]> git.proxmox.com Git - ceph.git/blob - ceph/src/seastar/dpdk/drivers/net/ixgbe/ixgbe_rxtx_vec_sse.c
import 15.2.0 Octopus source
[ceph.git] / ceph / src / seastar / dpdk / drivers / net / ixgbe / ixgbe_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2015 Intel Corporation
3 */
4
5 #include <stdint.h>
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "ixgbe_ethdev.h"
10 #include "ixgbe_rxtx.h"
11 #include "ixgbe_rxtx_vec_common.h"
12
13 #include <tmmintrin.h>
14
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18
19 static inline void
20 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
21 {
22 int i;
23 uint16_t rx_id;
24 volatile union ixgbe_adv_rx_desc *rxdp;
25 struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
26 struct rte_mbuf *mb0, *mb1;
27 __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
28 RTE_PKTMBUF_HEADROOM);
29 __m128i dma_addr0, dma_addr1;
30
31 const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX);
32
33 rxdp = rxq->rx_ring + rxq->rxrearm_start;
34
35 /* Pull 'n' more MBUFs into the software ring */
36 if (rte_mempool_get_bulk(rxq->mb_pool,
37 (void *)rxep,
38 RTE_IXGBE_RXQ_REARM_THRESH) < 0) {
39 if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
40 rxq->nb_rx_desc) {
41 dma_addr0 = _mm_setzero_si128();
42 for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
43 rxep[i].mbuf = &rxq->fake_mbuf;
44 _mm_store_si128((__m128i *)&rxdp[i].read,
45 dma_addr0);
46 }
47 }
48 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
49 RTE_IXGBE_RXQ_REARM_THRESH;
50 return;
51 }
52
53 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
54 for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
55 __m128i vaddr0, vaddr1;
56
57 mb0 = rxep[0].mbuf;
58 mb1 = rxep[1].mbuf;
59
60 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
61 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
62 offsetof(struct rte_mbuf, buf_addr) + 8);
63 vaddr0 = _mm_loadu_si128((__m128i *)&(mb0->buf_addr));
64 vaddr1 = _mm_loadu_si128((__m128i *)&(mb1->buf_addr));
65
66 /* convert pa to dma_addr hdr/data */
67 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
68 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
69
70 /* add headroom to pa values */
71 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
72 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
73
74 /* set Header Buffer Address to zero */
75 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
76 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
77
78 /* flush desc with pa dma_addr */
79 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
80 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
81 }
82
83 rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
84 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
85 rxq->rxrearm_start = 0;
86
87 rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
88
89 rx_id = (uint16_t) ((rxq->rxrearm_start == 0) ?
90 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
91
92 /* Update the tail pointer on the NIC */
93 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
94 }
95
96 #ifdef RTE_LIBRTE_SECURITY
97 static inline void
98 desc_to_olflags_v_ipsec(__m128i descs[4], struct rte_mbuf **rx_pkts)
99 {
100 __m128i sterr, rearm, tmp_e, tmp_p;
101 uint32_t *rearm0 = (uint32_t *)rx_pkts[0]->rearm_data + 2;
102 uint32_t *rearm1 = (uint32_t *)rx_pkts[1]->rearm_data + 2;
103 uint32_t *rearm2 = (uint32_t *)rx_pkts[2]->rearm_data + 2;
104 uint32_t *rearm3 = (uint32_t *)rx_pkts[3]->rearm_data + 2;
105 const __m128i ipsec_sterr_msk =
106 _mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP |
107 IXGBE_RXDADV_IPSEC_ERROR_AUTH_FAILED);
108 const __m128i ipsec_proc_msk =
109 _mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP);
110 const __m128i ipsec_err_flag =
111 _mm_set1_epi32(PKT_RX_SEC_OFFLOAD_FAILED |
112 PKT_RX_SEC_OFFLOAD);
113 const __m128i ipsec_proc_flag = _mm_set1_epi32(PKT_RX_SEC_OFFLOAD);
114
115 rearm = _mm_set_epi32(*rearm3, *rearm2, *rearm1, *rearm0);
116 sterr = _mm_set_epi32(_mm_extract_epi32(descs[3], 2),
117 _mm_extract_epi32(descs[2], 2),
118 _mm_extract_epi32(descs[1], 2),
119 _mm_extract_epi32(descs[0], 2));
120 sterr = _mm_and_si128(sterr, ipsec_sterr_msk);
121 tmp_e = _mm_cmpeq_epi32(sterr, ipsec_sterr_msk);
122 tmp_p = _mm_cmpeq_epi32(sterr, ipsec_proc_msk);
123 sterr = _mm_or_si128(_mm_and_si128(tmp_e, ipsec_err_flag),
124 _mm_and_si128(tmp_p, ipsec_proc_flag));
125 rearm = _mm_or_si128(rearm, sterr);
126 *rearm0 = _mm_extract_epi32(rearm, 0);
127 *rearm1 = _mm_extract_epi32(rearm, 1);
128 *rearm2 = _mm_extract_epi32(rearm, 2);
129 *rearm3 = _mm_extract_epi32(rearm, 3);
130 }
131 #endif
132
133 static inline void
134 desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags,
135 struct rte_mbuf **rx_pkts)
136 {
137 __m128i ptype0, ptype1, vtag0, vtag1, csum;
138 __m128i rearm0, rearm1, rearm2, rearm3;
139
140 /* mask everything except rss type */
141 const __m128i rsstype_msk = _mm_set_epi16(
142 0x0000, 0x0000, 0x0000, 0x0000,
143 0x000F, 0x000F, 0x000F, 0x000F);
144
145 /* mask the lower byte of ol_flags */
146 const __m128i ol_flags_msk = _mm_set_epi16(
147 0x0000, 0x0000, 0x0000, 0x0000,
148 0x00FF, 0x00FF, 0x00FF, 0x00FF);
149
150 /* map rss type to rss hash flag */
151 const __m128i rss_flags = _mm_set_epi8(PKT_RX_FDIR, 0, 0, 0,
152 0, 0, 0, PKT_RX_RSS_HASH,
153 PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
154 PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
155
156 /* mask everything except vlan present and l4/ip csum error */
157 const __m128i vlan_csum_msk = _mm_set_epi16(
158 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
159 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
160 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
161 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
162 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
163 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP);
164 /* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
165 const __m128i vlan_csum_map_lo = _mm_set_epi8(
166 0, 0, 0, 0,
167 vlan_flags | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
168 vlan_flags | PKT_RX_IP_CKSUM_BAD,
169 vlan_flags | PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
170 vlan_flags | PKT_RX_IP_CKSUM_GOOD,
171 0, 0, 0, 0,
172 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
173 PKT_RX_IP_CKSUM_BAD,
174 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
175 PKT_RX_IP_CKSUM_GOOD);
176
177 const __m128i vlan_csum_map_hi = _mm_set_epi8(
178 0, 0, 0, 0,
179 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
180 PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t),
181 0, 0, 0, 0,
182 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
183 PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t));
184
185 ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
186 ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
187 vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
188 vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
189
190 ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
191 ptype0 = _mm_and_si128(ptype0, rsstype_msk);
192 ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
193
194 vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
195 vtag1 = _mm_and_si128(vtag1, vlan_csum_msk);
196
197 /* csum bits are in the most significant, to use shuffle we need to
198 * shift them. Change mask to 0xc000 to 0x0003.
199 */
200 csum = _mm_srli_epi16(vtag1, 14);
201
202 /* now or the most significant 64 bits containing the checksum
203 * flags with the vlan present flags.
204 */
205 csum = _mm_srli_si128(csum, 8);
206 vtag1 = _mm_or_si128(csum, vtag1);
207
208 /* convert VP, IPE, L4E to ol_flags */
209 vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1);
210 vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t));
211
212 vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1);
213 vtag1 = _mm_and_si128(vtag1, ol_flags_msk);
214 vtag1 = _mm_or_si128(vtag0, vtag1);
215
216 vtag1 = _mm_or_si128(ptype0, vtag1);
217
218 /*
219 * At this point, we have the 4 sets of flags in the low 64-bits
220 * of vtag1 (4x16).
221 * We want to extract these, and merge them with the mbuf init data
222 * so we can do a single 16-byte write to the mbuf to set the flags
223 * and all the other initialization fields. Extracting the
224 * appropriate flags means that we have to do a shift and blend for
225 * each mbuf before we do the write.
226 */
227 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10);
228 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10);
229 rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10);
230 rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10);
231
232 /* write the rearm data and the olflags in one write */
233 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
234 offsetof(struct rte_mbuf, rearm_data) + 8);
235 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
236 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
237 _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
238 _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
239 _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
240 _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
241 }
242
243 static inline uint32_t get_packet_type(int index,
244 uint32_t pkt_info,
245 uint32_t etqf_check,
246 uint32_t tunnel_check)
247 {
248 if (etqf_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP)))
249 return RTE_PTYPE_UNKNOWN;
250
251 if (tunnel_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) {
252 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
253 return ptype_table_tn[pkt_info];
254 }
255
256 pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
257 return ptype_table[pkt_info];
258 }
259
260 static inline void
261 desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask,
262 struct rte_mbuf **rx_pkts)
263 {
264 __m128i etqf_mask = _mm_set_epi64x(0x800000008000LL, 0x800000008000LL);
265 __m128i ptype_mask = _mm_set_epi32(
266 pkt_type_mask, pkt_type_mask, pkt_type_mask, pkt_type_mask);
267 __m128i tunnel_mask =
268 _mm_set_epi64x(0x100000001000LL, 0x100000001000LL);
269
270 uint32_t etqf_check, tunnel_check, pkt_info;
271
272 __m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]);
273 __m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]);
274
275 /* interleave low 32 bits,
276 * now we have 4 ptypes in a XMM register
277 */
278 ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
279
280 /* create a etqf bitmask based on the etqf bit. */
281 etqf_check = _mm_movemask_epi8(_mm_and_si128(ptype0, etqf_mask));
282
283 /* shift left by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
284 ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
285 ptype_mask);
286
287 /* create a tunnel bitmask based on the tunnel bit */
288 tunnel_check = _mm_movemask_epi8(
289 _mm_slli_epi32(_mm_and_si128(ptype0, tunnel_mask), 0x3));
290
291 pkt_info = _mm_extract_epi32(ptype0, 0);
292 rx_pkts[0]->packet_type =
293 get_packet_type(0, pkt_info, etqf_check, tunnel_check);
294 pkt_info = _mm_extract_epi32(ptype0, 1);
295 rx_pkts[1]->packet_type =
296 get_packet_type(1, pkt_info, etqf_check, tunnel_check);
297 pkt_info = _mm_extract_epi32(ptype0, 2);
298 rx_pkts[2]->packet_type =
299 get_packet_type(2, pkt_info, etqf_check, tunnel_check);
300 pkt_info = _mm_extract_epi32(ptype0, 3);
301 rx_pkts[3]->packet_type =
302 get_packet_type(3, pkt_info, etqf_check, tunnel_check);
303 }
304
305 /*
306 * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
307 *
308 * Notice:
309 * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
310 * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
311 * numbers of DD bit
312 * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
313 */
314 static inline uint16_t
315 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
316 uint16_t nb_pkts, uint8_t *split_packet)
317 {
318 volatile union ixgbe_adv_rx_desc *rxdp;
319 struct ixgbe_rx_entry *sw_ring;
320 uint16_t nb_pkts_recd;
321 #ifdef RTE_LIBRTE_SECURITY
322 uint8_t use_ipsec = rxq->using_ipsec;
323 #endif
324 int pos;
325 uint64_t var;
326 __m128i shuf_msk;
327 __m128i crc_adjust = _mm_set_epi16(
328 0, 0, 0, /* ignore non-length fields */
329 -rxq->crc_len, /* sub crc on data_len */
330 0, /* ignore high-16bits of pkt_len */
331 -rxq->crc_len, /* sub crc on pkt_len */
332 0, 0 /* ignore pkt_type field */
333 );
334 /*
335 * compile-time check the above crc_adjust layout is correct.
336 * NOTE: the first field (lowest address) is given last in set_epi16
337 * call above.
338 */
339 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
340 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
341 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
342 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
343 __m128i dd_check, eop_check;
344 __m128i mbuf_init;
345 uint8_t vlan_flags;
346
347 /* nb_pkts shall be less equal than RTE_IXGBE_MAX_RX_BURST */
348 nb_pkts = RTE_MIN(nb_pkts, RTE_IXGBE_MAX_RX_BURST);
349
350 /* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
351 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
352
353 /* Just the act of getting into the function from the application is
354 * going to cost about 7 cycles
355 */
356 rxdp = rxq->rx_ring + rxq->rx_tail;
357
358 rte_prefetch0(rxdp);
359
360 /* See if we need to rearm the RX queue - gives the prefetch a bit
361 * of time to act
362 */
363 if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
364 ixgbe_rxq_rearm(rxq);
365
366 /* Before we start moving massive data around, check to see if
367 * there is actually a packet available
368 */
369 if (!(rxdp->wb.upper.status_error &
370 rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
371 return 0;
372
373 /* 4 packets DD mask */
374 dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
375
376 /* 4 packets EOP mask */
377 eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
378
379 /* mask to shuffle from desc. to mbuf */
380 shuf_msk = _mm_set_epi8(
381 7, 6, 5, 4, /* octet 4~7, 32bits rss */
382 15, 14, /* octet 14~15, low 16 bits vlan_macip */
383 13, 12, /* octet 12~13, 16 bits data_len */
384 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
385 13, 12, /* octet 12~13, low 16 bits pkt_len */
386 0xFF, 0xFF, /* skip 32 bit pkt_type */
387 0xFF, 0xFF
388 );
389 /*
390 * Compile-time verify the shuffle mask
391 * NOTE: some field positions already verified above, but duplicated
392 * here for completeness in case of future modifications.
393 */
394 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
395 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
396 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
397 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
398 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
399 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
400 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
401 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
402
403 mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
404
405 /* Cache is empty -> need to scan the buffer rings, but first move
406 * the next 'n' mbufs into the cache
407 */
408 sw_ring = &rxq->sw_ring[rxq->rx_tail];
409
410 /* ensure these 2 flags are in the lower 8 bits */
411 RTE_BUILD_BUG_ON((PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED) > UINT8_MAX);
412 vlan_flags = rxq->vlan_flags & UINT8_MAX;
413
414 /* A. load 4 packet in one loop
415 * [A*. mask out 4 unused dirty field in desc]
416 * B. copy 4 mbuf point from swring to rx_pkts
417 * C. calc the number of DD bits among the 4 packets
418 * [C*. extract the end-of-packet bit, if requested]
419 * D. fill info. from desc to mbuf
420 */
421 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
422 pos += RTE_IXGBE_DESCS_PER_LOOP,
423 rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
424 __m128i descs[RTE_IXGBE_DESCS_PER_LOOP];
425 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
426 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
427 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
428 __m128i mbp1;
429 #if defined(RTE_ARCH_X86_64)
430 __m128i mbp2;
431 #endif
432
433 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
434 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
435
436 /* Read desc statuses backwards to avoid race condition */
437 /* A.1 load 4 pkts desc */
438 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
439 rte_compiler_barrier();
440
441 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
442 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
443
444 #if defined(RTE_ARCH_X86_64)
445 /* B.1 load 2 64 bit mbuf points */
446 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
447 #endif
448
449 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
450 rte_compiler_barrier();
451 /* B.1 load 2 mbuf point */
452 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
453 rte_compiler_barrier();
454 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
455
456 #if defined(RTE_ARCH_X86_64)
457 /* B.2 copy 2 mbuf point into rx_pkts */
458 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
459 #endif
460
461 if (split_packet) {
462 rte_mbuf_prefetch_part2(rx_pkts[pos]);
463 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
464 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
465 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
466 }
467
468 /* avoid compiler reorder optimization */
469 rte_compiler_barrier();
470
471 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
472 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
473 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
474
475 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
476 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
477 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
478
479 /* C.1 4=>2 filter staterr info only */
480 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
481 /* C.1 4=>2 filter staterr info only */
482 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
483
484 /* set ol_flags with vlan packet type */
485 desc_to_olflags_v(descs, mbuf_init, vlan_flags, &rx_pkts[pos]);
486
487 #ifdef RTE_LIBRTE_SECURITY
488 if (unlikely(use_ipsec))
489 desc_to_olflags_v_ipsec(descs, &rx_pkts[pos]);
490 #endif
491
492 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
493 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
494 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
495
496 /* C.2 get 4 pkts staterr value */
497 zero = _mm_xor_si128(dd_check, dd_check);
498 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
499
500 /* D.3 copy final 3,4 data to rx_pkts */
501 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
502 pkt_mb4);
503 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
504 pkt_mb3);
505
506 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
507 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
508 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
509
510 /* C* extract and record EOP bit */
511 if (split_packet) {
512 __m128i eop_shuf_mask = _mm_set_epi8(
513 0xFF, 0xFF, 0xFF, 0xFF,
514 0xFF, 0xFF, 0xFF, 0xFF,
515 0xFF, 0xFF, 0xFF, 0xFF,
516 0x04, 0x0C, 0x00, 0x08
517 );
518
519 /* and with mask to extract bits, flipping 1-0 */
520 __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
521 /* the staterr values are not in order, as the count
522 * count of dd bits doesn't care. However, for end of
523 * packet tracking, we do care, so shuffle. This also
524 * compresses the 32-bit values to 8-bit
525 */
526 eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
527 /* store the resulting 32-bit value */
528 *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
529 split_packet += RTE_IXGBE_DESCS_PER_LOOP;
530 }
531
532 /* C.3 calc available number of desc */
533 staterr = _mm_and_si128(staterr, dd_check);
534 staterr = _mm_packs_epi32(staterr, zero);
535
536 /* D.3 copy final 1,2 data to rx_pkts */
537 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
538 pkt_mb2);
539 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
540 pkt_mb1);
541
542 desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
543
544 /* C.4 calc avaialbe number of desc */
545 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
546 nb_pkts_recd += var;
547 if (likely(var != RTE_IXGBE_DESCS_PER_LOOP))
548 break;
549 }
550
551 /* Update our internal tail pointer */
552 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
553 rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
554 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
555
556 return nb_pkts_recd;
557 }
558
559 /*
560 * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
561 *
562 * Notice:
563 * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
564 * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
565 * numbers of DD bit
566 * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
567 */
568 uint16_t
569 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
570 uint16_t nb_pkts)
571 {
572 return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
573 }
574
575 /*
576 * vPMD receive routine that reassembles scattered packets
577 *
578 * Notice:
579 * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
580 * - nb_pkts > RTE_IXGBE_MAX_RX_BURST, only scan RTE_IXGBE_MAX_RX_BURST
581 * numbers of DD bit
582 * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
583 */
584 uint16_t
585 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
586 uint16_t nb_pkts)
587 {
588 struct ixgbe_rx_queue *rxq = rx_queue;
589 uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
590
591 /* get some new buffers */
592 uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
593 split_flags);
594 if (nb_bufs == 0)
595 return 0;
596
597 /* happy day case, full burst + no packets to be joined */
598 const uint64_t *split_fl64 = (uint64_t *)split_flags;
599 if (rxq->pkt_first_seg == NULL &&
600 split_fl64[0] == 0 && split_fl64[1] == 0 &&
601 split_fl64[2] == 0 && split_fl64[3] == 0)
602 return nb_bufs;
603
604 /* reassemble any packets that need reassembly*/
605 unsigned i = 0;
606 if (rxq->pkt_first_seg == NULL) {
607 /* find the first split flag, and only reassemble then*/
608 while (i < nb_bufs && !split_flags[i])
609 i++;
610 if (i == nb_bufs)
611 return nb_bufs;
612 }
613 return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
614 &split_flags[i]);
615 }
616
617 static inline void
618 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
619 struct rte_mbuf *pkt, uint64_t flags)
620 {
621 __m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 46 |
622 flags | pkt->data_len,
623 pkt->buf_iova + pkt->data_off);
624 _mm_store_si128((__m128i *)&txdp->read, descriptor);
625 }
626
627 static inline void
628 vtx(volatile union ixgbe_adv_tx_desc *txdp,
629 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
630 {
631 int i;
632
633 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
634 vtx1(txdp, *pkt, flags);
635 }
636
637 uint16_t
638 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
639 uint16_t nb_pkts)
640 {
641 struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
642 volatile union ixgbe_adv_tx_desc *txdp;
643 struct ixgbe_tx_entry_v *txep;
644 uint16_t n, nb_commit, tx_id;
645 uint64_t flags = DCMD_DTYP_FLAGS;
646 uint64_t rs = IXGBE_ADVTXD_DCMD_RS|DCMD_DTYP_FLAGS;
647 int i;
648
649 /* cross rx_thresh boundary is not allowed */
650 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
651
652 if (txq->nb_tx_free < txq->tx_free_thresh)
653 ixgbe_tx_free_bufs(txq);
654
655 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
656 if (unlikely(nb_pkts == 0))
657 return 0;
658
659 tx_id = txq->tx_tail;
660 txdp = &txq->tx_ring[tx_id];
661 txep = &txq->sw_ring_v[tx_id];
662
663 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
664
665 n = (uint16_t)(txq->nb_tx_desc - tx_id);
666 if (nb_commit >= n) {
667
668 tx_backlog_entry(txep, tx_pkts, n);
669
670 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
671 vtx1(txdp, *tx_pkts, flags);
672
673 vtx1(txdp, *tx_pkts++, rs);
674
675 nb_commit = (uint16_t)(nb_commit - n);
676
677 tx_id = 0;
678 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
679
680 /* avoid reach the end of ring */
681 txdp = &(txq->tx_ring[tx_id]);
682 txep = &txq->sw_ring_v[tx_id];
683 }
684
685 tx_backlog_entry(txep, tx_pkts, nb_commit);
686
687 vtx(txdp, tx_pkts, nb_commit, flags);
688
689 tx_id = (uint16_t)(tx_id + nb_commit);
690 if (tx_id > txq->tx_next_rs) {
691 txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
692 rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
693 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
694 txq->tx_rs_thresh);
695 }
696
697 txq->tx_tail = tx_id;
698
699 IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail);
700
701 return nb_pkts;
702 }
703
704 static void __attribute__((cold))
705 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
706 {
707 _ixgbe_tx_queue_release_mbufs_vec(txq);
708 }
709
710 void __attribute__((cold))
711 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
712 {
713 _ixgbe_rx_queue_release_mbufs_vec(rxq);
714 }
715
716 static void __attribute__((cold))
717 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
718 {
719 _ixgbe_tx_free_swring_vec(txq);
720 }
721
722 static void __attribute__((cold))
723 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
724 {
725 _ixgbe_reset_tx_queue_vec(txq);
726 }
727
728 static const struct ixgbe_txq_ops vec_txq_ops = {
729 .release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
730 .free_swring = ixgbe_tx_free_swring,
731 .reset = ixgbe_reset_tx_queue,
732 };
733
734 int __attribute__((cold))
735 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
736 {
737 return ixgbe_rxq_vec_setup_default(rxq);
738 }
739
740 int __attribute__((cold))
741 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
742 {
743 return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
744 }
745
746 int __attribute__((cold))
747 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
748 {
749 return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
750 }