set the
1376 * pointer to the first mbuf of the packet and initialize its
1377 * context. Otherwise, update the total length and the number
1378 * of segments of the current scattered packet, and update the
1379 * pointer to the last mbuf of the current packet.
1380 */
1381 if (!first_seg) {
1382 first_seg = rxm;
1383 first_seg->nb_segs = 1;
1384 first_seg->pkt_len = rx_packet_len;
1385 } else {
1386 first_seg->pkt_len =
1387 (uint16_t)(first_seg->pkt_len +
1388 rx_packet_len);
1389 first_seg->nb_segs++;
1390 last_seg->next = rxm;
1391 }
1392
1393 /**
1394 * If this is not the last buffer of the received packet,
1395 * update the pointer to the last mbuf of the current scattered
1396 * packet and continue to parse the RX ring.
1397 */
1398 if (!(rx_status & (1 << ICE_RX_DESC_STATUS_EOF_S))) {
1399 last_seg = rxm;
1400 continue;
1401 }
1402
1403 /**
1404 * This is the last buffer of the received packet. If the CRC
1405 * is not stripped by the hardware:
1406 * - Subtract the CRC length from the total packet length.
1407 * - If the last buffer only contains the whole CRC or a part
1408 * of it, free the mbuf associated to the last buffer. If part
1409 * of the CRC is also contained in the previous mbuf, subtract
1410 * the length of that CRC part from the data length of the
1411 * previous mbuf.
1412 */
1413 rxm->next = NULL;
1414 if (unlikely(rxq->crc_len > 0)) {
1415 first_seg->pkt_len -= ETHER_CRC_LEN;
1416 if (rx_packet_len <= ETHER_CRC_LEN) {
1417 rte_pktmbuf_free_seg(rxm);
1418 first_seg->nb_segs--;
1419 last_seg->data_len =
1420 (uint16_t)(last_seg->data_len -
1421 (ETHER_CRC_LEN - rx_packet_len));
1422 last_seg->next = NULL;
1423 } else
1424 rxm->data_len = (uint16_t)(rx_packet_len -
1425 ETHER_CRC_LEN);
1426 }
1427
1428 first_seg->port = rxq->port_id;
1429 first_seg->ol_flags = 0;
1430
1431 pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
1432 pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
1433 if (pkt_flags & PKT_RX_RSS_HASH)
1434 first_seg->hash.rss =
1435 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1436
1437 first_seg->ol_flags |= pkt_flags;
1438 /* Prefetch data of first segment, if configured to do so. */
1439 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1440 first_seg->data_off));
1441 rx_pkts[nb_rx++] = first_seg;
1442 first_seg = NULL;
1443 }
1444
1445 /* Record index of the next RX descriptor to probe. */
1446 rxq->rx_tail = rx_id;
1447 rxq->pkt_first_seg = first_seg;
1448 rxq->pkt_last_seg = last_seg;
1449
1450 /**
1451 * If the number of free RX descriptors is greater than the RX free
1452 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1453 * register. Update the RDT with the value of the last processed RX
1454 * descriptor minus 1, to guarantee that the RDT register is never
1455 * equal to the RDH register, which creates a "full" ring situtation
1456 * from the hardware point of view.
1457 */
1458 nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1459 if (nb_hold > rxq->rx_free_thresh) {
1460 rx_id = (uint16_t)(rx_id == 0 ?
1461 (rxq->nb_rx_desc - 1) : (rx_id - 1));
1462 /* write TAIL register */
1463 ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1464 nb_hold = 0;
1465 }
1466 rxq->nb_rx_hold = nb_hold;
1467
1468 /* return received packet in the burst */
1469 return nb_rx;
1470 }
1471
1472 const uint32_t *
1473 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1474 {
1475 static const uint32_t ptypes[] = {
1476 /* refers to ice_get_default_pkt_type() */
1477 RTE_PTYPE_L2_ETHER,
1478 RTE_PTYPE_L2_ETHER_LLDP,
1479 RTE_PTYPE_L2_ETHER_ARP,
1480 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1481 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1482 RTE_PTYPE_L4_FRAG,
1483 RTE_PTYPE_L4_ICMP,
1484 RTE_PTYPE_L4_NONFRAG,
1485 RTE_PTYPE_L4_SCTP,
1486 RTE_PTYPE_L4_TCP,
1487 RTE_PTYPE_L4_UDP,
1488 RTE_PTYPE_TUNNEL_GRENAT,
1489 RTE_PTYPE_TUNNEL_IP,
1490 RTE_PTYPE_INNER_L2_ETHER,
1491 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1492 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1493 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1494 RTE_PTYPE_INNER_L4_FRAG,
1495 RTE_PTYPE_INNER_L4_ICMP,
1496 RTE_PTYPE_INNER_L4_NONFRAG,
1497 RTE_PTYPE_INNER_L4_SCTP,
1498 RTE_PTYPE_INNER_L4_TCP,
1499 RTE_PTYPE_INNER_L4_UDP,
1500 RTE_PTYPE_TUNNEL_GTPC,
1501 RTE_PTYPE_TUNNEL_GTPU,
1502 RTE_PTYPE_UNKNOWN
1503 };
1504
1505 if (dev->rx_pkt_burst == ice_recv_pkts ||
1506 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
1507 dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
1508 #endif
1509 dev->rx_pkt_burst == ice_recv_scattered_pkts)
1510 return ptypes;
1511
1512 #ifdef RTE_ARCH_X86
1513 if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
1514 dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
1515 dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
1516 dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2)
1517 return ptypes;
1518 #endif
1519
1520 return NULL;
1521 }
1522
1523 int
1524 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
1525 {
1526 struct ice_rx_queue *rxq = rx_queue;
1527 volatile uint64_t *status;
1528 uint64_t mask;
1529 uint32_t desc;
1530
1531 if (unlikely(offset >= rxq->nb_rx_desc))
1532 return -EINVAL;
1533
1534 if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1535 return RTE_ETH_RX_DESC_UNAVAIL;
1536
1537 desc = rxq->rx_tail + offset;
1538 if (desc >= rxq->nb_rx_desc)
1539 desc -= rxq->nb_rx_desc;
1540
1541 status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
1542 mask = rte_cpu_to_le_64((1ULL << ICE_RX_DESC_STATUS_DD_S) <<
1543 ICE_RXD_QW1_STATUS_S);
1544 if (*status & mask)
1545 return RTE_ETH_RX_DESC_DONE;
1546
1547 return RTE_ETH_RX_DESC_AVAIL;
1548 }
1549
1550 int
1551 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
1552 {
1553 struct ice_tx_queue *txq = tx_queue;
1554 volatile uint64_t *status;
1555 uint64_t mask, expect;
1556 uint32_t desc;
1557
1558 if (unlikely(offset >= txq->nb_tx_desc))
1559 return -EINVAL;
1560
1561 desc = txq->tx_tail + offset;
1562 /* go to next desc that has the RS bit */
1563 desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
1564 txq->tx_rs_thresh;
1565 if (desc >= txq->nb_tx_desc) {
1566 desc -= txq->nb_tx_desc;
1567 if (desc >= txq->nb_tx_desc)
1568 desc -= txq->nb_tx_desc;
1569 }
1570
1571 status = &txq->tx_ring[desc].cmd_type_offset_bsz;
1572 mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
1573 expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
1574 ICE_TXD_QW1_DTYPE_S);
1575 if ((*status & mask) == expect)
1576 return RTE_ETH_TX_DESC_DONE;
1577
1578 return RTE_ETH_TX_DESC_FULL;
1579 }
1580
1581 void
1582 ice_clear_queues(struct rte_eth_dev *dev)
1583 {
1584 uint16_t i;
1585
1586 PMD_INIT_FUNC_TRACE();
1587
1588 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1589 ice_tx_queue_release_mbufs(dev->data->tx_queues[i]);
1590 ice_reset_tx_queue(dev->data->tx_queues[i]);
1591 }
1592
1593 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1594 ice_rx_queue_release_mbufs(dev->data->rx_queues[i]);
1595 ice_reset_rx_queue(dev->data->rx_queues[i]);
1596 }
1597 }
1598
1599 void
1600 ice_free_queues(struct rte_eth_dev *dev)
1601 {
1602 uint16_t i;
1603
1604 PMD_INIT_FUNC_TRACE();
1605
1606 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1607 if (!dev->data->rx_queues[i])
1608 continue;
1609 ice_rx_queue_release(dev->data->rx_queues[i]);
1610 dev->data->rx_queues[i] = NULL;
1611 }
1612 dev->data->nb_rx_queues = 0;
1613
1614 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1615 if (!dev->data->tx_queues[i])
1616 continue;
1617 ice_tx_queue_release(dev->data->tx_queues[i]);
1618 dev->data->tx_queues[i] = NULL;
1619 }
1620 dev->data->nb_tx_queues = 0;
1621 }
1622
1623 uint16_t
1624 ice_recv_pkts(void *rx_queue,
1625 struct rte_mbuf **rx_pkts,
1626 uint16_t nb_pkts)
1627 {
1628 struct ice_rx_queue *rxq = rx_queue;
1629 volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
1630 volatile union ice_rx_desc *rxdp;
1631 union ice_rx_desc rxd;
1632 struct ice_rx_entry *sw_ring = rxq->sw_ring;
1633 struct ice_rx_entry *rxe;
1634 struct rte_mbuf *nmb; /* new allocated mbuf */
1635 struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1636 uint16_t rx_id = rxq->rx_tail;
1637 uint16_t nb_rx = 0;
1638 uint16_t nb_hold = 0;
1639 uint16_t rx_packet_len;
1640 uint32_t rx_status;
1641 uint64_t qword1;
1642 uint64_t dma_addr;
1643 uint64_t pkt_flags = 0;
1644 uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1645 struct rte_eth_dev *dev;
1646
1647 while (nb_rx < nb_pkts) {
1648 rxdp = &rx_ring[rx_id];
1649 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1650 rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
1651 ICE_RXD_QW1_STATUS_S;
1652
1653 /* Check the DD bit first */
1654 if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
1655 break;
1656
1657 /* allocate mbuf */
1658 nmb = rte_mbuf_raw_alloc(rxq->mp);
1659 if (unlikely(!nmb)) {
1660 dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1661 dev->data->rx_mbuf_alloc_failed++;
1662 break;
1663 }
1664 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1665
1666 nb_hold++;
1667 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1668 rx_id++;
1669 if (unlikely(rx_id == rxq->nb_rx_desc))
1670 rx_id = 0;
1671 rxm = rxe->mbuf;
1672 rxe->mbuf = nmb;
1673 dma_addr =
1674 rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1675
1676 /**
1677 * fill the read format of descriptor with physic address in
1678 * new allocated mbuf: nmb
1679 */
1680 rxdp->read.hdr_addr = 0;
1681 rxdp->read.pkt_addr = dma_addr;
1682
1683 /* calculate rx_packet_len of the received pkt */
1684 rx_packet_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
1685 ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
1686
1687 /* fill old mbuf with received descriptor: rxd */
1688 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1689 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1690 rxm->nb_segs = 1;
1691 rxm->next = NULL;
1692 rxm->pkt_len = rx_packet_len;
1693 rxm->data_len = rx_packet_len;
1694 rxm->port = rxq->port_id;
1695 ice_rxd_to_vlan_tci(rxm, rxdp);
1696 rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
1697 ICE_RXD_QW1_PTYPE_M) >>
1698 ICE_RXD_QW1_PTYPE_S)];
1699 pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
1700 pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
1701 if (pkt_flags & PKT_RX_RSS_HASH)
1702 rxm->hash.rss =
1703 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1704 rxm->ol_flags |= pkt_flags;
1705 /* copy old mbuf to rx_pkts */
1706 rx_pkts[nb_rx++] = rxm;
1707 }
1708 rxq->rx_tail = rx_id;
1709 /**
1710 * If the number of free RX descriptors is greater than the RX free
1711 * threshold of the queue, advance the receive tail register of queue.
1712 * Update that register with the value of the last processed RX
1713 * descriptor minus 1.
1714 */
1715 nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1716 if (nb_hold > rxq->rx_free_thresh) {
1717 rx_id = (uint16_t)(rx_id == 0 ?
1718 (rxq->nb_rx_desc - 1) : (rx_id - 1));
1719 /* write TAIL register */
1720 ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1721 nb_hold = 0;
1722 }
1723 rxq->nb_rx_hold = nb_hold;
1724
1725 /* return received packet in the burst */
1726 return nb_rx;
1727 }
1728
1729 static inline void
1730 ice_txd_enable_checksum(uint64_t ol_flags,
1731 uint32_t *td_cmd,
1732 uint32_t *td_offset,
1733 union ice_tx_offload tx_offload)
1734 {
1735 /* L2 length must be set. */
1736 *td_offset |= (tx_offload.l2_len >> 1) <<
1737 ICE_TX_DESC_LEN_MACLEN_S;
1738
1739 /* Enable L3 checksum offloads */
1740 if (ol_flags & PKT_TX_IP_CKSUM) {
1741 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1742 *td_offset |= (tx_offload.l3_len >> 2) <<
1743 ICE_TX_DESC_LEN_IPLEN_S;
1744 } else if (ol_flags & PKT_TX_IPV4) {
1745 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1746 *td_offset |= (tx_offload.l3_len >> 2) <<
1747 ICE_TX_DESC_LEN_IPLEN_S;
1748 } else if (ol_flags & PKT_TX_IPV6) {
1749 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1750 *td_offset |= (tx_offload.l3_len >> 2) <<
1751 ICE_TX_DESC_LEN_IPLEN_S;
1752 }
1753
1754 if (ol_flags & PKT_TX_TCP_SEG) {
1755 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1756 *td_offset |= (tx_offload.l4_len >> 2) <<
1757 ICE_TX_DESC_LEN_L4_LEN_S;
1758 return;
1759 }
1760
1761 /* Enable L4 checksum offloads */
1762 switch (ol_flags & PKT_TX_L4_MASK) {
1763 case PKT_TX_TCP_CKSUM:
1764 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1765 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
1766 ICE_TX_DESC_LEN_L4_LEN_S;
1767 break;
1768 case PKT_TX_SCTP_CKSUM:
1769 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1770 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
1771 ICE_TX_DESC_LEN_L4_LEN_S;
1772 break;
1773 case PKT_TX_UDP_CKSUM:
1774 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1775 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
1776 ICE_TX_DESC_LEN_L4_LEN_S;
1777 break;
1778 default:
1779 break;
1780 }
1781 }
1782
1783 static inline int
1784 ice_xmit_cleanup(struct ice_tx_queue *txq)
1785 {
1786 struct ice_tx_entry *sw_ring = txq->sw_ring;
1787 volatile struct ice_tx_desc *txd = txq->tx_ring;
1788 uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1789 uint16_t nb_tx_desc = txq->nb_tx_desc;
1790 uint16_t desc_to_clean_to;
1791 uint16_t nb_tx_to_clean;
1792
1793 /* Determine the last descriptor needing to be cleaned */
1794 desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
1795 if (desc_to_clean_to >= nb_tx_desc)
1796 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1797
1798 /* Check to make sure the last descriptor to clean is done */
1799 desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1800 if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
1801 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
1802 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1803 "(port=%d queue=%d) value=0x%"PRIx64"\n",
1804 desc_to_clean_to,
1805 txq->port_id, txq->queue_id,
1806 txd[desc_to_clean_to].cmd_type_offset_bsz);
1807 /* Failed to clean any descriptors */
1808 return -1;
1809 }
1810
1811 /* Figure out how many descriptors will be cleaned */
1812 if (last_desc_cleaned > desc_to_clean_to)
1813 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1814 desc_to_clean_to);
1815 else
1816 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1817 last_desc_cleaned);
1818
1819 /* The last descriptor to clean is done, so that means all the
1820 * descriptors from the last descriptor that was cleaned
1821 * up to the last descriptor with the RS bit set
1822 * are done. Only reset the threshold descriptor.
1823 */
1824 txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1825
1826 /* Update the txq to reflect the last descriptor that was cleaned */
1827 txq->last_desc_cleaned = desc_to_clean_to;
1828 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
1829
1830 return 0;
1831 }
1832
1833 /* Construct the tx flags */
1834 static inline uint64_t
1835 ice_build_ctob(uint32_t td_cmd,
1836 uint32_t td_offset,
1837 uint16_t size,
1838 uint32_t td_tag)
1839 {
1840 return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
1841 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
1842 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
1843 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1844 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
1845 }
1846
1847 /* Check if the context descriptor is needed for TX offloading */
1848 static inline uint16_t
1849 ice_calc_context_desc(uint64_t flags)
1850 {
1851 static uint64_t mask = PKT_TX_TCP_SEG | PKT_TX_QINQ;
1852
1853 return (flags & mask) ? 1 : 0;
1854 }
1855
1856 /* set ice TSO context descriptor */
1857 static inline uint64_t
1858 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
1859 {
1860 uint64_t ctx_desc = 0;
1861 uint32_t cd_cmd, hdr_len, cd_tso_len;
1862
1863 if (!tx_offload.l4_len) {
1864 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1865 return ctx_desc;
1866 }
1867
1868 /**
1869 * in case of non tunneling packet, the outer_l2_len and
1870 * outer_l3_len must be 0.
1871 */
1872 hdr_len = tx_offload.outer_l2_len +
1873 tx_offload.outer_l3_len +
1874 tx_offload.l2_len +
1875 tx_offload.l3_len +
1876 tx_offload.l4_len;
1877
1878 cd_cmd = ICE_TX_CTX_DESC_TSO;
1879 cd_tso_len = mbuf->pkt_len - hdr_len;
1880 ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
1881 ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1882 ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
1883
1884 return ctx_desc;
1885 }
1886
1887 uint16_t
1888 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1889 {
1890 struct ice_tx_queue *txq;
1891 volatile struct ice_tx_desc *tx_ring;
1892 volatile struct ice_tx_desc *txd;
1893 struct ice_tx_entry *sw_ring;
1894 struct ice_tx_entry *txe, *txn;
1895 struct rte_mbuf *tx_pkt;
1896 struct rte_mbuf *m_seg;
1897 uint16_t tx_id;
1898 uint16_t nb_tx;
1899 uint16_t nb_used;
1900 uint16_t nb_ctx;
1901 uint32_t td_cmd = 0;
1902 uint32_t td_offset = 0;
1903 uint32_t td_tag = 0;
1904 uint16_t tx_last;
1905 uint64_t buf_dma_addr;
1906 uint64_t ol_flags;
1907 union ice_tx_offload tx_offload = {0};
1908
1909 txq = tx_queue;
1910 sw_ring = txq->sw_ring;
1911 tx_ring = txq->tx_ring;
1912 tx_id = txq->tx_tail;
1913 txe = &sw_ring[tx_id];
1914
1915 /* Check if the descriptor ring needs to be cleaned. */
1916 if (txq->nb_tx_free < txq->tx_free_thresh)
1917 ice_xmit_cleanup(txq);
1918
1919 for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1920 tx_pkt = *tx_pkts++;
1921
1922 td_cmd = 0;
1923 ol_flags = tx_pkt->ol_flags;
1924 tx_offload.l2_len = tx_pkt->l2_len;
1925 tx_offload.l3_len = tx_pkt->l3_len;
1926 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1927 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1928 tx_offload.l4_len = tx_pkt->l4_len;
1929 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1930 /* Calculate the number of context descriptors needed. */
1931 nb_ctx = ice_calc_context_desc(ol_flags);
1932
1933 /* The number of descriptors that must be allocated for
1934 * a packet equals to the number of the segments of that
1935 * packet plus the number of context descriptor if needed.
1936 */
1937 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1938 tx_last = (uint16_t)(tx_id + nb_used - 1);
1939
1940 /* Circular ring */
1941 if (tx_last >= txq->nb_tx_desc)
1942 tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1943
1944 if (nb_used > txq->nb_tx_free) {
1945 if (ice_xmit_cleanup(txq) != 0) {
1946 if (nb_tx == 0)
1947 return 0;
1948 goto end_of_tx;
1949 }
1950 if (unlikely(nb_used > txq->tx_rs_thresh)) {
1951 while (nb_used > txq->nb_tx_free) {
1952 if (ice_xmit_cleanup(txq) != 0) {
1953 if (nb_tx == 0)
1954 return 0;
1955 goto end_of_tx;
1956 }
1957 }
1958 }
1959 }
1960
1961 /* Descriptor based VLAN insertion */
1962 if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
1963 td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
1964 td_tag = tx_pkt->vlan_tci;
1965 }
1966
1967 /* Enable checksum offloading */
1968 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK) {
1969 ice_txd_enable_checksum(ol_flags, &td_cmd,
1970 &td_offset, tx_offload);
1971 }
1972
1973 if (nb_ctx) {
1974 /* Setup TX context descriptor if required */
1975 volatile struct ice_tx_ctx_desc *ctx_txd =
1976 (volatile struct ice_tx_ctx_desc *)
1977 &tx_ring[tx_id];
1978 uint16_t cd_l2tag2 = 0;
1979 uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
1980
1981 txn = &sw_ring[txe->next_id];
1982 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1983 if (txe->mbuf) {
1984 rte_pktmbuf_free_seg(txe->mbuf);
1985 txe->mbuf = NULL;
1986 }
1987
1988 if (ol_flags & PKT_TX_TCP_SEG)
1989 cd_type_cmd_tso_mss |=
1990 ice_set_tso_ctx(tx_pkt, tx_offload);
1991
1992 /* TX context descriptor based double VLAN insert */
1993 if (ol_flags & PKT_TX_QINQ) {
1994 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1995 cd_type_cmd_tso_mss |=
1996 ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
1997 ICE_TXD_CTX_QW1_CMD_S);
1998 }
1999 ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2000 ctx_txd->qw1 =
2001 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2002
2003 txe->last_id = tx_last;
2004 tx_id = txe->next_id;
2005 txe = txn;
2006 }
2007 m_seg = tx_pkt;
2008
2009 do {
2010 txd = &tx_ring[tx_id];
2011 txn = &sw_ring[txe->next_id];
2012
2013 if (txe->mbuf)
2014 rte_pktmbuf_free_seg(txe->mbuf);
2015 txe->mbuf = m_seg;
2016
2017 /* Setup TX Descriptor */
2018 buf_dma_addr = rte_mbuf_data_iova(m_seg);
2019 txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2020 txd->cmd_type_offset_bsz =
2021 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2022 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2023 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2024 ((uint64_t)m_seg->data_len <<
2025 ICE_TXD_QW1_TX_BUF_SZ_S) |
2026 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2027
2028 txe->last_id = tx_last;
2029 tx_id = txe->next_id;
2030 txe = txn;
2031 m_seg = m_seg->next;
2032 } while (m_seg);
2033
2034 /* fill the last descriptor with End of Packet (EOP) bit */
2035 td_cmd |= ICE_TX_DESC_CMD_EOP;
2036 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2037 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2038
2039 /* set RS bit on the last descriptor of one packet */
2040 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2041 PMD_TX_FREE_LOG(DEBUG,
2042 "Setting RS bit on TXD id="
2043 "%4u (port=%d queue=%d)",
2044 tx_last, txq->port_id, txq->queue_id);
2045
2046 td_cmd |= ICE_TX_DESC_CMD_RS;
2047
2048 /* Update txq RS bit counters */
2049 txq->nb_tx_used = 0;
2050 }
2051 txd->cmd_type_offset_bsz |=
2052 rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2053 ICE_TXD_QW1_CMD_S);
2054 }
2055 end_of_tx:
2056 rte_wmb();
2057
2058 /* update Tail register */
2059 ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2060 txq->tx_tail = tx_id;
2061
2062 return nb_tx;
2063 }
2064
2065 static inline int __attribute__((always_inline))
2066 ice_tx_free_bufs(struct ice_tx_queue *txq)
2067 {
2068 struct ice_tx_entry *txep;
2069 uint16_t i;
2070
2071 if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2072 rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2073 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2074 return 0;
2075
2076 txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2077
2078 for (i = 0; i < txq->tx_rs_thresh; i++)
2079 rte_prefetch0((txep + i)->mbuf);
2080
2081 if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
2082 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2083 rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2084 txep->mbuf = NULL;
2085 }
2086 } else {
2087 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2088 rte_pktmbuf_free_seg(txep->mbuf);
2089 txep->mbuf = NULL;
2090 }
2091 }
2092
2093 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2094 txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2095 if (txq->tx_next_dd >= txq->nb_tx_desc)
2096 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2097
2098 return txq->tx_rs_thresh;
2099 }
2100
2101 /* Populate 4 descriptors with data from 4 mbufs */
2102 static inline void
2103 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2104 {
2105 uint64_t dma_addr;
2106 uint32_t i;
2107
2108 for (i = 0; i < 4; i++, txdp++, pkts++) {
2109 dma_addr = rte_mbuf_data_iova(*pkts);
2110 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2111 txdp->cmd_type_offset_bsz =
2112 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2113 (*pkts)->data_len, 0);
2114 }
2115 }
2116
2117 /* Populate 1 descriptor with data from 1 mbuf */
2118 static inline void
2119 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2120 {
2121 uint64_t dma_addr;
2122
2123 dma_addr = rte_mbuf_data_iova(*pkts);
2124 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2125 txdp->cmd_type_offset_bsz =
2126 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2127 (*pkts)->data_len, 0);
2128 }
2129
2130 static inline void
2131 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
2132 uint16_t nb_pkts)
2133 {
2134 volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
2135 struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
2136 const int N_PER_LOOP = 4;
2137 const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
2138 int mainpart, leftover;
2139 int i, j;
2140
2141 /**
2142 * Process most of the packets in chunks of N pkts. Any
2143 * leftover packets will get processed one at a time.
2144 */
2145 mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
2146 leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
2147 for (i = 0; i < mainpart; i += N_PER_LOOP) {
2148 /* Copy N mbuf pointers to the S/W ring */
2149 for (j = 0; j < N_PER_LOOP; ++j)
2150 (txep + i + j)->mbuf = *(pkts + i + j);
2151 tx4(txdp + i, pkts + i);
2152 }
2153
2154 if (unlikely(leftover > 0)) {
2155 for (i = 0; i < leftover; ++i) {
2156 (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
2157 tx1(txdp + mainpart + i, pkts + mainpart + i);
2158 }
2159 }
2160 }
2161
2162 static inline uint16_t
2163 tx_xmit_pkts(struct ice_tx_queue *txq,
2164 struct rte_mbuf **tx_pkts,
2165 uint16_t nb_pkts)
2166 {
2167 volatile struct ice_tx_desc *txr = txq->tx_ring;
2168 uint16_t n = 0;
2169
2170 /**
2171 * Begin scanning the H/W ring for done descriptors when the number
2172 * of available descriptors drops below tx_free_thresh. For each done
2173 * descriptor, free the associated buffer.
2174 */
2175 if (txq->nb_tx_free < txq->tx_free_thresh)
2176 ice_tx_free_bufs(txq);
2177
2178 /* Use available descriptor only */
2179 nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
2180 if (unlikely(!nb_pkts))
2181 return 0;
2182
2183 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
2184 if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
2185 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
2186 ice_tx_fill_hw_ring(txq, tx_pkts, n);
2187 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2188 rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
2189 ICE_TXD_QW1_CMD_S);
2190 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2191 txq->tx_tail = 0;
2192 }
2193
2194 /* Fill hardware descriptor ring with mbuf data */
2195 ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
2196 txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
2197
2198 /* Determin if RS bit needs to be set */
2199 if (txq->tx_tail > txq->tx_next_rs) {
2200 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2201 rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
2202 ICE_TXD_QW1_CMD_S);
2203 txq->tx_next_rs =
2204 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
2205 if (txq->tx_next_rs >= txq->nb_tx_desc)
2206 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2207 }
2208
2209 if (txq->tx_tail >= txq->nb_tx_desc)
2210 txq->tx_tail = 0;
2211
2212 /* Update the tx tail register */
2213 rte_wmb();
2214 ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
2215
2216 return nb_pkts;
2217 }
2218
2219 static uint16_t
2220 ice_xmit_pkts_simple(void *tx_queue,
2221 struct rte_mbuf **tx_pkts,
2222 uint16_t nb_pkts)
2223 {
2224 uint16_t nb_tx = 0;
2225
2226 if (likely(nb_pkts <= ICE_TX_MAX_BURST))
2227 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
2228 tx_pkts, nb_pkts);
2229
2230 while (nb_pkts) {
2231 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
2232 ICE_TX_MAX_BURST);
2233
2234 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
2235 &tx_pkts[nb_tx], num);
2236 nb_tx = (uint16_t)(nb_tx + ret);
2237 nb_pkts = (uint16_t)(nb_pkts - ret);
2238 if (ret < num)
2239 break;
2240 }
2241
2242 return nb_tx;
2243 }
2244
2245 void __attribute__((cold))
2246 ice_set_rx_function(struct rte_eth_dev *dev)
2247 {
2248 PMD_INIT_FUNC_TRACE();
2249 struct ice_adapter *ad =
2250 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2251 #ifdef RTE_ARCH_X86
2252 struct ice_rx_queue *rxq;
2253 int i;
2254 bool use_avx2 = false;
2255
2256 if (!ice_rx_vec_dev_check(dev)) {
2257 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2258 rxq = dev->data->rx_queues[i];
2259 (void)ice_rxq_vec_setup(rxq);
2260 }
2261
2262 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2263 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
2264 use_avx2 = true;
2265
2266 if (dev->data->scattered_rx) {
2267 PMD_DRV_LOG(DEBUG,
2268 "Using %sVector Scattered Rx (port %d).",
2269 use_avx2 ? "avx2 " : "",
2270 dev->data->port_id);
2271 dev->rx_pkt_burst = use_avx2 ?
2272 ice_recv_scattered_pkts_vec_avx2 :
2273 ice_recv_scattered_pkts_vec;
2274 } else {
2275 PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2276 use_avx2 ? "avx2 " : "",
2277 dev->data->port_id);
2278 dev->rx_pkt_burst = use_avx2 ?
2279 ice_recv_pkts_vec_avx2 :
2280 ice_recv_pkts_vec;
2281 }
2282
2283 return;
2284 }
2285 #endif
2286
2287 if (dev->data->scattered_rx) {
2288 /* Set the non-LRO scattered function */
2289 PMD_INIT_LOG(DEBUG,
2290 "Using a Scattered function on port %d.",
2291 dev->data->port_id);
2292 dev->rx_pkt_burst = ice_recv_scattered_pkts;
2293 } else if (ad->rx_bulk_alloc_allowed) {
2294 PMD_INIT_LOG(DEBUG,
2295 "Rx Burst Bulk Alloc Preconditions are "
2296 "satisfied. Rx Burst Bulk Alloc function "
2297 "will be used on port %d.",
2298 dev->data->port_id);
2299 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
2300 } else {
2301 PMD_INIT_LOG(DEBUG,
2302 "Rx Burst Bulk Alloc Preconditions are not "
2303 "satisfied, Normal Rx will be used on port %d.",
2304 dev->data->port_id);
2305 dev->rx_pkt_burst = ice_recv_pkts;
2306 }
2307 }
2308
2309 void __attribute__((cold))
2310 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
2311 {
2312 struct ice_adapter *ad =
2313 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2314
2315 /* Use a simple Tx queue if possible (only fast free is allowed) */
2316 ad->tx_simple_allowed =
2317 (txq->offloads ==
2318 (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
2319 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
2320
2321 if (ad->tx_simple_allowed)
2322 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
2323 txq->queue_id);
2324 else
2325 PMD_INIT_LOG(DEBUG,
2326 "Simple Tx can NOT be enabled on Tx queue %u.",
2327 txq->queue_id);
2328 }
2329
2330 /*********************************************************************
2331 *
2332 * TX prep functions
2333 *
2334 **********************************************************************/
2335 /* The default values of TSO MSS */
2336 #define ICE_MIN_TSO_MSS 64
2337 #define ICE_MAX_TSO_MSS 9728
2338 #define ICE_MAX_TSO_FRAME_SIZE 262144
2339 uint16_t
2340 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2341 uint16_t nb_pkts)
2342 {
2343 int i, ret;
2344 uint64_t ol_flags;
2345 struct rte_mbuf *m;
2346
2347 for (i = 0; i < nb_pkts; i++) {
2348 m = tx_pkts[i];
2349 ol_flags = m->ol_flags;
2350
2351 if (ol_flags & PKT_TX_TCP_SEG &&
2352 (m->tso_segsz < ICE_MIN_TSO_MSS ||
2353 m->tso_segsz > ICE_MAX_TSO_MSS ||
2354 m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
2355 /**
2356 * MSS outside the range are considered malicious
2357 */
2358 rte_errno = -EINVAL;
2359 return i;
2360 }
2361
2362 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2363 ret = rte_validate_tx_offload(m);
2364 if (ret != 0) {
2365 rte_errno = ret;
2366 return i;
2367 }
2368 #endif
2369 ret = rte_net_intel_cksum_prepare(m);
2370 if (ret != 0) {
2371 rte_errno = ret;
2372 return i;
2373 }
2374 }
2375 return i;
2376 }
2377
2378 void __attribute__((cold))
2379 ice_set_tx_function(struct rte_eth_dev *dev)
2380 {
2381 struct ice_adapter *ad =
2382 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2383 #ifdef RTE_ARCH_X86
2384 struct ice_tx_queue *txq;
2385 int i;
2386 bool use_avx2 = false;
2387
2388 if (!ice_tx_vec_dev_check(dev)) {
2389 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2390 txq = dev->data->tx_queues[i];
2391 (void)ice_txq_vec_setup(txq);
2392 }
2393
2394 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2395 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
2396 use_avx2 = true;
2397
2398 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2399 use_avx2 ? "avx2 " : "",
2400 dev->data->port_id);
2401 dev->tx_pkt_burst = use_avx2 ?
2402 ice_xmit_pkts_vec_avx2 :
2403 ice_xmit_pkts_vec;
2404 dev->tx_pkt_prepare = NULL;
2405
2406 return;
2407 }
2408 #endif
2409
2410 if (ad->tx_simple_allowed) {
2411 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
2412 dev->tx_pkt_burst = ice_xmit_pkts_simple;
2413 dev->tx_pkt_prepare = NULL;
2414 } else {
2415 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
2416 dev->tx_pkt_burst = ice_xmit_pkts;
2417 dev->tx_pkt_prepare = ice_prep_pkts;
2418 }
2419 }
2420
2421 /* For each value it means, datasheet of hardware can tell more details
2422 *
2423 * @note: fix ice_dev_supported_ptypes_get() if any change here.
2424 */
2425 static inline uint32_t
2426 ice_get_default_pkt_type(uint16_t ptype)
2427 {
2428 static const uint32_t type_table[ICE_MAX_PKT_TYPE]
2429 __rte_cache_aligned = {
2430 /* L2 types */
2431 /* [0] reserved */
2432 [1] = RTE_PTYPE_L2_ETHER,
2433 /* [2] - [5] reserved */
2434 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2435 /* [7] - [10] reserved */
2436 [11] = RTE_PTYPE_L2_ETHER_ARP,
2437 /* [12] - [21] reserved */
2438
2439 /* Non tunneled IPv4 */
2440 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2441 RTE_PTYPE_L4_FRAG,
2442 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2443 RTE_PTYPE_L4_NONFRAG,
2444 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2445 RTE_PTYPE_L4_UDP,
2446 /* [25] reserved */
2447 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2448 RTE_PTYPE_L4_TCP,
2449 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2450 RTE_PTYPE_L4_SCTP,
2451 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2452 RTE_PTYPE_L4_ICMP,
2453
2454 /* IPv4 --> IPv4 */
2455 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2456 RTE_PTYPE_TUNNEL_IP |
2457 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2458 RTE_PTYPE_INNER_L4_FRAG,
2459 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2460 RTE_PTYPE_TUNNEL_IP |
2461 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2462 RTE_PTYPE_INNER_L4_NONFRAG,
2463 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2464 RTE_PTYPE_TUNNEL_IP |
2465 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2466 RTE_PTYPE_INNER_L4_UDP,
2467 /* [32] reserved */
2468 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2469 RTE_PTYPE_TUNNEL_IP |
2470 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2471 RTE_PTYPE_INNER_L4_TCP,
2472 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2473 RTE_PTYPE_TUNNEL_IP |
2474 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2475 RTE_PTYPE_INNER_L4_SCTP,
2476 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2477 RTE_PTYPE_TUNNEL_IP |
2478 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2479 RTE_PTYPE_INNER_L4_ICMP,
2480
2481 /* IPv4 --> IPv6 */
2482 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2483 RTE_PTYPE_TUNNEL_IP |
2484 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2485 RTE_PTYPE_INNER_L4_FRAG,
2486 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2487 RTE_PTYPE_TUNNEL_IP |
2488 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2489 RTE_PTYPE_INNER_L4_NONFRAG,
2490 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2491 RTE_PTYPE_TUNNEL_IP |
2492 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2493 RTE_PTYPE_INNER_L4_UDP,
2494 /* [39] reserved */
2495 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2496 RTE_PTYPE_TUNNEL_IP |
2497 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2498 RTE_PTYPE_INNER_L4_TCP,
2499 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2500 RTE_PTYPE_TUNNEL_IP |
2501 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2502 RTE_PTYPE_INNER_L4_SCTP,
2503 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2504 RTE_PTYPE_TUNNEL_IP |
2505 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2506 RTE_PTYPE_INNER_L4_ICMP,
2507
2508 /* IPv4 --> GRE/Teredo/VXLAN */
2509 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2510 RTE_PTYPE_TUNNEL_GRENAT,
2511
2512 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2513 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2514 RTE_PTYPE_TUNNEL_GRENAT |
2515 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2516 RTE_PTYPE_INNER_L4_FRAG,
2517 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2518 RTE_PTYPE_TUNNEL_GRENAT |
2519 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2520 RTE_PTYPE_INNER_L4_NONFRAG,
2521 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2522 RTE_PTYPE_TUNNEL_GRENAT |
2523 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2524 RTE_PTYPE_INNER_L4_UDP,
2525 /* [47] reserved */
2526 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2527 RTE_PTYPE_TUNNEL_GRENAT |
2528 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2529 RTE_PTYPE_INNER_L4_TCP,
2530 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2531 RTE_PTYPE_TUNNEL_GRENAT |
2532 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2533 RTE_PTYPE_INNER_L4_SCTP,
2534 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2535 RTE_PTYPE_TUNNEL_GRENAT |
2536 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2537 RTE_PTYPE_INNER_L4_ICMP,
2538
2539 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2540 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2541 RTE_PTYPE_TUNNEL_GRENAT |
2542 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2543 RTE_PTYPE_INNER_L4_FRAG,
2544 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2545 RTE_PTYPE_TUNNEL_GRENAT |
2546 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2547 RTE_PTYPE_INNER_L4_NONFRAG,
2548 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2549 RTE_PTYPE_TUNNEL_GRENAT |
2550 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2551 RTE_PTYPE_INNER_L4_UDP,
2552 /* [54] reserved */
2553 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2554 RTE_PTYPE_TUNNEL_GRENAT |
2555 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2556 RTE_PTYPE_INNER_L4_TCP,
2557 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2558 RTE_PTYPE_TUNNEL_GRENAT |
2559 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2560 RTE_PTYPE_INNER_L4_SCTP,
2561 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2562 RTE_PTYPE_TUNNEL_GRENAT |
2563 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2564 RTE_PTYPE_INNER_L4_ICMP,
2565
2566 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2567 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2568 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2569
2570 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2571 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2572 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2573 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2574 RTE_PTYPE_INNER_L4_FRAG,
2575 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2576 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2577 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2578 RTE_PTYPE_INNER_L4_NONFRAG,
2579 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2580 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2581 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2582 RTE_PTYPE_INNER_L4_UDP,
2583 /* [62] reserved */
2584 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2585 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2586 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2587 RTE_PTYPE_INNER_L4_TCP,
2588 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2589 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2590 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2591 RTE_PTYPE_INNER_L4_SCTP,
2592 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2593 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2594 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2595 RTE_PTYPE_INNER_L4_ICMP,
2596
2597 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2598 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2599 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2600 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2601 RTE_PTYPE_INNER_L4_FRAG,
2602 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2603 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2604 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2605 RTE_PTYPE_INNER_L4_NONFRAG,
2606 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2607 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2608 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2609 RTE_PTYPE_INNER_L4_UDP,
2610 /* [69] reserved */
2611 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2612 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2613 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2614 RTE_PTYPE_INNER_L4_TCP,
2615 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2616 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2617 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2618 RTE_PTYPE_INNER_L4_SCTP,
2619 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2620 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2621 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2622 RTE_PTYPE_INNER_L4_ICMP,
2623
2624 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
2625 [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2626 RTE_PTYPE_TUNNEL_GRENAT |
2627 RTE_PTYPE_INNER_L2_ETHER_VLAN,
2628
2629 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
2630 [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2631 RTE_PTYPE_TUNNEL_GRENAT |
2632 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2633 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2634 RTE_PTYPE_INNER_L4_FRAG,
2635 [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2636 RTE_PTYPE_TUNNEL_GRENAT |
2637 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2638 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2639 RTE_PTYPE_INNER_L4_NONFRAG,
2640 [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2641 RTE_PTYPE_TUNNEL_GRENAT |
2642 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2643 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2644 RTE_PTYPE_INNER_L4_UDP,
2645 /* [77] reserved */
2646 [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2647 RTE_PTYPE_TUNNEL_GRENAT |
2648 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2649 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2650 RTE_PTYPE_INNER_L4_TCP,
2651 [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2652 RTE_PTYPE_TUNNEL_GRENAT |
2653 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2654 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2655 RTE_PTYPE_INNER_L4_SCTP,
2656 [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2657 RTE_PTYPE_TUNNEL_GRENAT |
2658 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2659 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2660 RTE_PTYPE_INNER_L4_ICMP,
2661
2662 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
2663 [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2664 RTE_PTYPE_TUNNEL_GRENAT |
2665 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2666 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2667 RTE_PTYPE_INNER_L4_FRAG,
2668 [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2669 RTE_PTYPE_TUNNEL_GRENAT |
2670 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2671 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2672 RTE_PTYPE_INNER_L4_NONFRAG,
2673 [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2674 RTE_PTYPE_TUNNEL_GRENAT |
2675 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2676 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2677 RTE_PTYPE_INNER_L4_UDP,
2678 /* [84] reserved */
2679 [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2680 RTE_PTYPE_TUNNEL_GRENAT |
2681 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2682 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2683 RTE_PTYPE_INNER_L4_TCP,
2684 [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2685 RTE_PTYPE_TUNNEL_GRENAT |
2686 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2687 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2688 RTE_PTYPE_INNER_L4_SCTP,
2689 [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2690 RTE_PTYPE_TUNNEL_GRENAT |
2691 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2692 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2693 RTE_PTYPE_INNER_L4_ICMP,
2694
2695 /* Non tunneled IPv6 */
2696 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2697 RTE_PTYPE_L4_FRAG,
2698 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2699 RTE_PTYPE_L4_NONFRAG,
2700 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2701 RTE_PTYPE_L4_UDP,
2702 /* [91] reserved */
2703 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2704 RTE_PTYPE_L4_TCP,
2705 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2706 RTE_PTYPE_L4_SCTP,
2707 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2708 RTE_PTYPE_L4_ICMP,
2709
2710 /* IPv6 --> IPv4 */
2711 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2712 RTE_PTYPE_TUNNEL_IP |
2713 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2714 RTE_PTYPE_INNER_L4_FRAG,
2715 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2716 RTE_PTYPE_TUNNEL_IP |
2717 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2718 RTE_PTYPE_INNER_L4_NONFRAG,
2719 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2720 RTE_PTYPE_TUNNEL_IP |
2721 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2722 RTE_PTYPE_INNER_L4_UDP,
2723 /* [98] reserved */
2724 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2725 RTE_PTYPE_TUNNEL_IP |
2726 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2727 RTE_PTYPE_INNER_L4_TCP,
2728 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2729 RTE_PTYPE_TUNNEL_IP |
2730 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2731 RTE_PTYPE_INNER_L4_SCTP,
2732 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2733 RTE_PTYPE_TUNNEL_IP |
2734 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2735 RTE_PTYPE_INNER_L4_ICMP,
2736
2737 /* IPv6 --> IPv6 */
2738 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2739 RTE_PTYPE_TUNNEL_IP |
2740 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2741 RTE_PTYPE_INNER_L4_FRAG,
2742 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2743 RTE_PTYPE_TUNNEL_IP |
2744 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2745 RTE_PTYPE_INNER_L4_NONFRAG,
2746 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2747 RTE_PTYPE_TUNNEL_IP |
2748 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2749 RTE_PTYPE_INNER_L4_UDP,
2750 /* [105] reserved */
2751 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2752 RTE_PTYPE_TUNNEL_IP |
2753 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2754 RTE_PTYPE_INNER_L4_TCP,
2755 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2756 RTE_PTYPE_TUNNEL_IP |
2757 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2758 RTE_PTYPE_INNER_L4_SCTP,
2759 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2760 RTE_PTYPE_TUNNEL_IP |
2761 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2762 RTE_PTYPE_INNER_L4_ICMP,
2763
2764 /* IPv6 --> GRE/Teredo/VXLAN */
2765 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2766 RTE_PTYPE_TUNNEL_GRENAT,
2767
2768 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
2769 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2770 RTE_PTYPE_TUNNEL_GRENAT |
2771 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2772 RTE_PTYPE_INNER_L4_FRAG,
2773 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2774 RTE_PTYPE_TUNNEL_GRENAT |
2775 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2776 RTE_PTYPE_INNER_L4_NONFRAG,
2777 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2778 RTE_PTYPE_TUNNEL_GRENAT |
2779 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2780 RTE_PTYPE_INNER_L4_UDP,
2781 /* [113] reserved */
2782 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2783 RTE_PTYPE_TUNNEL_GRENAT |
2784 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2785 RTE_PTYPE_INNER_L4_TCP,
2786 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2787 RTE_PTYPE_TUNNEL_GRENAT |
2788 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2789 RTE_PTYPE_INNER_L4_SCTP,
2790 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2791 RTE_PTYPE_TUNNEL_GRENAT |
2792 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2793 RTE_PTYPE_INNER_L4_ICMP,
2794
2795 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
2796 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2797 RTE_PTYPE_TUNNEL_GRENAT |
2798 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2799 RTE_PTYPE_INNER_L4_FRAG,
2800 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2801 RTE_PTYPE_TUNNEL_GRENAT |
2802 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2803 RTE_PTYPE_INNER_L4_NONFRAG,
2804 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2805 RTE_PTYPE_TUNNEL_GRENAT |
2806 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2807 RTE_PTYPE_INNER_L4_UDP,
2808 /* [120] reserved */
2809 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2810 RTE_PTYPE_TUNNEL_GRENAT |
2811 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2812 RTE_PTYPE_INNER_L4_TCP,
2813 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2814 RTE_PTYPE_TUNNEL_GRENAT |
2815 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2816 RTE_PTYPE_INNER_L4_SCTP,
2817 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2818 RTE_PTYPE_TUNNEL_GRENAT |
2819 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2820 RTE_PTYPE_INNER_L4_ICMP,
2821
2822 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2823 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2824 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2825
2826 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2827 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2828 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2829 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2830 RTE_PTYPE_INNER_L4_FRAG,
2831 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2832 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2833 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2834 RTE_PTYPE_INNER_L4_NONFRAG,
2835 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2836 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2837 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2838 RTE_PTYPE_INNER_L4_UDP,
2839 /* [128] reserved */
2840 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2841 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2842 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2843 RTE_PTYPE_INNER_L4_TCP,
2844 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2845 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2846 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2847 RTE_PTYPE_INNER_L4_SCTP,
2848 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2849 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2850 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2851 RTE_PTYPE_INNER_L4_ICMP,
2852
2853 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2854 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2855 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2856 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2857 RTE_PTYPE_INNER_L4_FRAG,
2858 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2859 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2860 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2861 RTE_PTYPE_INNER_L4_NONFRAG,
2862 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2863 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2864 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2865 RTE_PTYPE_INNER_L4_UDP,
2866 /* [135] reserved */
2867 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2868 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2869 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2870 RTE_PTYPE_INNER_L4_TCP,
2871 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2872 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2873 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2874 RTE_PTYPE_INNER_L4_SCTP,
2875 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2876 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2877 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2878 RTE_PTYPE_INNER_L4_ICMP,
2879
2880 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
2881 [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2882 RTE_PTYPE_TUNNEL_GRENAT |
2883 RTE_PTYPE_INNER_L2_ETHER_VLAN,
2884
2885 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
2886 [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2887 RTE_PTYPE_TUNNEL_GRENAT |
2888 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2889 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2890 RTE_PTYPE_INNER_L4_FRAG,
2891 [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2892 RTE_PTYPE_TUNNEL_GRENAT |
2893 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2894 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2895 RTE_PTYPE_INNER_L4_NONFRAG,
2896 [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2897 RTE_PTYPE_TUNNEL_GRENAT |
2898 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2899 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2900 RTE_PTYPE_INNER_L4_UDP,
2901 /* [143] reserved */
2902 [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2903 RTE_PTYPE_TUNNEL_GRENAT |
2904 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2905 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2906 RTE_PTYPE_INNER_L4_TCP,
2907 [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2908 RTE_PTYPE_TUNNEL_GRENAT |
2909 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2910 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2911 RTE_PTYPE_INNER_L4_SCTP,
2912 [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2913 RTE_PTYPE_TUNNEL_GRENAT |
2914 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2915 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2916 RTE_PTYPE_INNER_L4_ICMP,
2917
2918 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
2919 [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2920 RTE_PTYPE_TUNNEL_GRENAT |
2921 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2922 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2923 RTE_PTYPE_INNER_L4_FRAG,
2924 [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2925 RTE_PTYPE_TUNNEL_GRENAT |
2926 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2927 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2928 RTE_PTYPE_INNER_L4_NONFRAG,
2929 [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2930 RTE_PTYPE_TUNNEL_GRENAT |
2931 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2932 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2933 RTE_PTYPE_INNER_L4_UDP,
2934 /* [150] reserved */
2935 [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2936 RTE_PTYPE_TUNNEL_GRENAT |
2937 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2938 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2939 RTE_PTYPE_INNER_L4_TCP,
2940 [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2941 RTE_PTYPE_TUNNEL_GRENAT |
2942 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2943 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2944 RTE_PTYPE_INNER_L4_SCTP,
2945 [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2946 RTE_PTYPE_TUNNEL_GRENAT |
2947 RTE_PTYPE_INNER_L2_ETHER_VLAN |
2948 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2949 RTE_PTYPE_INNER_L4_ICMP,
2950 /* [154] - [255] reserved */
2951 [256] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2952 RTE_PTYPE_TUNNEL_GTPC,
2953 [257] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2954 RTE_PTYPE_TUNNEL_GTPC,
2955 [258] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2956 RTE_PTYPE_TUNNEL_GTPU,
2957 [259] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2958 RTE_PTYPE_TUNNEL_GTPU,
2959 /* [260] - [263] reserved */
2960 [264] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2961 RTE_PTYPE_TUNNEL_GTPC,
2962 [265] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2963 RTE_PTYPE_TUNNEL_GTPC,
2964 [266] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2965 RTE_PTYPE_TUNNEL_GTPU,
2966 [267] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2967 RTE_PTYPE_TUNNEL_GTPU,
2968
2969 /* All others reserved */
2970 };
2971
2972 return type_table[ptype];
2973 }
2974
2975 void __attribute__((cold))
2976 ice_set_default_ptype_table(struct rte_eth_dev *dev)
2977 {
2978 struct ice_adapter *ad =
2979 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2980 int i;
2981
2982 for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
2983 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
2984 }